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ABSTRACT

This report explains some of the mathematical techniques currently being used and

some which are being considered for solving a problem of information storage and retrieval.
Basically two problem characterizations are discussed. The first is a statistical descrip-

tion and the other is a vector space characterizatiou. Specifically, we have neglected
the interesting area of linguistic analysis which is sometimes used as the basis for in-

formation retrieval. Several examples, comments and suggestions are made regarding the
use of the various techniques.
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SECTION I

INTRODUCTION

There exist several hundred different methods for relating search requests to docu-

ments contained in a library. It would indeed be impossible to discuss all of these (and

probably not desirable); therefore, this report shall be aimed at uncovering the basic
mathematics which provide the foundation for most of the retrieval techniques. Specifi-

cally, this report will emphasize the mathematics of:

1. Boolean Algebraic Retrieval

2. Linear Statistical Retrieval

3. Statistical Association Techniques for expanding a query and/or for expanding
the set of retrieved documents.

4. Vector Space representation of the retrieval process

5. Discriminant Analysis Techniques

It is not intended that this list of subjects exhaust the topic of mathematics for in-

formation retrieval. Specifically, we have neglected the very interesting area of linguistic
analysis which is sometimes used as the basis for information retrieval. However, it is

felt that the operational systems of today and those systems which will be operational in

the near future can be adequately described in terms of the mathematics presented here.

The background material for this report was obtained for the most part from the sources
listed in the bibliography. The descriptions, examples, comments and suggestions are

those of the author.
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SECTION II

GENERAL MATHEMATICAL MODEL

Ic is assumed throughout that each document and each query is characterized by a set

of identifiers which include keywords, index terms, descriptors, phases, concepts, etc..

Furthermore, it is assumed that the necessary dictionaries, thesauri and algorithms exist

for uniquely representing a document (or query) by an appropriate subset of identifiers.*

Let:
I Di I u set of documents composing the library

Q .query.

a u document vector defined on the set of identifiers

a query vector defined on the set of identifiers.

d = No. of documents t = No. of identifiers.

r a retrieval vector

7 a transformation

• Salton suggests the following techniques for generating identifiers from a document
may not only be necessary but may also be more productive than the computation of higher-
order statistical associations.

The following principal procedures are available for vocabulary control and normali-
zation:

1. A stem-suffix cutoff procedure to reduce each text word, or index term, to word
stem and word suffix, thus producing a common form for the many different words which
exhibit the same stem (e.g., analyzer, analysis, analytic, analyst, etc.).

2. Use of a synonym dictionary, or thesaurus, to replace semantically equivalent
words by a common identifier (or concept number).

3. Use of a hierarchical subject arrangement, such as a library classification system,
capable of producing for a given concept number various types of related concepts, includ-
ing more 3eneral ones, more specific ones, and a variety of cross references.

4. Use of phrase dictionaries to perform concept groupings by combining pairs or
triples of concepts, previously included in a dictionary, into a single, more representative
entity (e.g., the concepts "programming" and "language* might be transformed into a more
meaningful unit such as "programming language ).
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Then the general model is

storage

I D 1 71 (D)) d --.2

I3

Q

subset of I D .I

Explanation of Transformations

T1(D) - is a transformation on the set of all documents which maps each document

into the vector space spanned by the identifiers.

A (Q) - is a transformation on the set of all queries which maps every query into the

vector space spanned by the identifiers.

T3 .d,,.).is a transformation on the set of all document vectors and a query vector which

generates a retrieval vector designated r.

T4 _) - is a transformation on the retrieval vector which generates a subset of the set

of all documents

The contents of storage is represented by a C matrix of d row vectors, i.e.

d T
C -- [2 C] d rows

"- t col.

Since there are d documents each represented by t identifiers, C is a d xt matrix.

S"it is assumed at the outset that the mechanism for generating the C matrix can be de-

fined (that is, the identifiers have been selected and thus T1 (D) can be found). It will

turn out that the C matrix provides the fundamental starting point for all the analysis which

follows.
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SECTION III

BOOLEAN ALGEBRAIC RETRIEVAL

Perhaps the simplest and most widely used retrieval scheme is the Boolean Algebraic

technique (sometimes called the Inverted Indices method).

