CS 106
A. 1. 65

A PROGRAM TO PLAY CHESS END GAMES

BY
BARBARA J. HUBERMAN

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457 | D &) C

TECHNICAL REPORT NO. CS 106 Stos - J
: Hims ‘J:r&’

AUGUST 19, 1968 :

=

COMPUTER‘ SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

1\ .l

BEST
AVAILABLE COPY

e o R enns A

Epe—t— A laabaakl)

T TT-—

e g b

STANFORD ARTIFICIAL INTELLIGENCE PROJECT August 19, 1968
MEMO AI-65

CS 106
A PROGRAM TO PLAY CHESS END GAMES

by Barbara Jane Hubermar

ABSTRACT: A program to plgy chess end games is described, The model
used in the program is very close to the model assumed in
chess books. Embedded in the model are two predicates,
better and worse, which contain the heuristics of play,
qirferent for each end game, The definitions of better and
worse were obtained by programmer translaticn from the
chess books.,

The program model is shown to be a good one for chess end
games by the succesa achieved for three end games. Also
the model enables us tc prove that the program can reach
checkmate from any starting position, Insights about
translation from book problem solving methods into computer
program heuristics are discussed; they are obtained by
comparing the chess book methods with the definitions of
better and worse, and by considering the difficulty en-

- countered by the programmer when doing the translation.

The research reported here was supported in part by the Advanced
?esearch Projects Agency of the Office of the Secretary of Defense
SD-183)

ACKNOWLEDGEMENTS

I would like to express deepest thanks to my thesis advisor,

Professor John McCarthy, for his many valuable suggestions and helpful
criticisms. Also I am grateful to Professor J. Feldman for his construc-
tive reading of the final version of the thesis, and to Prufessor R.
Reddy for his earlier reading and assistance.

In addition I am indebted to my colleague, Mr. John lennie, for
his critical evaluation of parts of this work, and to my cousin, Mrs.
Jill Custer, for her encouragement and careful reading.

I wish to express my appreciation to Mrs. Judy Muller for her
excellent typing and preparation of this report, and to Mrs. Dorothy
McGrath for her fine illustrations.

This work was supported by the Advanced Research Projects Agency

of the Office of the Secretary of Defense, (SD-183).

iii

TABLE OF CONTENTS

Chagter

1.

Introduction
Methods and Models
Model and Methods for Chess End Games
Goals of the Research
Outline of the Thesis .,
Program Orgenization b o o Al o o
Notation
Program Orgenization
Tree Search Heuristics
Representation . .,« . .
Definition of better and worse . . .
Formalization

Additions to better and worse

Rook and King Against King 5 0 0 0 O

Formal Definitions of better and worse

Additions to better and worse

Examples of Program Play
Evaluation of Program Play

Two Bishops and King against King . .

Stage 3 . .

Stage 40

Formal Definitions of better and worse

Changes to better and worse

iv

(o) WAN |

-1

10
10
11
21
22
2k
26

38
38
43
48
52

65
68
71
72

Table of Contents (cont'd,)

Chapter Page
Examples of Program Play « « « « « « « « 80

Evaluation of Program Play . . . v + v ¢ v « « « o o & . 86

6. Bishop, Knight and King against King 87
Stage Ottt et e e e e e e e e e e e e ... 8
BEREE DI S s o g o o A% G e b m mE e o .. 92
IR B . i . B de m o s e e e b s W e . . OB
PEagh P="1 ! B 8. D b - 98 9t L d e e 8 95
. B A A. c Lt . I8, LB, ORE L EB
DA B R e . WL L U g ke e e o e e s e .. MOB
B 6 .. . L. . i iie s e e e e e e s . 108
Formal Definitions of better and worse 118
Additions to better and worse 119
Examples of Program Play . . . + ¢« ¢« ¢« ¢ ¢ « o ¢ « & o . 131

fa Program Correchbn®aB . | . . . L . . ¢ . o« o « + s+ o « 140
8. Evaluations and Conclusions 150
Evaluation of the Forcing Tree Model , , 150
Correspondence of Program and Book Methods 155
Evaluation of the Translation Process 15
Extensions in Chess ¢ . « .+ . s .. ., 161
GURGIUBIGN®, . L . . & . 2 % u e e e e e e s e ... L6B
L TSI A YT T PP |

Bibliography L] [L] [[[. . [. [[[[e L] L] . . [e e e . . 167

ol e e

—_ = ==

m

[4
[

—

-

|

"

&l

1

[T

[.)

[]

ol e e e

1.1
24,11

2.2

2.4
2.5
2.6
O
o8
3.3
3.4
b1
4.2
4.3
4.4
b5
3.1
S.E
2.3
5.4
5.5
5.6
5.7
38

FIGURES

Figure Number

Example of a Forcing Tree . . + « « ¢« + & « &
Example of Forcing Tree

Main Program Flow B

Example from Capablance, pages 26-28 .
Steges in Figure 3.1 « ¢« « o« &
Listing of the Rules Introduced in Chapter 3
Example from Fine, paeges 1% and 15
Examples of Moves in Stage 2
Examples of Stage 3 +. « « v ¢« + « & &
Illustrations of Examples of Program Play . .
Example from Fine, pages 15-17

Examples of Quadrants + + ¢« « « &

Example from Capablanca, pages 29-30 ., . . .
Exemples of Stage 3 . . v ¢« ¢ ¢ ¢ o o o o o

Examples of Stage 4
vi

TP S I

15
17
18
19
20
25
30
36
37

29
4o

Ly
b7
50
7%
56
29
60
63
66
67
70

Figure Number

5.9
5. 10
Il
5.12
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.1}
6.15
8.1
8.2

Starting Positions for Examples of Program Play .

