THE THERMAL DECOMPOSITION OF AMMONIUM PERCHLORATE: A LITERATURE REVIEW

A. G. Keenan, et al

Miami University
Coral Gables, Miami

1 August 1968
SPECIAL REPORT No. 6
submitted to the Office of Naval Research
under Contract Nonr-4008(07)
Power Program
1 August 1968

THE THERMAL DECOMPOSITION OF AMMONIUM PERCHLORATE
- A LITERATURE REVIEW -

by

A. G. Keenan and Robert F. Siegmund

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF MIAMI
CORAL GABLES, FLORIDA
33124
THERMAL DECOMPOSITION OF AMMONIUM PERCHLORATE

A. G. Keenan and Robert F. Siegmund

Department of Chemistry, University of Miami,
Coral Gables, Florida 33124

CONTENTS

I. Introduction .. 1
 A. Stoichiometry of Thermal Decomposition 1
 B. Stoichiometry of Deflagration 7

II. Crystal Structure and Transformation 10

III. Sublimation ... 17

IV. Decomposition Reaction Mechanisms 22
 A. Low Temperature Mechanisms 22
 1. Electron Transfer 22
 2. Proton Transfer 28
 3. Activation Energy 32
 B. High Temperature Mechanisms 37
 C. Effect of Impurities and Defects 41
 1. Impurities ... 41
 2. Particle size .. 42
 3. Lattice Defects 43
I. INTRODUCTION

The thermal decomposition of ammonium perchlorate has been extensively studied because of its intrinsic chemical interest and more recently because of its application as an oxidizer in solid rocket propellants. This review covers the literature on uncatalyzed ammonium perchlorate, including unclassified reports of government sponsored projects, through May 1968.

The decomposition of ammonium perchlorate is influenced by many factors, but in a general way it may be divided into three regions, a low and a high temperature decomposition and deflagration or combustion. The low temperature decomposition occurs between approximately 200 to 300$^\circ$ at atmospheric pressure and is characterized by an induction period, an acceleratory region, a rate maximum and a deceleratory region. The decomposition stops before all the material is consumed. The high temperature decomposition occurs between 350 to 400$^\circ$. The initiation steps are immeasurably fast and the reaction shows a deceleratory region throughout at constant temperature. Deflagration or rapid combustion sets in at about 450$^\circ$ at atmospheric pressure.

A. STOICHIOMETRY OF THERMAL DECOMPOSITION

Ammonium perchlorate was apparently first mentioned in the literature in 18311,2 Its thermal decomposition has been

(1) G. S. Serullas, Ann. chim. phys., 2, 46 (1831).
(2) G. S. Serullas, Ann. chim. phys., 2, 304 (1831).
investigated since 1869 when the equation

$$\text{NH}_4\text{Cl}_4 \longrightarrow \text{NH}_4\text{Cl} + 2 \text{O}_2$$

was proposed. Later Berthelot suggested the more complex equation

$$2 \text{NH}_4\text{Cl}_4 \longrightarrow \frac{1}{4} \text{H}_2\text{O} + 2 \text{O}_2 + \text{Cl}_2 + \text{N}_2.$$

For explosion in a closed bomb, the equation

$$4 \text{NH}_4\text{Cl}_4 \longrightarrow 6 \text{H}_2\text{O} + 5 \text{O}_2 + 4 \text{HCl} + 2 \text{N}_2$$

was given in 1910. In the same year, the use of MnO$_2$ and NaNO$_3$ was suggested to inhibit the dangerous production of acid during decomposition. When free chlorine was detected in the reaction products under explosive conditions, the equation proposed was

$$2 \text{NH}_4\text{Cl}_4 \longrightarrow \text{N}_2 + \text{Cl}_2 + 2 \text{O}_2 + 4 \text{H}_2\text{O}.$$

The same authors also found some HCl along with oxides of chlorine, and determined that moisture inhibits the explosive properties of the decomposing ammonium perchlorate.

(9) P. Naoum and R. Aufschlagor, Z. ges. Schieß-Sprengstoffw., 19, 121 (1924); Chem. Abstr., 18, 3721 (1924).
In the first extensive investigation of the thermal decomposition of ammonium perchlorate, it was found that the pure salt begins to sublime and decompose, in vacuo, at about 130° with deflagration occurring at approximately 400°. It was also realized that the decomposition occurred by more than one reaction mechanism. Below 300°, the decomposition could be represented mainly by the stoichiometric equation

\[4 \text{NH}_4\text{ClO}_4 \rightarrow 2 \text{Cl}_2 + 8 \text{H}_2\text{O} + 2 \text{N}_2\text{O} + 3 \text{O}_2 \] (1)

with traces of ClO₂, HCl, N₂, and other so-called "nitrous gases". Above 300°, the amounts of N₂ and "nitrous gases" increased. In the high temperature decomposition range, above 380°, the reaction became explosive and followed mainly the equation

\[2 \text{NH}_4\text{ClO}_4 \rightarrow 4 \text{H}_2\text{O} + \text{Cl}_2 + \text{O}_2 + 2 \text{NO} \] (2)

The reaction products also included traces of Cl₂, O₂, NO₂, N₂O₃, N₃O₄, and NOCl. Below 380°, N₂O was obtained in excess over N₂, while above 400° NO is formed at the expense of N₂O and becomes the chief product.

A later definitive study confirmed equations (1) and (2). Traces of HClO₄ were found, as well as of the previously reported products Cl₂, N₂O, N₂O₄, O₂, N₂, H₂O, HCl, ClO₂, and NOCl. Similar low temperature gaseous products, together with NO, were

(10) M. Dode, Compt. rend., 200, 63 (1934).
identified in a separately conducted Russian study. Nitric acid has also been reported to be present as a product of the low temperature decomposition, as well as trace quantities of NO₂Cl\(^{15,16,17,18}\).

A change in the reaction products with temperature has been noted, even within the individual decomposition ranges. Below 240°, chlorine evolves mainly as Cl₂, but as the reaction temperature is increased the amount of HCl increases at the expense of the Cl₂. The perchloric acid was also found to increase to a maximum at approximately 240°, and then to drop off above 250°. The ClO₂ was determined to be in excess.

over Cl₂ at 300⁰, while above that temperature the Cl₂ increased. Recent decomposition studies,¹⁵,¹⁸,²²-²⁴ however, have failed to find any ClO₂ as a stable reaction product and it has been concluded¹⁵ to exist only as an intermediate.

Mass spectrometric analysis of the major products of the low temperature decomposition has given divergent data. Goshgarian and Walton²² found H₂O, O₂, Cl₂, HCl, NO, N₂O and N₂. Other investigators²⁵ have shown the products to consist mainly of H₂O, O₂, Cl₂, N₂O, NO, NO₂ with possibly some N₂. The most recent studies,²³,²⁴ however, have demonstrated that the previous data²²,²⁵ were complicated by species derived from both sublimation and secondary reactions, and that the decomposition produces principally H₂O, O₂, Cl₂ and N₂O, along with significant quantities of HCl and N₂.

Nitrogen has also been claimed²⁶ as a major product by mass spectral analysis. It was suggested

that the reaction
\[
2 \text{NH}_4\text{ClO}_4 \rightarrow 4 \text{H}_2\text{O} + \text{Cl}_2 + \text{N}_2 + 2 \text{O}_2
\]
(3)
takes place simultaneously with equation (1). The latest published stoichiometric investigations,\(^23,24\) however, have attributed the excessive amounts of \(\text{N}_2\) and \(\text{HCl}\) to secondary gas phase reactions, and have reaffirmed equation (1) as substantially representing the low temperature decomposition process.

