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ABSTRACT

This report introduces the reader to radiation hydrodynamics
(RH) and discusses its application to fireballs in the
atmosphere. After formulating the basic equations of RH,
special attention is gtver; to the radiative transfer problem.
Several methods for solving the equations of transfer are
touched upon but special emphasis is placed on the two
stream method with a frequency averaging procedure, which
is specifically designed for use with finite zone sizes. A
version of the FIREBALL code which utilizes this approach is
described. The physics of fireballs is illustrated with the
example of a one kiloton detonation at sea level density and

without interference from the ground. Some remarks are made

on scaling procedures for extending the results to higher yields

and altitudes. Estimates are made of the validity of the models.
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FOREWORD

"Thermal radiation" is electromagnetic radiation emitted by matter in a
state of thermal excitation. The energy density of such radiation in an en-
closure at constant temperature 18 given by the well known Planck formula.
The importance of thermal radiation in physical problems increases as the
temperature is raised. At moderate temperatures (say, thousands of degrees
Kelvin) its role is primarily one of transmitting energy; whereas at high
temperatures (say, millions of degrees Kelvin) the energy density of the radi-
ation field itself becomes important as well. If thermal radiation must be
considered explicitly in a problem, the radiative properties of the matter
must be known. In the simplest order of approximation, it can be assumed
that the matter is in thermodynamic equilibrium "locally" (a condition called
local thermodynamic equilibriun: or LTE), and all of the necessary radiative
properties can be defined, at least in principle. Of course whenever thermal
radiation must be considered, the medium which contains it inevitably has
pressure and density gradients and the treatnent requires the use of hydro-
dynamics, Hydrodynamics with explicit consideration of thermal radiation is
called "radiation hydrodynamics".

In the past twenty years or so, many radiation hydrodynamic problems
involving air have been studied. In this work a great deal of effort has gone
into calculations of the equilibrium properties of air, Both thermodynamic
and radiative properties have been calculated. It has been generally believed
that the basic theory is well enough understood that such calculations yield
valid results, and the limited experimental checks which are possible seem to
support this hypothesis. The advantage of having sets of tables which are
antirely calculated is evident: the calculated quantities are self-consistent
on the basis of some set of assumptions, and they can later be improved if
calculational techniques are improved, or if better assumptions can be made.
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The origin of this set of books wds in the desire of a number of persons
interestad in the radiation hydrodynamics of air ro have a good source of
reliable information on basic air properties. A series of books dealing with
both theoretical and practical aspects was envisaged. As the series materialized,
it was thought appropriate to devote the first three volumes o the equilibrium

properties of air, They are:

The Equilibrium Thermodynamic Properties of Air,
by F. R. Gilmore i

The Radiative Properties of Heated Air, !
by B. H. Armstrong and R. W. Nicholls i

Tables of Radiative Properties of Air,
by Lockheed Staff

The first volume contains a set of tables along with a detailed discussion of the !
basic models and techniques used for their computation. Because of the size of
the related radiative tables and text, two volumes were considered necessary.
The first contains the text, and the second the tables. [t is l.oped that these
volumes will be widely useful, but because of the empha.sls on very high tempera-
tures it is clear that they will be most attractive to those concerned with nuclear
woapons phenomenology, reentry vehicles, etc.

Our understanding of kinetic phenomena, long known to be important and at
present in a state of rapid growth, is not as easy to assess as are equilibrium
properties. Severs limitations had to be placed on choice of material, The
fourth volume is devoted to general aspects of this topic. It is:

Excitation and Non Equilibrium Phenomena in Air,
by Landshoff, et al.

It provides material on the more important processes involved in the excitaticn

of air, criteria for the validity of LTE and special radiative effects,
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A discussion of radiation hydrodynamics was felt to be necessary and
the fifth volume which deals with this topic is:

Radiation Hydrodynamics of High Temperature Air,
by Landshoff, Hillendahl, et al.

It reviews the basic theory of radiation hydrodynamics and discusses the
apbucatlon to fireballs {n the atmosphere.

The choice of material for these last two volumes was made with an eye
to the neads of the principal users of the other three volumes.

Most of the work on which these volumes are based was supported by the
United States Government through various agencies of the Defense Deparimert
and the Atomic Energy Commission. The actual preparation of the volumes
was largely supported by the Defense Atomic Support Agency .

We are indebted to many authors and organizations for assistance and we
gratefully\ acknowledge their cooperation, We are particularly grateful to the
RAND Corporation for permission to use works of F. R. Gilmore and H. L. Brode
and to the IBM Corporation for permission to use some of the work of
B. H. Armstrong., Most of the other authors are employed by the Lockheed
Missiles and Space- Company, in some cases as consuliants.

Finally, we would like to acknowledge the key role of Dr, R. E. Meyerott
of LMSC in all of {his effort, from the initial conception to its realization,

We are particularly grateful to him for his consiant advice and encouragement.

Criticism and constructive suggestions are invited from all readers of
these books. We understand that much remains to be done in this field, and
we hope that the efforts represented by this work will be a stimulus to its
development.

The Editors

J. L. Magee
H. Aroeste
R. K. M. Landshoff
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Preface

This volume reviews the basic theory of radiation hydrodynamics and
discusses the application to fireballs in the atmosphere. The first chapter
starts with a formulation of the basic equations and goes on to discuss
schemes for translating these impossibly difficult equations into manageable
computing procedures. As a companion to this chapter we have added
Appendix A with a version of Hillendahl's FIREBALL code, which runs without
inputs of a classified nature,

Chapter 2 deals with the physics of fireballs., The main discussion is
devoted to the description of a one kiloton detonation at sea level. That
section has nearly all been written by H. L. Brode of the RAND Corporation
but a8 few passages have been added by the editor. One of these deals with
opaque précursors to shocks whose significance to the thermal output was
noted by Hillendahl since the original version was written. The seaction on
other yield and altitudes was also written by the editor,

The summary chapter examines the reliability of the results and how
this is affected by approximations, incomplete basic information and other
deficiencies in the present state of the art.

I would like to thank Dr. H. L. Brode for his contribution and the

RAND Corporation for permission to include his work in this volume.

R. K. M. Landshoff
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Chepter 1. RADIATION HYDRODYNAMICS

1.1 Introduction

A nuclear detonation deposits a large amount of heat energy in the
air around it. The heating phase is of relatively short duration since the
energy arrives in the form of X-rays which come either directly from the
surface of the exploding homb or frcm the shock heated air in the immediate
vicinity of that surface.

Following the X-ray deposition the air approaches local thermcdynamic
equilibrium (LTE). The method of calculating the subsequent explosion
history which is discussed in this chapter ignores this period where the
air relaxes to LTE. Before we proceed we take a short look at the validity
of that assumption.

The kinetics of relaxation processes has been discussed in Chapter 6, (4)*.
The relaxaﬁon time depends on the ambient air density and on the final
temperature as showr in Fig. 6.1 (4).

For a detonstion at sea level practically all the energy deposited
by X-rays gets stuck in a relatively small volume and raises the temperature
to very high values. Under these conditions relaxation times are very
short. For a detonation at a high altitude 2 sizeable fraction of the X-ray
energy is deposited at large distances and produces a lesser temperature
rise because of the inverse square drop of the flux density. The lower
air density and the lower temperature both contribute to increase the

relaxation time.

* DASA-1917-4, from now on referred to as (4).
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As an example, let us consider a detonation with an X-ray yleld of
10?'iJ ergs radiating like a blackbody with a temperature of 107 OK occurring
at an altitude somewhat below 50 km where the air density is 10"3 times
less than at sea level. A crude estimate, using the asymptotic theory of
Section 4.4, (4) shows that about 10% of the X-ray energy is deposited at
distances more than about 80 m where it produces temperatures less than
12,000°K. In Fig. 6.1 (4) one reads off that the relaxation time at that
temperature and a density B‘L = 1073 15 1079 sec. Within that sphere
it takes less time and on the %utside more time to relax the air to its
equilibrium temperature. Thus 10% of the energy relaxes at a relatively
slow rate and the assumption that one can ignore the relaxation period
is not entirely justified in that case.

The assumption of LTE is essential to the classical formulation of
hydrodynamics. It means that the temperature is a well defined property
of the fluid and that pressure and internal energy are known functions of
density and temperature. Without LTE it would be much more difficult to
formulate the conservation theorems for momentum and energy.

In the theory of radiative transfer (Chapter 2, (2)*, which together
with hydrodynamics accounts for the expansion of fireballs, LTE also is
an assumption of major importance. Without it a quantitative prediction
of the interaction beiween matter and radiation would be a hopelessly
complicated problem.

Despite the very important role played by radiative transport
radiation does not as a rule account for a significant fraction of the energy

density and the pressure within a fireball. Even for blackbody radiation,

*
DASA 1917-2, from now on referred to as (2).
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which is not present unless the gas is opaque, this contribution is small
unless the temperature exceeds values like 25 eV. Temperatures of that
magnitude are only mainiained during the very early stages of fireball
histories. In this period the fireball cools down by radiative expansion
and this goes so fast that there is essentially no hydrodynamical motion,
In formulating the hydrodynamic equations one can therefore ignore the
energy density and pressure of radiation because by the time they get
into the act they are indeed negligible.

During the early period of fireball expansion (where radiative transfer
of energy is important) the shape generally appears to be almost spherical,
at least at low altitudes where the size is small compared to the scale
height of the atmosphere. Asymmetries which are hidden by the opaque
outer layers may possibly occur dus to instabilities at the bomb afir interface,
but we shall ignore these. Not much is known about such phenomena in
any case and adding the complicaticn of asymmetry would compromise the
already complicated problem of treating radiation flow. In line with the
current state~of-the-art we shall therefore discuss only spherically symmetrical

problems.

1.2 Basic equations of radiation hydrodynamics

The differential equations for calculating fireball histories are the con-
servation relations of ordinary hydrodynamics but with a rather complicated heating
term in the energy equation. They can be written in either Eulerian or Lagrangian
form. The two forms are characterizad by a different cholice of independent space

variables. In the Eulerian system these are the coordinates in real spaceand inthe
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Lagrangian one they are coordinates which are tied to the particles

of the fluid. In the Lagrangian system the coordinates in real space
which describe the position of a specified par .icle are used as dependent
variables. In the Eulerian system this is manifestly impossible and the
motion i{s described in terms of the fluid velocity.

The other dependent variables whicl characterize the thermodynamic
state of the fluid are the same in the twc systems and can be chosen from
a get which includes the density p or its reciprocal the specific volume
V , the preasure p , the temperature T , the internal energy E , etc.
It may be convenient t¢ keep uveral of these variables in the equations
but one must keep in mind that they are interrelated and that the thermodynamic
state is specified by any two of them.

The Lagrangian method is especially useful in problems with a high
degree of symmetry where one needs only one coordinate to specify the
position. Having restricted ourselves to spherically symmetrical problems
we shall therefore adopt the Lagrangian approach.

We define the Lagrangian radius r of a given particle as its radius
at time zero, i{.e. before it has started to move. The actual radius of the
particle at any time is denoted by the capital letter R . The hydrodynamic
problem is to find R(r,t) .

I Po stands for the initial density the specific volume at any

instant is

v=_L (3)2 g-st (conservation of mass) (1.2-1)
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Introducing ths valocitly

u= bt (1.2"2)

the other conservation aquations are

2
g-‘t* = - ;t (?) gf {conservation of momentur) (1.2-3)
g'f +p g't! = VQ (conservation of energy) (1.2-4)

where the rate of heating per unit volume 65 still needs to be worked out.
As it stands the ensrgy equation has a serious defect because it does
not allow for the entropy raise produced by a shock. To get around this

we adopt the method of Von Neumenn and Richtmyer (1950) and add a pseudo~

viscous pressure

dr

@A) Gu/ar) i Ao
q= { (1.2~-5)

u
0 if 3r>o

to the regular pressure in Eqs. (1.2-3) and (1.2-4). The constant { has
the dimensions of a length; it will be further specified when we go to

finite difference equations.

The radiative heating rate 6 at some point is the difference between

absorbed and emitted power per unit volume

Q 'II TR (IV - Bv) dv df} (1.2-6)

5

E:
g
L]

P A

o dd



The emitted power presents no problem because the blackbody intensity
B\o is a known function of temperature. There is no angular dependence
and the integral over frequency can be expressed in terms of the Planck

mean, Eq. (2.4-15), (2). One obtains:

Qqm = 4, © 4 (1.2-7)
where o 1is the Stefan Boltzmann constant.

The absorbed power is much more difficult to evaluate because the
calculation of the intensity & i{s a major task. To carry this out one shouid
in principle solve the equation of transfer (Eq. (1.3-1)} along every ray
passing through the point in question and for all values of the frequency.

One of the major difficulties of such a program arises from the fact that

the optical properties of air in a large part of the relevant temperature range
result mainly from transitions between molecular levels. The spectrum
assoclated with the major band systems consists of an enormous number of
lines and the absorption coefficient fluctuates from large values at the

line centers to small ones between the lines. Because of these "windows"
the radiation at scme point generally comes from points along the ray which
are .- vpreciable distance further back. This distance varies just as
strong. with frequency as “v' itself and it is therefore not proper to use
local aver' ges of uv' in a frequency interval containing, say, a few lines.
Instead, ** {3 in principle necessary to integrate the transport equation at

a large enough number of frequencies within every one of these intervals.

This correct approach clearly demands an impossible amount of computational

s



sffort which has to be avoided. There are two limiting situations where

this can be readily done. The one situation arises for & tranaparent medium

where the optical depth 'L (L being the size of the radlating region)
is uniformly small compared to unity. In that case I\o is very much smaller
than B , and one can neglsct the absorption altogether. In that case we
have Q= -~ Q.m which we know from Eq. (1.2-7).

In the opposite extreme of an opaque region for which %'L >> 1
one can simplify Eq. (1.2-6) directly. The heating rate can in that case

be expressed in the farm®
Q= -7V-F (1.2-8)

The flux vector is given by Eq. (2.5-8), (2) which we rewrite in the form

P-4, o71¢

3 R (1' 2-9)

Tables and graphs of the Rosseland mean free path )‘R or the related opacity
can be found tn (3)**, p. 12, pp. 446 to 449 and pp. 622 to 625.

The above method of treating radiative transfer was originally
developed by Eddington nearly half a century ago. In its application it
was however, limited to astrophysical problems where it was not coupled
to hydrodynamics. An early discussion of the use of this so-called diffusion .
approxjmation to radiation hydrodynamics has been given by Magee and
Hirschfelder (1953). The first calculations carried out with this method

to Appear in the open literature were presented by Marshak (1958), ‘ i

The operator V is defined in Eulerian space. In plane or spherical
geometry it is well known how to express it in Lagrangian form.

"k
DASA 1917-3.




1.3 Average absorption coefficients

In the temperature range where molecular transitions occur and
where optical depths are neither uniformly small nor uniformly large one
has to resort to approximation schemes. It is clearly necessary to apply
some kind of frequency averaging which will do a fair amount of violence
to the "correct approach" of solving the transfer equation for a few million
values of the frequency. The basic mathematical problem is that one wants
to average the product ' I, which enters in Eq. (1.2-6) as well as in

*
the transport squation

N,

ds My’ ‘Bv - L) (1.3-1)

by equating the average of the product and the product of the averages, i.e.
one wants to replace T;:T-lv- by Fv-; —KT and that 1s of course not correct.
The quality of this approximation depends on the amount of fluctuation among
the values of uv' and I, that are being averaged and in a line spectrum
this fluctuation may be quite severe. A number of averaging schemes have
bean proposed and are used in various computing programs.

One scheme divides the spectrum into groups (10 to 100) whose widths
are chosen fairly narrow at the low energy end and wider as the energy goes
up. Within each interval a Rosseland type average is obtained. Such groyp
averages have been used, for example, in the SPUTTER program of AWFL as
reportad tn RTD-TDR-63-3128 Vol, II and in a code developed by J. Zinn
of LASL.

*

Strictly speaking, the left hand side of this equation shouid contain the

?
additional term i -:l but because of the large value of the light velocity
this time depende%cae is usually left out. We note further that light rays are
straight lines in Eulerian space and in this section we temporarily abandon
the Lagrangian system,
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A second method of averaging uses the avarage transmission function
(Eq. (2.6-12b), (2)

Tr (u'vs) R ] an Hve dv {1,3-2)

Avi
and the alab absorotion coefficiant related to it by Eq. (2.6-19), (2)

u(s) = - J;ln T, (1.3-3)

These averages are defined for slabs of thickness s in which the
temperature and density of the air are uniform. The intervals av, are
much narrower than the groups of the first mentioned method. Ths spacing
between intervals is 10 to 20 times as large as the interval size. The
calculated averages depend smoothly on the frequency so that it seems
reasonable to interpolate. The sla. average is made to order for use in
finite difference equations where the fluid is divided into zones. It has
been used in a number of LMSC codes which will be discussed later in this
chapter,

A vartation of the group average procedure consists of subdividing
the frequancies within a group into subgroups which are ordered according
to the magnitude of the absorption coefficient rather than by frequency.
The spread between the absorption coafficients within each subgroup is
obviously less than between those in the entire group and gubgroup averages

ik e Ao <81 i+ (gl
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will therefore be more meaningful, To use subgroup averages we must also

introduce individual intensities for each subgroup. Even the use of only

two subgroups would improve the accuracy considerably. A short-cut for
the calculation of two subgroup absorption coefficients consists of fitting
\he average transmission function in the form (Eq. (2.6-46), (2).

Tr (uv.’) - % (.—uls + o- “28)

(1.3-4)
Tables of u‘l and u'z are given by Churchill et al, (1963). We
don't know of any code which has utilized this type of average.
1,4 Solution of the equation of transfer
Having obtained an average absorption coefficient which permits us
to replace the average product “v % by the product of averages J;-I:
the transfer equation becomes*
d —— -
T - M, (B, - IV) 4 (1.4-1)
The formal integration of this equation along a ray is straightforward
and leads to
T
v
— Ty — - r,' =)
&(s) = q ], (so) +18, (s') e dr,’ (1.4~2)
o

The absorption coefficient is still meant to include the corr%?tlon actor
for induced emission (Eq. (2.2-11a), (2) and the prime is left out for
convenience of writing only,

10
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8
r,o=t ()= d(s)ds, ; 7°'=7 (s
v v v o1 1 v v
.O

The difficulty arises because one has to determine the value of this
integral for all the rays through a given poiat to evaluate the rate of
absorption of radiative energy at that point., This is required for carrying

out the angular integration in Eq. (1.2-6).

with one tangential ray through the center of each zone. Fig. 1-1 shows
hcw these rays are combined to obtain the_varlous values of i\a at the
center of zone 4. Of the 7 rays which are drawn 3 are redundant because
of symmetry. and one obtains 3 different values of T v going out, 3 going
in and 1 grazing the zone.