Program Organization for Doing Simple Learning

Figures (cont'd)

Illegal Positions |

Examples of Program Play

Examples of Head Quadrants

Examples for Stage 5

vii

Example from Fine, pages 18-20

Forbidden Knight Interference

Examples of Knight Interference |,

Example from Capablanca, pages 110 and 111

Tree Pruning Heuristics for Non-Head Quadrants

B

102
104
105
107
109
113
117
122
124
128
132
134
139

oy

= ¢t

.

[X3

L]

0 OO £33 | & = ==

= B =

I |

F“hﬂm* -~ - I~ —— N T B BT T

CHAPTER 1

INTRODUCTION

This research is concerned with the process of translating book
descriptions of problem solving methods into program heuristies. Many
books have been written for the purpose of teaching how to perform some
task, The task under discussion may be almost any kind of activity,
including intellectual activities such as proving theorems in geometry
or solving differential equations. People are able to learn from these
books although the difficulty in learning varies from task to task.
Therefore we can consider the information in the books as sufficient
for people. It would be convenient if the book information could be
used by computer programs. We are interested in whether the information
is sufficient for computers, and if not, then we want to know what kind
of additional information is needed.

The fact that book information is sufficient for people does not
mean that it can be used directly. If the book describes an algorithm,
then sometimes only memorization is required of the reader; for example,
the method of finding truth values of sentences in propositional calculus
by means of truth tables can be learned by memorization. Many tasks,
however, require substantial learning before the student can understand
the book. The task of playing chess end games by computer provides a
simple but not trivial area for this research. By chess end games we

mean those games where the number of pieces on the board is small, but

the number of moves to checkmate large: for example, Two Bishops and
King against King, or the various Pawn endings. Ch;;s books give rules
for these end games which are not algorithms but are supposed to be
simple and complete enough that beginners at chess can learn to play
the end games fairly easily. A certain amount of intelligence is
required of the student, but still we expect to need only a minimal
amount of additional information. 1In this study the programmer will do
the translation. Since this translation from the chess books to the

program is not direct, as it would be in the case of truth tables, we

expect to learn something from the translation process,

Methods and Models

Computer researchers are well aware by now of the fact that any

task requiring intelligence can be profitably approached by distinguishing

between models and methods. The mndel, which is a representation of the
7/

structure of the problem [Minsky, 1961]];determines the overall logic of

the program. The methods are the heuristics which the program uses

within this structure., For example, in the Logic Theory Machine

[Newell, Shaw, and Simon, 1957], the model is a backwards tree and is
represented by that part of the program called the "Executive Routine".
Within this framework substitution, detachment and chaining methods are
used; these are encodings of the way people apply the rules of inference
in propositional calculus.

Generally books are concerned only with teaching the methods which

should be used to solve problems in the task area. The methods must be

1. See page 415 of Minsky [1961].

L tl"

[2.

L& t-:

»
LT

.-;3

s |

r

U

r\

U

J

=

:[o b ‘

——

—l

& == B = f

=

applied within a structure which is sssumed in the book but not generally
defined explicitly. It is necessary to build a model of this structure
in the computer before informaﬁion about methods can be taken from the
book., |

We expect that different models are required for different tasks.,

Very often the model is a backwards tree; the General Problem Solver

[Newell and Simon, 1961] is based upon this fact. However there are
problems which would require g different model: for example, bidding
in bridge. The closer the model used in the program is to the way that
the author of the book thinks about the problem, the easier it will be
to translate the methods of the book into heuristics for the program,

Chess end games could be handled by the General Problem Solver; however

in this research a model is used which is much closer to the abstract
model assumed in the chess books., In this way we hope to eliminate
making changes in the methods to account for a difference between the
program's model and the abstract model assumed in the book, This means
that any difficulty experience in translating the book methods into

program heuristics can only be due to inadequacy in the method descriptions.

Model and Methods for Chess End Games

The model used for chess end games is a forcing tree. The program

is supplied with two functions better and worse (containing the methods)

which compare positions. From a given starting position p , in which
the program has the move, it uses tree search to find positions q

which are better than p . It will search until such a position q

| o =

-

is found for every sequence of moves by the opposition. An example of
such a tree is given in Figure 1.1. The program will then make the
moves dictated by the tree until it reaches a q at the end of a
branch in the tree; then it recalculates the tree to force positions
better than q . This process continues until checkmate is reached,
worse is used by the program to cut off branches of the tree which lead
to disaster (stalemate, etc.), and also to prune the tree., This model
is desc—ibed in detail in Chapter 2,

Tue forcing tree model will be used for all the different end
games, However each end game is played by different methods which will
result in different definitions of better and worse. Tiis enables us
to examine the problems of translation from methods to program heuristics
several times and for games of varying degrees of difficulty.

better and worse are built up out of pattern recognition functions

of positions which can be defined in a natural manner from information
given in the chess books. The methods, or rules, of play are defined

in two ways in the books. First of all, written statements are made,

For example, in the description of the Rook and King against King game in
Capablanca [1935] we find: "The principle is to drive the opposing

King to the last line on any side of the board" and then the student
should "Keep his King as much as possible on the same rank, or...file,

as the opposing King".2 The play of other games (and in other books)

is described by similar rules. It is not difficult to convert a
principle into a pattern recognition function of positions because the

pattern is inherent in the principle., For example, to express the

2. See pages 26 and 27 in Capablanca [1935])
L

s &= .=

3

==

-

= .3

-

'
!
q
J < q
\ a
q
Figure 1.1. Example of a Forcing tree. The program has the move in
p; it must make a move leading to a position q Judged better than p
t'or every sequence of moves by the opposition. Each iteration of the
program will produce a tree like this; several iterations will be re-
quired to reach checkmate.
L
|
|
i 4
5
!
4

first principle quoted above we define

f(x) = the opposition king is confined to an edge of the board in x ,

for x a position. Then we might decide a position q was better than
position p 1if

£(q) A - £(p)
because the principle is satisfied by making the moves leading from p
to q .