The general features of the decomposition described above were also confirmed by kinetic studies\(^27\) and by differential thermal analysis.\(^28\) In the latter work, the known crystal transformation\(^29\) from rhombic to cubic form was observed at 240°, followed by two distinct decomposition regions. The low temperature decomposition occurred immediately after the crystal transformation and produced only a partial decomposition of the salt. The higher temperature decomposition resulted in a deflagration at 435° and left no solid residue.

The residue following the low temperature decomposition was first thought\(^10,11\) to be ammonium nitrate since some ammonium salts of oxygen containing anions do give ammonium nitrate as the chief product of their low temperature decomposition, e.g. ammonium permanganate\(^30\) and ammonium chlorate,\(^31\) the latter

(29) D. Vorlander and E. Kaascht, Ber., 56B, 1157 (1923); Chem. Abstr., 17, 2682 (1923).
having already been noted by Dode. However, a later investigation showed the residue to be pure NH₄ClO₄. It was further established that the low temperature decomposition gave a typical sigmoid curve even though the reaction was anomalous in that it stopped when only 28-30% of the salt had decomposed. The residue was porous in texture. Microscopic studies showed that the decomposition started at various points on the surface of the crystal and then grew three-dimensionally to form a coherent interface which then progressed into the crystal interior. Sublimation was also found to occur over the entire decomposition temperature range.

In spite of the considerable amount of work done on the thermal decomposition of ammonium perchlorate, the stoichiometry of the decomposition is still uncertain. The equation for the low temperature region has remained essentially the same as when originally proposed in 1934 and later confirmed in 1954. Investigators generally either avoid the issue of stoichiometry by employing reaction mechanisms to account for the existence of decomposition products without regard to mass balance or else, simply accept equation (1) as representing the major products within their experimental error.

B. STOICHIOMETRY OF DEFLAGRATION

An early study concluded that the products were well represented by equation (3) given earlier. A later series of

investigations34, 35, 36 on ammonium perchlorate flame products at atmospheric pressure, suggested the equation

\[\text{NH}_4\text{ClO}_4 \rightarrow 1.98 \text{H}_2\text{O} + 0.73 \text{O}_2 + 0.54 \text{NO} + 0.30 \text{HCl} + 0.085 \text{N}_2 + 0.35 \text{Cl}_2 + 0.14 \text{N}_2\text{O}. \] (4)

Another reported37, 38 the deflagration of ammonium perchlorate at 1000 psi to proceed by the equation

\[\text{NH}_4\text{ClO}_4 \rightarrow 0.265 \text{N}_2 + 0.12 \text{N}_2\text{O} + 0.23 \text{NO} + 1.015 \text{O}_2 + 1.62 \text{H}_2\text{O} + 0.76 \text{HCl} + 0.12 \text{Cl}_2 \] (5)

and at atmospheric pressure to follow the equation

\[\text{NH}_4\text{ClO}_4 \rightarrow 0.55 \text{NO} + 0.10 \text{N}_2\text{O} + 0.125 \text{N}_2 + 0.5 \text{Cl}_2 + 2 \text{H}_2\text{O} + 0.675 \text{O}_2 \] (6)

A comprehensive review of the composition equations of ammonium perchlorate in 1963,39 in which the equilibrium gas compositions at various pressures were calculated resulted in the formulation of two limiting reactions,

\[2 \text{NH}_4\text{ClO}_4 \rightarrow 4 \text{H}_2\text{O} + \text{O}_2 + \text{Cl}_2 + 2 \text{NO} \] (7)

(34) E. A. Arden, J. Powling and W. A. W. Smith, Combust. Flame, 6, 21 (1962).

(38) J. B. Levy and R. Friedman, "Eighth Symposium (International) on Combustion", Williams & Wilkins Co., Baltimore, Md., 1962, p 663.

for zero pressure, and

$$4 \text{NH}_4\text{ClO}_4 \rightarrow 6 \text{H}_2\text{O} + 5 \text{O}_2 + 4 \text{HCl} + 2 \text{N}_2$$ \hspace{1cm} (8)

for high pressures, within which the gas composition at equilibrium lies. Slight amounts of ClO$_4$ were thought to form below 300$, as well as some N$_2$O in place of NO. Simchen related the equilibrium of the Deacon process directly to the distribution of reaction products, and in this way determined the chlorine in equation (6) to be 60$% in the form of hydrochloric acid. However, it has been noted40 that the deflagration reaction of ammonium perchlorate does not necessarily proceed to equilibrium. The reaction

$$\text{NH}_4\text{ClO}_4 \rightarrow 3/2 \text{H}_2\text{O} + \text{HCl} + 1/2 \text{N}_2 + 5/4 \text{O}_2$$ \hspace{1cm} (9)

has also been proposed.41

Finally the empirical equation

$$\text{NH}_4\text{ClO}_4 \rightarrow (a/2 + 5b/4)\text{N}_2 + 1/6 \text{N}_2\text{O} + (c-3b/2)\text{NO} + \hspace{1cm} (10)$$

$$(1/2-3a/2)\text{Cl}_2 + (3a)\text{HCl} + [3(b+c)/2+1]\text{H}_2\text{O} + (17/12 - 5c/4)\text{O}_2$$

has been postulated42 as a means of calculating the product distribution of the ammonium perchlorate decomposition. The terms a and b represent the experimental values determined for HCl and N$_2$ respectively, and are related to c by the expression $a+b+c = 2/3$.

Equation (10) was derived by summing various proposed reactions of ammonium perchlorate decomposition, both solid and gas phase. Knowing the experimental values of HCl and N₂, equation (10) readily produces the remaining reaction products in their correct stoichiometric ratios. When the equation was fitted to previous data, the results were in excellent agreement with experimental values.

II. CRYSTAL STRUCTURE AND TRANSFORMATION

It has long been known that crystal structure plays an important role in the thermal decomposition of ammonium perchlorate. Early investigators found crystals of ammonium perchlorate at room temperature to be orthorhombic, containing four molecules per unit cell with dimensions $a = 9.202$, $b = 5.816$, $c = 7.449$ Å, and occurring in the space group $Pnma$. These facts were also substantiated in several more recent crystal studies. Venkatesan using double Fourier projections, found the chlorine atom to be tetrahedrally surrounded by four

(43) M. Volmer, Liebig's Ann., 1490, 200 (1924).
(45) C. A. Schusterius, Z. Krist., 75, 455 (1931).
oxygen atoms at a mean distance of 1.46 A. The four hydrogen atoms were found to encompass each nitrogen atom, while the ammonium ion was surrounded by twelve oxygen atoms at distances varying between 2.89 and 3.39 A. A later study obtained slightly different values, reporting distances of 2.94 - 3.08 A for eight of the twelve oxygen atoms, and 3.25 - 3.52 A for the remaining four. The distance between the central chlorine and surrounding oxygen atoms was found to be 1.43 A.

For ammonium perchlorate lattice energies values of 149.4 kcal/mole for the electrostatic energy, and 143.8 kcal/mole for the total crystal lattice energy, have been calculated. The value of the Madelung constant was 3.3134.