Here the C matrix is a binary matrix

4- t----+

where J 1 If identifier j is present in document i
C 0 otherwise

From the C matrix, t sets S. i - 1 . . . t of documents are formed such that S. contains
i I

those documents in which identifier i appears.

The query vector q, which is generated by the system user, is a ternary vector

X

1I

q * t where

T if identifier i is present in query Q
q= x if identifier i is not present in Q
S0 if the negation of identifier i is present in Q

From the Lvector the retrieval is obtained by intersection of all sets S, corresponding to

qi.- I , 1, t. *

*Negation must be handled differently since the sets S, contin only those documents which

contain identifier i. Therefore, if identifier i is negated in the query, we could generate a

new set which contains only those documents not contained in S.. Although this is simple

in theory the operation is time-consuming in practice.
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Example 1

let t 3 - and d-6

f t £
1 2 3I. Sd

I 1 1 0 S d ddd
d2 0 1 0 S 1 = td' d4' 6

d3  1 1 1 = S =)d ddd dsd

d 1 0 0 2 1 2 3' 5

d 5  0 1 1 S d dd
d6 1 0 1 = 3 3' , d

Suppose the retrieval request is:

Retrieve all documents which contain identifier 1 and identifier 3

Based upon this request q

iX

q, = q =

Since q and q 3 are 1 we take the logical and of sets S1 ana S$
1 3

.•Subset of t = Sflte ,S

d d, d , d ~d d

S d. d~

documents 3 and 6 are retrieved.

In this case the retrieval vector r is

0
0

1

0

0
1
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More complicated Boolean expressions can be obtained using union and negation I
Example 2:

Suppose the query request in Example I were changed to read:
Retrieve all documents which contain identifiers 1 and 3 or contain identifiers

1 and 2.

In this case the retrieval is accomplished in three steps:

Step 1: Retrieve documents which contain identifiers 1 and 3.

Step 2: Retrieve documents which contain identifiers 1 and 2.

Step 3: Obtain the logical or of the res,,lts of step 1 with those of step 2.

Step 1: From Example 1 ýd 3 " d6- ,

Step 2: From query q=[ ]:; q2 = 1

1 2

SubseL of -D Sf ns1 2

I dl, d 3, d.4 d ~ l ýd. d 2d, d, ý

Step 3: 1 d. d3

Subset 
=D, ýd3, d4ý U ý{dl, d3s

d d. d.'

Thus, documents 1, 3 and 6 are retrieved and

r - I

1

The main drawback of Boolean Retrieval is that it is a "yes" or "no" technique -
that is, either the query exactly matches a document or else the document is not retrieved.

This is a serious deficiency since it is unlikely that the user of the system would have
the foresight to specify precisely the query corresponding to the documents which are

relevant to him. What is needed is a retrieval vectortwhich is not binary but rather con-
tains elements which indicate the relevance of each document to the query. In this way
the documents can be rank ordered according to their relevance in answering the query.

This property will be provided by Linear Statistical Retrieval.

6



SECTION IV

LINEAR STATISTICAL RETRIEVAL

In order to assign relevance numbers to the documents of the library, given the query

vector £, the linear statistical model is normally used. Here the retrieval vectorrz is
obtained by performing a linear transformation on the query vector,. The transformation

matrix is the identifier document matrix C (usually a modified C matrix as will be seen).

Binary C Matrix

In the simplest case

r = CA where

1 if the identifier j is present in document i

C.. = 0 otherwise
L!

qi 1 if identifier i is present in query Q

0 otherwise

The relevance of the query A,,to document j would be indicated by the value of

t
r C.. q.

Note that r. is simply the sum of the number of identifiers which are present in both

the document and the query.