The chess books supplement the principles with examples of program
play. The principles generally cover the gross features of the game
and form a framework for viewing the play of the game. The majority of
moves are only partly derived from the principles; they are more directly
derived from the examples of program play. The examples contain more or
less complete information about methods of play; the difficulty comes
in deciding what pattern features of the positions are important.
Obviously, induction is required to make this decision. Each example
is considered representative of a large class of positions and a general
rule must be defined for that class., If the example is accompanied by

principles, this simplifies the induction by providing clues to important

‘features (see Figure 3.1). The induction leads automatically to the

kind of pattern recognition functions used in better and worse.

Goals of the Research

The primary goal oi the research is to study tne translaticn
process. We begin by stating two criteria wnich will nelp us achieve
this goal. First we would like to see if our model is a good one for

chess end gemes. Our first hypothesis is: the model used in the

L

[% }

r=s

= =

—t

i

&
L

i

[¥
Lo

—

=3

—l

=3

= U o

program is a good representation of the abstract model assumed by
chess books., We can support this hypothesis by successfully running
the program on different end games. Furthermore, conditions can be
given on better and worse which permit us to prove informally that the
program works correctly. The proof depends heavily on the model and
could not be given for a different model (for example the General

Problem Solver model).

Our second hypothesis is: the information in the chess books is

sufficient for the definitions of better and worse. The chess book in-

formation will suffice for worse if all disastrous positions are
described. For better much more information is needed; the books must
give rules for recognizing progress frequently enough that the tree
search between positions is reasonable. For example it is nof enough
to have rules recognizing only checkmate positions.

Finally we turn our attention to the primary goal of studying the
translation process. We assume that the two criteria are satisfied.
First we consider how closely the definitions of better and worse
corrvespoud to the chess book methods, measuring the correspondence
by comparing program play with the book examples, Also we consider the

difficulty encountered in defining better and worse.

Qutline of the Thesis

In Chapter 2, the overall organization will be described. A

detailed definition of the uses oi better, worse, and tree search will

be given; this constitutes the model which we use for chess end games,

In Chapter 3 the form of the contents of functions better and worse

will be discussed. These functions are different for each end game,
since different methods are used for each game. However, the form

given for better and worse is used in all end games. Some rules are

given for better and worse which will enable us to prove that the

program is correct in the sense of being able to achieve checkmate from
a given starting position.

Chapters 4, 5, and 6 each describe the definitions of better and
worse for a different end game. Rook and King against King is discussed
in Chapter 4, two Bishops and King against King in Chapter 5, and
Bishop, Knight and King against King in Chapter 6. These games are
presented in order of difficulty. The rook end game is quite a
simple one; two Bishops is a QQFe of moderate difficulty, while the
Bishop-Knight end game is very difficult. The process of translating
from the book information into pattern recognition functions will be
described, and reasons will be given for the programming decisions,
Examples of program play will be included for each game,

Chapter 7 contains an informal proof.of program correctness. This
proof is given after the various end games are described because it

depends on the heuristics used for each game.

Chapter 8 will contain an evaluation of the better, worse format
in teims of the two primary goals., Subjects covered will include
program efficiency, a description of a way to have the program do

some of the inductive learning, and extensions to other task areas.

8

L

|

i
[

1

[

3

0| B =

=3l Somancad —— ——and pa— | ————y pa—— { Ty —

—d

| ——{

L v)

| el o

In the following chapters, ordinary chess notations will be used
[Capablanca, 1935]. The program is written in LISP [McCarthy, Abrams,
FEdwards, Hart and Levin, 1965], and the reader is expected to .have some
knowledge of this language. Function definitions are given using notation
and basic functions which are defined in Appendix A. They are built up
of the connectives = (equivalence), D (implication), A (conjuction),

v (disjunction), and — (negation). These are used in the same way LISP
(not ALGOL) uses them; i.e,, if in p Aq, p 1is evaluated and found

to be false, then q 1is not evaluated.

bed = e e ed e

L] ¥ |]
[] [S)

==

—1

=

CHAPTER 2

PROGRAM ORGANIZATION

Notation

Throughout this thesis, certain conventions of notation will be
used. As in the ordinary use in chess books, the white side is the
winning side. The program will play white and a person black. The
letter p , with possibly subscripts or superscripts, is used to
represent a pési@?on with white (program) to move, and 3 , again with
subscripts orrsdﬁérséripts, for positions with black to move. When the
color of the move.is unimportant, letters x , y , etc., with subscripts
or superscripts wiIl be used.