As mentioned previously, at approximately 240° ammonium perchlorate undergoes a crystal transformation from the orthorhombic to the cubic form. The high temperature crystals (270°) possess a structure somewhat resembling the sodium chloride lattice with each unit cell having a = 7.63 A and containing four molecules of ammonium perchlorate. The transition itself has been found to have a marked effect upon the rate maximum in thermal decomposition. The maximum was shown to gradually rise

with temperature, reaching a peak at about 240° then falling to a minimum at approximately 250°, and finally increasing again with temperature. This phenomenon has been attributed to several different factors, including crystal volume modifications and alteration of the crystal imperfections. The latter will be considered when reviewing proposed reaction mechanisms.

A decrease in lattice dimensions as a result of the transformation was first suggested to account for the observed decrease in the maximum decomposition rate. Contraction of the lattice would reduce the number of interstitial ions which were considered to initiate the low temperature decomposition, and hence would decrease the rate of decomposition. However, subsequent findings, in which the crystal volume was found to increase rather than decrease, have disproven this theory. The orthorhombic form was determined to have a density of 1.95 g/cc as compared to 1.76 g/cc for the cubic structure. The enthalpy of transition was also calculated from differential thermal analysis data and a value of 2.3 ± 0.2 kcal/mole reported. A later value is given as 2.7 kcal/mole. A recent kinetic investigation has suggested that the phase transformation alters only the speed at which the reaction centers develop, and not the formation of the electronic traps responsible for decomposition. Thus a volume increase, by decreasing the velocity at which the reaction centers are produced, will reduce the rate of decomposition.

(54) M. M. Markowitz and D. A. Boryta, ARS J., 32, 1941 (1962).
Single crystal diffraction studies42 have led to the proposal of still another theory concerning the effect of the crystal transition upon the thermal decomposition. X-ray data have shown the apparent existence of a second order irreversible phase transition, apart from the reversible first order orthorhombic to cubic phase transfer, occurring slightly below the known transformation temperature. This second order transition has been suggested to account for the abnormal decomposition behavior of ammonium perchlorate in the neighborhood of 240\textdegree. Unlike a first order transition which would normally be expected to occur rather suddenly, the second order transition would occur over a range of temperature and affect the decomposition in the manner observed. Second order transitions have been found in other ammonium salts,56 and have been shown to alter solid state decompositions.42 The decrease in the maximum rate, to a minimum value at 250\textdegree, has also been ascribed32 to either a slow phase transfer which does not reach completion until 250\textdegree, or to the fact that the maximum stability of the cubic form occurs at that temperature.

The ability of the two species present in the ammonium perchlorate lattice to rotate freely has been the topic of much discussion. Early decomposition studies32 predicted the rotation of both the ammonium and perchlorate ions above 240\textdegree. One theoretical

analysis57 suggested the attainment of nearly free rotation of the perchlorate ion as a prerequisite to the formation of the activated complex below 250°. The ammonium ion was considered to rotate freely in both the cubic and orthorhombic crystalline forms. Nevertheless, these examinations were based solely on decomposition data and the only extensive crystal investigation48 pointed to the formation of an ordered hydrogen bond configuration, yielding a weak nitrogen-hydrogen-oxygen bridge.

An infrared study in 195858 failed to observe any combination band involving a torsional oscillation of the ammonium ion and concluded that the NH\textsubscript{4}+ was not altogether fixed in any set orientation in the crystal lattice. Nuclear magnetic resonance data59 likewise indicated a random orientation of the ammonium ion. A value of 2.0 ± 0.6 kcal/mole was calculated for the potential barrier of reorientation. This was later modified60 to probably less than 1 kcal/mole. The most recent estimate61 is 0.55 ± 0.05 kcal/mole. The free rotation of the ammonium ion has also been

shown to occur both by neutron diffraction data,49,62 as well as by the spectrum obtained from measurements of inelastic neutron scattering.63,64 Finally, a recent investigation on the ammonium perchlorate crystal transformation has shown65 the phase transition at 240° to result from the ability of the perchlorate ions to commence free rotation. It was also found that the cation rotated freely below room temperature.

Thus, it now seems that both the ammonium and perchlorate ions undergo free rotation in the ammonium perchlorate unit cell. The ammonium appears to begin rotation somewhat below room temperature, while the perchlorate commences rotation around 240°. Ammonium perchlorate has also been reported66 to undergo a probable first order polymorphic transition at -190°.

\begin{enumerate}
\end{enumerate}
The crystal transformation has also been found to profoundly effect the burning of ammonium perchlorate. The combustion velocity has been shown to decrease with increasing pressure, accompanied by an unstable region of combustion. This unusual phenomenon has been attributed to the requirement of the surface of the burning ammonium perchlorate to attain the phase transition temperature at a particular pressure. Subsequent combustion studies have shown the surface temperature to decrease, approaching 2400 as the pressure was raised. It was suggested that the heat released by the condensed phase should fall to even a greater extent, as a result of heat absorption during phase transition, and this in turn could cause the observed decline of the combustion velocity.

III. SUBLIMATION

Initial studies13 found sublimation in the low temperature range in a vacuum to be apparently independent of decomposition, increasing steadily as the temperature was increased. At roughly 280°, the rate of sublimation accelerated as the decomposition declined, the sample being approximately 28-30% decomposed. The sublimate contained traces of nitrate, nitrite, and hydrogen ions, but in all cases, was absent of any chloride ion. Sublimation was also found to occur at atmospheric pressure if the sample was heated under an inert gas stream. However, the rate was considerably reduced.

Ammonium perchlorate was originally postulated32,40,71 to sublime via a proton transfer mechanism in which NH\textsubscript{3} and HClO\textsubscript{4} are formed, diffuse away, and subsequently recondense at a cold surface. The dissociation process was likened to that of ammonium chloride.71 It was experimentally shown32 that suppressing sublimation by the presence of an inert gas enhanced decomposition. A larger surface area which favored sublimation, decreased the decomposition. The two processes were suggested32,40 as competing with one another, sublimation becoming more favored as the low temperature decomposition progressed. An activation energy of 21.5 ± 2.78 kcal/mole was determined for the sublimation using rate constants derived from the equation71 $\frac{dm}{dt} = k$.

In the high temperature range, 380-440°, both decomposition and sublimation were attributed71 to evaporation, with increased

pressure reported to promote decomposition. The pressure effect was ascribed to hindering diffusion, thereby suppressing sublimation. At temperatures greater than 400°, less sublimate was recovered than at 350°. This was related to the thermal decomposition of the cation.

Rather large differences were found in the activation energies for the two processes competing at high temperatures, 21.5 kcal/mole for sublimation and 30.0 kcal/mole for the high temperature decomposition, when a similar rate expression was utilized. This led to the conclusion that the two processes must possess different rate-determining steps. As proton transfer was believed responsible for the high temperature decomposition, the formation of an ion-pair was suggested as being the initial step in the sublimation mechanism. This was based on the capability of the perchloric acid to donate a proton, and the stabilization of the species formed through hydrogen bonding. Dissociation was considered unlikely in such a strong acid. In a separate investigation attempting to prove this postulate, only one-sixth of the sublimation reaction was found to be simple dissociation. The remaining five-sixths of the ammonium perchlorate was reported to dissociate according to the reaction

\[\text{NH}_4\text{ClO}_4 \rightarrow \text{HNO}_3 + \text{HCl} + \text{H}_2\text{O} \] (11)

Linear pyrolysis measurements of ammonium salts also showed the sublimation equilibrium to be comprised of only a limited amount of dissociation. The heat of sublimation was found to be 25 kcal/mole.