In the other approach one defines certain moments, i.e. angular
integrals of Tv which now depend only on the radius and not on the

direction. To solve for these moments one integrates a system of coupled

give exactly the right answer when one considers the limit where the
diffusion approximation applies. Such schemes have been used widely

in astrophysics and are discussed in great detail by Chandrasekhar (1960)
and Mustel {1958). Some of the more sophisticated schemes use a large
number of moments but quite good results can be obtained by restricting

that number to two and using only the outgoing and ingoing flux which

There are basically two approaches to this problem. One is the brute
force approach to follow this program directly and to evaluate I\,(s) along

a large number of rays. This approach has been used in the SPUTTER program

linear differential eqt_xatlons which are only approximately correct but which

i bl
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are defined as the {ntagrals

FV ('.'_') =J' IV cos 8 di

cos A > o
(cos 8 < o)

where 0 {s the angle between the ray and the radial direction,
Wa consider first the case of plane geometry where the medium
is stratified in plane parallel leyers. This geometry has been studied
extensively by astrophysicists and applied to the radiative equilibrium
in the outer regions of stars where it is indeed unnecessary 10 worry about

the curvature. By treating the radial coordinate R as if it were a

carteslan coordinate the angle 06 of a ray remains constant along the

ray path. The optical path length between two surfaces is therefore
simply the optical path length along the normal divided by |cos 8} .
We shall express this in terms of the optical depth conventionally
definad by astrophysicists as the optical path length measured radially

inward from the surface of a star (or in our case « fireball), i.e. the integral

(1.4-4)

RS
7R =I d,R) ar' (1.4-5)
R

To evaliate \,(s) as given by Eq. (1.4-2) for an outgoing ray we place
-7
So far enough inside that the factor e Voois essentially zero; for an

ingoing ray we start &t the surface where iv(s o) = o0 ., The first term of

12
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Eq. (1.4-2) can therefore be left out in both cases. For the axponent

under the integral one can write

Foo-F
. ® - -
Ty Ty cos B (1.4-6)
and for outgoing and ingoing rays one obtains
~ ' L
-
r —| T 9
T = - " - ' cOs o, . 4-
' Tc_oé_ﬂ'j"v(”“v(“e dR' ; cos 8>0  (l.4-7a)
5]
1 { K B-FT;
T = B " ' cos 1. -
Iv m I Bv(R)uv(R) € dR’' ; cos 8 <o (1.4-7b)
r
Entering thése expressions into Eq. (1.4-4) one obtains the outgoing and
the ingoing flux
r
F 4= ZnI B, (R) 1, (R") EZ(I?v' -“FVI) dR’ (1.4-8a)
o
r
s
- R "y - ' g R4 ' -
F,. mJ’ B, (R) i, (R') Ez(l'rv 'rvl) dR (1.4-8b)
r
where
[- -3
- -}
E,(r) = I e U u™“ du (1.4-9)
1
13




A useful approximation is obtained if one replaces Icos el in

Eq. (1.4-7) by an average c= cos § . Substituting the approximate

form of \’1 into Eq. (1.4-4) glvea expressions similar to those in
Eqs. (1.4-8) but the exy~uential integral is now replaced by a simple

exponential function, :.». we have the approximation

Ez(‘r) _l_ e"' T/C

The average intensities calculated from the approximate fluxes

Iv'_t-Fv-_t/”

satisfy the differential equations

daf
—\—); = 1 B -7
c R LT (Bv 1\,1)

These average intensities are therefore identical with the intensities in

the directions for which |cos 8] = ¢ . The idea of the two stream model

with intensities in a characteristic direction goes back to Schwarzschild

and Schuster who sugg=sted to use c = 3 . A much better choice

is c= % which gives the correct net flux
dB
F. . -F == Ao v
v+ v- Su;, dR

in the high opacity limit.

14

(1.4-10)

(1.4-11)

(1.4-12)

(1.4-13)

s i A B e

o Yo

= e



In spherical geometry one has no simple rigorous expressions for
Iv like those given in Eqs. (1.4-7) from which to derive two stream
equations. It seems, nevertheless, reasonable that one should be able
to use equations which are essentially of the same character but with
minor modifications to maintain conservation of energy. It is easy to

see that this {s achieved by the pair of equations

-Z_d. 2% = 2- B -1 -
3 dR R Ivi + R d,, (BV I\Ji) (1.4-14)

With the definition given in Eq. (1l.4-11) one obtains the outgoing and
incoming flux simply by multiplying the corresponding intensities f\,,,,
by a factor mw . From the total integrated net flux

3= I(F\,,, -F,) dv (1.4-15)

one can finally obtain the heating rate

S = -;12- E% (RZ _9) (1.4-16)

for use in the energy equation.

1.5 Finite difference equations

It is obviously impossible to find exact analytical solutions to the
equations of RH and one must be satisfied with approximate numerical
solutions. To obtain these one replaces infinitesimal increments of dependent

as well as independent variables by finite differences. Mathematically RH
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can be characterized as an initial value problem and the methods and problems
arising in treating this by means of finite difference equations have been
.thoroughly discussed by Richtmyer (1957). We shall review some general
considerations and then turn to questions which are specifically relevant

to our problem.

In a finite difference scheme continuous variables are replaced by
discrete ones but there are numerous possibilities for doing this. Thus
one can regard the discrete values of a variable as representing either
the values of the corresponding continuous variable at a set of discrete
meshpoint or the average values between meshpoints. There are other
variations but they are not needed in the following discussion. One can
treat some variables in the first and others in the second manner. To
indicate the actual choice one can use integral subscripts for variables
defined at the meshpoints and half integral ones for those defined in the
intervals. It 1s convenient and natural to let R1 and U1 reprasent
the radius and the velocity of the particle at the meshpoint i and this
leads almost automatically to defining V1+ 1/2 ¢ Pic1/2 E1 +1/2
and '1‘1 +1/2 as the averages of specific volume, pressure, internal
energy density and temperature in the interval between the meshpoints
i and 1+1 .,

Another element of choice enters in the methods used for advancing
variables in time. Almost all variables are defined at meshpoints in time
which are indicated by integral superscripts. It may, however, be useful
to define the velocity between meshpoints which can be indicated by half
integral superscripts. With this definition and abbreviating the right hand
side of Eq. (1.2-3} by a (for acceleration) that equation and Eq. (1.2-2)
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lead to the integration procedure

RMYL . pR 4 yntV2 (1.5-2)

Having obtained Rnﬂ' one can then obtain V""h1 by differencing

which follows from Eq. {1.2-1). So far we have not bothered to look at
alternate schemes because the procedures outlined above are very straight-
forward and there seems to be no good reason for doing anything more
elaborate. In the purely hydrodynamic case, i.e. if O ™ 0 the energy
equation (1.2-4) can algo be integrated very simply. Centering the

difference equation at {n+1/2) leads to

En*l-l -+ %(pn-bl + pn + 2q“+1/2)(vn+1 - V“) =0 (1,5-2)

7\ 7

If E 1s expressed as a functionof V and p this equation can be
solved for pn"'1 , the one variable which is still unknown. Anticipating
the problems which arise when one has radiative heating it is really more
useful to express hoth E and p as functionsof V and T andto
solve Eq. (1,5-3) for 'I'M1 . Either way one has to solve for only one
unknown at a time which causes no real difficulty even though it may have
to be done by iteration.

This situation changes drastically when the radiative heating rate Q
becomes important. The heating term to be added on the right hand side of

Eq. (1,5~3) should be centerad at the level i 1/2 like the remaining
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part of the equation but the temperature distribution from which it must

be calculated is only known up to the time t" , There are two major
avenues of attack. One i3 to forget about centering 6 and use its
value as calculated at t" . If this i3 done one can still solve explicitly

'r“'” and this is as the axplicit method of integration.

In the other attack one uses the properly centered heating rate

for

%(6"“ + Qn) . This means that the equation which describes the heating
in any one zone depends on the values of Tn+1 in all zones s© that one
has to solve a large number of equations (one per zone) simultaneously.
This implicit maethoc involves a considerable amount of algebraic labor.
If centering was only required for accuracy it would not be worthwhile to
go to all this trcuble because one could increase the accuracy more easily

by reducing 8t . What is really involved is the question of mathematical
stability which we shall briefly discuss.

» &
4

t is pliyal ..., s .. .nat a fluld responds to any pressure or temperature

disturbance by a motion or heat flow which counteracts the disturbance. In
an integration by means of '‘f‘erence equations which uses too large time
intervals it may happen that the disturbance is overcompensated so that an
excess turns in one step into a derlicit, in the next step again into an excess
etc. If the magnitude of this alternating disturbance increases each time any
small disturbance will eventually cause the solution to blow up. In principie
ohe can cure such an instability by taking 5t small enough but this could
gseriously increase the running time of a problem.

There are two cases where the stability condition has been obtained
analytically. The first arises when the dominant mode of energy transfer

is of a hydrodynamic nature. The maximum &t in this case is found as

18
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follows. One calculates for each zone the traversal time Atﬂ 1/2 =

(R“ I-R)/ Vs(i+1 /2) of a signal traveling with the local sound spaed. Going
through all intervals one then finds the smallast, say Atmln + The time
increment is then limited by the so-called Courant-condition

8t < k At (1.5-4)

in

where k {is a numerical factor near unity which depends on the integration
scheme. In the scheme where one uses the threa equations at the beginning
of this section one has k = 1 ,

When radiative heating dominates,the stability analysis has been
carried out for the case where one can use the diffusion approximation. In
the explicit scheme the limit for &t 1is proportional to ﬁRb R2 which
decreases together with the Rosseland mean absorption coefficient of the
air. If the air ic fairly transparent 8t is5 limited o very smali vajues
and this makes an explicit calculation very costly in computer time. The
implicit method does not have this trouble and is in fact unconditionally
stable. On the other hand it {s of course also time consuming to solve a
large number of coupled equations simultaneously. One can attempt to
approach the implicit solution by iteration. On the first go-around one
can advance T by the explicit method. With the advanced temperature
distribution one can then work out 6n+1 , form the average C:)"ﬂ/ 2 =
-%(én + 6““) and reevaluate 'l'm'1 + This procedure can be repeated
several times and if it converges it will lead to a stable solution. The time

step 6t is now limited by the condition that the solution should converge.
In contrast to the stability condition of the explicit method this limit of 8t
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is inversely proportional to ﬁ?_ and independent of the zone sige. The
actual convergence criterion is almost equivalent with imposing a limit on
the fractional energy change per time step within every zone. That form
of the condition is sasy to use and experisnce has shown that a fraction
like one parcent ensures the convergence. In a purely implicit procedure
there 18 no such limitation on the magnitude of the time step. For the
sake of accuracy one :'0ld alsG [mpose a Mimit on the fractional energy
change per tims step but it does niot nesd to be as small. This limit can
be allowed to vary from zone to zone to require greater accuracy in those
zones whare the changes make a significant contribution to the overall picture.

It is obvious that the allowed time interval changes throughout the
calculation. For rsasons of sconomy one should always run fairly close to
the maximum without, however increasing 8t too abruptly. To change &t
generally requires some interpolation {or extrapolation) and all programs
nowadays have provisions for carrying the necessary changss out automatically,
Although the preceding arguments were based on the diffusion approximation
they apply equally in the more general case. It is true that one can not
readily obtain analytic stability or convergence criteria but experience
with numerical calculations indicatea the same pattern.

In addition to the various decisions described above one also has to make
a choice on zone sizes. There are two parts to this decision relating to the
total number of zones and to their relative sizes at different radii. Part one
involves a compromise betwseen conflicting requirements for accuracy and economy
because it takes a large amount of computer time to use very many zones.
This is amplified 1f the cholce of SR also limits the time step as in

hydrodynamic calculations where &6t ~ 8R and even more in the explicit
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calculation of radiative transfer where 8t ~ 6R2 .

Part two involves a judgment as to whers the really significant
changes are taking place and it is of course at those regions where one
should use the finest zoning. In the course of a calculation the location
of significant changes moves s0 that one has to make provisions in the program
to detect this and to react to it by rezoning. Furthermore the overall radius
of the fireball changes during an average calculation by as much as 3 orders
of magnitude s0 that razoning 13 also necessary to keep the number of zones
at a more or lass constant lavel.

The psaudo viscous pressure q introduced in Eq. (1.2-5) 18 a device
for calculating the entropy rise behind the shock. Without the damping
mechanism provided by q the changes induced behind the shock overshoot
and sioduce lasting oscillations which physically do not belong there. A
large value of L will kill these improper oscillations most effectively
but at the cost of making the transition region very wide which is also
incorrect. Experience has shown that { = 2AR will stop the fake
oscillations reasonably fast without spreading the shock transition over
more than about 4 zones.

One can also express q 1in terms of g% rather than g% and

Richtmyer suggests to use the formula

q.(i%).z_ (g-\tl)z . &< o (1.5-5)
with
L = a(‘i)z Ar (1.5-6)
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so that the transition region covers the same number of zones naar the center
and further away from it. The numerical factor a should again be
approximately 2.

In differencing either Eq. (1.2~5) or (1.5-5) one is led to expressions
at half integral times. To obtain the acceleration in Eq. (1.5-1) it should
be known at t" but to achieve that, one would have to use an implicit
routine. In this cese that is not worthwhile since the use of q 1is an
artifice enyway and it is customary to have q lag half a time step behind.
In the energy equation (1.5-~3) q is automatically in step.

The total energy which 1s obtained by summing the kinetic and internal
energy within the fireball and the energy carried away by radiation should
always stay at a constant level. The internal energy should in principle
contain a part due to radiation but as mentioned in section 1.1 this does
not amount to much. A trivial point, but one which must neverthealess be
Kept in mind is, that one should only count the excess over the energy in
the ambient unheated air; otherwise the nominal energy would grow with
the volume of the fireball.

It is important to keep track of any viclations of energy conservation
which may creep in through the use of finite difference schemes. Any
program should therefore contains a routine for checking energy conservation.

The point at which R.H. goes beyond standard methods comes with
tha calculation of radiative transfer., The vArious methods require the
evaluation of certain space integrals before one can calculate the energy

deposition in a specified zone. Because of the very strong temperature
dependence of the integrands these integrals depend critically on the

radial dependence of the temperature. The common method of approximating
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this depandence by assuming constant values of the temperature within the
zones may lead to serious arrors. An attampt to corract thase has been
made by Hillendahl (1964).

We shall present the analysis for tha plane case which is formally
easier. The transition to spherical geometry can be made later and
requires only mincr changes which are rather obvious. The starting point
is BEq. (1.4~12) but before cne has carried out any frequency averaging.
Thus the line charzcter is stil! presaerved and H,, anid Ivi are
rapidly changing functions of frequency. Integrating Eq. (1.4-12)
across the zones which are separatad by the interface at R1 one finds
for the outgoing and ingoing streain (representad by the upper and lower

sign

[] ~! 1]
whera Bv and T, e taken at the same point R , and

v,t'lv.i Tl 112 ™ |Tv.1‘*v,1+1|

To carry out the integral we use the first two terms of the power expansion

)

' dB ) - .
Bv- a\m. + & v Tt ve
\ZA
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and obtain

- 2(dB
et han %, (31 1 *+,) * 3( ~) Wy s
d'r‘ -

where

I:!'..l‘ .[ I\’icl dv

[ IV+ i '%A:‘*’l/z
= = e dv
aT)
B "'a'A -
A“,i-[-—%;i- e Y] V:i'l’l/z dv

3 ’%A 1%1/2
v,
wt,i- ﬁl 1-(1'+2A\),1;1/2)e
dr

and where 31 is the integrated intensity
- = g ‘4
B / Bv dv w1
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at the point R1 « No limits of integration have so far been specified
and one is iree to divide the spectrum into any set of frequency intervais,
As a first approximation Hillendahl used the entire spectrum without
subdividing it.

Before Eq. (1.5-11) can become operational one has to define
the average optical depth T which enters in the derivative %3 and
one has to face the difficulty of an unknown ratio Iv/l entering into
the definition of Z .

The procedure devised by Hillendahl for obtaining an average for
T is specifically intended for use with finite zone sizes. The
Prescription 1s designed to ¥eep the emissivity of a zone of constant
density and temperature unchanged if ona replaces the frequency
dependent optical depth AT, = B AR by fis average AT . Thus,
i.e., by making this substitution in the sxponent of Eq. (1.5~14) one

is led to

AT

-3
2 (1.5-17)

A‘f% e“-;%kv\‘nd\og e
B

We note that the factor 'JBL‘-L in Eq. (1.5~14) ;: taken at the edge of
the zone. Since this ratio éaries only very slowly with T we will
take it 2t the center of the zone instead,; so that there is only one
emissivity A per zone and not different onas for the ingoing and out-
going ray. In the above integral for A one ca: clearly replace the
rapidly varying exponential by a smocth one in which one uses the slab

absorption coefficient ﬁv as defined in Eqs. (1.3-2) zad (1.3-3). In
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the new expression

B -33 ar
A -/—g' e 2% dv (1,5-18)

the zone with AR enters not only as a factor in the exponent but also

as one of the variables in E\, - ﬁv(p,T,AR) + Various methods for
calculating ﬁv + which apply whan the dominant absorption is molecular,
atomic or free-free, have been described in (2). The results are tabu-
lated in and have been used in the above integral to obtain Afp,T,AR) .
It is convenient to express this in terms of a mean absorption coefficient

;'IH (p,T,AR) = - %Ln A/AR and to write:

i@
- AR)
A=g ¢ H (1.5-19)
Dependingon AR aswellason p and T, EH differs from the
Rosseland mean (Ip) and the Planck mean @p) which depend only on
p a.nd T .
For the function W , which should in principle be calculated from
Eq. (1.5-15) we use an approximation and set
3 -3 g AR
w=1-li+%0.4R)e (1,5-20)

which looks reasonable and leads to the correct energy deposition when
G‘H AR is large enough that one can use the diffusion approximation.

As in the case of A we are using only one W per zone. -
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The coefficlents 2, , as defined by Eq. {1l.5-13) depend on

the unknown spectral distribution Iv +, 1/11 PR the point { .

Since the difference equations (1.5-11) apply only to the integrated
intensitles I,

{ their solution does not give us any direct information
about the spectral distribution and we must rely on educated guesses

for the latter. The basic clue which we follow is that the radiation

at some point { comes by and large from a zone (the radiating zone)
which lies an optical depth unity behind that point in the direction
where the stream comes from. The distribution has therefore the distri~
bution of a blackbody source at the temperature TR of the radiating
zone but modified by selective abgorption in the intermediate zones.

When we apply this model we distinguish 3 typical situations
for the ingoing and 3 for the outgoing stream. This comes from the
Peculiar temperature dependence of mean absorption coefficients. For
all these means, whether we talk of ﬁR + Hp Or [ , one can
distinguish a central temperature range where |1 1s large and the
low and high T ranges where it drops to very low values.