In a position » ,’a certain set of white moves is legal according
to the rules of chess. A legal move is made from p to produce a new
position q with black to move, We will represent the connection
between p and q by means of the relation Mw . The statement
prq is read: q is a position which results from meking one legal
white move in p . Similarly we write qMBp which means p is a
position which results from making one legal black move in q . If
prq we say q 1is an immediate successor position of p , and

similarly for qMBp . If we say that q 1is an ultimate successor of

p this means there exist Pyseees By and Qseeer 4 such that

pMqu o qlMBpl “i 550 0 anBpn & pnqu *

10

The program is given as a starting position a position p with
white to move. In some end games, white can win only from certain

legal positions with white to move. Let

P={p | P is a legal pcsition with white to move, and
vhite can win from p} .
The program must work correctly for any starting position p € P ;
we do not care what happens for p ¢ P .

As explained in Chapter 1, better and worse are used to compare
positions. They both have as an argument a pair of positions (p, a) .
The first position is always a position with white to move; the second
is always a position with black to move, q is either an immediate or
ultimate successor to p .

The statement better(p, q) is (not) true is equivalent to saying
q is (not) better than p , and cimilarly worse(p, q) is (not) true
is equivalent to q is (not) worse than p . Occasionally when
discussing a tree search a statement like " q is a better position"
will be made. This means q is EE&ESE than the p at the head of
the tree., better and worie will always be underlined; so will all

other function names except those consisting of only one letter.

Program Organization

| -

To start with, the program is given an initial position p € P.
It generates all positions q such that prq . The order in which

thece positions are generated is not important; let us refer to them

11

N D e ==

fed B e e

i

& e

l"*

1
I

4

-d

§

as Q = {ql,..., qn] . For each qi the program asks the question
worse(p, qi) . If q, is yorse than p then gq, is immediately re-
jected by the program. If worse(p, qi) is false, then the program

asks better(p, q;) . If better(p, q;) is true, the move which led

to 9 is retrieved by the program and made at this point without any
further analysis or examination of the remaining positions Qg ypoe s Q -
Figure 2.1 is a flowchart of this part of the program,

If all q; have been examined ar.d none is found which is both
better and not worse than p , the program will resort to tree search.
The work it has done so far is really the first level of the tree search,
A branch remains in the tree for each 9 which was not worse than p .
Call this set Q1 .

During the tree search the first element of the argument pair of

better and worse remains the initial position p . As explainud pre-

viously, the second element must be a position with black to move. This
means that in the tree search, the ends of the branches can't be evalu-
ated after every move, since half of the moves result in positions with
white to move, Also it is convenient to have the depth in the tree equal
to the number of white moves required to get to that point. If a position
q is said to be at depth n in the tree, this means that 2n-i moves
are required to get to q ; of these n are white moves and n-1 are
black moves,

The basic premise of this method of play is that from p white is

able to force a position q better than p . "“Force" means that white
must be able to answer every black move with an eventual better position; [
12

enter with p,Q Q'eNIL

v

cdr(Q) worse(p,q)

Q'{q°q")

“igure 2.1. BW(p,Q)

p € P is a starting position
Q 1is 8 list of successor positions of' p .
BW returns
a single position q ; this means g 1is bctter and not
worse than p
a list of positions (possibly empty) contsining w1l

positions which were not worse than p ; thie meun:

no member of Q 1is better and not worse than p .

13

=3

d | o |

o = Mg

&=

1 9

[s-

=

conversely if any black move results in all positions worse than p ,
the position in which thet black move was made must be discarded,

The tree search is a breadth-first search. For each q , the

}

program generates P, = {p;y,..., pisi} . Each Pij is the result of
a legal black move in. qi b e, qiMBpij fan BT .., s, . Then

for each pijepi the program generates Qij E {qijl""’ qijsij] Re

'piJquiJk for K= Ly, Si4 - The program then computes BW(p, Qij)

(see Figure 2.1); that is, the 9 &re compared with p in the same
way in which the q; were compared with p previously. In order for
the move leading to q:.L to be accepted by the program, for each pij
there must exist a % 5k such that worse(p, qijk) is false and

better(p,) 1is true; that is, BW(p, Qij) must return a single

9 5k
position for J = 1,..., s, (i.e., for every black move qij)' 0y
this happens, then the mcve leading to qi is made by the program with-
out examining the other qiEQ1 o

If BW(p, Qij) returns the null list for some Qij , this means

that all qukEQi are worse than p . This happens because in 9

J
the black move leading to pij is permitted, and white is not in a
position to control the result. In this case q is completely removed
from the tree, just as if it had been worse than p in the first place.
The move %, is eliminated in this way in Figure 2.2,

If qQ; is neither rejected nor accepted, then for one or more of
the p,y , there exist several gq,, such that worse(p, qijk) is

false hut better(p,) 1is also false. In this case, BW(p, Qij)

9 jk
returns the list of such qijk ; this information is saved in Qij in

L

——

SRS S e

. sl
L e
. Ry N

T

<

TTL

number of
moves \
\
\
\
This is & . JP
set Q &
&
o o] o vcvc/ 'm
)) i~
i 1
First E? E? o S P
tree = B B 'v:
com- 2
parison w w
depth 2
\N'u \N'U \)I'U N \JP [}
g§ g B B\ P .
W (=
{
iiecond M..Q U.D u’o \}F\,"o
tree g E, E BB IR
com - il P e
parison 5%
depth 3 jor o w o tn
Figure 2.2. Example of Forecing Tree.

1. From position qp , for the black move lending te Po3
Therefore this branch is

moves lead to positions worse than p .

eliminated.

necessarily bettier
first ievel (set Q

; €.8.» dml]1 -

poy Wwill not be examined.

o, Positions which are better than p are marked with a B .
is accepted when every termination is marked B.
a single position with white to move remains at a level, it is not

This would be true even on the very

3, No decision is made at depth 2.

4, Now depth 3 is begun.

is saved.
5. The branch for

of every branch is marked with a B .