In 1963, a comprehensive examination of the dissociation pressure of ammonium perchlorate between the temperatures 247 to 347°, cast doubt on the above reaction scheme. It was proposed that sublimation occurred entirely through the simple dissociation

\[\text{NH}_4\text{ClO}_4 \rightleftharpoons \text{NH}_3(g) + \text{HClO}_4(g). \]

Thermal decomposition and sublimation were observed simultaneously and, as reported earlier, were independent. The sublimate was found to contain traces of chloride ion, contrary to the previous finding as well as equimolar amounts of ammonium and perchlorate ions. Chloride ion was suggested as resulting from the reaction of ammonia with chlorine

\[8 \text{NH}_3 + 3 \text{Cl}_2 \rightleftharpoons 6 \text{NH}_4\text{Cl} + \text{N}_2. \]

This was substantiated by sublimation experiments conducted in an ammonia atmosphere. The sublimate contained equimolar quantities of \(\text{NH}_4^+ \) and \(\text{Cl}^- \). This was shown to be due to the suppression of perchloric acid vaporization by the ammonia.

Several recent studies22, 25, 42, 76-81 have also shown that ammonium perchlorate sublimes by first dissociating into ammonia and perchloric acid. Mass spectrometric22-25 and infrared76, 77 data have failed to find any evidence for the existence of an ion pair.

A recent detailed kinetic investigation81 of ammonium perchlorate sublimation, has postulated the first comprehensive theory concerning the sublimation process. The initial step is the transfer of a proton from the ammonium to the perchlorate ion at a kink site on the surface of the crystal. The two molecules, \(\text{NH}_3 \) and \(\text{HClO}_4 \), then will either diffuse to different surface crystal sites, or recombine via the reversible proton transfer process. Once at separate sites, the molecules can desorb into the gas phase, and reunite to form the sublimate. The significance of ammonia and perchloric acid diffusing on the surface of the

\begin{thebibliography}{81}
\bibitem{79} P. W. M. Jacobs and A. Russell-Jones, AIAA J., 5, 829 (1967).
\end{thebibliography}
crystal was shown by subjecting the system to nitrogen pressure. When fitted to an equation relating surface diffusion to evaporation coefficient, the data produced the expected linear plot.

A new kinetic sublimation expression was also formulated and found to fit the experimental data. The equation, derived from Fuchs' modification of Langmuir's sublimation theory, resulted in values of 60.8 and 59.2 kcal/mole for the heats of sublimation at one atmosphere pressure and in vacuum, respectively. These are in close agreement with previous values of 58 ± 2 kcal/mole from dissociation pressure measurements, 75 56 kcal/mole from the relationship between the surface temperature and the ambient pressure, 82 58.4 kcal/mole, 83 and 56 kcal/mole, 35 from thermodynamic analysis, and 56 ± 1 kcal/mole from a kinetic study utilizing the contracting cube equation. All the values were determined on the assumption that sublimation occurs by the dissociation process of equation (12). The agreement in the data, therefore, indicates that ammonium perchlorate sublimes entirely through the dissociation process on the surface of the crystal.

The activation energy for sublimation has recently been shown to be much higher than the initial value of 21.5 kcal/mole from weight-loss measurements, 71 and 22.0 kcal/mole from linear pyrolysis data. 84 It has been found possible to eliminate anomalies

in the rate data85 giving an activation energy of 30 kcal/mole by weight loss in both high and low temperature regions in a predecomposed sample.79-81,85 Surface temperature measurements have also given an activation energy of roughly 30 kcal/mole.36

IV. DECOMPOSITION REACTION MECHANISMS

A. LOW TEMPERATURE MECHANISMS

1. Electron Transfer

The first kinetic investigation32 of ammonium perchlorate decomposition in the temperature region 200-300°, lead to a mechanism involving transfer between an anion and an interstitial cation, with the NH\textsubscript{4} radical thus produced undergoing dissociation.

\[
\text{ClO}_{4}^- + \text{NH}_4^+ \rightarrow \text{ClO}_4 + \text{NH}_4
\]

\[
\text{NH}_4 \rightarrow \text{NH}_3 + \text{H}
\]

The ClO\textsubscript{4} radical in the interior of the crystal is stabilized by crystalline force fields and either picks up an electron from a nearby ClO\textsubscript{4}⁻ ion or from a hydrogen atom formed by reaction (15).

\[
\text{H} + \text{ClO}_4 \rightarrow \text{HClO}_4
\]

The hydrogen atom can also react with a HClO\textsubscript{4} molecule

\[
\text{H} + \text{HClO}_4 \rightarrow \text{H}_2\text{O} + \text{ClO}_3
\]

producing ClO\textsubscript{3} radicals which act as electron traps, thereby increasing the decomposition. This reaction was used to account

for the catalytic effect of HClO₄. However, a later study⁸⁶ has reported that ClO₃ radicals decompose in the low temperature region. Irradiation investigations,⁸⁷-⁸⁹ on the other hand, have supported Bircumshaw and Newman, showing that ClO₃⁻ ions are thermally stable below 300⁰.

In the above mechanism a ClO₄ radical will eventually be produced on the surface of the crystal and decompose, leaving a positive hole. This excess positive charge is then either removed by an electron from the crystal interior, or by migration of an NH₄⁺ ion from a nearby lattice site. Thus, decomposition centers form throughout the crystal surface. The decomposition process disorganizes the crystal lattice and allows sublimation (reaction 12) to increase because of the increasing surface area. As both processes compete for ClO₄⁻ ions on the surface, the decomposition eventually reaches a stage where sublimation is so much more rapid that the decomposition process ceases. This explains the cessation of the low temperature reaction after only 30% decomposition.

Probably the most widely quoted early mechanism involves the formation of a molecular complex, \([\text{NH}_4\text{ClO}_4]\), on the surface of the crystal at a kink site where an electron and a positive hole are mutually trapped. The molecular complex has a definite lifetime, in which it either decomposes or reverts back to the original ionic form. The mechanism is, therefore, a variation of the electron transfer process, with the formation of the positive hole as the rate-determining step. When an \(\text{NH}_4\text{ClO}_4\) complex does decompose, it eliminates \(\text{H}_2\text{O}\), which leaves a nitrogen atom and a \(\text{ClO}_2\) molecule. The nitrogen atoms then combine, through a third body, to form molecular nitrogen

\[
\text{NH}_4\text{ClO}_4 \rightarrow \text{N} + \text{ClO}_2 + 2 \text{H}_2\text{O} \tag{18}
\]

\[
\text{N} + \text{N} + \text{M} \rightarrow \text{N}_2 + \text{M} \tag{19}
\]

while the \(\text{ClO}_2\) molecules go on to form chlorine and oxygen.

\[
\text{ClO}_2 \rightarrow \text{Cl} + \text{O} \tag{20}
\]

\[
2 \text{Cl} \rightarrow \text{Cl}_2 + \text{O}_2 \tag{21}
\]

Nitrogen molecules react with the oxygen atoms from reaction (20) to form \(\text{N}_2\text{O}\) via a third body reaction. The remaining trace products, e.g. HCl, HClO₄, and NOCl, are formed by side reactions involving \(\text{H}_2\text{O}\), \(\text{N}_2\text{O}\), ClO, \(\text{O}_2\), \(\text{N}_2\), and \(\text{ClO}_2\). Hence the decomposition is initiated at the surface at a junction of mosaic blocks, and spreads through the intergranular material. The reaction ceases when only loosely attached blocks remain, presumably at approximately 30% decomposition.