The temperature profile of a fireball is typically a monotonically
decreasing curve. While the central temperature is s:iill large this
profile looks like the sketch in Fig. 1-2 with a central section where
X 1is small so that radiative transfer maintains a nearly constant
temperature. Beyond that plateau comes a more opaque region with a
relatively large temperature gradient and at the point where the
temperature has dropped to where the air is again transparent the profile

becomes again more level. Superimposed on this one finds usually
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some structure due to shocks or other disturbances but this does not
alter the main conclusion that there are 3 distinct regions.

In the opaque {ntermediate region the spectral distribution Iv/I
can be i{dentified with that of a blackbody at the local temperature so
thatone is led to 2, = Z_ = A . In the interior region the radiation
comes mainly from its boundary where it is in contact with the opaque
region. 8ince the temperature profile is quite level one does not commit
a significant error by identifying IV/I again with the local BV/ B
which varies much less with T than either Bv or B ({tself. As
in the previous case we therefore use the approximation Z, =2 = A.

Only in the outer section do we have to make a more careful choice
of Iv/I and only for the outgoing stream, The ingoing stream carries
essentially no energy and it doesn't matter much what one does. The
simplest choice 13 again to set 2Z_= A,

The point where it really counts that our model should adequately
represent the true physical nature of radiative transport comes when we
corsider the outgoing stream as it emerges from the opaque region.

The absorption to which this stream is subjected is largely due to
molecules. In calculating which parts of the spectrum are and which
are not transmitted one is greatly helped by the character of the energy
dependence of TR Fig. 1-3, which is a typical example taken from
SACHA type calculations shows that C\) is a very rapidly rising
function of frequency. From this graph we find by inspection that a
zone of about 10 m thickness would transmit practically no photons
above 5 eV and practically ail photons below 3.8 eV. Approximately

one can assume that there is a critical photon energy hv e in the
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vicinity of 4.4 eV at which the transmitted flux is sharply cut off. For
a stream which starts out as a blackbody spesctrum 53& = bv (TR)
one finds that the transmitted fraction of the energy is a known integral

Ve

L ('rR, hvc) = f bv (TR) dv

o

The procedure for determining Z,_ for any zone 1 - 1/2 outside

the opaque region starts out with finding the radiating zone which belongs

to it and whose temperature has been designated as TR » We assume

that the model spectrum Iv starts out there as a blackbody spectrum

Bv (TR) . Any of the zones through which it passes will not transmit any

radiation above its cut-off energy hy c and the model spectrum which

finally enters into zone 1 - 1/2 remains I = Bv (TR) up to the

lowest cut-off enery h"min encountered by the stream but is reduced

to I = 0 above hv., . Ifzone 1- 1/2 has a lower cut-off

h\’c, j-1/2 Weset therefore
LT hv, 4 1,2
S R A hvmm;:

If the cut-off energy is equal to or larger than h\’min the model
spectrum would lead to z"', 1 - 1 which can't be right and indicates
that the sharp cut-off approximation is too crude to fit this case. An
upper limit for Z can be obtained by setting it equal to the local A
since the bulk of the true spectral distribution lies &t somewhat higher

energies than the local blackbody spectrum. Thus the true I * will

suffer somewhat more absorption than B , which leads to the inequality
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Z< A,

The modifications which are necessitated by going to spherical
symmetry can be written down without difficulty. One only has to note
that Eq. (1.4-14) differs from Eq. (1.4-12) by the factor R> which
multiplies both 1 and B . Clearly this factor must enter when one
modifies the corresponding set of Eqs. (1.5~11), As we write down the

modified set we incorporate the result that the coefficients A and W

depend only on the zone and not on the direction of the stream, and obtain:

2

Ry

The A and W are as before given by Eqs. (1.5-19) and (1.5-20) and
Z:L1 is nearly always equal to Ai $1/2 except in a few zones just
outside the opaque region where one should use Eq. (1.5-22).

In the two stream model the fluxes differ from the intensities by a
factor nm as shown in Eq. (1.4~11). The relation carrles over when

one performs the frequency radiation so that

e
']
b= |

"

ol

'1

Having determined the intensities by solving the set of Eqs. (1.5~23) one
is therefore ready to evaluate -V * F which according to Eq. (1.2-8)
gives us the radiative heating rate. Thus one obtains:

R T Rlz (F

2
‘51+ 2 " +,1° P—,l) “Riva (F+,1+1 P i+ )
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which is the final equation of the two stream method. Befors leaving it
let us take a somewhat closer look how this equation handles a zone in
the opaque region. In any region where one replaces Z, and Z_ by

A one finds that Eq. {1.5-23) reduces to:

Li™ 5§ :%(ﬁ%)l W12 (1,5-26)

from which one obtains in tum

R (fal%)1 (W1-1/z * Wi 1/2) (1.5-27)

3.
-y aR
In an opaque region this simplifies still further Lecause the factor e 2"H

in BEq. (1.5-20) bacomes negligible compared to unity. One can therefore
set W= 1 and obtaing

P‘i’:l - F‘:l - 13”- (-g%)i (1.5-28)

and since B-% '1"1

this is clearly equivalent to Eq. (1.2-9) 1.e., to
the basic equation of the diffusion approximation. This is of course no
surprise because we picked m-% precisely in order to achieve this
equivalence.

In an opaque region, the diffusion approximations contains all
the physics needed for the calculation of radiative energy transfer and

it is superior to other methods as far as speed and possibly accuracy of

calculation are concerned. Hillendahl's formulation of the two stream
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method automatically leads to this procedure. Meore elaborate methods
such as the muitiple ray tachnique do not, but it is of course possible
to switch to a diffusion theory calculation when cne considers an opaque
region. This is indeed done in the SPUTTER program.,

In the form outlined in this section the two stream method is not
applicable at high altitudes where the ambient air has a density less
than about p/po - 10-4 . At such densities the air becomes transparent
in the spactral region where Bv has its maximum and the firebali has
no opaque region. There is still a significant amount of radiation at
freaquencies above and below this window but one has to devise new
methods for dealing with this problem. At these altitudes the mathematical
difficulties are further aggravated by the non-spherical energy deposition
which takes place when the mean free path of x-rays get large compared to
the atmospheric scale height. Eventually, say at about p/p o3 x 10—6
the air becomes transparent in all parts of the spectrum and thermal

radiation is no longer a significant factor.
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FIG. 1-1 RAYS CONVERGING UPON ZONE 4 WHICH ARE USED TO
COMPUTE Iv AS FUNCTION OF ANGLE
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Chapter 2, THE PHYSICS OF FIREBALLS

2.1 troduction

A nuclear explosion in the atmospliere creates a fireball whose
development depends in large measure on the physics of hot air. All
of the previously discussed properties of hot air and ail of the mechanisms
for energy transport developed in previous chapters are a part of nuclear
fireball physics. However, these energy transforming and transporting
relations and the detalled knowledge of the properties of air find
considerably wider application. They have or can contribute to the study
of stellar dynamics, the nature of stellar atmospheres, the radiation

tom various astrophysical sources, and they can aid in the study of
hypervelocity flight, upper atmosphere physics, aurora, and other atomic
and molecular physics preblems which involve high temperatures.

It is certainly the case that the information presented in these
previous chapters makes the conditions created .1.n a nuclear explosion
more understandable, Some knowledge of air heating mechanisms, of
air excitation, of radiation transport, and of hydrodynamics, of absorption
properties, and of the thermodynamics of air is necessary before a full
descriptior of a nuclegr explosion can become more than heuristic.

Much of the present knowledge about fireballs has been gleaned
from test observations, but by far the greatest detail has come from
numerical computer calculations, as have the quantitative estimates of
fireball interior dynamics which appear in this chapter. Calculations of
wilely varying detail and sophistication now sbound, and it is not the
intentizn in this chapter to review such results or analyze computing
methods. Most current calculations rely for their measure of -success on

the . xter’ to which the physical concepts and properties covered in the
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preceding chapters have been taken into account in a mathematical model,
The principal chjective of this chapter is to outline the physical features
of nuclear fireballs and their thermal radiations, stressing where possible
those factors which are most general and which provide the best under-
standing on which to base predictions and extrapolations. The approach
adopted is to begin by considering a small yield explosion (1 kiloton)

at sea level and to describe the sequence of events which occur un-
encumbered with interactions from the earth's surface or inhomogeneous
environments. This development will then be extended to higher yields
and aititudes. There will be no attempt at completeness and no great
concern for quantitative rigor, but it is intended to display as much as

possible the current understanding of the physics of nuclear fireballs.

\ ~

2.2 One kiloton at sea level

A one kiloton explosion in a sea level atmosphere provides an
appropriate example for an initial examination of the sequence of events
that constitute a fireball history. The now familiar usage of kilotonage
and megatonage refers to the total energy release in a nuclear explosion
with the usual metric prefixes for a thousand or a3 million and with the
understanding that a tcn of high explosive - TNT - releases 109 calories
of effective energy, i.e., one yram of TNT is taken as equivalent 1o
one kilocalorie or 4.185 x 1010 ergs.

For any nuclear explosion the sequence of events is remarkably

complex. In following its developmen? for this ong¢ kiloton sea level

explosion, the reader may appreciate that the present understanding,
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although not complete, has become quite detailed and much of it has
grown directly from the material reviewed in this series of volumes.

The nuclear energy .s released in an extramely short time - a
small fraction of a microsecond - and always in a small mass and
volume. It is the properties of this small mass, constituting the
weapon itself and its carrier that determine the early source of energy
for the fireball, and some of thesc properties may influence the
character of the later thermal radiation. Everything starts in this
nuclear source and all of the initial radiations - gamma rays, neutrons,
and x-rays -~ are generated by it. However, the air or other immediately
surrounding material absorbs almost everything emitted within a few
hundred meters and the nature of the observable fireball is largely
civtermined oy the properties of this surrounding air, For our example
of one kiloten in a zea level atmosphere, the air within a few feet of
the weapon stops nearly all of the x-rays, and the prompt gamma rays and
the neutrons have removal mean free paths of about 400 and 240 meters,
respactively. These rapid absorptions make knowledge of specifir
details of the nuclear device largely unnecessary in describing the
fireball phenomena. Consequently, we shall be able to proceed without
reference to classified aspects of nuclear weapons and yet without
significantly truncating our description of the fireball and its thermal
radiations .,

The fraction of the snergy which may be radiated out of the weapon
as x-rays before it begins to blow apart under hydrvodynamic action
depends largeiy on ils yigld-to-mas¢ ratio and to some extent on other
construction details, This mactivn may rangs from 2lmost nothing at

all {or a very small percent) to a significantly more than B0% of the total
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energy generated (Glasstone, 1962; Brode, 1964 b).

Before the air has had a chance to re-radiate any of the energy
deposited by the x-rays, the bulk of this energy is concentrated in a
relatively small sphere and at a temperature which is typically of the
order of several million degrees K, There is, however, a small fraction
of x-rays, from the high frequency end of the spectral distribution function,
which penetrates to a distance of perhaps a few meters, and heats this
shell to temperatuies in the 10,000°K range. Energywise this heating is
insignificant but it makes a contribution to the firebail phenomenology
which is of some interest. By consulting the table of mean free paths on
p. 447 of (3)* we discover that this shell is opaque, As long as it exists
such a1 opaque shell hides the much hotter sphere on its inside and all
that can be observed is the radiation from the shell itself, which is
comparatively dim.

This phase is always very short-lived and terminates when the
radiation from the center floods into the shell and heats it up. During the
next phase the fireball can be characterized rather wel! as an extremely
high temperature sphere of air surrounding the nuclear source and showing
a fairly sharp temperature drop at its edge. The interior cf this high
temperature sphere m y be at a fairly uniform temperature, and the whole
may contain quite a .arge fraction of the nuclear explosion energy in the
form of heat. Some small fraction always remains in the dense bomb
vapors, but most of the early phases of the fireball development are quite
independent of the details of the weapon design. The subsequent explosion
and radiation byhavior can be derived almost entirely from the properties of

this hot air. Such a model will be less true in high altitude or space

DASA-1917-3,
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environments where the immediate external surroundings fail to contain as

thoroughly the explosion energy because they lack sufficient opacity or

optical thickness.,

Throughout the explosion development, radiant energy is emitted by

the fireball. That fraction which is transmitted by the cold exterior atmosphere

is called thermal radiation. The rate of energy emission, or radiated power,

has shape as shown in Fig. 2-1. If the opagque fringe layer has been penetrated

early enough and if the instruments used for measuring the thermal power

have sufficient time resolutions, the signal will include the early peak which

is shown as a dotted line. Otherwise, one sees the two-peak curve which
is drawn as a full line. The explanation of this curve is an important
objective of any theory.

Although it is a rather simple exercise, it is instructive to note the
rather small size of air volumes required to contain the large amounts of
energy at the high temperatures created by the absorption of the initial
flux of x-rays. The following table indicates the radii of spheres for a
few examples of energy content and temperatures. These temperatures,
of course, are toc high for the air to remain that hot for very long, but in
the immediate first fractions of a microsecond these radii are representative

of the sizes and temperatures of the earliest (x-ray) fireballs.

Size of Spheres of Sea Level Air Necessary
to Contain 1 KT, 1 MT or 100 MT of Energy at
Various Uniform Temperatures

Temperatureo
Millions of “K 1 XT 1 MT 100 MT
71/2 3/4m 7.5m 35m
6 1 10 46
11/4 12 57
4 1.6 16 74
3 2.1 2zl 100
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In 2 very few microsecends, these fireballs would have grown much larger
and much less hot by the continued diffusion of radiation into the external
cold air,

For most considerations these earliest phases of x-ray deposition and
re-radiation remain both obscure and of little probable importance. When
the flux of source radiations has been sufficiently intense as to completely
strip the electrons from the air ions, then that volume of plasma can offer
only Compton scattering as further resistance to the x-ray flux or as opacity
to its own re-radiation. The most appropriate physical model for the con-
tinued expansion of this low emissivity, high energy density region is
neither by hydrodynamics (which requires relatively long times to accelerate
masses of gas) nor by radiation diffusion which presumes many interactions
over any appreciable temperature gradient. The growth of such a heated
volume is a radiative process which can be characterized roughly by its
emissivity, temperature, and volume together with the heat capacity of
the external cold air. The single further physical characteristic necessary
to include in a growth rate prediction is the fact that the surrounding air
is essentially opaque to the radiations from this hot air. Detailed
knowledge of the opacity between this blackness at cold temperatures and
its transparent nature at sufficiently high temperature is at this point
unnecessary. Thus, the rate of energy lost, expressed as a grey-body loss
rate, is the rate at which enargy is deposited in the cold air at the surface

of the high temperature sphere, viz.,

gg = 4nRfode , (2.2-1)
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in which e 15 the emissivity, T the temperature of the hot {sothermal
sphere, R 1its radius, and dW/dt the rate of energy change. When
&n appropriate specific heat is introduced, a differential prescription for

the volume growth and temparature drop results.

Following this approximation, one can express the rate of growth,

dR/dt, in the same terms as

4
g{i - 3%;"— , (2.2-2)

in which E represents the internal energy per unit mass, and p the
density of the air just behind the front, while T {s the inner temperature.
The usefulnass of this approximation in estimating the rate of growth of a
partially transparent fi-eball is largely dependent on the accuracy with
which average or "effective™ interior temperatures, specific energies,
and amissivities can be chosen. During the most rapid éxpansion. the
interior is likely to ba considerably non-isothermal, i.e.. the interior
may be more than twice as hot as the region just behind the front, The
dependence on the fourth power of the temperature makes this rate quite
sensitive to such differences. The most uncertain quantity is likely to
be the effective emigsivity, since it represents some average over the
emitting region, and may also disguise some gaometric dependence ~ not
all the radiation being emitted radially, Appropriate choices of effective
emissivity and tempaerature may make this simple formula appropriate

for predicting the growth rate during the subsequent radiation diffusion

phase.
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The temperature profiles illustrated in Fig. 2-2 are typical of this
early radiative growth for a one kiloton sea level burst, The curves
represent the air temperatures as a function of radius for six selected
ingtants in time. The dashed curve indicates the shock temperatures.

It is the lowest temperature within the fireball at each of these times.
After about 15 microseconds, the radiation diffusion growth becomes so
slow that a shock wave begins to form, to compress the newly engulfed
alr and heat it to a temperature substantially beiow that of the radiatively
heated inner sphere., With either the early radiative expansion or the
subsequent acliabatic expansion behind the forming shock front, the inner
temparatures drop with time in an approximately exponential fashion.
During this early growth, the power radiated or the thermal radiation to
points coutside the fireball is not a significant fraction of the energy i
contains. The time is short, the size is small, its opacities are high, and the
fireball exterior so well shields the hotter core that the radiation out is
legs than half a per cent of the available energy.

Of course, the radiative properties are influenced by the air density
as well as by the temperature, and the gradual formation. of the shock
causes an apprecizble increase in the air density at the fireball surface
(as much as tenfold increase at sea level). In the process, the outer
surface of the fireball passes from a rather diffuse raclation-driven front
to a sharp, dense shock front, Fig. 2-3 shows some typical early density
profiles, in which the shock 1s seen to grow and the fireball interior is
seen to expand to much less than the extemnal ambient density.

Reference to the opacities for air as given in Volume 3 will
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confirm that the shock front at these early densities and temperatures
is quite opaque. For instance, at the 250 usec time of Figs. 2~2 and 2-3,
the emission mean free path for a shock temperature of 30,000°K and a
density of 8 times normal i{s about 0,01 cm. The fireball will expand to
much lower temperatures and much larger size before anything behind
the shock front will become visible. It is during this period that the
thermal radiation rate decreases toward a minimum and the fireball appears
to grow dimmer. (Fig., 2-1, before one millisecond.)