, 811 white

Note that even if

For q; no decision is made and all informatio

is examined next, and it is accepted since ihe end

others end at depth 3.

15

One branch ends at depth 2; Lhe
The program will now make the move leading to
Q3 . It does not examine the remaining branches for Qyreeer Q -

TTT;

lcl,;

L

L S—

= .3

M

i |

!I

case no q, is accepted at this level, For example in Figure 2.2, we
would have set Q, = {q12l’ q122} .

If no q, is accepted by the program at this level, the program
extends the tree one more level every place where a decision wasn't
made previously (where a list Qij is saved). Every element qijkeqij
produces several lists of positions Qijkm , one for each immediate
successor position P4 jim to 95k Now BW(p, Qijkm) is called.

If it returns a single position for each immediate successor pijkm

of 9 3k » then 9 5k is accepted at depth 2 (just as before q,

would have been accepted at depth 1). In this case the other members
of Qij are not considered. Also, as before, a branch can be rejected,
either back to depth 2 (qijk) or all the way back to depth 1 (qi) .

If no decision is made at depth 3, the program goes down another
level to depth 4. The search is continued until a decision is made.
Figure 2.2 is an example of a posiiion which required a search of
depth 3. No decision was made for 9 at depth 3 so all the information
in the figure would have been saved. For q_3 , only one black move

remained to be answered and is accepted at this level,

900
is accepted by the program at this point, and Qpyooes Q

P32
Therefore q_3
are not examined,

When the program has selected a branch of the tree, it remembers
the tree, and will make the moves dictated by the tree for as long as
it lasts, This is a very important point since it is the feature
which enables the program to force a better position.

Figures 2.3 to 2,6 are flow charts of the program. Figure 2.3 is

the main program; the other three flow charts cover the tree search.

16

enter with starting

position p
TREE-NIL

Q{a*|pM a¥}

Y

Q-BW(p,Q)

return, pro-
gram error

@-Ts(p,Q)

Q(move in TREE)
TREE~cdr (TREE)

- -
Figure 2.3, Main Program Flow.
17

yes

)

r
s

= &3

I e I

-3

L4
[T

'I-J-—wz

|

o |

e

enter with p,Q = QeI

o aear(@

q a

MB(p,q) position M-TB(p,q)
] i
yes
no
[yes
TREF«~cdr (M)
o return q
Q'(—(M’Q')
Qcdr(Q)
no

Figure 2,4, Function TS(p,Q) is the top level tree search function
which starts the tree search going; calls the functions
which follow the branches of the tree; returns the select-
ed position and saves the branch in TREE if a decision
is made; or starts again to extend the search one more
level if no decision is made.

18

enter with p,q P{p’ |qMBp']

¢

P'NIL

p'ecar(P)

o{q'[p'Ma')
1

Q‘Bw(rpy Q)

null(Q)? — return NIL

no

P'{Q-P')
Pecdr(P)

— null(P)?

!)

Figure 2.5.
3
2)

(3)

411 members
of P' single
sositions .~

yes {return (ms-@

Function MB(p,q).q is a single position., Three values are

returned.,

NIL means that some black move from q cannot be answered.

YES*P' means that a better position is found for each black
move from q.

P' means that for at least one black move no decisiov. has
been made,

19

cnter with p,Q N
’l - Tt
- Q'NIL
.5 gecar(Q)

il
e 18 q
a
- L position

]
[e

-4

MMB(p,q') | M-T3(p,q")

rcturn Q!

return (YES+Q'

— @ () 'e{cdr(i1) « Q') e

Qu._(:':. Qu)

[

Figure 2.6. Function TB(p,Q). Q is a 1list consisting of positions
and of lists of positions. If an element of Q is a single
position, then it was found to be better at the previous level.
If the element is a 1list of positions, these are the non-worse
positions from the previous level. Q contains an element for
each black move in the position immediately above in the tree.

[

e

Function TB returns
NIL - each member of a list of positions which is a element of

Q 1is rejected in the search.
YES*Q' - all elements of Q are br lead to better positions.

Q' - some elements of Q do not lead to better positionms.
Q' contains the tree from Q on down.

e |

e o

e 2

20

Tree Search Heuristics

Two heuristics are used during tree search. One helps to cut off
redundant branches of the tree; the other helps the program find the
better position faster,

1. Redundant Branch Cut-Off

Suppose we are down at a node at depth n in the tree. A history
of the branch to this point is given by all the positions with black to
move which the program has examined on the way to this node. There are
n positions in this history, say qi, qij""’ qijk...m . At this
point, suppose it is time to expand the node at the end of the branch.
For simplicity let q* = sk ..m Now suppose that BW(p, Ql*)
returns a list of positions Q*¥ ., The program checks the positions of
the white pieces in each qi*€Q# against the positions of the white
pieces in Qs Gyq000es q* , and if there is a match, u* is
eliminated.

The reasoning behind this heuristic is as follows, It is true that
two positions in which the white pieces are in the same squares but the
black king is in a different square may have very different patterns.
However, in this case one position is a successor of the other, and
intuitively, if the placement of the white pieces is good, we should
have taken advantage of this originally and done something else from
there,

As far as the program is concerned, this heuristic has never
caused it to miss a move it should have made. Part of the reason for
this is that the treesare quite short (no more than a depth of seven)

and within that short a span the intuition is probably valid. At

21

s -9

(e]

< |

«d

b

[&)

= =Sl

2
W

1

&d

ol

N = G35

least one quarter of the positions returned by BW are eliminated by

this heuristic,
2. Killer Heuristic

If in the tree a position qijk n is found to be better and not

worse than p , the program finds out what the last white move, w ,

to qijk...m was, and it remembers this move. Then every time afier
this, when it forms a set Q* to be used as an argument to BW , it
checks to see if w was the last move made to form some q*cQ* , If
it was, then q* 1is made the first pesition in Q* , so that it will
be examined first.