With regard to this variation of the electron transfer mechanism, evidence for the formation of a molecular complex has
been discounted by several recent investigators,37,90 as well as by the failure of mass spectrometric22-25 and infrared76,77 studies to find any confirmation of the existence of the NH$_4$ClO$_4$ complex.

Microcinematography91 of decomposing crystals has also led to the suggestion of an electron transfer mechanism. In this case, ClO$_4$ radicals are produced by transfer of electrons from ClO$_4^-$ ions into the conduction band of the crystal. The electrons may subsequently be captured by "traps" resulting in the eventual formation of (NH$_4$)(ClO$_4$) radical pairs. The reaction rate is controlled by the decomposition of the complex or of the ClO$_4$ radical. The action of electron donor or acceptor catalysts is explained by their effect on the semiconductor properties of the crystal. A change in electron density changes the concentration of ClO$_4$ radicals and hence the decomposition rate. Metals which undergo change of valence readily, should be active catalysts.

The electron transfer mechanism for pure ammonium perchlorate decomposition has in general received support from

\begin{itemize}
\end{itemize}
studies of catalyzed reactions. However, it has been pointed out that since N_2O and HCl are usually not products of catalyzed reactions, the mechanisms need not be similar.

Early mass spectrometric studies tended to disprove the electron transfer mechanism but more recent work, using an instrument coupled directly to a conventional vacuum reaction system, indicates that the rate controlling step in the decomposition is the formation of a ClO_4^- radical and an electron from ClO_4^-. In addition, the electron transfer mechanism has been

(92) F. Solymosi and E. Krix, J. Catalysis, 1, 468 (1962).
(96) F. Solymosi, Combust. and Flame, 9, 141 (1965).
shown to account76 for the influence of various reaction parameters such as particle size, aging of crystals, and effect of product gases, on the low temperature decomposition rate.

The activation energy for the low temperature region, 32 kcal/mole,27,92,97,101 has been associated with promotion of electrons into the conduction band of the crystal.

Irradiation investigations87,89,105-109 also support the electron transfer mechanism. Irradiation shortens the induction period,110 and lowers the activation energy in the acceleratory region,109 but does not effect the activation energy of the deceleratory region.109 Since irradiated ammonium perchlorate has been suggested as decomposing through an initial electron transfer step,87,105,107-109 it has been postulated that unirradiated

\begin{thebibliography}{110}
\bibitem{105} E. S. Freeman, D. A. Anderson, and J. J. Campisi, \textit{J. Phys. Chem.}, \textit{64}, 1727 (1960).
\end{thebibliography}
ammonium perchlorate must also decompose by a similar mechanism. Irradiation simply catalyzes the process by introducing defects and catalytic impurities such as ClO$_3^-$, which increase both the number of initial decomposition centers and the number of potential electron traps.

2. Proton Transfer

Variations of this general mechanism are all based on the reaction

$$\text{NH}_4^+\text{ClO}_4^- \rightarrow \text{NH}_3 + \text{HClO}_4$$

(22)

occurring in the crystal lattice or on the surface. The earliest version was put forth in connection with the application to previous data of a kinetic analysis based on the linear rate of progression of the decomposition interface. The rate determining step in the decomposition of orthorhombic crystals below 250° was assumed to be the attainment of nearly free rotation by the perchlorate ion. For the cubic form above 250°, it was desorption of the NH$_3$:HClO$_4$ complex at the decomposition interface. Mathematical analyses of both the acceleratory and deceleratory portions of the decomposition rate curve were carried out successfully on the basis of these postulates.

A proton transfer step has been invoked in discussing the results of a qualitative isothermal kinetic decomposition study and to explain some mass spectrometric results. In a more detailed analysis, it has been suggested that the

decomposition can be thought of in terms of hard and soft acids and bases. Initially, the proton, being a very hard acid, tends to combine with the ammonia molecule, a hard base, rather than the ClO$_4^-$ ion, only a moderately hard base. However, as the temperature is raised the polarizability of the NH$_3$ is readily increased, and its hard-base character begins to soften at a much greater rate than that of the ClO$_4^-$ ion. Thus, at a high enough temperature, approximately 150°, the ClO$_4^-$ ion will become harder in nature than the ammonia molecule, and hence will extract the proton from it. The unbalanced perchloric acid molecule then decomposes according to the equation

$$\text{HClO}_4 \rightarrow \text{ClO}_3 + \text{OH}$$

(23)

Hydroxyl radicals abstract hydrogen from ammonia until free nitrogen atoms are produced. These then dimerize. Both the production of water and of nitrogen are highly exothermic reactions which supply the energy necessary to maintain the reaction.

This mechanism clearly requires that the recombination reaction

$$\text{NH}_3 + \text{HClO}_4 \rightarrow \text{NH}_4^+ + \text{ClO}_4^-$$

(24)

be sufficiently slow compared to the dissociation, that the lifetime of the individual HClO$_4$ molecules permits their unimolecular decomposition. In the case of the catalyzed decomposition, the function of the catalyst is claimed to be to complex NH$_3$ or HClO$_4$ molecules and impede the recombination. Catalysts weaken the N-H bond by withdrawing electrons from nitrogen, and facilitate the extraction of hydrogen from ammonia by hydroxyl
radicals. Whether these considerations can be applied to the uncatalyzed decomposition may need further consideration.

Adiabatic investigations have supported a mechanism involving adsorbed NH₃ and HClO₄. In one research, an analogy is drawn between ammonium perchlorate and ammonium nitrate decompositions, both being dependent upon dissociation products. A mechanism is suggested in which ammonia and perchloric acid are absorbed on the surface of the crystal.

\[
\text{NH}_4^+ + \text{ClO}_4^- \rightleftharpoons \text{NH}_3(g) + \text{HClO}_4(s) \quad (25)
\]

Evaporation of the species results in sublimation, while decomposition of the adsorbed HClO₄ yields reactive intermediates

\[
2 \text{HClO}_4(s) \rightleftharpoons \text{ClO}_3^+ + \text{ClO}_4^- + \text{H}_2\text{O}(s) \quad (26)
\]

These can then oxidize the ammonia to give products and additional reactants, which through a variety of reactions produce the final products. Inhibition by ammonia is attributed to the reversal of reaction (25), while the reversal of reaction (26) is responsible for inhibition by water. Perchloric acid catalysis can be ascribed to the enhancement of reaction (25). Termination of the reaction is attributed to depletion of favorable reaction sites. A mechanism such as this can account qualitatively for the many nitrogen containing products, e.g. N₂, N₂O, HNO₃, and traces of NOCl.