It the fireball growth rate defined in Eq. (2.2-2) 1is computed for
the earliest time illustrated in the temperature profiles of Fig. 2-2,
assuming for the moment an emissivity of unity, the rate is about
4. 4% 10a cm/sec. This rate is too high by an order of magnitude in
comparison with results of the numerical calculation axample. The
calculation showed that the expansion at this 1.2 microsecond time was
still being determined by radiation diffusicn. The calculation, however,
also treated the earliest times by diffusion, and not (as suggested above)
by transport within a transparent heated region with a radius less than
ona mean free path for the emitted radiation. The appropriate mean free
path for diffusion is the so~called Rosseland average, hereafter abbreviated

as Rmfp. The Rmfp is defined as

[+3:]
j‘ v dT dv
jd&d\,

in which Ay is the spectral mean free path, B (T) the Planck function,

and j dv denoting integration over all frequencies. The Rmfp used in
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the calculation approaches the Compton limit at high temperatures, however,
and allows the rate of growth to be equally fast. In fact, without special
consideration for relativistic effacts, the diffusion growth can exceed

even the speed of light,

At the earliest time illustrated in Figs. 2-2 and 2-3, the fireball
has grown to more than one mean free path in radius which reduces the
effectiveness of the innur temperature in driving the continued expansion.
A more heuristic interpretation of the growth rate formula allows the
emissivity to be interpreted as a resistance parameter which reduces the
growth rate tc less than the blackbody rate for that central temperature.
An alternative interpretation treats this gfflciency factor as one which
compensates for the use of the shielded innermost temperature whe the
aeffective temperature is at some radial position further out and is lower in
value, i,6., em (To/T1)4 where To is the effective outer temperature

and T, 1s the screened central temperature. A crude measure of this

i
correction and of an appropriate value for this viscosity constant might
be the ratio of the Rm‘fp to the radius of the front, i.,e., the reciprocal
of the number of mean tree paths bétween the radiating interior and the

front. For the diffusion approximation, such a correction might better

be expressed in terms of the local temperature gradient as well.
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The inner tamperature of our exampls calculation at 1.2 micro-
6o

seconds i{s around 10° "K (Fig. 2-2) and the density 13 still normal

(1.29 x 10-3 qm./cma) (see Fig. 2-3). The Rmfp {5 a bit less than one
meter, while the radius is about 3,2 meters. Taking e to be 1/3.2
brings the growth rate down to about 1,3 x 108, which is still high
compared to that for the numerical calculation. The mean free path
decreases rapidly as the temperature falls below 106 °K, however, and
since the front at 1.2 (usec is at around half the interior temperature,

a more appropriate mean free path might be between 0,92 (the value at

1()6 °K) and 0.12 (the value at 5 x 105 ol(). Taking the average of their

reciprocals, 1.e., averaging the opacities, gives about 0.2, so that
the corraction factor, e , becomes 0.2/3.2, and the corrected rate
becomes ~ 3 x 107 which agrees well with the growth rate at that time
from the detalled diffusion calculation.

The most appropriate specific energy and dengity values for use
in the growth rate approximation are those just behind the front of the
wave, since it is to those conditions that the cold air is to be heated,
{.8., it is that heat capacity that will absurb the subsequent radiation
energy flux. Fig. 2~4 displays the spacific erergy profiles for this

one kiloton example for the same time as those of Figs. 22 and 2-3.

It {s interesting to test the simple growth rate formula (Eq. 2.2-2) against

the fireball growth speed that resuits from the numerical calculations,

The calculation should show 2 rate faster than hydrodynamic shock

growth until the radiation growth has fallen below the speed of hydrodynamic

motions, and this simple form should show a comparable rate

until that time, then a much slower rate as the shock wave takes over.
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Fig. 2-5 comparss these rates for the same time period as covered by

the profiles of Figs. 2-2, 2-3, and 2-4 and beyond. In these ‘
comparisons, several approximations are represented by dashed curves,

while the numerical calculation rate is shown as a solid curve. The rate

calculated as blackbody at the inner temperature, shown as circled points,
1s clearly too high at all times. Even when the lower temperatures of
the outer edge of the hot region are used to determine a blackbody rate
(the triangles A of Fig. 2-5), the rate is at all times toa high.
When the radiative resistance parameterisrepresentedas theratio of the Rfp
to the hot region radius, using the Rmfp evaluated at the hot interior

temperature, the modified rate is still high at the early times when

diffusion is still dominant (the square points of Fig. 2-5). It drops
precipitously as the interior cools and becomes opaque at just the time_s
whzn a shock begins to form (at about 10 microseconds in this example).
Although this approximation is not correct in value, the sharpness of

the decrease as hydrodynamics takes over can make it a useful indicator
of the transition onset, and so a reasonable prediction tool,

The more accurate estimate of the early diffusion growth rate,
involving the averaged opacity betwsen interior and front, is also more
subject to error due to the difficulty in judging appropriate front conditions.
These estimates are indicated in Fig. 2-5 by diamonds. These values
are closest to the numerical calculations rate of growth at the earliest
times wnen diffusion is the dominant mechanism. The earliest profile
front temperatures are difficult to define because the front is not sharp.

The rate of growth estimated at these approximate front temperatures with
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8 corresponding resistance parameter leads to the estimates indicated by
the triangles b in Fig., 2-5. Again, the shock formation times is denoted
by a sharp drop in the rate estimated in this manner., Both of the blackbody
rate curves (upper curves of Fig. 2-5) show a fairly sharp drop at shock
formation time. Such a simple kbut uncertain formula may be preferable to

the use of the radiation resistance notion in determining shock formation

radius and time, Since in this range of temperature and densities, the Rmfp .

decreases with decreasing temperature as about the fourth power of the
temperature, using the Rmfp as a correction factor then means that the
adjustment parameter is as sensitive to temperature changes at the black-
body rate itself, Such critical opacity dependences may provide some shazp
distinctions in estimates but at the same time present some hazards in
choosing effective temperatures too casually,

After shock formation, the rate of growth of the fireball should
follow the shock growth itself until the shock cools to transparency.

The shock speed for a strong shock is approximately given by

. 0P,
R~ / b FOPg (2.2-4)
3 Zp0

where Y= (Ps/pSEs)H ‘Pg is the ambient air density and Ps ' Pg
and Es are shock front values of pressure, density and internal specific
energy. This approximation is shown in Fig. 2-5 by the syribol ¢ . For
the earliest times, the expansion is faster than this shock rate, but at

later times it corresponds well,

48

- - PO v
e i e e vn M e s e s



Using the particle velocities (us) at the front and the densit; at

the front (through the mass conservation relation) provides the relation

. UPg
R 3 ———— 2.2‘
8 RgP, ( 5)

»

Thoe rate derived from corresponding values of u and p s for the

8
numerical calculation is indicated in Fig. 2~5 by triangles pointing down
(v) . After nuclear shock catch-up this curve coincides with the solid
curve for the directly computed rata.

In the temperature region of interast, a shock can be pictured as a
sharp gasdynamic jump imbedded in a ragion of radiation-induced temperature
varlation (Fig. 2-6). The internal structure of this type of wave has been
investigated extensively by Zeldovich (1957), Raizer (1957). and Heaslett
and Baldwin (1963}, to name a few, all of whom employed the equations of
steady continuum gas dynamics with gray radiative transport.

The important feature of this picture is the temperature precursor which
runs ahead of the sharp front. This precursor is created by the radiation
from the high temperature region behind the sharp front. One can estimate
the temperature of the precursor by equating the power radiated by this
front with the rate of heating in the precursor. In the resulting relation

pue, =0 qu (2.2-8)

p ., u and ep stand for the ambient air density, the shock velocity and
the internal energy of the air in the precursor. From the latter quantity and
the eguation of state, one can then obtain the temperature of the precursor,

Using the Hugoniot relations (Section 5.1 of (4)) and a simple analytic fit

L MR T
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to the equation of state, one obtains at sea level the relation

-7 5 2,17
Tp = 3.45x%x 10 Tg

(2.2-7)
For a shock temperature of 105 °K we calculate a precursor temperature of
23,000°K and nots that a millimeter layer of air at that temperature is opaque.

5 OK all the thermal

Up to the time when the shock temperature drops to 10
radiation comes therefore from the precursor. To make a quantitative
evaluation of the power radiated during this phase requires a more detailed
analysis of the radiative transfer problem. Qualitatively one can see that
the power must decrease with time and this is the decrease following the
early peak in Fig. (2~1),

As the shock temperature drops below 105 °

K, the precursor cools to
where it gradually becomes transparent so that the radiation from the shock
front begins to shine through. When this happens the power-time curve goes
through the minimum which is shown in Fig. 2-1 as the shock precursor
minimum (SPM). While the shock front gets more and more exposed, the
power rise because of the exposure is eventually compensated by the
temperature drop of the shock itself and at that time the power level reaches
the maximum which is shown on Fig. 2-1 as the shock exposure maximum (SEM).
During the phase following this maximum the rate of thermal radiation
loss from the fireball can be characterized as that from a blackbody sphere
at the shock front temperature and of radius equal to that of the shock

radius, Although such a rate describes the fireball emission, the power

observed at any distance will contain only that fraction which the cold air
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outside the firaball ias capable of transmitting. To a good approximation,
that fraction can be calculated by assuming a simple cut~off in the trans~

mitted spectrum. Values of this fraction f('r’,vc) where Ve is the

fraquency corresponding to a cut-off at 1860} (representing the edge of the
02, abscrption) are shown as functions of the temperature (Ts) in

Fig. 2-7). The fraction is evaluated from a tabulation of the Planck radiation
function and its partial integral by Gilmore (1956), The fraction is defined as

X

[+]
3
fr,, )-‘Sf x_gx 2.2-8)
(Tyrve nl A o*-1 (

where x_= hvc/kTu and h and Kk are Planck's and Boltzmann's

constants, respectively (hw 6,625 x 10727 erg sec, ks 1,380 x 10"16 erg/°K) .
During this phase which lasts until the shock temperature has dropped

to 80 low a value as to make the shock front transparent, the following

simple expression characterizes the thermal radiation rate for an air burst

nuclear explosion:

2

Pw GQRS

o T: f(Tgvg) (2.2-9)

in which Rs represents the shock radius, 1‘s the temperature, o

the Stefan-Boltzmann constant (5.572 x 1075 em/cmz/deq4/sec) and

f(Ts'\’c) the fraction passed by the cold air, | .
Unit optical depth for most frequencies grows longer as the shock

front cools, so that emission from hotter air behind the front begins to

shine through. The shock front itself becomes fainter and appears to pull

ahead of the luminous fireball, a phenomenon which is referred to as the
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“breakaway'" (Gladstone, 1962, Section 2.110). Because the shock has
been carrying the shock-heated air outwards with its expansion, a rather
gteep gradient in temperature is maintained just behind the front, so that

a slight increase in unit optical depth exposes higher temperatures but at no
appreciable decrease in radius of effective radiating surface. At this time
the power curve goes through the principal minimum (PMIN) in Fig. 2-1,

Fig. 2-8 indicatas the geometry of fireball temperatures (in cross-
section) at a time somewhat beyond the time of minimum thermal power.
While the thermal radiation increases, and while progressively deeper parts
of the fireball are exposed, the hydrodynamic expansion dominates so that
the visible or apparent fireball size continues to grow, Eventually, the
luminous fireball stops expanding and the power output reaches the final
maximum (FMAX) .

Throughout this radiative and then hydrodynamic expansion of the
fireball, right up to the time of minimum light intensity, something less than
half of one percent of the total yield has been radiated out of the fireball.
Both integrals of the measured power-time data from tests and of the simple
expression given above for radiation from the fireball {as determined by shock
front conditions) lead to an answer closa to 0.44%. In the latter integral,
the properties of the shock front are sufficiently well defined by almost any
calculation - aven those not accounting for radiation transport in the early
phases, but necessarily taking account of the real gas properties of air.
(e.g., Brode, 1956a,b).

Since the air just behind the shock i8 much hotter and much
less dense than the air at the front itself (see Figs, 2-2, 2-3, and
2-4), the rate of thermal radiation increases rapidly when that air is

exposed, until the hottest temperatures at the back of the steep gradient
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behind the shock front become visible and are radiating directly to the

exterior, Thersafter, as the size of the radieting sphere shrinks and

the interior cools, the rate decreases. This is the pericd in which the

fireball history comes ciosest to the cooling wave notion expressed in
a simple form by 2el'dovich, Kompaneets and Raiger (1958) and applied , i
into a fireball theory by Bethe (1964). The notion is that a recognizable ! {
and fixed form cooling wave arodes the hot fireball intarior, beginning
at the exterior and working inwards. After the shock frcnt has become
transparent, such a cooling wave process is very likely operating, but
it is not at first working into a fixed or uniform temperaturs or density,
and it is not shrinking the fireball. The ocutward hydrodynamic expansion
is still too strong, When the outer regions have all bacome sufficieatly
cool and transgparent so that the inner radiation~-heated region is exposed, f
then the conditions suggested for a cooling wave are approximated. Even i '
then the temperatures are not constant and the surface area is shrinking 5
rapidly, so that the cooling rate decreases. When this interior sphere !
has cooled to below about 10,000°K, the whole of the fireball has become
relatively transparent, and the subsequent radiation losses are characterized
more by a grey body approximation, i.e. , characteristic of a volume of air
of low emissivity - one of less than unit optical thickness. It may also
still be expanding adiabatically, and contributing energy to the shock
growth.

Temparature profiles spanning this period from principal minirmum through
final maximum and on to a transparent fireball are illustrated in Pig. 2-9,

For a yield of one kiloton, the cooling wave is less obvious as a wave , |

than as a rather sudden depletion of the hottest interior region. At larger
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ylelds, where more optical thickness is reprusented at avery stuge,
the progress of a cooling ware from outside toward the center is more
easily imagined (Brode, 1964a, Pig. 5, b Pig. 15).

In this rather complex power radiated history of two or three maxima,
as illustrated in Fig, 2-1, the final pulse represents a total snergy of 30
or 40% of the total yield of tha nuclear device. When all the energy is
accounted for , including that in the infrared which originates in shock
heatad air outside the visible fireball and is radiated only very slowly, the
fraction may be even larger.

There are several features of this one kiloton explosion that have
not yet been mentioned and that are of lesser influence on the thermal
radiatior and fireball behavior at ssa level, but which become relatively
more important at other yields or altitudes. One such feature is a second
shock wave which originates within the bomb vapors, traverses the early
sphera of hot air behind the radiation front, and overtakes the strong
shock that forms the fireball surface at later times. This debris or
bomb shock is seldom in evidence in sea level explosions, and has lost
most of its energy long before it overtakes the main shock, so that it
contributes little to the fireball surface or thermal radiction histories,
Because the hot interior of the fireball is for most of the fireball expansion
a region of long mean free path, it is a region of nearly uniform temperature.
When the case shock compresses and heats this air further, some of ihat
heat is promptly re-radiated ahead, forcing this interior shock to behave
isothermally rather than adiabatically. This isothermal shock can lose

energy very rapidly by this means, and may persist only through the
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continuation of its outward momentum.

A history of the radil of this shook and other fronts in this kiloton
example is shown in Fig.2-10. When this debris shock travels cutward
to the edge of the fireball, it encounters a sharp discontinuity in density.
At that point, a reflected shock originates and is returned inward to
implode upon the origin. Here again, is a phenomenon which has no
consequence for this example, but may be prominent in high altitude events.
The vaporized bomb expands along behind this debris shock, but at cea
level {3 not visible until very late - after the second maximum in the
thermal power. This bomb debris is not realistically treated in any of
the usual calculations, since they invariably assume radial symmetry
and allow no mixing or turbulent flow., When it emerges in the transparent
fireball at late times, the vaporous debris has become highly turbulent
and has evidently mixed with considerable firaball air,

Although Fig.2-10indicates a transition from radiation expansion
to strong shock expansion, the radiation diffusion does not stop. As the
shock brings down the denaity in the interior air, the opacity of that air
decreases also, and the radiation is allowed to diffuse into some of the
now shock-heated air. The dotted curve below the shock front curve of
Fig, 2-10indicates the position of the radiation front. Most of its outward
excursion 1s due to the flow of air in the expansion behind the shock

itself, At times later than shown in Fig.2-10, the radiation front and the !

visible fireball drop behind. The short dashed curve near the snd of the
shook front curve of Fig. 2-10represents a position close to the fireball

front - being the locus of points at $000°K - with higher temperatures

inside of that radius, and colder temperatures outside.
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The continued flow of radiation is made more obvious {n a plot of
the temperature histories of several shells of gas representing tha air
that was shocked to a particular temperature, cooled in the subsequent
aciabatic expansion, but then reheated by the radiation wave following.
Such a set of curves are shawr. in Fig, 2-11, where at particles shocked
to 10%, 70,000 and 40,000°K the adiabatic cooling is arrested by the
arrival of the radiation diffusion wave which causes that shell of air
10 rise in temperature again., The air starting at the 20,000°K shock
point is never over-run by the radiation wava, i.e., the radiation wave
stops before it gets that far, having run out of energy and not being
aided by further expansion which would help to reduce the opacity of the
cooler air in front of it.

A great many nuclear weapon applications, tests, and effects
interests {nvolve the thermal and fireball sffects of nuclear explosions on
or close to the surface of the sarth. Many interesting and novel inte:-
actions occur which are not evident in air bursts well away from th
sur face. Howaver, thers is no intention of providing a review of these
factors in this current etfort., It should suffice to point out that all of

the essential feaatures which are described and followad here ars algo

an important part of surface bursts, while the latter are further complicated

by the sarly injection into the fireball of massive amounts of earth material,
and by the geometric distortions of the fireball that occur as a consequence

of shock and thermal reflections from the earth's surface. The change in

radiator shape from spherical to at best hamispherical or worsa a partially
obscured hemisphers means that the thermal flux to other points on the

sarth's surface will be less than that from an air burst. Total flux at
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points in the air above the burst may at the same t'me be increased.
As the earllest pictures of nuclear explosions {(Glasstone, 1962)

clearly show 2 further consequences of the ground involvement ia the

y
i
i
1

*dust skirt® which precedas the fireball shock and lurgely ohscures

the bage of the fireball. Although not visible in any of the pictures,
there must alsc be vast amounts of earth shovalled into the hot fireball
interior at an early time (Brode and Bjork, 1960), and this material cannot
fail to have profound effects on both the temperature and thermodynamioc
state of the fireball gases and on the ¢pacities or optical properties of
that region, Teat observations .indires-tly attest to the influence of such
surface effects,

Observations and measurements at very late times in the fireball
history show that the radiation rate trails off with a very long tail (as in
Fig. 2-1) and comes from shapes other than simple spheres. The fireball
at late times is like a bubble in the atmosphere - having very low densities
in its interior - and s0 it rises, and in rising breaks up at the bottom to
transform {tself into the familiar atomic cloud ring or torroid which rolls
its way up through the atmosphere. The torroidal circulation that is
induced is quite strong and serves to severaly limit mixing of the hot
firaball gases with the exterior cold air, thus proionging the existence
of air and debris at temperatures of thousands of degreses Kelvin, while
the cloud rises in the atmosphers. When much earth material and/or .

water vapor is present, the late fireball remains opaque, and the rate of

i 2

late radiation is more determined by the rate of turbulent mixing which

brings hot gases to the cloud surface ratt.er than by the radiation transport
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properties alone. For an air burst well above the surface, however, the
late fireball becomes quite transparent, so that only a faintly luminous

ring assures us that the rise and circulations are much the same as for

lower bursts,

2.3 Other yields and altitudes

The example of a one kiloton detonation at sea level contains all the
basic physical phenomena which enter into consideration at :ther yields
and at altitudes up to about 70 km. The overall appearance is, nevertheless,
appreciably different since the individual events which are responsible for
the various maximum and minima in Fig. 2-1 occur at different times.