There exist at least two serious drawbacks to using this simple linear model. The
first has to do with the fact that the C matrix is binary. Since we are interested in

computing the relevance of a document based upon the query, it would seem that the
elements of the C matrix should reflect the relevance to a document given an identifier
had occurred in the document. That is to say, C.. should be the relevance of identifier /
to document i given that identifier j occurred in document i. The assignment of the C..'s

could be accomplished either manually or algorithmically. If performed manually someone
would have to estimate them at the time the document is stored in the library. The assign-

ment could be done algorithmically by setting C.. equal to the relative frequency of the

occurrence of identifier / in document i.

The second deficiency of this simple linear model has to do with the fact that the
binary relevance coefficient reflects only the number of identifiers which match in the

document and the query, and does not take into account the number of mismatches.

7



For example let

j, - 100111000

dt . 111101111f%2

where dt is the ith row vector of C now

r " d q " 3 and

r . d t 3r2 2., .

., the relevance of document 1 equals the relevance of document 2
This is certainly counterintuitive since dlis much closer to the query q than is d:

Weighted C Matrix

Let C be a weighted matrix

4- -t...

C = where

C.. = relevance to document i given identifier j

Note that there is no reason why C.. can't be negative. In fact if identifier j never
appears in document i it would seem reasonable that C.. < 0

Examining the linear model

r = C q where q is binary

I.- C., q,

the relevance of document i to the query" is simply the algebraic sum of the individual
relevance coefficients ( i.e., C. .'s ) which correspond to the identifiers in the query,,q.

I,

There are yet a few deficiencies present in our linear model. One of these involves

the use of a binary query vector. The user may not consider each identifier in his query
vector equally important in which case he may wish to weight the elements of,

8



Weighted C Matrix and Weighted q Vector

The linear model is
r= C where C is weighted as before

andq
q ? 2

where
q. = the weight assigned to identifier i.

Our linear model has generalized a good deal; however, there still exists a very

important and fundamental question which has not been answered. This question involves

the constraints upon the weights used in the C matrix and in theq vector. This question

is treated in a vague way in the literature; however, it is of fundamental importance
since the system retrieval will vary widely depending upon it's answer.

In order to clarify (and answer) the problem of constraints, the linear retrieval method
will now be interpreted as an operation in a linear vector space.

Linear Vector Space Interpretation

Given the weighted C matrix,

t ,--1

Ld d

represents the t dimensional row vectors as

d'=[C C .C C .
,i i I i2 it

Here the documents are represented as t dimensional vectors in the vector space
spanned by the t identifiers.

The query vector can be represented in the same space as a t dimensional vector.

The Linear Retrieval Model can now be interpreted as a set of vector operations in
the linear vector space

- C q

thus

r, C.. q. or equivalently

I-i



< d. q> d q

Thus, the relevance of document i to the queryt,.is simply the inner product of the
ith document vector with the query vector. Here it is obvious that the measure of rele-

vance is directly related to the measure of *closeness" of the document vector to the
query vector in the vector space. At this point one might be tempted to drop the Linear

Model r = C q in favor of using other metrics which measure the "closeness, between

two vectors (such as Euclidean Distance, Box Car Norm, etc.). However, since we are
concerned with analyzing the Linear Model we shall focus our attention on the inner

product as our measure of 'closeness' (or relevance).

Example 3:

Let d = 4 and t = 2. That is, the library contains 4 documents each represented by

2 identifiers. Here the linear vector space is spanned by 2 identifiers and so the space
has dimension 2.

t t dt =[C C ]
-,2 •- 1 11 12

C11  C I] dt =[C C
2C C 2 -2 21 22dt =[c C

C i-s C s C s

C 3 C23 
31 32

4 2dt C ]

41 42

"The query vector is similarly 2 -dimensional

q 
2I 

l

C
12 I

d
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We can now return to the important question of normalization. It has been shown
that the Linear Statistical Model requires that the inner product between a document
vector and the query vector be the relevance measure for that document. The inner

product is given by:

d q - Id 9q1 cos6

where
V = magnitude of the vector

T177
and

0 is the angle between the vectors.