(113) J. E. Land, AD 625191 (1965).
(114) J. E. Land, AD 626805 (1965).
A recent publication80 measuring the thermal decomposition by both weight loss and pressure gain, has shown the rate to be independent of the method of measurement. Also, the sublimation and low temperature processes possess identical activation energies.80,81 This has led to the suggestion79,80,116 that the two processes occurring in the low temperature region, operate by a single proton transfer mechanism. The rate being independent of the method of measurement indicates that gas phase reactions are not rate-determining. This, in addition to the observation that the sublimation rate is slower than decomposition rate, suggests that the low temperature decomposition proceeds through adsorbed \(\text{NH}_3\) and \(\text{HClO}_4\), as proposed earlier.15,90

A mechanism similar to reaction (25) was therefore proposed79,80 in which either the adsorbed ammonia and perchloric acid sublime, or the \(\text{HClO}_4\) decomposes on the surface, forming intermediates which react with the adsorbed \(\text{NH}_3\). The perchloric acid decomposes by a bimolecular reaction

\[
2 \text{HClO}_4(a) \rightarrow \text{H}_2\text{O} + \text{ClO}_3 + \text{ClO}_4
\]

(27)

The oxides of chlorine decompose through a series of reactions, producing products and radical intermediates which oxidize the ammonia. The net result of these reactions are products which agree well with previous studies.15,32 The proposed mechanism also is in agreement with the fact that perchloric acid increases the reaction rate and ammonia decreases it. The fact that \(\text{HClO}_4(a)\) desorbs more rapidly than \(\text{NH}_4(a)\), and that the latter is not rapidly

oxidized, explains why the low temperature reaction ceases after only 30% decomposition. The role of a catalyst in this mechanism has been attributed to formation of ammines which tie up the ammonia. This is similar to an earlier theory, except that the ammine complex inhibits a different reaction.

3. Activation Energy

The first kinetic study used pressure increase as a measure of decomposition rate in the interval 215-275°C. Data for the acceleratory region were fitted to a power law

\[p = (kt)^6 \]

and for the deceleratory region to the equation

\[-\ln(P_f - p) = kt + C \] (28)

where \(P_f \) is the final pressure at 30% decomposition. Use was also made of the modified autocatalytic Prout-Tompkins equation

\[\ln[p/(P_f-p)] = kt + C \] (29)

Activation energies of 27.8 kcal/mole for the orthorhombic form and 18.9 kcal/mole for the cubic form were obtained.

In a more recent investigation, also employing a manometric method, activation energies for the orthorhombic and cubic forms were found to be nearly equal, as shown in Table I.

TABLE I

Activation Energies for Low Temperature Decomposition

<table>
<thead>
<tr>
<th>Orthorhombic</th>
<th>Cubic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
</tr>
<tr>
<td>powder</td>
<td>0.05-0.70</td>
</tr>
<tr>
<td>pellets</td>
<td>0.05-0.70</td>
</tr>
<tr>
<td>crystals</td>
<td>0.02-0.20 (acceleratory)</td>
</tr>
<tr>
<td>crystals</td>
<td>0.20-0.90 (decceleratory)</td>
</tr>
</tbody>
</table>
In this case, the Avrami-Erofeyev equation\(^\text{(118-121)}\)
\[-\ln(1-a)^{1/n} = k(t-t_0)\] \((30)\)
was used, where \(t_0\) is the induction period and \(a\) the fraction decomposed. This is based on random nucleation followed by three dimensional growth.

An \(E_a\) of 30 kcal/mole was obtained in still another manometric study\(^\text{(68)}\) using several methods of calculation. Pressure measurements, when following the decomposition of whole crystals,\(^\text{(110)}\) produced an \(E_a\) of 24.6 kcal/mole for the decay \((n = 4)\) and 26.9 kcal/mole for the acceleratory period \((n = 3)\), using eq 30. A value of 29.8 kcal/mole was obtained from induction periods, using the equation
\[a = kt + C\] \((31)\)
Neither eq 28, 29, nor a modified version\(^\text{(122)}\) of eq 29 would fit the data in the decay period. Other investigations\(^\text{(99,10\text{I})}\) utilizing eq 30 have given \(E_a\)'s of 31.6 and 27 kcal/mole for temperatures greater than 240° and 30.1 kcal/mole\(^\text{(55)}\) below 300°.

The low temperature reaction was found\(^\text{(20)}\) to be first order and \(E_a\) of 21.5 kcal/mole calculated from the equation
\[\frac{dx}{dt} = k(1-x)^n\] \((32)\)
which neglects autocatalysis. Little difference was noted in \(E_a\) as the particle size increased. This

agrees with a recent adiabatic study,90 in which only a slight
increase was found to occur in E_a with respect to particle size. Mean
activation energies of 22.1 and 19.1 kcal/mole were obtained
using modified forms of eq 30 and eq 29 respectively. Studying
the decomposition adiabatically permitted the elimination of self
heating of the sample.

Measurement of the rate of growth of nuclei by slow motion
microphotography,91 gave an activation energy of 17 kcal/mole for
single crystals above the transition point. Nucleation occurred
randomly throughout the crystal. Below the crystal transformation,
activation energies of 31 kcal/mole, for longitudinal, and 33
kcal/mole, for transverse growth of the center were recorded, with
nuclei growing parallel to the principal diagonal of the rhomboid.
Adiabatic measurements90 reported a value of 43 kcal/mole for
nucleation of pressed wafers, between 240 and 272°. When the de-
composition of powdered ammonium perchlorate was followed through
use of a thermobalance,26 an activation energy of 30 kcal/mole
was found below 236°. The data was analyzed by the empirical
equation

$$\frac{da}{dt} = k_1(1-a) + k_2a(1-a)$$ \hspace{1cm} (33)

where k_1 characterizes the initial number of electron traps
present and k_2 represents the speed of the development of the re-
action centers. An activation energy of 30 kcal/mole was also
found109 for both the acceleratory and deceleratory stages of
decomposition in the temperature range 161-226°, when weight loss
data on whole crystals was plotted directly against $1/T$.
Activation energies have also been determined by recording the heating rate and peak temperature of a sample during decomposition. \(\ln(H_r/T_m^2) \) is plotted against \(1/T \) where \(T_m \) represents the peak temperature and \(H_r \) is the heating rate. The slope of the straight line gives the activation energy. Values of \(E_a \) varied from 25 to 31 kcal/mole depending upon particle size.

In a kinetic study using a gravimetric method of analysis and using eq 29, activation energies of \(40.1 \) kcal/mole \((n = 4.5, \alpha = 0.0-0.12) \) for the temperature range \(214-236^\circ \), and \(25.1 \) kcal/mole \((n = 1.2, \alpha = 0.0-0.20) \) for \(250-300^\circ \), were obtained. These values are somewhat higher than previous investigations, but this was attributed to the decomposition being carried out open to the air. This allowed the free removal of the decomposition gases and prevented side reactions from influencing the decomposition.

A recent kinetic investigation, making use of both pressure change measurements and thermogravimetric methods, gave an activation energy of \(26.6 \) kcal/mole employing eq 30 with \(n = 2 \) or 3. The kinetics were found to be independent of both particle size and ambient atmosphere. Rate curves at \(230 \) and \(260^\circ \), have also demonstrated that an inert gas pressure of 100 atm fails to vary the reaction kinetics. Using the calculated induction periods

\[\begin{align*}
\end{align*} \]
an activation energy of 30.1 kcal/mole was found. It was further determined that pressure and weight loss curves become virtually identical up to $\alpha = 0.7$, if the latter are corrected for sublimation. The least square activation energies were 33.9 and 27.0 kcal/mole below and above the transition point respectively.

Thus it appears that while the decomposition mechanisms are identical for the orthorhombic and cubic crystals below 350°, the activation energies are not the same. The kinetics for the cubic structure are, in addition, less dependent on sample pretreatment. Both these observations are probably due to the reorganization of the mosaic structure during the crystal phase transformation.