In carrying out a discussion of these changes, it is useful to note
that the rslation between shock radius and time can be approximately repre-

sented by a hydrodynamic scaling law. To formulate this we introduce the

scaled variables

—_ /3
*
R = % R (2.3-1)
=\1/3
» [
t = v t (2.3-2)

where Y is the yleld of the explosion and p =p/p_ the amblent air
density relative to that at sea level. In our 1 kiloton sea level example the

scaling factors are of course unity.
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The scaling law is not valid until after the debris shock has caught
up with the somewhat slower shiock which is driven by only a fraction of the
total yield. The scaling law can be deduced from the strong-shack solution
for a point scurce (Taylor, 1950; and Sedov, 1959). This limits the validity

of the scaling laws at late times when the shock becomes weak, The law

!
1
|

obtained in this manner takes the form

2/5
R; = k(t") (2.3-3)

where the subccript s denotss that the value is taken at the shock front.
From the radius Rs =20 m read off Fig, 2-10 for t =1 msec,

one determines the propcitionality factor to be
k = 20 m (meec)” %S (k1) Y5 (2.3-4)

In the above scaling law the scaling factors cancel out of the expression

for the shock wvelocity

*
dr dR _~3/5
8 - _8 . 2 ¥ - ‘
- - = £ ki) (2.3-5)

*
which makes this velocity a function of t only. Applying the Hugoniot

relations one can now show that the temperature T s behind the shock is
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also very nearly a function of t* only. This is not an exact result because
it depends on certain agssumptions about the equation of state which are only
approximately true. If one checks the prediction that Ts is a function of
the scaled time only against computed results, one finds that it fits the
changes with yield at a given altitude very well. The changes with altitude
-t a given yield are not given with quite the same accuracy, but are still
sufficlently close for most purposes.

It should be noted that the above scaling procedure differs somewhat

from the so=-called Sachs scaling where one introduces the variables

¢
|

e/l 3R (2.3-6)

"
I

Y3 /) % 2.3-7)

If one expresses the ambient pressure and density p and p , the yield
Y and the variables R and t all in the same system of units,the scaled
variables are dimensionless. It is inore convenient, however, to replace p
and p bytheratios P =p/p, and p= p/p, relative to the sea level
values, and to express Y as before in KT. With this choice, the strong
shock relation between K and T is the same as between R and t /

i.e. Eq. (2.3-3) with the same value of the constant k ,

The two methods of scaling differ in regard to what are considered

similar situations. For the starred variables similarity implies that for example

the hydrodynamic velocity and the temperature are unchanged; for the variables

with the tilde the Mach number and the temperature ratio '1‘/_To are unchanged.

Either choice is acceptable, but ours has the advantage of using only one

parameter to characterize the altitude.
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From the time of shock formation until breakaway the thermal radiation
ccmes partly from the shock precursor and partly from the shock front, and
it 1s evident that the shock temperature {8 a major factor {n determining the
timing of the maxima and minima during this period., At a given aliitude where
one has a one-tc-one relation between shock and precursor temperature
(see Eq. 2.2-7 for the sea level case) it is fairly accurate to state that the
shock formation maximum, the shock precursor minimum and the shock exposure
maximum occur at fixed values of the shock temperature and therefore at
fixed values of the scaled time. As or: considers different altitudes the
relation vetwean Tp and '1‘s changes and one finds different values
of the scaled times associated lwtth these features of the power curve.

Afcer breakaway the radiation comes from points to the inside of the
shock front whose locations depend on the optical properties of the air and in
turn on the temperature and density distribution. This is a radiative transfer
problem and hydrodynamic scaling, where times vary as the cube root of Y ,
is replaced by radiative scaling, where times vary approximately as the square
root of Y (Glasstone, 1962, section 7.92).

Altitude scaling is a more difficult problem than yield scaling. We have
already mentioned the effect of the changing relation between Ts and Tp .
To this we must add that the relative importance of hydrodynamics and
radiation transfer shifts with increasing altitude in favor of the latter. Thus
shocks form more slowly and radiation is emitted more rapidly as one goes to
highar altitudes. As a result the features before breakaway are increasingly
delayed and the maxima and minima tend to become weaker. The final
radiative pulse on the other hand advances in time and becomes more prominent.
At about 50 km the early features have become washed out and what was the

final pulse i8 now the only pulse,
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Chapter 3. SUMMARY

As the reader of this report will have gathered any attempt at following

the evolution of a fireball by numerical means utilizes a whole spectrum of

facts and assumptions ranging all the way from being undisputable to being
highly suspect. This is likely to leave him with a somewhat uncomfortable
feeling about the reliability of such a calculation. In this summary we will
put the finger on some of the underlying assumptions, point out what we ‘
know about their validity and evaluate how atrongly our lack of basic ’

information or of the willingness t¢ spend computing dollars will influence ‘

the final product. !

3.1 Equation of state

Neaiiy all calculations make the basic assumption that the air remains
throughout in a state of LTE.* Once this is accepted it follows that the
relation between the various state variables can be found by the methods
of statistical mechanics. Tbh. application of these methods is very straight-
forward and the results as presented in {l) and (3)"are probably correct to
withir. a few percent. In some instances analytic fits which were made to
fasd these results into a nsomputer have been poor but this problem can
certainly be overcome and should not contribute significantly to errors in
hydrodynamics or other phases of the main calculation. Some probiems may
arise in the central region where one has debris rather than air and even ,
more so in the transition region where one may have a debris air mixture. :

Fortunately many important results are rather insensitive to these details.

Local Thermodynamic Equilibrium (LTE).

L ]
(1) stands for DASA-1917-1, etc.
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3.2 Absorption coefficients -

This subject has been discussed in detail in (2) and related facts
are brought up in Chapter 1 of this volume. There are several ways of
describing the absorption which differ in the amount of detail which is
presented. The most detailed description consists of a listing of lines
with intensities and line shape parameters on top of a continuum. All
these factors are subject to errors as we shall briefly discuss.

In the low temperature caae where the lines are due to molecular

systems the infermation comes largely from experimental spectroscopic

studies. The limitations of our knowledge about frequencies and intensitiss

is discussed in (2) Chaptar 7. The information on line shapes is almost
non-existent. To this one should add that one can hardly afford to include
any but the strongest band systems. Even the rather minimai cheice of
eight band systems in the most recent version of the SACHA program brings
the number of transitions to over 190,000,

In the high temperature case the absorption comes from inverse
Bremsstrahlung and from transitions in atoms and atomic ions. There is
a strong continuum due to the first and due to photoicuization. There is
a fairly well developed theory and some experimental information backing
it up. On top of the continuum is a large number of linas. A few levels
have been observed experimentally but the majority, especially for the
highly ionized atoms, have not been observed and must be obtained
theoretically. It is certainly necessar (0 find the transition probabilities

by quanium mecharical methods. These are so complex that one is forced

to make radical approximations to get any answers and the results are not very

reliabla.

75




NP Ao

The calculation of the line contribution is the most elaborate part
of the program and again one can hardly afford to include any but the
strongest lines. This involves & somewhat arbitrary cut-off procedure
whose practical effect can only be evaluated when one specifies how
the absorption coefficient is to be used.

The detailed description of absorption with fine spectral resolution

greatly exceeds the requirements of radiative transfer calculations, As

shown in (2) Chapter 2, it is unfortunately difficult to define averages which

permit satisfactory calculations. Thus Planck and Rosseland means which

average |, and uv-l respectively apply only in limiting situations;

the cne fur very transparent, the other for very opaque media. Nevertheless

such means are useful and have been calculated. In the specific case of
line sffects, mentioned in the preceding paragraph, the contribution is
not ver- large until one reaches temperatures like 2 x 105°K and high
dansities.

Because of the many uncertaintias entering the calculation of
sbsorption cuefficients one has no systematic way of estimating their
accuracy. The responsible authors of opacity calculations are generally
confident it their results lie within a factor of three of the true values.

In the intermediate temperature range where the opacity reaches a
maximum,the - ccuracy is probably somewhat better. Because of the large
opacity the . »raging procedures, which are appropriate for radiative
transfer calculations, put the most weight on those parts of the spectrum
where M, is small and very little weight on the lines. The Rosseland

mean does and the Planck mean does not fall into this clags, Because of

S




the emphasis on the continuum, where one has more reliable information,

G Pt st =

the Rosseland mean is expected to be more accurate.
The extent to which opacity errors falsify fireball calculations
depends on the temperature range. Inspecting the temperature profiles
of Fig. 2-2 which are typical for the sarly stage of a fireball one finds
large temperatures near the center which makes the zir in that region very
transparent. Further out the temperature drcps so that tho opacity rises,
goes through a maximum and then drops again. In the transparent central
region radiative heat transfer is rapid and keeps that region at a fairly
uniform temperature, as one sees in Fig. 2-2, Just how uniform this
profile is has very little effect on the rate of expansion and therefore
opacity errors by a factor twice or even more are not serious in that region.
The opaque zone around the central region acts as a radiative barrier
and the development of the fireball does depend guite critically on the opacity
there. During the very early phase where hydrodynamic motion is still
negligible compared to the radiative expansion the section of the opacity-
temperature relation near the maximum determines the rate of that expansion.
It also determines when and where the hydrodynamic shock begins to form.
When shock temperatures are still high, the opaque shell forms in
a temperature toe ahead of the shock. This is the precursor which has been
sketched in Fig. 2-7 and which causes the early structure in Fig. 2-1,
At this stage the opacity is still of interest, since it determines the ; *

character of the escaping radiation and other observable phenomena, bhut

the rate at which the fireball expands is given by the shock spesd which

dous not depend on the opacity in the toe.
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The next phase starts when the shock tamperature has dropped low
enough that the shocked air becomes opaque. This is aided by the high
density directly behind the shock which can be seen for example, in the
density profiles of Fig. 2~3. Up to that time radiative transfer plays a
major role in feeding energy to the expanding shock front. Now that
source fades out and hydrodynamics takes over as the dominant mechanism
for energy transfer. The details of the change depend quite critically
on the opacity relation.

Upon further cooling the shock front becomes transparent again
and the opaque shell recedes toward the center. This starts the long time
interval during which the power vs. time curve of Fig. 2-1 goes through its
minimum, rises back to the final maximum, and starts to drop again. The
calculation of this phase slso depends quite criticallv on the opacity. A

test calculation made with an opacity twice the accepted value stretched

the total duration of this phase by almost a factor of two with a corresponding

reduction of the maximum power level to about half of what it was in the
earlier calculation. Thus, errors in the opacity relation could lead to fairly
severe discrepancies between fireball models at the *ime of the second

maximum.

3.3 Radiation hydrodynamics codes

The purely hydrodynamic part of any code is probably as accurate
as the equation of state that is being used except for the smearing out of
the shock front introduced by the artificial viscosity method. The accuracy
of radiative transfer calculations is less certain, unless one is justified

in using the diffusion approximation. In that case the limiting factor is




probably the acouracy of the opacity. Difficulties do arise, howeaver, at
the front of an opaque shell. Consider, for example, two zones labsled

a and b whose tumperatures place them on tha rising branch of the
opacity curve as indicated in Fig. 3~1. As the heating wave progresses
these points move up on the curve. The radiation escaping to the outside
comes at first from zone a and passes without attenuation through zone
b . As zone a climbs higher the radiation rises as 'I‘4 but when zone
b becomes sufficiently opaque to take over the role of zone a the power
output drops. This cycle is repeated when zone ¢ and others after it
climb into the position originally held by zone a . The result of this is

a sequence of maxima and minima in the power versus time curve which

has nc physical reality. This spurious effect can bs counteracted by using
finer zone sizes but at the expense of increasing the running time which
increases &8s the square of the number of subdivisions per zone. Actually
this is not necessary, since test calculations show that the cruder zone
divisions lead to the same averags power and to the same rate of expansion
as a very fine division. A related problem arises when the artificial
viscosity routine ‘introduces improper heating ahead of the shock front.
Letting the point a in Fig. 3-1 rapresent the shocked zone and b and
¢ the zones just ahead of the shock, this heating would make points b
and c¢ lie at too high temperatures. The calculated attenuation of the
radiation from the shock is therafore largur than what it should really be
and leads us to predict too low a brightness of the fireball. The reduced
output has, however, practically no effect on the calculated motion of the

fireball air because at that stage the amount of energy lost by radiation
is still too small to influence the hydrodynamics.
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Other errors may be introduced by the use of ¢pprox‘'~ate integration
routines such as the multiple ray or the two stream tect.niques which have
been discussed in Chapter 1. Given a set ot experime.tal data one can,
within limits, adjust the opacity temperature relation so that either model
will reproduce these data. It is therefore not really possible to disentangle
errors which may arise from the use of these models on the one hand, and

from incorrect absorption coefficients on the other hand.

3.4 Deviations from LTE

As we have repeatadly stated, nearly all calculations assume the air

to be always in LTE. Thare are, however, some equilibration processes which

are decidedly slow on the time scale of nuclear fireballs. At somewha?
elevated altitudes one finds for example, that the processes responsible
for populating the vibraticnally excited levels of O2 and N2 fall into
this class. These processes are discussed under the heading “vibrational
relaxation” in (4) section 6.1 In the case of O, , populating the
vibrational levels reduces the photon energy required for reaching the
Schumann=-Runge continuum below the 8.5 eV which it takes from the ground
state. As long as these leveis are not populated the actual absorption is
therefore less than it would be in equilibrium. Similar considerations apply
to the Birge-Hopfield transitions in N2 . In most codes these delays are
just ignored. Hillendahl (see AppendixA) has attempted to account for them
by means of a fairly crude model assumption.

Other deviations from LTE are caused by the slowness of chemical
reactions at temperatures, say, below 6000°K (see (4) sections 6.9

and 7.5) Among the molecules which can form in this temperature range is
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NOZ which has a large absorption coefficient, The delay in forming this
molecule when air is suddenly heated by a shock and the subsequent delay

in removing it again when the air cools down can change the absorption

significantly from the value at equilibrium conditions. If the temperature
drop is rapid enough the NO2 concentration may stay for a long time at
the high concentration corresponding to 3000°K even though the temperature
has dropped below 2000°K, In this situation one speaks of NO2 as being
frozen in.

Non-equilibrium proceases also occur at the debris air ianterface, It
has been pointed out in (4) section 5,2 that this is very poorly understood.
It is, in particular, quite uncertain what temperature the shocked air
would reach and what X-ray spectrum would be emitted by that air.

The questions raised in this chapter clearly do not exhaust the subject
of possible errors in the present state of the art, It is, in fact, quite likely
that effects with more practical significance have been overlooked. Still,
this enumeration should provide the reader with some guidance what he

should watch.
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Appendix A. A Radiatjon-Hydrodynamics Code

A.l1 Introduction

In this appendix, a sample radia-tion-hydrodynanucs code is
presented which employs, with varying degrees of sophistication, much
of the physics and basic data presented elsewhere in this volume,

‘ In keeping with Chapter 2, this code describes the radiative and
hydrodynamic properties of a sphere of hot air. Details of the weapon
itself are not of 1ntefest in the present context, and rather crude
generalizations have been used to represent the gross properties of the
hardware.

The code is prasented as a means of demonstrating some of the
techniques of radiatiorni~hydrodynamics, ar described in Chapter 1, the
appiication of basic physical data, as described in Volume 2 ,
and as an illustration of the results discussed in Chapter2 . The code
is not intended as a demonstratiocn of the prograrmiming art and has not
been polished-up for presentation here, A great deal of the program

could be deleted were the program to be used only for Present purposes.

Much c¢f the basic philosophy of this code has been presented in Chapter 1

and by Hillendahl {(1954), and will not be repeated in detail.
The basic equations of the probiem are the conservation equations
of radiztion-hydrodynamics for a onz-dimensional spherical system

which can be written in Lagrangian form as

( .
%lt! = - 4rrR2 L%;TQL Conservation of momentum
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R

where

(o d

3 O w »

Q

is

g-ta Definition of velocity
4nRz aR Conservation of mass

Z
p A
c V [a t on compregssion
Definition of Artificial

Viscosity
0 otherwise

2
P+ Q) g% + 4nﬂa&“-?l =0 Conservation of energy
E(V,T)
P(v,T)

an integral functicnalof V and T

local fluid velocity

time

radius

pressure

ariificia’ viscosity

mass

an arbitrary constant near unity

initial density
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V = gpecific volume (reciprocal density)

3 = radiative net flux ai R

E = intemal energy

k]
3
a
S
ks

Quite generally, the mathematical formulation of the problem may be
characterized as an {nitial value problem whose solution consists of a
time-wise and mass-wise integration of a well defined set of hyperbolic
partial differential and partial integro~differential equations.

The solution of these equations is carried out by numerical techniques
in which values of the dependent variables are determined in terms of the
two independent variables (the time and lagrangian zone mass) by means of
finite difference equations which are used to represent Eqs. (A.1) - (A.8).

For purposes of numerical computation, the fireball configuration is
reprasented by a series of concentric, contiguous, spherical mass shells.
The mass of the kth zone is designated by m, (qm/cms). Since the mass
zones retain their identity throz:xghout the time-wise development of the
configuration, the zone index k and the time t (seconds) are convenient
choices for the independent variables.

Integration of the set of 8 equations (Eqs. (A.1) ~ (A.8)) then deter-
mines the values of the 8§ dependent variables as functions of k and t .
Ulk,t) (cm sec 1) and R(k,t) (cm) are used to specify the instantaneous
values of the interface velocity and radius of the outer surface of the kth
mass shell. F(k.t) (ergs om 2 sec™}) is used to specify the instantaneous
value of the net radiative flux at the cuter boundary of the kth mass zone.
P(k,t) (dvnes cm-z). Qlk,t) (dynes cm“"z). Vik.t) (cm3 gm_l), T(k,t)

°K), Elk,t) (ergs gm™ 1) are used to repraszent the instantaneous values of
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the pressure, artificial viscous pressure, specific volume (reciprocal
density), temperature and internal energy of the mass zone m, .

In a purely hydrodynamic problem without radiative transfer, it is
the standard practice to reckon the thermodynamic properties of a zone
(i.e.: pressure, internal energy, density, temperature) as constant
average values over sach zone. These values are also considered to
be the central values of these variables at the geometri cal zone centers.
Particle velocities are reckoned at the zone interfaces; the interface
density and pressure gradient are formulated in terms of the values at
the zone centers. The zoning mesh must be chosen fine enough so that
the variation in properties from zone to zone is small enough to insure
that these average values are meaningful.

In a problem which also includes radiative transfer, the above
restrictions must also be met. Zone sizes in a problem includirg radiation
will generally be smaller than the zone sizes required by hydrodynamics
alone. The addition of radiative transfer to the problem will, in general,
add further restrictions.

If the temperature is taken as constant across each zone, temperature
discontinuities will occur at the zone interfaces. Radiative variables like
'1“ will have even greater discontinuities. More detailed examination
indicates that the temperature and its spatial derivatives should be
continuous at the zone interfaces. Thus, consistent with the expansion
used in Eq. (2.5-9), the source function B is taken as linear between
zone centers. Then the discontinuous spatial derivatives of the source
fun. ion which occur at the zone centers do not appear in the formulation.

In a more general formulation, a higher order polynomial could be used to
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fit the source function through the zone centers, but numerical experience
hqs indicated such a procedure resulted in only minor improvement i.. the
computations.