Notice thar the inner product is directly proportional to the product of the magnitudes
of the vectors. Herein lies the normalization problem. A user who assigns large weights

to his query vector may get a completely different response than another user who uses
the same j1lji weights but uses weights of a much lower magnitude. The documents
will have the same rank ordering; however, the documents retrieved will depend upon

4Cr]1. In view of this problem the most reasonable process is to require that the docu-

ment vectors and the query vectors be normalized to unit vectors. In this case the
measure of "closeness' (or relevance) is determined only by the cosine of the angle

between the two vectors, i.e.,

r -i = cos0

Now the constraints on the weights of the C matrix and the q vector are specified.

That is
t

=1= Cii and1=1 '

t 2K£i = 1= { q.2

1=1

At this point we have generalized the Linear Statistical Model to the point where
the C matrix and theA vector are weighted and properly normalized. However, there
still exists many deficiencies in the model. In particular consider the problem of
formulating the query vector. Ideally the user should construct that query which best
matches all the document vectors which are of interest to him. However, he cannot be
expected to know the relevance of each identifier to every document and further, he will
not be expected to assign a weight to every possible query identifier. To meet this
need, some automatic Statistical Association Techniques can be employed to modify a
user's query so as to generate a larger, more comprehensive, query. It will be shown that
the same techniques used to broaden a query can be used to broaden the system response.

1.1
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SECTION V

STATISTICAL ASSOCIATION TECHNIQUES

The central idea behind using Association Techniques (these techniques are sometimes

called "clustering' or "clumping") is to add identifiers to a query by using the pair-wise
statistical relations which exist between identifiers.

Therefore we wish to obtain a tx t matrix which reflects the similarity between the

identifiers. Let St be such a similarity matrix

S t SIi
'S S

Here the ijth element indicates the degree of similarity between the ith identifier

and the jth identifier. There exist many ways of generating similarity matrices but each

method must use the association information inherently contained within the documents
of the library. All this information is contained in the C matrix and so the C matrix is

always used as the starting point. A useful Similarity Matrix is the Covariance Matrix*

defined as

S t

where

AC This is the average of the
S ki ith column vector of thed k,, IC matrix

S. is simply the covariance between the ith identifier and the ith identifier.

• Again the literature is particularly vague on the subject of similarity measures. I
suggest two other possible measures as follows:

1. S =CTC

Here S.1 - inner product of the ith column vector of C with the jith column vector

12



Once the similarity matrix has been generated we can interpret the ijth element as the
strength of the association betvzen identifier i and identifier j. It is convenient to represent
this information as an undirected** graph where the nodes represent the identifiers and the
weight of the links represent the association coefficients br. Veen the nodes (i.e., identi-

fiers) which they connect. That is the links on this graph indicate the "-trength" of the
1st order associations between nodes. By taking products of these 'strengths" along
paths of length two second order associations can be obtained. For example in Figure 1
a second order association between node i and node k is given by the product

ij Sjk

S..i

sii 02s4 Skk

Figure 1

The sum of all second order associations between node i and node j is obtained by
examining the ijth element of the matrix obtained by squaring the Similarity Matrix = S2.

Therefore, second order associations are obtained from
*,-- I -+-F ,1

S2 
= SS= t (2)

* Continued

of C. The previous discussion on normalization is pertinent here.

2. Another measure of similarity could be obtained by considering the Euclidean distance
between the identifier vectors (i.e., the column vectors of Q) in the space spanned by the docu-
ments. Here we would have i identifier vectors represented in a d-dimensional vector space
spanned by the d documents

S ii - I 4.t -4Ii.1'I

where~t is the ith colum vector of C

** Note that the graph is undirected since S.. = Si. , that is the association from i to j.
If the similarity matrix were not symmetric then the graph would be directed.

13



where

S(2S t sum of all second order
ik k associations betweennode i and node j

Any order association between identifiers can be obtained by raising the S matrix

to the desired power. That is, the nth order associations are obtained from

+ n times--*
S =-- s.s...s

Returning to the question of expanding our query vector q by using higher order
associations between identifiers, it is clear that we must have some means of taking into

account the relative importance of the different order associa'ions. It would seem reason-
able that 1st order associations are more important than second which in turn are more

important than third and so on. To accomplish this, the following method is suggested
by Salton.