B. HIGH TEMPERATURE MECHANISMS

High temperature decomposition was first suggested as resulting from the thermal breakdown of the perchlorate ion on the surface of the crystal. This would lead to an entirely deceleratory reaction as is the case in the high temperature region. Further kinetic investigation substantiated this theory, when an activation energy of 73.4 kcal/mole was obtained. The decomposition was compared to that of potassium perchlorate ($E_A = 69.3$ kcal/mole), where a rupture of the Cl-O bond is thought to occur. However, recent kinetic data has shown the activation energy to be well below that found earlier and it now seems unlikely that this is the mechanism.

A second mechanism has been proposed in which the transfer, on the surface of the crystal, of a proton from the ammonium to the

perchlorate ion is the rate-determining step. The perchloric acid then decomposes generating oxygen

\[
\begin{align*}
2 \text{ HClO}_4 & \rightarrow \text{ H}_2\text{O} + \text{ Cl}_2\text{O}_7 & (34) \\
2 \text{ Cl}_2\text{O}_7 & \rightarrow 2 \text{ Cl}_2 + 7 \text{ O}_2 & (35)
\end{align*}
\]

which subsequently oxidizes the ammonia

\[
\text{4 NH}_3 + 5 \text{ O}_2 \rightarrow 6 \text{ H}_2\text{O} + 4 \text{ NO} & (36)
\]

Reaction (35) was suggested as being a chain reaction involving ClO₄⁻, ClO₃⁻, ClO₂, ClO, Cl and O radicals. The reaction scheme accounts for the major decomposition products found earlier.¹⁰⁻¹³

Recently, a kinetic study⁷⁹,⁸⁵,¹¹⁶ has shown that all three processes, high and low temperature decompositions and sublimation, possess identical activation energies of 30 kcal/mole. This suggests a common rate determining step. The high temperature rate constants were also found to be lower if measured by weight loss rather than pressure. This indicates gas-phase reactions to be rate determining. The mechanism advanced again consists of an initial proton transfer on the crystal surface, followed by evaporation into the gas phase. Perchloric acid, unstable at these temperatures,¹²⁶ decomposes and its reaction intermediates oxidize the gaseous ammonia to the final products. Introduction of an inert gas enhances the reaction by reducing diffusion and sublimation.⁷¹

The first high temperature kinetic investigation³² found that the reaction obeyed the power law \(p = k t^n \) where \(n \) is less than one and depends on the temperature. A more extensive study,⁷¹

utilizing the equation

\[m^{2/3} = -kt + c \] \hspace{1cm} (37)

where \(m \) is the mass decomposed in time \(t \), gave an activation energy of 73.4 \(\pm \) 1.5 kcal-mole. The reaction was studied under a nitrogen pressure of 20 cm to prevent sublimation. The \(E_a \) was obtained from the temperature range 400-440\(^\circ \)C, since between 300\(^\circ \) and 380\(^\circ \) reproducibility of the data was poor. This was attributed to evaporation at the crystal surface. The fact that kinetic data between 300-380\(^\circ \) are not reproducible was also demonstrated in a later study. However, in this case the cause was attributed to a mixture of both the high and low temperature reactions occurring simultaneously. The decomposition between 380-450\(^\circ \) was found to follow both the power law and the contracting cube expression,

\[kt = 1-(1-a)^{1/3} \] \hspace{1cm} (38)

an equation deduced from the contraction of an interface parallel to the crystal surface. In principle, however, because \(n \) in the power law varies with temperature, the use of eq 38 is preferable. An activation energy of 38.8 kcal/mole was calculated, over the range \(a = 0.2-0.8 \), for pellets of both decomposed and undecomposed ammonium perchlorate. Other values for the high temperature activation energy obtained by use of eq 38 are 44.8 kcal/mole\(^{16} \) for the temperature range 350-440\(^\circ \) and 31.6 kcal/mole\(^{55} \) for 280-380\(^\circ \).

In an isothermal investigation,\(^{20} \) the reaction was found to be of 1/2 order and the activation energy, from eq 32, was found to be highly dependent upon particle size as shown in Table II.
Table II

<table>
<thead>
<tr>
<th>Particle diameter (micron)</th>
<th>E_a (kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>31.0</td>
</tr>
<tr>
<td>56</td>
<td>35.7</td>
</tr>
<tr>
<td>80</td>
<td>49.4</td>
</tr>
</tbody>
</table>

In a high temperature investigation using heating rates and decomposition peak heights, activation energies of 30 kcal/mole were calculated using the peak-height equation for particle diameters up to 162 microns. The samples were heated from ambient temperature to 450° in air. A recent kinetic study found activation energies of 39.1 kcal/mole ($n = 0.6$, $\alpha = 0.0-0.40$) and 35.5 kcal/mole ($n = 1.0$, $\alpha = 0.40-0.80$), for decomposition of partly decomposed ammonium perchlorate over the temperature range 330-450$^\circ$, when the data was fitted to eq 30. Values of 28.3 kcal/mole ($n = 0.8$, $\alpha = 0.10-0.50$) and 23.7 kcal/mole ($n = 1.1$, $\alpha = 0.50-0.90$) were calculated for undecomposed ammonium perchlorate in the temperature range 400-470$^\circ$. A gravimetric method was used. The reason given for the much lower activation energy of the undecomposed sample, in contradiction of earlier results, was that the intercrystalline material is much more difficult to decompose because favorable reaction sites have been lost during the low temperature decomposition.

An activation energy of 30.6 kcal/mole has been recently obtained when measuring the decomposition rate by weight loss. Differences from this value in the earlier work cited above, were attributed to gas phase reactions being rate-limiting.
Hence, reproducible kinetic data can be obtained only if the experimental system and procedure are carefully controlled.

C. EFFECT OF IMPURITIES AND DEFECTS

1. Impurities

In comparison to the recrystallized salt, commercial grade ammonium perchlorate has been found to possess a lower decomposition temperature20 and an increased reaction rate20,55 in the low temperature range. The high temperature decomposition was unaffected by recrystallization. The effects were attributed to impurities. Recent experiments on specially purified ammonium perchlorate1,2,7 have shown the low temperature decomposition to be markedly suppressed. It has been suggested79 that foreign ions are the prime decomposition initiation sites. In a study78 in which ammonium perchlorate was doped with chromate and dichromate ions, it was found that the decomposition was accelerated. If, however, the sample was doped with Ca$^{+2}$ ions, an inhibitory effect resulted. These effects were interpreted in terms of an electron transfer mechanism, in which excess cation vacancies, Ca$^{+2}$, decelerate the reaction, while the addition of anion vacancies, chromate and dichromate, increase decomposition. Similar findings have been reported$^{91-94}$ by various other investigators. Colored impurities have also been suggested78 as catalyzing the reaction by introducing localized perturbations into the energy levels of the ammonium perchlorate.

Adsorption of a surfactant on the crystals has been reported to increase the rates of both low and high temperature decomposition.128-130 An increase in the number of crystalline defects was considered responsible.