The central zone temperature T is used as the average over the
zone for purposes of computing average zone pressures, internal energies,
and is used alsointhe Z, A, and W computations (Eqs. (2.5-13)
through (2.5-15)). This is done primarily for purposes of convenience,
but can be at least partially justified. In regions of small temperature
gradient, no problem occurs since the central and average zone tempera-
tures are nesarly identical. In regions of large tamperature gradients, the
"avarage value” of the temperature is poorly defined in terms of the rapidly
varying radiative variables, and it is preferable (0 keep the problem well
poised hydrodynamically.

The specific volume V is taken as having a linear variation
across each zone. The values of V at the zone centers and zone
interfaces are then uniquely defined and afford no further difficulty.

The 2, A, and W functions are then computed using the average
zone temperature T and specific volume V . Use of the average
specific volume is justified since these functions show a relatively weak
density dependence. Neglecting the variations in temperatura across
the zone causes only relatively small errors in the high temperature inner
fireball regions since these functions show only a weak dependence upoﬁ
temperature. In the low temperature regions, the 2, A, and W
functions vary about as the ninth power of the temperature. Even with
extremely fine zoning, large temperature gradients occur across each

zone, and the Z, A, and W functions would be iil defined in terms
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of any average temperature no matter how the average be defined. But
the emission from these low temperature regions is small compared to
the emission from the high temperature regions further inside, and these
layers act primarily as a selective absorber for radiation from larger
optical depths. Hsence the z' function must be known with some
accuracy, but small errors inthe A functivi, originating because of
the use of the average z0ne temperature, can be tolerated.

The z’ function, howaver, has peculiar properties in the low
temperature region which allow its values to be obtained with sufficient
accuracy. As discussed in Chapter 8, the spectral absorption coefficient
varies extremely rapidly ith wavelength so that the spectrum is effective.y
divided at some wavelength into absorbed and transmitted fractions. This
transition wavelength, however, depends only weakly on the zone tempera-
ture, and hence the average zone temperature will again suffice.

It shoﬁld always be born i~ mind that these numerical approximations
all improve as the zcne size is decreased and can, in principle be made
accurate to any desired precision. In practice, however, the fineness of
the zone mesh is limited by the - .:cf computation. S$kill is thus required
to accomplish a large computational program within a limited budget. One
tries to test each situation for sensitivity to zone sizes and achieve a
compromise between economy of computation and accurate representation of
the physics.

For purposes of carrying out the integration procedure by numerical
methods, the basic equations (Eqs. (A.1) - (A.B)) are replaced by a set

of centered finite difference equations as follows. The notation and
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centering can best be seen by reference to Fig. A-1.
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Eq. (A.9) expresses the conservation oi momentum and is centered
over the grid point (n,k).

Eq. (A'. 10) simply expresses the definition of velocity and is
centered over the grid point (n+1/2 ,k).

The consgervation of mass, expressed by Eq. (A.11), is centered

over the grid point (n+1/2 ,k-1/2, i.e. over Q:fi,/,g .

The difference expression (Eq. (A.12)) for the artificial viscosity

ntl
k

factor. The artificial viscosity is thus correctly centered for use in the

is centered on the grid location (n*1/2 ,k-1/2) except for the R

energy Eq. (A.13), hut lags a half time step behind in the equation of
motion (Eq. (A.9).

The energy equation (Eq. (A.13)) is centered over the grid location
(n*1/2 ,k-1/2) and constitutes an implicit expression to determine the

+1
local temperature T:_ /2 °

Eqs. (A.14) and (A.15) are equations of condition rather than finite

difference equations, and express the equations of state for the fluid at

+1 +1
the location (n*1, k-1/2) in terms of Vg_ 1/2 and T:- 172 °
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Eq. (A.16), which is written above only in symbolic form, expressas
that the local net flux % :ﬂ i1 an instantanecus integral functional of the
temperatures and densities of all of the L zones {n the configuration. The
set of Eqs. (A.9) - (A.16) thus constitutes a set of 8L equations in BL
unknowns.

The following set of 11 auxiliary equations are used to evaluate
Eq. (A.16):

nt+l +1 nt+l ntl n+l
ZOy.1/2 = 2 Veed -1/2* Tx-1/2¢ TRe_1 120 ¢
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where o0 = 5,67 x 10'5 is the Stephan-Boltzmann constant, and TR is
the temperature used to specify the spectral character of the radiation

incident upon the zone from regions of smaller radius,

(A.23)

(A.24)

(A.25)

(A.206)

(A.27)

(A.28)




The analytic expressions for Eqs. (A.18) and (A.19) are not given
explicitly in the written text, but are available in the FIREBALL code
listing which follows.

In carrying out the numerical integration scheme, it {s assumed
that the initial valuesof R, T, V, E, P, U, Q, and 7 are known at
the initial time t" for all values of k . The difference equations
(Eqs. (A.9) - (A.28)) are then used to determine valuss for these variables
tn'H

at = t? 4 ot for all values of k . The procedure is repeated as

n {is increased until the desired period of time has been covered by the
integration.

The initial values of Q and U are chosen at t" rather than
tn'l/ 2 in the above procedure, but little error is introduced since the
initial values may be adjusted accordingly and the time step At may be
chosen as very small on the initial cycle.

The actual input model consists of a set of R, U, T, and V
values for each zone of the configuration. Initial values of Q, E, P,

Q. and J are then found by use of Eqs. (A.12), (A.14), (A.15), and
(A. 16) before starting the first time cycle.

The set of Eqs. (A.9) through (A .12) depend only on the localized
properties of the fluid and they can be advanced explicitly in space and
time, subject to the limitations on the time increments according to the
Courant criterion (see Chapter2).

The set of Egs. (A.13) th‘rouqh (A .28) must be solved simultaneously
for all of the L zones in the configuration bacause of the linkage between

distant zones caused by the radiative flux. Since the advanced values
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VE_ i/z of the specific volumes are known by advancing Ea. (A.11)

expiicitly, a set of trial temperatures T?fll/z, I=1, o0 L are

estimated, substituted into the Eqs. (A.13) - (A.28), and a Newton-

Raphson iteration schew:n is then used to adjust the >stimated values

of temperature until Eq. (A.13) is sarisfied to a predetermined accuracy.
The iteration is carried out by numerical methods. The equatinrn

of state derivatives, at fixed V , are carried out by raising and iowering

the temperature 2% from its trial value, e.g.:

4E £V, 1,02T) - E{’, 0.987)
AT 1.02T ~ 0.98T (A, 29)

The derivatives of the radiative quantities are computed by a
ripple zone technique in which the temperature of a single zone is raised
2%, the set of Eqs. (A.17) - (A.28) is evaluated and the desired derivatives
formed, and> the displaced temperature is then returned to its undisplaced
value. This procedure is repeated for each zone in the configuration until
all the desired derivatives are available. In practice, radiative derivatives
for zones more than 2 zones distant are small, so that only a 5 zone set «f
derivatives is carried. Neglect of the more distant derivatives does not
constitute a neglect of radiative transfer between distant zones; their
neglect only influences rate of converge:: e of the iteration procedure.

For a systemof L zones, the iteration procedure then resutlts in L
linear algebraic equations in L unknown temperature increments, each
equation consisting of a set of terms invulving 5 of the unknowns. This
array is then solved by direct eliminztinn and back substitutior.. The

temperature increments are then used to adjust the trial values of
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temperature until all temperature incrementis for all zones are simul-

taneously less than 10% of their respective zone temperatures,

The FIREBALL code is written in a programming language called

FORTRAN; the particular vintage is known as FORTRAN 1, Version 2.
The various types of FORTRAN cutrently in use differ from each other
only in minor details. This pérticular version was selected primarily
because it has been in use for s number of yesars, and has achieved a
measure of stability and reliability not to be fourd in the more recent

efforts of the computer industry.

The FORTRAN language little resembles the machine language coding
of a decade ago, and its resemblance to ordinary algebra is so close that
the average physicist or engineer can learn to read FORTRAN with a very
minimum of effort. This aliows one to communicate the solution of a
complicated theoretical caiculation to his fellow scientists in complete
detail and\ complete scientific honesty.

Section A.2 is devoted to a brief discussion of how to read FORTRAN
and is designed for the scientist who is not familiar with this type of
language. The remainder of Appendix A is devoted tc the scientific aspects
of the FIREBALL code and is intended to de independent of the language details.
Readers not interest:d in great detail may thue skip over Section A.2, while
those interested in such detail will find this section helpful in reading the
code itself which is listed in full. The four digit numbers which appear in

parenthesis throughout this appendix, e.g. (0136), refer to serial numbers

{line numbers) ir the code listiing.
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A.2 Reading FORTRAN
Yariables and Constants
Algebraic variables are represented by symbols as in ordinary algebra

and may take on values from about + 1,7 x 10758 to0 # 1,7 x 16¥3% | and
zero. Arithmetic is accurate to 8 significant figures.
Variable names must consist of 1 to 6 characters, the first of which

must ba a letter of the alphabet other than I, J, X, L, M, or N.
Examples: YIELD, X, A47, FI, DIVFAR
Integer Variablaes
Integers are used in subscripts, counting, indices, and sometimes

in exponents. They are represented by symbols of 1 to 6 characters and

must begin with I, J, K, L, M, or N.
Examples: N, J63, MCOUNT
Subscripts
Variables may hava up to three subscripts, but no superscripts. The
subscripts may be positive integers, but not zero.
Examples: X(K* 1): Z(L N)o BB(I:IoK)
Arithmetic Operations

The symbols for standard arithmetic operations are little different

from those used in ordinary algebra:
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X+Y meansadd X and Y

X - Y means subtract Y from X
X *Y means multiply X by Y
X /Y means divide X by Y

Normal algebraic sign conventions are used. A double asterisk is used for
exponentiation, i.e.:

R ** 2 means R2
R ** BETA means RP

Q ** 0.5 means Ql/2

Operations are carried out in the preferential order of first exponentiation,
then multiplication and division , and finally addition and subtraction.
Equal Sian |

The equal sign has a meaning slightly different from algebraic usage,

€.Q.:

XYIELD = XYIELD + (A ** 2) - B
means carry out the algebraic operations to the right of the equal sign and
store the result of this computation as the new value of XYIELD . Note

that the previous value of XYIELD is first used, then destroved and

replaced.

97

e

et o




Baranthesis
Parenthesis may be used to group information, indicate subscripts,

or indicate the argument of a function.

Examples:
(AtB)*C means add A and B, then multiply by C
X(K+1) mneans K+l is a subscript of the variable X

SINF(X) means X is the argument of the sine function

Usually parenthesis will be used for grouping; subscripts can be
recognized because ‘ney are integers, i.e., I, J, K, etc,; functions
can usually be recognized by the letter F and the lack of an arithmetic
operation symbol.

Library Functions
Certain library functions may be called in by name in order to save

programming labor.

Examples:
EXPF(X) = ¢*
SQRTF(Y) = /Y
LOGF(2) = log 2

Program Flow
Statements are processed by the computer in order of occurrence
unless other directions are provided. Formula numbers, which occur in

the first 5 spaces to the left, are not required unless control is to be
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switched to that particular formula. The most common control commands ure:

GO TO 436 sands control to statement 436

IF(X(X) - 3.0) 450, 500, 750 tells the computer to test

the sign of the expression
in parenthesis (X-3) and to
transfer control to statement
450 if negative, 500 if zero,
750 if positive.

The IF statement provides the only means by which the computer
makes judgments.
Subroutines

Complete subprograms, designed to-accomplish a particular set of

computations many times, can be used. For example:

y

CALL STATE

appearing in a program will send the computer to subroutine STATE, the
set of computations indicated in that subroutine will be carriad out, and
control will return to the main program at the statement following CALL

STATE.

Repetitive Operations

To save labor in programming, the DO statement may be used:

DO 100 K=1, 95
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instructs the computer to carry out all instructions following this statement
until stateament 100 is reached. Do this first with K equal to 1 ; repcat
this proceus, increasing K by unity each time, making the final pass with
K equal to 95,

This statement can he used to compute repetitive formulae, or it

can be used to select values from an array of numbers. For example:

TESTV = 1.6 E+02 means set TESTV = 1.6 x 102
DO S0 K=1, 100
IF(X{K) - TESTV) 50, 50, 10
10 XCRIT = X(K) sets XCRIT equal to X(K)
N = K retain the value of K as the symbol N
GOTO 70 exit from the DO statement
50 CONTINUE a dummy statement
XCRIT = 0.0 set XCRIT to zero

70 YSTART = XCRIT + DELTAY the next step in the computation

selects the first X value that is greater than 160 out of a list of 100
values of X, starting at X(1) ,......X(100) . If no such value is found,
then XCRIT is set equal to zero.

The above material has been brief and oversimplified, but should
enable those unfamiliar with FORTRAN to decipher formulae from a program
listing and to follow the scheme of computation. Additional help can
usually be obtained from programmers i{ additional questions of interpre-
tation should arise. Books on FORTRAN are available, but none are

recommended.
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A.3 The computational scheme

The general computational scheme is cyclic in nature, each completed
cycle representing an advance in the time variable.

The method of computation is illustrated in the schematic flcw chart,
Fig. A-2., Each block in this {llustraticn represents a principal feature
of the computation; numbers in the upper left corner of each block refer
to a line number to the far-right of each page in the code listing.

The computation begins by reading in an initial configuration from
data cards. The configuration consists essentially of the initial density, |
temperature, velocity, and dimensions of each of the 100 zones in the
model. The data cards may represent an initial configuration, or the data
might represent the results of a previous computer run on a model that is
being done in short segments.

1f the entry is a restart rather than an initial start, a dummy subroutine
rejust (0693) is provided to make minor changes in program control
parameters without the need for recompiling the major subroutines.

After reading in the initial configuration, the data is tested for
obvious errors (0367), the equa;.ion of state subroutine (0387), the radiati‘e
properties subroutine (0389), and finally the flux subroutine (0410) are
used to complete the details of the initial configuration. The computation
cycle proper is then initiated (0402-0405). The initial time, which has been
modified (0404) , is now restored to its proper value (0123).

A sequence is then used to determine the number pf zones, out of
the possible 100, that are to be used at the present stage of the computatlpn.
(0124-0138). The number of zones in use is continuously adjusted during

the computation to avoid unnecessary computation. When the data is loaded,
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zone 100 must have the ambjent temperature and density ac burst altitude.
The code then probes inward to a point wheare the temperaturce is twicy
the ambient value or the particle velocity reaches 1 m per second. Thao
number of zones in use 15 then arrivaed at by adding a 6 zone safety factu
10 the result of the above selection.

The next sequence (0139-0162) selects the times at which thc data
print-out routine (0833) is called, selects the magnetic tapes to be used
for the data, and sets up the necessary parameters to integrate the total
energy lost by radiation between two data printouts, and to find the radiant
power by differentiation of the 'energy vs time. The data print-out routinc
will be described in detail in Section A.4. The data printout routines
are one-way streets so far as the main stream of the computation is
concerned, Data is siphoned off, but no feed back into the computation
proper occurs.

The sequence (0164=-0177) provides an emergency data saving
mechanism for use in case the computation becomes numerically unstabloe.
In order to provide an economical computation, the time step used must
be just below the critical valu?.- prescr;bed by the various criteria which
will be described in the hydrodynamic routine (0360). These criteria are
not fool-proof, and should the computation become numerically unstable
(or should the computer operator err) , the already completed computation
might be lost unless there were a mechanism for restarting. Once the
calculation has bacome unstable, the data presently in the computer may
be invalid. The present sequence writes the fireball configuration on a
magnetic tape at the completion of each 50 code cycles. Each time another

50 cycles are completed, the tape is rewound and the next configuration
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written. Finally, at the end of the run, the las: configuration rema:..s

on the tape, is read i{nto the computer (0305), and data cards are punched
(0312). Should tnis data card punching process fail, the tape itseif is

saved and the cards can then be pur :hed diractly. At the time of termination
due tO any tvpe of error, data cards are thsn available rot more than 50
cycles back., On occasion, an instabiiity may occur just after a configurat;un
has been written in the tape, in which case the computation is lost. But

this has a probability of occurrence of about | chance in 50.

The next two sequences (0179-01257) salect the rezoning subioutine
(0179) and the zone splitting subroutine (0225)., These sequences will .e
discusced below in Section A.5 dealing with these subroutines. In
principle, one tries to remove fine zuning where it is not needed, and to
create fine zoning when the physics of the problem so demands. Use of
fine zoning throughout is not feasible because of the increased computational
costs and also because the computer can only accommodate & total of 100
zones at one time. If the finest zoning in i;e problem were used throughout,
the entire fireball could not be accommodated. 8o far as is known, other
codes (Brode and Whittaker, private communications, 1965) currently
in use are rezoned manusally by visual inspection. The present sequences
are an attempt to carry out this process automatically during the coinputation,

The sequence (0259-0264) provides for the printing oi detailed .
diagnostics at the initial cycle, the next cycle following, and at one
selected by data card input. The diagnostic routine {1125) is called for

this purpose.
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A termination sequence is provided (0266-0342) which is used whenever
the computation is terminated, except in thosa cases where the normal
course of the computetion is interupted by a machine difficulty or an
operator srror. The termination sequence provides for a final data printout
(0274), the printing of program diagnostics (0273), the punching of current
data cards (0275~0282) for possible restart purposes, completes, copiss,
combines, and unioads various tapes (0283~0326), and punches data
cards containing the configurations from 1 to 50 cycles prior to the
terrination {0303-0319), before completing the run (0343).

The series (0123) through (0345) has dealt primarily with control
mechanisms, rather than the actual computation, which is fesumed at (0346).
In the course of the computation it is necessary to carry most of the program
variables for all mass zones, but only for the current point in time. A few
of the variables must be carried for all space zones, but for two consecutive
points in time. For example, the present value of the specific volume for
zone K is represented by the symbol V(K), while the specific volume from >ne
time~-step in arrears, the retarded value, is represented by VR(K). As the

program cycles, the present value becomes the new retarded value, and a
new "present” value is computed.

The shifting process, in which the retarded values are set equal to

the present values, takes place in the next sequence of commands (0346-0356).

Also in this sequence, the present values of the variables are independently
saved under the symbol W(K,I) for possible use in the event that the entire

cycle requires restarting. The restarting procedure is discussed at the end

of this section.
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Fcllowing retardation of the variablos, a hydrodynanins routine

(0360) s called, which will be described in detail in Section A.€. This

routine advances the velocities, radii, specific volumes, and artificial
viscosities. .