Let q* = expanded query vector

,.. original query vector

S similarity matrix

a = positive constant less than one 0 <a < 1

then define

. [1+ aS + (aS) 2 + (aS)3 +. .. q

Here we have weighted the higher order associations by the appropriate power of a
and since 0 < a < 1, a" is monotonically decreasing as n increases.

Example 4: Second Order Association.

For the purpose of simplicity, suppose that the similarity matrix has been threshold

at the level 0..

That is l

- I if S. > 6
0 if Si< 0

Then the similarity matrix is a binary matrix

14



Let
1 1 0 0

1 1 0 0 0
threshold 1 0 1

0 0 1 1 1
0 0 1 1 1

the resulting graph is

The presence of a link indicates that the connected nodes are associated in S
threshold

Now _
i7

,3 2 2 1 1

2 2 1 0 0
S2S= SS[ 2 1 4 3 3

1 03 3 3

S2 yields the second order associations between pairs of nodes. Since Sthreshold

is binary the ij element of the S2 matrix is simply the number of paths of length two

between node i and node j. This may be verified by examination of the graph.

Once the expanded query vector is obtained (i.e., q* above) it must be normalized
such that Iq* I 1.

The exact same techniques used for expanding the query vector can be used to expand
the set of retrieved documents. Suppose that Linear Statistical Retrieval is used so that

r - Cq

Remember that the elements of the, vector are the relevance indicators for the docu-
ments, that is

- relevance of document i

15



Now a new relevance vector can be obtained by

ro = + (a Sd )+ (aSd)2 + (a Sd) 3 +

where Sd is a d x d similarity matrix defined on the documents. The ijth element of

Sd is the association of the ith document to the jth document.

Another very interesting way of expanding a retrieval set is obtained by using

bibliographic citations. 1 The mechanism for doi: this is quite similar to the methods
used for association.

We begin by obtaining a d x d binary matrix where the documents are chronologically

ordered along the rows and columns. That is

dI d 2 . dd

"di 0

where

d is th, oldest document

d2 the next oldest and so on.

"The rows represent the documents being cited and the columns the source of the

citation. Therefore

Ji if document j cites document

0 otherwise.

The elements on or below the diai.onal are zero since a document can only cite a

previously published document and further no document cites itself. Now proceeding as

before, higher order linkages can be examined by taking higher order powers of the M

matrix.

For example taking the nth power of the M matrix and examining te ij element of

M/ (i < j and j > n )* we can obtain the sum of nth order linkages between document
i and document j.

* It is easy to show that ,44n.' = 0

where

For j n.

16



Now by examining the M n matrix, all documents which exhibit strong nth order links
are collected into groups. Nov we can expand the retrieved document set by adding the
document groups which are strongly linked to the orginally retrieved documents.

For an example of a proposed Linear Statistical Retrieval System see reference 2.

A Statistical Viewpoint

Viewing the problem of information retrieval from a statistical point we would like
to compute the probability of a document being relevant given the query vector q. That
is to say we should like to compute

P (di/1q) = Probability that document i is relevant given query q

Following the usual procedure we employ Bayes Rule to get

P(d,/q) = P(g/di) P(d) . P(q, d,)
P(5) P(5)

Note that in theory P•/d.) could be estimated. P(41/di) is the probability of query

,Igiven that document i is relevant. We could accomplish this by observing the relative
frequency of the q vector under the condition that document i is relevant to the user
generatingq. Of course this procedure would have to be done many times for all possible
query vectors. Clearly this is impossible in any practical sense.

P(dj) could be estimated by the relative frequency with which document i is

considered relevant.

P•) is a constant given any query and therefore poses no problem of estimation.