2. Particle Size

Variations in particle size has been shown to affect both the low and high temperature decompositions of ammonium perchlorate. In the low temperature region, the velocity20,32,78 and amount20 of decomposition were found to increase as the particle size was decreased. The rate, however, was observed32,78 to attain a maximum value, after which further decreases in the particle size, resulted in a lowering of the decomposition rate. The rise in decomposition rate with diminishing grain size was attributed32 to the increase in particle surface area available for nucleation. Also, a reduction in the grain size gives rise to an increase in crystal imperfections.20 However, as the particle size is decreased still further, the escape of decomposition gases which inhibits the reaction becomes retarded, due to the smaller distances between particles. In addition, the interference between expanding reaction zones increases, and overcomes the effect of an enlarged surface area.32

\begin{itemize}
\item 129 K. Ito and T. Hikita, Kogyo Kayaku Kyokaishi, \textbf{26}, 124 (1965).
\item 130 K. Ito and T. Hikita, Kogyo Kayaku Kyokaishi, \textbf{26}, 131 (1965).
\end{itemize}
The activation energy of the low temperature decomposition, as discussed earlier, is only slightly affected by changes in grain size.\(^{20,80}\) This was explained\(^ {20}\) on the basis that changes in grain size alter only the number of crystal defects but not their individual decomposition activation energy. In the high temperature region, a decrease in particle size lowers both the activation energy and the temperature at which decomposition begins to occur.\(^ {20}\) Again this is reasonable, since the high temperature decomposition energy is dependent upon the surface area and surface energy of the crystals.

3. Lattice Defects

The vital role played by imperfections in the crystal structure was first indicated in 1965, when nucleation was found to occur, suggesting preferential sites for initiation of decomposition.\(^ {32}\) This was subsequently supported by a series of investigations\(^ {12,87-89,91,109,131-133}\) in which preferred regions

(133) V. V. Boldyrev, Yu. P. Savintsev, and V. F. Komarov, Kinetika i Kataliz, 6, 732 (1965).
of reaction were observed along the intermosaic boundaries where crystal defects occur. Slow motion microphotography revealed a great similarity between the anisotropy of the distribution of imperfections and the anisotropy of the nuclear decomposition growth of the nuclei.

A change in the activation energy can be brought about by modifications in the ammonium perchlorate physical form. Activation energies for decomposition nucleus growth in the orthorhombic form have been observed to increase as the amount of sample reorganization is decreased. For single crystals, $E_a = 17$ kcal/mole, for powders $E_a = 22$ kcal/mole, and for pellets $E_a = 30$ kcal/mole. This has been ascribed to a decrease in the crystalline defects as the sample is mechanically worked. With the cubic structure, however, all three physical forms possessed identical activation energies. Values of approximately 25 kcal/mole, were determined for whole crystal and powdered forms, and 27 kcal/mole was calculated for pellets. This was attributed to a reorganization of the lattice during crystal transformation, making it independent of the initial preparation. The activation energy for the high temperature decomposition was also determined to be apparently independent of the physical form.

The prehistory of the ammonium perchlorate sample has been found to affect the low temperature decomposition almost exclusively. This is because modifications in the method of crystal formation markedly alter the lattice imperfections which are presumed responsible for decomposition in the low temperature region. It
has been shown133 that the number of decomposition nuclei depends solely upon the conditions and methods under which the crystals are grown. Also, changes in the acidity of the solvent used in crystallization produce a change in the decomposition rate.21

A decrease in the decomposition rate with time since crystal synthesis,78 has indicated that aging also influences the low temperature decomposition.78 Again, the cause has been attributed78 to imperfections. It was suggested that the defects are annealed out of the crystal lattice as a function of time.

The gaseous decomposition products, as a whole, have been reported to both increase and decrease further decomposition. In the low temperature region, the reaction products escaping to the surface create new defects in the crystal lattice.26,91 Water, one of the major decomposition products, was first found13 to display a rejuvenating effect toward the low temperature decomposition. Adding the condensed water back into the decomposing salt caused an increase in the amount of decomposition. The effect was attributed to the reorganization of the crystal lattice by the solvent, reproducing the crystalline voids and defects removed during decomposition. These imperfections were suggested32 to be responsible for decomposition. Later studies,15,133-134 however, have shown water to definitely inhibit the thermal reactions. It has been postulated78 that the overall suppression of the decomposition by the product gases is due to the inhibiting effect of the water vapor alone.

\footnotesize{133 B. S. Svetlov and V. A. Koroban, Kinetika i Kataliz, 8, 456 (1967).}
Microphotographic measurements133 have found water vapor to affect only the rate of growth of decomposition nuclei, and not to influence the initial number of nuclei formed. This would indicate that the decomposition process must be primarily determined by growth rate, rather than the number of nuclei present. The latter depends upon crystal prehistory.

The structural defects found in the ammonium perchlorate crystal lattice are of two basic types, Schottky, or Frenkel. The Schottky type occurs when some of the cation or anion sites in the lattice are void, while the Frenkel type occurs when an ion is found in an interstitial position. Due to several contributing factors, including a high dielectric constant and a high van der Waals energy for the interstitial ion, it was first thought135 that ammonium perchlorate crystal imperfections were of the Frenkel type. From the variation of the ionic conductivity with temperature, the energy for formation and migration of lattice defects was found to be 24 and 20 kcal/mole, respectively.135,136 A similar investigation137 obtained a value of 11.5 kcal/mole for the defect migration energy, based on the prevalence of Frenkel disorders in the orthorhombic crystalline form and the Schottky defect structures in the cubic form. The energies of formation of a defect pair were calculated as 13.8 and 69.1 kcal/mole, respectively.

The electrical conductivity of ammonium perchlorate is abnormally high compared to the alkali halides.135,136 It has been found to increase with increase in number of lattice defects130 as would be expected. The conductivity has also been found to increase with addition of gaseous ammonia. As a result of these observations, it has been suggested135,136 that the electrical conductivity of the solid crystal is due to effective ion transport which is brought about by a charge transfer process.

The mechanism advanced consists of a proton moving from an ammonium ion to an ammonia molecule situated in a Schottky or Frenkel defect. It was further suggested135 that this proton transfer might be the key step in the thermal decomposition. Transfer of a proton to a perchlorate anion would lead to decomposition, while transfer to an ammonia molecule would bring about charge transport.

The cessation of the low temperature reaction after only partial decomposition, has also been attributed to crystal imperfections. It has been suggested15,20,27,57 that the decomposition occurs only in the disordered regions of the crystal, through some annealing reaction of lattice defects. Once these crystal imperfections are removed the reaction stops. Hence, the decomposition proceeds solely through the intermosaic structure which constitutes approximately 30% of the crystalline mass.

\textbf{ACKNOWLEDGMENT.} --- This literature survey was prepared as part of a research program supported by the Office of Naval Research, Power Program under Contract Nonr-4008(07).
The Thermal Decomposition of Ammonium Perchlorate - A Review

A review of the literature on the uncatalysed thermal decomposition of ammonium perchlorate.
INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP. Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 1 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

1. DESCRIPTIVE NOTES. If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHORIZE: Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT D-2: Enter the date of the report as day, month, year or month year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of page containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTROL FOR GRANT NUMBER: If applicable, enter the applicable number of the contract or grant under which the report was written.

8b. & 8c. PROJECT NUMBER: Enter the appropriate identifier department identifier number such as project number, subproject number, system number, task number, etc.

9. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

95. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (other than the originator's or the sponsor's, also enter these numbers).

10. AVAILABILITY LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report directly from DDC."

(2) "Foreign announcement and dissemination of this report is controlled. Qualified requesters may obtain copies of this report directly from DDC."

(3) "U.S. Government agencies may obtain copies of this report from DDC. Other qualified users shall request through DDC."

(4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through DDC."

(5) "All distribution of this report is controlled. Qualified DDC users shall request through DDC."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report. Submit abstract if additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph represented as PS, PS/CS, CS, or CS/TS.

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of security classification.

The assignment of links, rules, and weights is optional.