The theory is that in a tree search the positions are all similar,
so a move which led to a better position at one point is likely to do
so again., By putting the new position g* first we eliminate many
comparisons if the theory holds. If the theory fails we have lost a
little time,

In these end gemes the theory holds very well, If an examination
is made of the final moves to the better positions during a tree
search, usually there are only one or two such moves. The time saved
when the position put first is actually the one selected is large

enough to more than compensate for the time spent in ordering the

positions.

Representation

No attempt has been made to develop a sophisticated representation
for these end games, A position is represented by a list of the positions

of the pieces. Moves are generated rather than stored. Patterns are

22

-
v

discovered by functions. Some information is very time consuming to
obtain in this way, for example the set of all squares which a piece
can reach in two moves., In general patterns of this type are not

used, and the heuristics chosen for the end games reflect this.

-y

[}

1

. d

[%]

- .
ed (L

/S 3

 —

e

B
U

CHAPTER 3
DEFINITION OF BETTER AND WORSE
As was explained in Chapter 1, each end game is played by different

methods which we expect to result in different definitions of better

and worse, However the form of better and worse is independent of the

particular end games. In this chapter we will define the form, which
will enable us to put a condition on the pattern recognition functions

which make up better and worse. We will use this condition to prove that

the program can reach checkmate from any starting position p € P .

First of all, in order for the program to work correctly it must
have a sense of direction. In the chess books this is achieved by an
ordering of methods. For example in the rook end game, first we drive
the opponent's king to an edge and then we keep our king on the same
file (rank) as his. In the program, rules are represented by patterns
of positions. Therefore the ordering of the heuristics is converted
into an ordering of patterns, and positions from the end game can be
grouped into subsets according to this ordering. Then a position gq
will be better than position p if the subset containing q is higher
in the order than the subset containing p .

Recall that the program builds a forcing tree from a position p
and then follows a branch of the tree (which branch is determined by the
opponent's moves) until a position q at the end of the branch is

reached, This position q 1is better than p . Now the opponent makes

2k

The ending Rook and King against King.

‘'he principle is to drive the opposing King to the last line on any
side of the board.

In this position the power of the Rook is demonstrated by the first
move, R-R7, which immediately confines the Black King to the last rank,
und the mate is quickly accomplished by: 1 R-R7, K-Ktl; 2 K-Kte2.

The combined action of King and Rook is needed to arrive at a posi-
tion in which mate can be forced. The general principle for a beginner

DIAGRAM 20

te Jollow is to keep his King as much as possible on the same rank, or,
ac in this case, file, as the opposing King.

When, in this case, the King has been brought to the sixth rank, it
is better to place it, not on the same file, but on the one next to it
towaruas the center.

2+.0.K-Bl; 3 K-B3, K=K1; 4 K=K&, K=Ql; 5 K-Q5, K—=Bl; 6 K—qb.

liot K-BG, because then the Black King will go back to Ql and it will
tuke much longer to mate. If now the King moves back to Ql, R—R8 mates
at once.

Os oo K=Ktl; 7 R-QB7, K-R1l; 8 K—BG, K-Ktl; 9 K-Kt6, K=R1l; 10 R-E8 mate.

It has taken exactly ten moves to mate from the original position.
On move 5 Rlack could have played K—Kl, and, according to principle,
White would bave continued 6 K=Q6, ¥=Bl (the Black King will ultimately
be lorced to move in front of the White King and be mated by R-R8);

7 K=kO, K=Ktl; 8 K-B6, K=R1l; 9 K-Kt6, K-Ktl; 10 R-R8 mate.

Figure 3.1. Example from Capablanca, pages 26-28.

25

_ = o 3

a move, giving position p' . At this point the program will build a
forcing tree from p' . It does this without memory of positions p
and q . If the program is tc work correctly, it must be able to derive

information about the state of the game from p' , and any q' at the
end of a branch of the forcing tree from p' must be better than p in
addition to being better than p' . If this is true then we say the
program is playing consistently. Consistency is accomplished by being
careful about the selection of q in the first tree; however we must
remember that only a moderate amount of tree search to q 1is permitted.
In the following section we will have much more to say about better
than worse. This is not surprising, since for the program to work
correctly worse need only recognize disaster and not interfere with

better, Both of these conditions will be satisfied,

Formalization

The notion of a stage has been adopted to facilitate the program's

sense of direction. The positions in an end game are divided into a

number of different subsets called stages. The steges are not necessarily

disjoint; however all the positions in a stage share a common pattern.
In general a stage contains both positions with white to move and
positions with black to move., The stages must exhaust the universe of
positions in the end game. Let

Q=P U {a | 3p(peP A pa)} ,
for P the set or all legal positionsfrom which white can win. Every
position x € Q must be in at least one stage. The stages are ordered,

from the lowest (zero) stage containing stalemate positions and other

26

-y

positions from which white cannct win, to the highest stage containing
checkmate positions. The nth stage in the order is called stage n .