In order to simplify.our problem let us assume that the identifiers composing the
5.vector are statistically independent. In this case

Pý/D) - 11 P(q t/D)
k k

Now J
I1 P(qk/ di) P(d.)

k -
P(di = = (const.) P(di) TI P(q Id )

II P(q) k=
k

Since the log function is a monotonic function of its argument we can use log
P(d /q) to estimate the relevance of document i. Taking the log

t

log P(d, /q) - const. + log P(da) + Y log P(q Id)Sk-. k

17



Now it is assumed that we can estimate the P(qk/d,) in much the same way we

obtained the weights in the C matrix. Given aq vector we can get P(q./d. ) and the

relevance factor can be obtained as a linear function.
t

r - log P(dc/q) = const. + log P(di) + 4Y. log P(q Id

It should be noted that this simple linear relation is obtained under the assumption

of statistical independence. For further discussion of statistical techniques see

reference 3.

Before going on to other topics it is worth noting that the highest order statistics

considered thus far are only second order. Even though higher order associations were

employed they were generated taking account only of second order statistical relation-

ships.

18
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SECTION VI

VECTOR SPACE REPRESENTATION

The vector space representation has already been given where the d documents are
represented as t dimensional vectors in the space spanned by the t identifiers. Similarly
the query vector is represented as a t dimensional vector in the same space. If we were

to implement the Linear Statistical System previously described we would have to store
the d t-dimensional document vectors. This would require d x t numbers. Typically

d = 500,000 documents

t = 1000 - 10,000 identifiers.

dx t - 5x 108 - 5x 109 numbers.

If each coordinate were represented by 5 bits, the system would have to store up to
2.5 x 10 bits. to represent d documents in the t dimensional vector space.

Because of the size of the required storage we are motivated to search for lower
dimensional vector spaces in which we can represent the document vectors and still

perform meaningful retrieval.

One possibility for accomplishing this function is to find a K dimensional subspace
of the t dimensional vector space such that the K-space is *best" K dimensional space
in the least squares sense.

The solution to this problem is well known in the field of linear algebra. It turns out
that the solution is given by the K eigenvectors corresponding to the K largest eigenvalues
of the covariance matrix defined earlier.

Let t

S - Covariance Matrix

where

S. (C C9-C)(C -iC)

d d

19



where

C ] - document identifier matrix

Then, solving the following eigenvector problem yields the appropriate K eigenvectors

there e is a t dimensional eigenvector

Having solved this problem we then define a linear transformation Aas follows

Where the column vectors are the K eigenvectors obtained above.

Now the document vectors are projected into the K dimensional subspace by the

linear transformation Ai.e.
c-= cA

Since C is d x t andAis t x K, C is d x K. Therefore, we need to represent each
of the d document vectors in the K space by only K numbers in lieu of the t numbers we
orginally needed. Since K < t we have saved storage. The typical savings might be a
factor of 1000.

Now when a query vector is generated we map it into the K space by

q A T Z where q'is Kx 1

Retrieval is accomplished in the K-space just as before, i.e.

r = C' q

Note that the vectors need not be re-normalized in the K-space sinceAis an orthogonal
transformation which means that the vector magnitudes are invariant under this transformation*

*To show this let

The magnitudes are T y andzx

but since Ais orthogonal A T , A-; ATA.
.T - - T

ST T2 T T

20



Another interesting method for reducing the dimensionality of the vector space has
been proposed by Assoiio4. Assorio begin: the problem by grouping the documents in
the library into a number of fields. He then asks several experts working in a particular

field to generate a t dimensional vector which typifies that field. This is accomplished
by each expert going through all t identifiers and ranking their importance (or relevance)

to his field. An average vector for each field is then obtained by averaging together
the vectors generated by each expert in that field. If there are ffields, this process will
generate f t dimensional vectors.

The underlying concept here is that the experts within a field will draw upon their
knowledge and experience to generate a "good' representative vector for that field.

Then the averaging of the expert vectors within the field together will further smooth
the effects of each individual. The result should then be the "best" t dimensional
vector for that field. Here "best* means that the resultant field vector fits all the

document vectors in the "best" way possible.

We can represent Assorio's information at this point by the F matrix

F~f

where the column vectors are the average field vectors.