One of the more important steps in the program is accomplished by
a single dummy statement (0364). The first step in solution of the energy
equation (Eq. (A.13)), is the estimation of a new trial temperature for
each zone, 8killful selection of the trial values will make the iteration
process converge fastar and thus spaed up the computation. However, in
an iteration process the gquation being solved is never satisfied identically,
and any prejudice used in estimating the new temperatures may tend to
impose non-random errors in the final results. For this reason, the oid
values of tcmperature are used as the first estimates for the new values.
The 1terau9n scheme itself then, in a sense, becomes a basic part of the
system of equations. As will be discussed later, the iteration scheme used
employs the same set of equations as are used to represent the energy
equation itself. This procedure should tend to minimize any bias.

The iteration cycle proper (0365) begins by testing the set of
temperatures for negative or zero values. Such values are likely to oconr
in the event of a numerical instability, in which case the computation 1sl
immediately terminated through the sequence previously described.

In the next sequence (0371-9387) the equation of state subroutine (1217)
is called on three successive occasions. This subroutine is discussed in
Section A .7. At this point in the computation, the advanced values of
the specific volume ara known for each zone. A trial set of temperatures

has been sele~ted. The derivatives of the internal energy and pressure,
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with respect to temperature, at constant specific volume, are formed by

first increasing the temperatur-es 2% above the trial values, passing through

npman

the equaticn of state to obtain energles and pressures, then repeating the process

after lowering the temperatures 2% below the trial values. The required
derivatives are then formed numerically from the above data (0384-0385).

The temperatures are then returned to the original trial values and a
final pass through the equation of state is made to obtain trial values of
the internal energy and pressure {0387).

Two subroutines are then called to provide the necessary radiative
flux divergences for use in the energy equation. Subroutine SWABZ (0490)
uses the values of V, T, and the dimensicas of the zones to compute
values of the SWAB and Z functions and is discussed in Section A.B. These
vslues are used in subroutine FLUXS (1183) to compute fluxes and flux
divergences as described in Section A.9.

A teméerature test occurs next in the computation, but is bypassed
on the initial trial of the energy equation.

The energy equation itself is then evaluated (0415-0424). Aresidue,

" comprising the imbalance ¥ the energy equation due to the use of trial

temperatures, is computed for dach zone (0422),

The temperatu:e iteration of the energy equation then commences
(0425). Two iypes of iteration schemes can be selected. If the configuration
is entirely opticaliy thia (i.e. the total optical depth from the outer edge
to ths center is less than a given value) a non-radiative iteration (0429)
can e used. Radiative transport is still included in the energy balance,
hut explicit ruaiative derivatives do not appear in the iteration scheme. If

this aitarnative is selected, the temperature increments for each zone are
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computed immediately (0431).

When radiatics is included in the i*eration (0439), the radiative and
hydrodynamé'derivnuves are ca'n-ied only in the inner zones, while only
hydrodynamic derivatives are carried in the cuter zones.

In the radiative iteration precedure, subroutine COEFF {1395) is
called to form the required ccefficients for the solution (0447) for the
temperature increments. This subroutine is deczcribed in Se‘ction A.10.

Once the full sét of propésed temperature increments is known, thay
are tested (0457) to see if they are within arbitrary bounds which have
been developed by experience. Should these bounds be exceeded, there
is a high probability that the time increment usad by the computer was too
large. Program diagnostics are then printed, the variables are restored
to their values at the beginning of the cycle, and the cycle is rapeated
using a smaller time increment. This recycling is allowed 3 times, after
which the cémputauon proceeds even though the test bounds were violated.
If the test criteria were correct, a numerical instability resuits, and the
computation is terminated from one of the several points in the program
where the instability can be positively detected. An instability does
not always occur, however, since the tests are not infsllible.

Usually a recycling occurs when a time increment just slightly too
large has been used and a single recycle cures the difficulty. Use of this
stability check "after the fact” enables the various time step selection
criteria to be pushed close to their limits. Use of large safety factors
in these criteria, as is the common practice, would be prohibitive as
the total computation time would be seriously increased. If the proposed

temperature increments satisfy the stability tests, they are accepted and
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the trial temperatures are modified accordingly (048S).

These new temperatures become a new set of trial temperatures
and the iteration oycia {5 begun again (0367). The iteration convergence
test (0409) is made well into the second and subsequent passes through
the iteration sequence. Should the test be satisfled, then the best values
of internal energy, pressure, and fluxes, etc., are available as the cycle
is completed. If the test is fatled, the iteration cycle then progresses with
all the necessary cata. The code as written performs some unnecessary
computations in that the state derivatives are computed but not used if
the convergence test is saticfied. This technique was a compromise
between several alternatives and was adopted because it required less
computer storage at a period when the program was storage limited.

The actual convergence test used (0408) consisted of the requirement
that the temperature increments for all zones be simultaneously less than
10% of their respsective z0ne temperatures. This method proved to be
more efficient than several other methods tried which were based directly
on tha degree of imbalance of the energy equation.

The number of passes through the iteration sequence is limited to
3 on any ona code cycle (0418). It is a characteristic of the Newtoa method
that convergence takes place very rapidly or not at all, and that on odd
aumbsr of attampts is usually bstter than an even number. Should an
abnormally large temperatute increment occur after 3 iterations, a
convergence chack at the beginning of subroutine HYDRO detects this
and forces a smaller time step on the following cycle. This test differs
from the main program stability check in that it is applied only after

3 full iterations and uses sirictar critaria.
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A.4 Data printout routines

The data printout sequence is contained in subroutine CGSPO (0833),
This routine samples the data from the coinputation proper, generates
additional parameters of inierest from this information, and produces twc.
magnetic tapes: the main listing and the user tape.

Ths general probiem of determining observables from a list of
temperature and density values is a difficuit one. Many of the "observable”
parameters generated by che printout routine are extremely crude and must
be used with extreme caution. These “obseirvables” have been printed
below the main tables of data and include the shock radius, fireball
radius, effective temperature, color tamperature, and the spectral
distributions. For example, the code defines the fireball radius (FBR)
as the radius at which the optical depth is 0.44 as measured from outside
the ﬂrebal*. This simple definition is easy to code and is useful radius
to have printed out. But for comparison with an experimental radius
measured photographically, a completa brightness profile is required for
comparison with the corresponding densitometer traces from the experimeni.

The routine begins by tasﬂng for temperature 1nver§10ns (0864) and
causes program diagnostics to be printed if such inversions are found.
Placement of this t.ést in the printout routine causes the diagnostics to
coincide in time with the data printout so that any unusual fieatures seen in the
listings may be studied in dstail.

In the sequence (0868-0874) a number of variables to be printed out
are set up. This sequence works in conjunction with the sequence (0139-
0162) in the main program. The variable CN(L2) is the average time step
between two successive printouts. The variable SAVEL is the value of

the last time step before the printout, The total power being radiated
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in watts (POWER), the color temperature (TCOL), and the effectivs

.i. temperature (TEFF) all depend upon the value of the total flux (TFLUX)
which is the power being radiated in ergs. TFLUX is computed in the

: ‘ main program: (0155). The instantaneocus total flux at the end of each
cycle is called FLOX and is summed continuously (0123) throughout the
computation and called FLEX. The average power TFLUX over the time

interval between printouts is obtained by numerica!l differentiation of
FLEX (0155). This method gives more representative results for the
power output since the instantansous power tends to fluctuate due to the
finite zoning of the model. The instantaneous total power corrasponding
to the time of a given printout can easily be obtained since the radius
and outward flux at the last zone are available from the printout.

Tha code definition of the effective temperature (TEFF) is defined
(0874) from '

TFLUX = 4n (FBR)? o(TEFF)*

where ¢ = 5.67x 10 0 = Stephan's Constant.

It is the temperature of a black body radiation having the scme size

as the firebzall and which emits the same total power. This temperature
is a minimum estimate of the fireball "surface" temperature sin ce the

1
g fireball does not have an emissivity of unity.

v-.—.--rf...;v‘"._,.v.r.,«.

The code definition of (0873) color tempsrature (TCOL) uses an

1 .

g estimate of the total emissivity and yields a higher temperature which
can be used to describe the spectral character of the radiation escaping

from the fireball. The emissivity estimate is based on the Z‘ function
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for the zone having the largest '\ ¢ and the radiation temperature for
that same zone (0689).

After the fireball beromes transparant in the continuum, the effective
and color temperatures are no longer defined since their definitions
involve the fireball radius, and by the code's definition, FBR®=0 under
these circumstances.

At this point (0875), the printout routine calls subroutine PHOTOG
(1061). This routina computes an estimate of the photographic brightness
as a function of radius. Using an approximate fit (1073) to the absorption
coefficiant for the "photographic® region of the spectrum, and a Planck
function (1083), the emitted intensity is calculated for chord rays which
are tangent to the mid~point of each mass zone. 3ince the spectral band
width of the photographic region is unspecified, only relative brightness
values are obtained. The briglithess scale, howaver, remains fixed
throughout tl:ne antire computation. It is clear that only an estimate can
be obtained from this computaﬁo‘n since the absorption coefficient is not
independent of wavelength across the photographic region of the spectrum,
and also because the appropriate absorption coefficient data ure not
available at temperatures abova 20 eV. The data i{s useful, however, in
making comparisons with experimental resuits and in finding the gross
brightness variations across the fireball.

The CGSPO routine next makes an estimate of the spectral distribution
of the total radiation emitted by the firebsll. The code decides (0877)
whether the fireball is optically? thick or i3 trangparent. If the fireball
is transparent (0878}, no realistic estimate cf the spectral distribution

can be made since the spectrum consists of emission lines and a weak
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continuuin. An extremely crude estimate of the "visible power”

(4000-7000 ) can be made by noting that fireballs tend to form an
isothermal region at these late times. Most of the emitted radiation !
must come from this isothermal region cince it is the hottest part of
the fireball. These isothermal region temperatures range from 9500°K
down to 5000°K as the transparent fireball cools. If it is assumed that
the envelope of the emitted spectrum crudely approximates a Planckian
distribudion, then 37 + 3% of ths radiation will fall in the "visible" region
of the spectrum over this entire range of temperatures. Hence, for the
transparent case, the visible power (P47) is taken as 37% of the total
power (0878).
H the firsball is optically thick (0888), then the color temperature is
used as a basis for division of the total power into broad spectral bands
{(0889-0939). The formula for the z‘ function, which very nearly approximates
the fractional Planck funcnzn in the visible and IR spectrum, was used in
place of an accurate fitto f %\ d)\ as an analytic fit to this integral was
not know to be readily av’hilable. The accuracy so achieved is probably
better than the physics of the spectral estimation process. The overall
results are of a quality comparable to those achieved by assuming the
sun to be a 6000°K black hody.
The next sequence (0944-0963) performs an energy check by summing
the internal and kinetic energy of the current configuration. The sequence
computes the internal enargy and the kinetic energy zone by zone, and i.
also the internal energy of the volume ox space currently occupied by the

configuration if there had been no detonation. This “ambhient® energy of
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the undisturbed air constitutes a significant part of the total energy of
the configuration, particularly at late times when the radius of the
configuration is large. It must be taken into account in studying the
energetics of the model.

The code has no built-in method of forcing energy conservation,
The energy check sequence is simply an after-the-fact sampling to see
if energy has been conserved. If the difference equations do in fact
represent the basic conservation equations, then mass, energy, and
momentum will automatically be conserved.

The energy accounting at any one moment can be verified by adding
the present model energy due to the detonation and the thermal losses up to
the given moment. The quantities TOT ES, EAMB and TYIELD are printed
out and are the appropriate numbers to use for this purpose. TOT ES in
the printout is the total energy, (DPP(LZ) in the code (09 59),) and includes
EAMB, the en‘ergy content of the cold air before the detonation. TYIELD
in the printout, (FLEX in the code (0 139)) is the total energy radiated
outward across the outer boundary of the mode!l from the time of
detonation up to the present time. In genecal, the code coﬁserves energy
to within a fraction of 1%.

Sandwiched in the energy check routine are some operations which
concern the printing .out of shock parameters. (0955-0958). It should be
remarked that the location of shock fronts in a numerical configuration is
a difficult problem because of the varying number of shocks and the wide
range in their characteristics. Many methods were tried, but with limited

success. Shocks are best located by a careful study of density vs. radius
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and veloecity vs. radius graphs,

Tha location of a strong shock is determined by thae program by
finding the largest value of the artificial viscous pressure , with the
added requirement that it be larger than the ambient gas pressure at
burst altitude. This shock radius is printed, but cannot be relied upon
without further inspection to see if a shock really exists at that radius.
This simple technique will print out the location of one shock, but it
may not select the same¢ shock on consecutive printouts.

The secunnce (0978-0991) simply changes units and sets up certain
quantities in proper form for priming them out. For example, (0987)
computes the effective value of "gamma, * while (0984) yields the
temnerature in electron volts.

< sequence (1001-1016) prints out the main listing, while the
sequence (1022-1029) prints out the user magnetic tape for use in

continuation computations such as fireball environmental studies.

A.5 Variation of the number of gones in use

It has been said that there are three major problems to be solved in
writing a fireball code: the basic physics, the interpretation of the
results, and the use of proper zoning. Proper zoning is by far the most
difficult of these problems. One simply cannot use a fine mesh throughout
the configuration as the computing time increases approximately as the
square of the number of gones, i.e. halving a zone halves the time step
and doubles the number of computer operations, thereby requiring four

times as much computer time.
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In the other extreme, if the model is represented by zones of equal
size, some of the zones may be too large to properly represent the
gradients in physical properties.

Consider, for example, a model where the fireball has a radius of

3 om and may require zones of width 10”1 cm at the fireball boundary.

10
Since the computer can accommodate only about 100 zones at a time, the
zone obviously cannot be of equal sizge. Furthermore, use of a 10'1 cm
zone in the hot isothermal region would slcw the computation by at least

a factor of a hundred, and perhaps a factor of ten thousand or more.

Ideally, new zones should be created and old zones combined in an
optimum manner based on the local physical conditions at each point in
the configuration. The subroutines SPLIT (0785 ) and REZONE (0701)
are provided for these purposes.

In the split subroutine, the zone indices for the zgones exterior to the
zone to be sﬁllt ara first shifted outward (0789-0808) to make room for
the new zone.

The zone is then split in half mass-wise (0810-0811). The particle
velocity at the new interface is taken as the square root of the average of
the squares of the particles velocity at the boundaries of the original zone.
The temperature of the two new zones are displaced 10% above and below
the temperature of the original zone, (0824-0825) and a similar treatment
is accorded the internal energies (0826-0827).

This routine must be considered as only a crude beginning and much
work is still being done in developing new techniques. The present
routine can only be used before the gradients become large, and even then

its use should be discouraged.
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The calling sequence fer the SPLIT subroutine occurs in the main
program (0228-0287). Btatements (0228 and 0248) prevent a split more
often than each third eycle. Statement (0231) requires a split at any time
that a single zone represents more than 8% of the radius of the entire
configuration.

The real purpose of zone splitting is to provide very fine zones just
ahead of an advancing shock front so that the optical properties will not be
too severely distorted. The sequence (0232-0244) attempts to achieve
this goal. Optical depth 0.7 from the outside is located {0232) and this zone
is tested to see if it is being compressed (0235). Then if the particle
velocity {s greater than 10s cm/sec as is characteristic of optically thick
shocks, the five zones immediately exterior are scanned and one per cycla
can be split, until a certain minimum zone size is reached. Once the
shock has started, the splitting takes place 5 zones ahead of the shock
until the shock becomes transparent. The minimum zone size has not yet
been formulated in general terms, and must be re-programmed in for eac1
separate run. In the program listing (0240) a zona of 200 cm or more can
be split, resulting in a minimum zone size of 100 cm. This is about
appropriate for a megaton burst at sea level.

As a final insurance against undesirable zone splitting at high altitudes,
statemont (0244) prevents splitting at temperatures above 6 x 104 %K.

Subroutine REZONE (0701), which combines two existing zones is on
a much more sound basis. Conservation of mass in the zone combining
process is trivial (073S), but the conservation of energy and momentum are

slightly more complicated. The internal energy of the new zone is taken
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as a mass weighted average of the internal energies of the two zones being
combined (0733). The conservatiam of kineiic energy and momentum for a
four zone system (0709-0712), which is collapsed into a 3 zone system,
results in two equations for the two unknown particle velocities at the
inner and outer edges of the combined zone.

The remainder of the subroutine REZONE consists of a shifting of
indices for zones exterior to the fusion, and the addition of a new zone
100 at the outer edge of the configuration.

While this routine works well and quite accurately, some skill is
required (but not always attainéd) in deciding when rezoning should take
place.

The calling sequence for rezoning is in the main program (0179-02"4).
On the basis of optical properties (0182), the outer limit of the region to
be scanned (the index NZ TS) and an allowable mass ratio for neighboring
zones (PMT) are selected (0181-0202). If at least two cycles have passed
since the last rezone (0204), zones 9 through NZTS are tested for size
compared to the size of the entire configuration (0205), temperature
gradient (0208), density gradient (0207), and mass gradient (0208). If
these gradients are less than the allowable artitrary limits, then rezoning
is allowed so long as the zone 18 not undergoing significant compression

(0209).

A.6 Hydrodynamics routine

The hydrodynamics routine (1261) is patterned after the artificial
viscosity method of treating shocks (see Chapter2’). In addition to
advanaing four of the basic equations, this routine aiso controls the size

of the time increments and performs misgellaneous other functions,
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At the beginning of the routine, the previous temperature increment
is tested (1273) against the temperature, and if the increment is toc large .
the proposed time step is cut a factor of five (1277). This test serves
several purposes depending upon the values of the previous temperature
increment that may be stored in the computer at the moment. If a maincycle
has been completed satisfactorily, i.e. all temperature increments are lass
than 10% of their respective temperatures, then no decrease in estimated
time step takes place. If, however, a main cycle was completed after
three passes of the energy equation, the 10% requirement may not have been
satisfied, i.e., the iteration may not have converged. Should this be the
case, then the time step is shortened in the hope that a numerical
instability can be avoided.

If the main program stability check (0457) is violated, the program
returns to the beginning of that master cycle after restoring all data
except the temperature increments. Then, since the HYDRO tests are
slightly more demanding than are the main program tests, the time step
will also be decreased when the main program senses a difficulty.

The equation of motion sequence is carried out in two separate
phases which are separated by criteria to choose a new time increment.
The particle velocities are flrst advanced using tite previous value of
the time step (1289) so that proper time centering of the difference
equation (Eq. A.9)) is maintained.

A new time increment is then selected (1298-1335). First a time
step 30% larger is suggested (1299). This value is then reduced should

the Courant criterion, Eq. (2.5~4), demand that a smaller value be used
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(1302-1310). The time may be further reduced by a radiative cr;terion
(1314-1326). Gross checks are then imposed, as a safety factor, which
demand that the new time step can never exceed the previous one by more
than a factor of two, or be less than a given minimum value (DTMIN).

The value of DTMIN is continually increased during the computation and

is kept a factor of 50 smaller than the largest time step that has been u:ed.

Should the speed of computation decrease more than this factor of 50, too

large a time step (the value of DTMIN) is forced into use and the computation

may become unstable and turn itself off. This feature prevents the waste
of computer time should the time step conditions become abnormally
critical at some point in the configuration.