For programming purposes we prefer to deal with disjoint subsets,
If x€ Q, we define

0 if x € stage O .

st(x)

max ({n | x € stagen }) if x ¢ stage O,
The subsets {x | st(x) = n} can be ordered by the value of st when
applied to the elements of the subsets., These subsets are used to give
the program a sense of direction in a natural way by
3.1 st(qPst(p) o better(p,q) .
Also we will have
better(p,q) > st(q)> stlp) .
The statement
3.2 st(q)pst(p) = better(p,q)
is not used because it would result in tree searches of immoderate
length,

3.1 is a partial definition of better, so we consider what condition
is required to ensure that the program works consistently, Recall that
we want to be able to deduce from the successors of q information
about the state of the game at q . Suppose for now that 3.2 is the
definition of better. Then the program can be forced to play consistently
by the condition on stage definitions,

3.3 ¥p' ValaMgp' o st(p')> st(a)] .
3.3 says the stages must be defined in such a way that black can never

force a return to a lower stage., This embodies the spirit of these

27

r

=
-

=

e =a =

=3 =

! 1
e d

(]

=S

et

e

games; that is, that white is in complete controi, and that the black
moves are considered (by the program/student) only as part of the white
strategy. We need not worry about a black move strategy.

There is no condition similar to 3.3 for white moves, However
3.4 vp sa(pMa A stla)> st(p))
is often useful. Intuitively it would seem that if some p had all
successors at a lower stage, then p was evaluated incorrectly. This
is not always true, but if 3.4 isnot satisfied it is important to under-

stand why.

As far as QQEEE is corcerned, we always have

st(q)=0 > worse(p,q)
which accomplishes branch termination and insures that worse recognizes
disaster. We do not have

st(q)<st(p) > worse(p,q)
because sometimes the path that the program should follow involves this
kind of situation. We will always have

worse(p,q) D st(q)< st(p) ,
since worse may not interfere with better.

To help explain the definitions given in this chapter, an example
will be developed as we proceed. It covers the play of part of the
Rook and King against King end game, as explained in Capablanca [19351];
the text is given in Figure 3.1. This example can be handled in five
stages. First we introduce pattern recognition functions f and g .
For x a position, we have

f(x) = {the black king is confined to a file (rank) edge in x} .]
Let sggs(X) be the edge to which the black king is confined in x .

28

et

=
e

g(x) = {f(x) ~ (the white king is on the file (rank) two away from
the file (rank) edge containing the black king and on a
rank (file) closer to the center of the board than the
black king)} .
f(x) represents the first principle in Figure 3.1. g(x) partly
represents the second principle in Figure 3.1; it will be used to
recognize white move 6,
Now we can define the stages. These definitions are built up out

of basic functions ard notation which are described in Appendix A.

x € stage O = {x 1is stalemate, or x is a position with rlack
to move, and black can take a white piece in
one move}.

x € stage 1 = {x canno% be assigned to any other stage}.

(1]

x € stage 2 = {f(x) A gg(wkx,gggg(x))>2},

x € stage 3 = g(x).

x € stage 4 = {x is checkmate].
Figure 3.2 gives examples of some of these stages. The opening position
in Figure 3.1 is in stage 1. Note that every legal position (ever,
position in set Q) is in some stage, because of tiie definition of
stage 1. In every end geame there will be a catch-all stage defined
like stage 1.

Now we must check that st satisfies 3.3. If st(q) =2
or §E(q) = 3 , then the black king can never move in such a way as to
form a p with st(p)<2 . This is because in q the black king is

confined to an edge, and the white king is not blocking the rook since

it is two or more files (ranks) away from the edge while the rook is

29

]

—_— = =3

Sd 4

H

EEa || =3

= ==

T
/’// /// //////'///
i ///, /// //
M 2 ///
// ////, W, ///
.4/, Wi //// m

'/

/////

,,,,,

T, %7
T

§E(x1) = 2, This is the position after white
move 4

,g_zz:/z’-!zpz” » @/,//

{ i;ﬁr‘f’f . W

Ty

« %/ ///,’/ = h

MZ ’/”////

%/,//}/ d {/// ////// /////
MQ %‘/ é%%

T

Wy s
. ‘i WY

ut(x) = 3. This is the position after white
move 6. lNote that x, is in both
stage 2 and stape 3.

n

—

dda

st(g.) = 4. This is the checkmate position.
=2 qj

£
N

Figure 3.2. Stages in Figure 3.1.

30

only one away. The black king is not threatening to take the rook in
any q with st(q)>0 , because in that case we would have st(q)=0 .
Rule 3.4 is also easy to satisfy. In stage 1 there is no
difficulty. In stages 2 and 3, the rook will always be able to move to
another square on the same file (rank) (for a file (rank) edge) and
thus preserve the same stage.
If we use 3.2 as our definition of better and define worse by
worse(p,q) = st(q)=0 ,
then only moves 1, 6 and 10 from the example in Figure 3.1 will be
chosen by better. Thus the tree searches are fairly long, and also the

tree is very wide, This brings us to the remainder of the definitions

of better and worse. If we change the definition of better to

3.5 better(p,q) = {st(q)P>st(p) v [st(q)=st(p)=2

A de(uk_, edge()de(uk , edge(p)))
then moves 1, 2, 3, 4, 5, 6, 10 will be recognized by better. This is
a considerable improvement in the length of the tree search.

What is happening here in stage 2 happens in the other end games
as well. Tne stage itself is rather large, but the positions inside it
can be put into subsets, just as the whole universe of positions Q was
put into stages. In fact, additional stages could be added, one for
each of these new subgets.