Now since the dimensionality of the space cannot exceed the min I t, ( land typically
f < < t, we can represent our document vectors and query vectors in an f dimensional
space. It may still be.possible to solve our problem in aft even smaller dimensional
space by using the least squares subspace fit as described earlier. Assorio accomplishes
a similar subspace fit using Factor Analysis.

In any case, if the f dimensional space defined by the f field vectors is not reduced
further a Schmidt Orthogonalization procedure should be used in order to define an
orthogonal f-dimensional subspace for representing the d documents.

Using this technique we have reduced the required storage from d x i down to d x f
which typically is a factor of 1000 times!

21



SECTION VII

DISCRIMINANT ANALYSIS

Up to this point our concern in dimension reduction has focused on fitting the docu-

ment vectors in a subspace of the i dimensional space.

Here the emphasis changes abruptly. Our concern in this section is to find a p - 1
dimensional subspace which is optimal for discriminating between p groups (or classes)
of documents. This problem is discussed by Williamss and its solution is classically
obtained using Discriminant Analysis.

To begin a discussion on Discriminant Analysis it is best to select a simple case so
that the b. ic ideas are not clouded by the algebra. Therefore, assume that p = 2, that
is, there art. two groups of document vectors located in the t dimensional space.

t
2

group 1

t, 2 group 2

Now we wish to project these two groups orthogonally onto a line so that the varia-
tion between the projected groups is as large as possible, relative to the variation within

the two projected groups. The problem is to find the direction of projection which will
accomplish this. It will turn out that this is equivalent to finding that direction of pro-

jection which maximizes the distance between the projected means relative to the sum of

the variabilities of the projected groups.

Definitions:

X1l a mean vector of group 1 tx 1

42 a mean vector of group 2 t x 1

A Z I -" 2.q

- within Groups Scatter Matrix t x i
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B between Groups Scatter Matrix t x t

S E pooled Scatter Matrix t X t

) A"/ =_ data matrix for group i i , 1, 2 with meant subtracted from each column.

A ( X 2i2 .."NT q (i = 1,2

Now

(1) + U (2)
w =u.. u.ii ,i ii

where
v..(g): N' 9 .( - • '.( X (g 1,: x '. ,2

r- I A()= X(g) XCg) r

= 0 ) Xo(I)T + A(2) X(2)Tr

Notice that X~g) X(g) T differs from the covariance matrix only by a 1/(Ng-1)

normalizing factor.

The S matrix is computed in a similar fashion by first pooling both groups together,
then computing the covariance matrix I.

"That is S =(NI + N -1)

Now

S B +F

so that B can be computed

B = S-F

For the case where there are only two groups

B -NN2 A AT

N I + N 2.-2
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"The formal statement of the problem is: Find a direction A which maximizes the

projected between class scatter for a fixed value of the projected within class scatter.

It is easy to show that the projected scatters are given by:

AT B A - projected between class scatter

AT I A - projected within class scatter

2. we wish to maximize AT B A under the constraint that A T A remain constant.

This is conveniently handled using Lagrange multipliers.

9 T B A - A(AT I A - Const)]- 0 (2)

A - Lagrange Multiplier

This gives

BA- AIA -0 or

(B-A k)A - (3)

In order for a non-trivial solution to exist (i.e. other than A = 0) the determinant of

B - A I ) must vanish.

LB-^A = 0

This problem is recognized as the generalized form of an eigenvector problem where

Ais an eigenvalue.

Now extending the problem to the case of P groups, the discriminant analysis solution

will result in the identical eigenvector problem where the (P - 1) eigenvectors are the

desired optimal subspace for discrimination. See Wilks 6 (Pg 576) for further discussion.

For the special case of two groups the solution A can be found directly from equation

2 by substituting B - K A A into the expression A B A (K = const.)

i.e.

A BA = K- A AA A . K(A TA)2

0 - [ A ')' A( A' I A -Const.)] 0

TA
= (KA A) A - A A =0

4.a12 A

24



where a = const. A

Therefore, the direction of A is obtained which solves the discrimination r,.robtem
between two groups.
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