However, we must consider an interesting property of the stages
as they are defined in this end game, and one that is worth preserving
in other end games. Recall that each stage is defined by a distinct

pattern; in addition each stage is associated with its own heuristics.,

31

*y

7y

(4]

-4

-1

=y

-,

—1

=i

=

Each stage has as its immediate goal the achievement of the next stage
and its heuristics are directed toward that end. For example, in

stage 2 we move the white king up toward the edge until stage 3 is
reached; in stage 3 we force the black king toward a corner until check-
mate is given.

If new stages were added for all these subsets, this heuristic
property would be lost., While we may expect to use additional heuristics
for two positions in the same subset of a stage, these heuristics are
independent of the particular subset and can be used for all subsets
within that stage. So it makes sense to handle these subsets differently
from the stages. Therefore a new function has been added which is called
a measure, For each stage n , function m ~ is defined for all
positions in stage n ., mn is not meaningful for every stage; in
that case we have

mn(x) =0 vx(x € stage n) .

Definition 3.5 implies the following measures

m2(x) gg(wkx,edgex) vx(x € stage 2) .

n, (x)

0 ¥x(x € stage 1) , i =0, 1, 3, 4 ,
Note that the smaller the measure, the better tie position. This is
the opposite of stages. Then the new (and complete) definition of I
better is
3.6 better(p,q) = {st(qP>st(p) v
st =st Am <m g
[58(2)=58(p) A myy () (<m0 (0)]) |
For program consistency, 3.3 becomes
3.7 ¥p Va{a Mgp o [st(pP>st(a) v (st(p)=st(a)
A m <m)1} .
EE(p)(p)— EE(Q)(q))]]

32

An addition is alsoc made to give the complete definition of worse.

We have

3.8 worse(p,q) = {st(q)=0 v [st(p)=st(q) A mﬁ(p)(p)ﬂns_t(p)(q)]] :

We can use this strong definition because if we have two positions in

the same stage we know better how to compare them than if they come

from different stages. We extend 3.4 to

3.9 ¥p 3q {p Ma A (st(a)>st(p) v [st(a)=st(p) A
?Eg(q)(Q)meE(p)(P)])].

Like 3.&, 3.9 is not necessary to the consistency of the program,

So far in this example stages have been defined in the same way
for positions with white and black to move, excepting stage O and
stage 4 which only contain positions with black to move. In general,
however, slightly different versions of the same pattern ‘are used to
recognize positions with white to move as part of a stage than are
used for positicns with black to move.

For example, 3.6 selects white moves 1, 2, 3, 4, 5 6, and 10 in
Figure 3.1, but these are not the only moves it would select. In
general we are not too concevned if the program doesn't select the book
move, because the program is looking for a better position and not a
best move. However in this case the program is playing differently
from the book; it doesn't follow the second principle in Figure 3.1
and white moves 2 through 5 are affected by this. If we define

x € stage 2 = {£'(x) A gg(wkx,gggg(x))>2] ,
where

£f'(x) = {f(x) A (the two kings are on the same rank (file) in x)},

i

33

4

-
—

then we will violate 3.7. For instance after move 1 in Figure 3.1,
we have f'(q) ; then the black king makes its move and we have
- £'(p) .
What is needed is to define stage 2 differently for positions with
white and black to move, We will use
X € stage 2 = tf"(x) A gg(wkx, edge(x))>2} ,
where
£'(q) = £'(q)

f"(p) = {f(p) A (the kings are on the same rank (file) or on

adjacent ranks (files) in p)} .
With this new definition of stage 2 the program will chose moves 2, 3,
L4 and 5 correctly independent of the order in which the moves are
generated. Another effect of the new definition is to put more
posicions in stage 1. 1In reality stage 1 would be divided into two or
more stages, but here we are concerned only with the part of the end

game covered in Figure 3.1.

Additions to better and worse

When functions are actually written for the play of end games,
3.6 will be the form for better and 3.8 for worse. However, certain

additions will have to be made to better and worse to make the program

practical. These additions will be made in the following format.
If the tree search is too long, then an addition to better is

required. This will always have the form (for fixed n)

3.10 (st(p)=st(a)=n A ...).

We assume mn(p)=mn(q) since mh(p)<mn(q) would have been worse, and
mn(p)>mn(q) would already have been better, If the tree search is
too broad, an addition will be made to worse. This will always have —~

the form (for fixed n)

3.11 {st(p)=n A [st(a)<n v (st(a)=n Am (a)=m (p))] A ...} . 1
To be sure that the program will work consistently it is always

necessary to extend 3.8 to cover additions 3.10, and 3.1l must not

eliminate all former paths to better positions. Program consistency -

must be considered separately for each addition.

As an example of additions consider 3.6 and 3.8 as they apply to
Figure 3.1. The definition of better is sufficient for this end game,
so no problem of consistency arises. However the definition of worse)
needs to be enlarged, After move 6 in Figure 3.1, a tree of depth 4 is
required to reach checkmate, Position p1 in Figure 3.3 appears at
the head of this tree. At the first level alone, 12 white moves are
considered, and similar large numbers at further levels. If worse is
changed to

worse(p,q) = {st(q)=0 v [st(q)=st(p) A m,_t(p)(q)>ms_t(p)(p)l

v [st(p)=3 A st(q)<3 A (dq(wk,r»dp(wk,r)
v [st(a) # 3 A4 (wk,r>1])]]
then only 4 moves are considered in P - In Ps s five out of nine
moves remain; note that the desired move, wk-QKt6 gives q2 not in
stage 3 (see Figure 3,3). This tree is still rather broad and other

or different heuristics can be added to prune more.

35

=R oD

d=

| B S B G I S

f/<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>