Superimposed on these criteria is the mechanism for causing data
to be printed out exactly at fixed predetermined times (1333-1335). This
criterion may further decrease the time step.

After a new time step has been decided upon, new values of the
particle velocity are determined by linear interpolation (or extrapolation)
50 that proper time centering of the equation of motion is maintained (1337),

The radii (1344) and specific volumes (1362) are then advanced in a
straightforward manner. The new radii are tested before adoption (1348)
to prevent sudden zcne collapse should the estimated hydrodynamic time
step be too large. A local recycle with decreased time step is then
instituted (1358).

It is perhaps appropriate to again mention that the use of large
safety factors in the time step criteria result in the use of large amounts
of computer time. Considerable economy is achieved by lowering the

safety factors, testing the proposed results before closing a cycle,
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and re-cycling when necessary. Using this technique and with a little
aexperience, the cude can be kept running at near optimum speed.

The sequence (1372-1385) advances the artificial viscous pressure .
A variety of formulae are available in the literature for this purpose. The
formulae used here is similar to that given by Richtmyer (see Chapter 8
references). This form appears to give better results when shocks reflect
at the center of the sphere than do the "linear" and "quadratic” forms. In
the final analysis, the use of an artificial viscosity is an art and an

adjustable constant (1374) is available to achieve optimum results for

any specific situation. Use of too small a constant causes numerical ripples

behind the shock, while use of too large a value spreads the shock-over too
large a distance and lowers the shock velocity. According to Richtmyer,
choice of the arbitrary constant in a manner so as to spread the shock
discontinuity over 3-4 zones results in shock velocities and pressures

that agree well with laboratory experiments.

The use of an artificial viscosity causes a ficticious precursor ahead
of the shock front. If this precursor is optically thick, the shock radiation
rate will be affected. This effect reduces the rate of radiation loss when
the shock temperature is large, but numerical testing has shown that it

has little effect on the shock energetics.

A.7 Equation of state routine
The equation of state subroutine (1217) is entered with known values
of the temperatures and specific volumes for each zone, and values of

pressure and interval energy are computed.




The source data for the analytic fit to equation of state are
primarily due to Gilmore (1955) and to Hilsenrath and Beckett (1955). This
polynomial type of fit, though in principle not as accurate as an iterative
routine, is preferred for computational purposes because the derivatives
are well behaved. This fit is aiso self consistent in that the hugoniouts
are closely satisfied, while some of the piece-wise fits, that are accurate
over limited ranges, fail in this regard. No significant inaccuracies
are known to have resulted from use of this simple expression.

There is some question as to whether radiation pressure and the
radiation energy density should be included in the equations of state
(see Chapter 2). The subroutine STATE allows an explicit choice to be
made in this regard (1222-3). These effects can only be important at high
temperatures. The argument against including these effects is that at the
high temperatures the matter and the radiation cannot be in egquilibrium
according t\o the local high temperature since the gas 1s too transparent.
The radiation field is characteristic of the lower temperatures where the
opacity is higher. To base the radiation pressure on the higher values

of temperatures in the interior would thus be an overestlniate.

A .8 Radiative properties routine

The radiative properties of the fluid, which are characterized
by the S, W, A, and Z functions, Eqs. (A.17) through (A.25), are supplied
by subroutine SWABZ {0492-C692). The analytic representations of the Z
and A functions, which differ only in that the electron scattering is omitted
in the A function, are formulated in terms c;f XH' a radiative mean free path

which depends upon the zone tempereturs, zcne specific volume, and the

time.
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The Z~ function (2I in the code) is formulated directly as a
*
transmission (0500-06507). The A function cannot be formulated directly
in this fashion since In A is needed to define optical distance, and

truncation errors would occur as A~ 1,0, Thus ) (HMFP in the code,

H'
is found (0508-1511), togather with a separate high temperature emission

tarm (0512) due to Bremsstrahlung (HMFF {n the code). The smaller of

these two mean free paths is used for temperatures above 10 eV (0514).

The emissicn optical depth (0516) then follows immediately from the
zone thickness. The A function (0517) at this point in the code is identical
with the definitions used in Eqs. (A.21) and (2 .5-14). A later sequence
(0670-0675) redefines A as (1-A) (an emissivity) as a computaticnal
convenience for zones of smail emissivity.

The variables BC and BB 91518 and 0526) are used to represent the
source function at the zone centers and zone boundaries respectively. It
will be noted that the boundary value is determined by linear interpolatior
of the source function in tsrms of geometrical rather than optical distance.

The two methods yleld substantially the same results when the two neighboring
zones have comparable optical thicknesses, but the geometrical method

gives better values when an optically thick zone Occurs next to an optically
thin zone. The terms involving the boundary values cancel if both zones

are optically thick, while the source function gradient is small for two
transparent zones, so that the method of interpolation is not important in

these cases.

The sequence (0536-0563) computes the optical depth inward from

The double subscripting, i.e. A{(K,N) has been carried over from an
earlier version of the code in which N spectral bands were used.
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the outer boundary of the configuration and sets various control variablaa
used by the program &! other locaticns. The index LZR specifies the last
zone to be included in the radiative part of the iteration scheme. The
fireball radius, FBR, is set as the outer radius of the zone in which the

total optical depth as measured from the outside has reached 0.44. Choice
of this value has no particular significance. For high air densities the
optical depth increases abruptly so that any re isonable test value will
result in choosing of the same zone to spacify he radius. For rarefied
atmospheres, considerable limb darkening takes place and chord integrations
would be necessary to find a precise radius, The test value of 0.44 has
been found to yield radii satisfactory for the intended applications elsewhere
in the code. The index MCP i3 used to specify the zone in which optical
depth unity occurs as measured along the representative ray. (This
corresponds to a radial optical depth of 2/3).

The se‘quence (0564-0607) computes the wavelength at which the
principal spectral absorption edge occurs for each zone. This wavelengtt.
depends only upon the physical characteristics of each zone, i.e., its
temperature, density, and zone thickness. Zones are first sorted
according to temperature to determine whether the spectral transition
is due to an atomic sﬁecles,. the nitrogen molecule, or the oxygen molecule.

The transition edges due to atomic species are in the far ultraviolet
and a fit will be required only at very high altitudes when the fireball is
transparent throughout while the temperatures are high enough so that the
Planck function is significant in the ultraviolet. This fit usad by the code

is therefore very limited in its application.
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The nitrogen and oxygen molecular formulations jnvolve a continuum
with a relatively sharp long wavelength Umit, and an exiensive system or
molecular bands extending from this limit toward longer wavelengths., The
continua are assumed to exist at all timss that the molecules have
sufficient population, but the band systems, which depend upon the
population of the higher vibrational levels, are assumed not to exist until
the passage of a vibrational relaxation period.

While in principle the relaxation time should be measured from the
time that each zone is first heated (actually the temperature-time history
should be taken into account), a satisfactory first approximation is given
by uce of the time since the detonation. The relaxation time for Nz at
sea level is taken as 5 x 1077 sec and for 0, as 3 x 10”7 secs. These
times are scaled inversely with the density to obtain the relaxation
times at higher altitudes. These times are based on data by Blackman (1956).

The absorption edge and t‘he continuum absorption due to a particular
species must fade away as the population 1is diminished by dissociation.
At a given density, the population decreaseas very rapidly with temperature
as soon as kT becomes comparable with the dissociation energy. Due to
the finite zoning structure, the population of a particular specie will be
appreciable in one zone, but negligible in a neighboring hotter zone due‘
to the rapid temperature dependence of the populations. Thus, for the
purpose of computing absorption edges, the species can be assumed to
exist below a certain temperature and not to exist above that temperature.

The dissociation is thus assumed to take place at a temperature rather than

over a narrow temperature range. The dissociation temperatures for N2
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and 02 , as a funciion of density, are represented in the code by two
formulae (1708-1709) and are used in the SWARZ subroutine (0572-0580),

The sequence {0612-0659) computes the Z' values (2O in the code).
The z‘ function depends on A c which has been determined above, and
the temperature Th used to describe the speactral distribution of the
radiation incident upon the zone. The sequence (0622-0642) selacts this
temperature for each zone. In the case of an optically thick firaball, this
temperature is that of the first zone at optical depth greater than 0.7 from
the zone in question (0628). For a transparent fireball, where the radiation
comes {rom a shell rather than from a "surface®, the temperature is taken
as an optical depth weighted average of the zones intericr to the zone in
question (0624). This "shell source® sequence is important only at high
altitudes where the fireball ia transparent, and when the temperatures are
stii]l high enough to have radiative flow in the far UV region of the spectrum
where the ;bsorpuon edges occur.

The z’ values are corrected for the effects of intervening zones
between the source of the radiation and the zone in question (0655).

The sequence (0676-0688) becomes effective at ver‘y high altitudes
when the configuration is quite thin and thermal radiation plays only a
minor part in determlhing the temperature distribution. Under these
circumstances, the series expansion of the source function should not be
truncated and derivatives of higher order than the first should be included.
But since the radiation is of little importance in this case, the series can
be further truncated so that only the zero order term is used and the code

automatically switches over to radiative transfer for isothermal optically

thin slabs.
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The variable EMS (0689} is used as an estimate of the total emissivity.

It correzponds to the Z function for that zone having the maximum cut-off

wavelength, but without correction for intermediate zones -

A.9 Radiative flux routine

Since all the needed data has been generated elsewhere by the code,
the radiative flux routine is particularly simple {1183).

To perform the flux integration a boundary condition is needed. For
this purpose, the inward flux incident on the outer boundary of the
configuration i3 chosen as zero (1190).

The inward flux at the boundary, one zore inside, is given by the sum
of the transmitted and emitted components (1193) as in Eq. (A.27). The
integration continues inward uniil tha spherical central zone is reached.

The outward flux fo.r this zone is the sum of the transmitted inward flux

and the local emission (1195). The intagration then proceeds outward (1197)
using Eq. (A.26). One can view this process as an integration starting at
one side of the firaball, passinj through the center, and then on out the

other side. All of the inward and outward fluxes needed to form the radial
componant oi the flux divergences (1211) are generated during this integration.

It should be noted that this subroutine is written acain for N spectral
bands, and that the total directional flux at a given boundary is obtained by
a suxpmatton over the spectrum, even though only 1 spectral band is used
by the present code. In addition, the A function used in (1193-1198) does
not correspond to the transmission function used elsewhere in the text,

but to (1-A) as explained in the SWABZ subroutine.
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The energy Equation (Eq. ( A.S )) is solved by an iterative method as
described by Hillendahl (1964). Subroutine COEFF (1395) parforms the
necessary algebra to form the required derivatives.

The basic approach s to compute the derivatives numerically by a
ripple zone technique, rather than to derive and to code explicit formulae
for the derivatives. In using this technique, the temperature of a single
zone is increased 2%, then formulae identical to those used in subroutine
SWABZ are used to calculate those radiative properties which change as a
result of this temperature increment (1429-1576). A flux integration is then
carried out (1577-1593), the flux derivatives are formed (1614), and the
perturbed variables are returned to their normal values (1627) which were
saved (1411). This ripple zone process is repeated until all the required
derivatives are available. Durivatives with respect to zone temperature
more than tyvo zones distant are truncated.

The energy aquation derivatives, including both the radiative and
hydrodynamic parts, are formed numerically (1647). The data is then
available to form a set of linear algebraic equations for the temperature
increments of the zones.

This matrix 1, then solved by direct elimination and back substitution
using recursion formﬁlae {1673) and (0447).

This numerical method of solution, involving the ripple zone method
cf obtaining flux derivatives and the step by step formation of the energy
equation derivatives has been found to be both convenient and economical.
If details of the radiative properties or flux formulae are changed,
duplicates of the new formulae are simply inserted into the coefficient

subroutine without the necessity of deriving explicit formulae for the

vt St S o




derivatives, which in some casas, have as many as 40 terms. Such lengthy
formulae are difficult to derive and code without errors, and the sorting of
terms to avoid arithmetic truncation difficulties is a major task. Since the
actual number of operations to be carried out by the computer is approximately

equivalent in the two methods, the numerical technique is to be preferred.

A.10 Code listing

The pages following present a complete listing of an actual working
radiation-hydrodynamic code which has been described in sections A.1-A,9,
No attempt has been made to edit the listing for publication purposes since

this practice quite often results in the publication of codes that do not work.
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] FORTRAN
CFIRE |
C MOODIFIED DIMENSION STATEMENY NSZ=1 ONLY

(g Xelg]

OIMENSION T(101), 7SC100)., TPC100), TM(100). TR(100).
2 PACLI00). PC100), PSCL100). PP(100). PM(100). PRC10D).
3 0EC100)., EC100), GMC100)., EPC100), EM(100), ERC100).
4 00100), v(1002. vS(i00), RHWOZ(100}.UC100). VR(100),
SOR(100).0(1),RC101), RZC100). R2(1003, UAC100)., URC100).
6 OTM(100), DTR(100), OTHC(100), DPYC100), OETC100)., RR(100),
7  ZMASC100),0IVFAC100),01VFR(100),RESOUEC100).FP(100), FZ(100).
8 FM(100)., FMM(100), HZC(100), WP(100), HWPPP(100).HPP(100).
9 DMM(100), OMC100), 0O2(100), OPC100), OPP(100). BWC100).
1 CN(100).ON(100).ENCI100).ETAC100).XSC(100).GNUC100),PART(!00)
OIMENSION THETAC100)

STORAGE FOR RADIATION VARIABLES

DIMENSION 88(100.10), OTAUC100.10), S(100.2). FOC100,10),
1FOT(100.10).FICL100.10), FITC100.10). 20€100.10).ZI1C100.10)
2.,A(100.10). w(100510), 8CC101,10), FISC100), FOS(100).
3CWL(100. 2).YMC10U). TAUC100, 2)

COMMON T,.TS:. TP, TM, TR.PA,P,PS,PP,PM,PR.DE.E,.GM.EP,EM.ER, Q. V. VS, RHO
2Z,U. VR, OR.D,R.RZ.R2. UA.UR. DTM, DTR.OTH.OPT.DET.RR, IJMAS.DIVFA, DIVFR
3.RESOUE,.FP,FZ,FMs FMM, HZ, HP, HPPP, HPP, DMM, OM, DZ. DP. OPP. BN, CN. DN. EN
4,ETA. XS, GNU:PARY, THETA, XGU. XGP
5.88.0TAU.S.FO.FOT.FI,FIT.20,Z1,A,¥,BC,FIS,FOS.CWL,YM, TAU,NS2,

6 NZSS: LZ.LZM1,LZM2.L2P1.LZP2,BR:RJ.RX.NCW.NMC.NT1.FLOX,FLEX.
7TIME.OT,CS.CR.RS. MCL . MCP. MCVW. RM, VO, ZA. N3, NQS, FBR,LZR, DTMIN, NR
0.KZ1.KZ22, K23, K74.K25,K26.K27,K28,KZ, TDO2. TDON2.NOP, SCALE.EMS.
9BLANK . AST, TEE.PLUSOPEleoDASHoEWALUles-FFF.M.PPP;NT“PE- TIMEW
S-;FLU*.FLIX. TIMES.P03.P34,P45.P57.P71.P47.047.Q71 . WKT, YIELD, XYIELD

KZ6=0

REWIND 41

REVIND 31

REVIND 32

REWINDG 22

REVIND 42

REWIND 25

BLANK=60€06 0606060

AST=5435454545454

PLUS=202020202020
PERI00=333333333333

0(1)=0.0

TIMEW=1,0E-10

FORMAT(17HCONTROL DATA RUN 9[4,6X,E10.3,11A12
FORMAT( 1 4HCONSTANTS RUN 12,7H CYCLE 14,1X,1P3E12.5,.0P4F4.2)
FORMAT(17HOATA CARDS CYCLE 14.10X, 10HRUN NUMBERI3, 10X SHSET A/
1014, 1PSE12.3,1PE11.4.52.13))

FORMAT(17HDATA CARDS CYCLE 14, 10X, 10HRUN NUMBERI3, 10X.SHSET 8/
1(14, IPSE12.5. 1PE11.4.12,13))
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0001
0002
00c3
0004
0005
0006
0007
0008
0009
0010
6011
0012
0013
0014
0015
o016
0017
o018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034

0035 -

0036
0037
0038
0039
0040
0041
0042
0043
0044
004S
0046
0047
0048
0049
0050
0051

et .




44 FORMATC(IN .6H MODE=14/6H NMC=14/6HNIONE=[14/8H4 NQS=[4/6H MCL=]4/
44 16M RS=1PE11.4/64 TIME=E11.4/8H OV=Ell.4/76M CSs=E11.4/76H CR=
44 ZE11.4/64 BRsE1[.477H TIMEL=IPEL].4)
43 FORMATC(1M1,214,1PE12.3. 19, 1PGE12.3/(14,1P12E10.3))
:; l?ms TCOIM 1OHZONE SPLIT AT NMCel4,SX. SHTIMESIPEL]1.4,.3X.SHIONE=14,
49 FORMATC1H]1 . J0X. 4HRUN=[ 4, 15X, 20108 POWER (ERGS/SEC)/6H CYCLE. X+ 4HT
48 2IME 3N 120 13Ne 120 13X 120 13X0 12, 13%s 124 13X [24Xo 1 IHTOTAL POVWER. 3X.
48 JEHRADIUS/ 15X, 76A1)
49 FORMATCIH , I1SHREZONED AT NMC=14,SX.SHTIME=IPE(1.4.5%, SHZONE*[4,17)
S0 FORMAT(14,1P3E13.9)
NS2s1
REVIND 1S
REVIND 16
READ INPUT TAPE S.40,NR,MODE.NMC.NLP.NDD,LZ,NZONE.NQS.MCL, TIMEL
1, BLANK. AST. TEE, PLUS, PERIOD. DASH, EQUAL . PINUS. FFF, UUU, PPP
PRINT 8321, MCL.TIMEL
8321 FORMAT(34H NORMAL TERMINATION CONDITION NMC=[4, 10X.SHTIME=1IPE]2.3)
WRITE OUTPUT TAPE 135,12348.NR
12345 FORMAT(INL//7/7777777/71KH 40X, 32HR W HILLENDAML PALD ALTO 201
1234517714 . 40X, IIHPRODUCTION OUTPUT LIST RUN NUMBERI4)
READ INPUT TAPE S.41.NR.NMC.TIME.DT.FLEX.CS.CR:BR.RS
NSTART=NMC
DTMIN=DT
NEG=NMC
MCOC=NMC+S0
NMAG=MCOC
JXC=0
NHCS=NMC
TIMESsTIME
FLIXSFLEX
NSTOP=(
NRZ=30
NB=14
1PS=0
LIMI=L 2-1
LZIM2=1.2-2 )
IFC(MODE-1)1,1.1000
1 CALL ENTRY
WRITE OQUTPUT TAPE 6.44 MODE.NMC.NZONE,NQS,MCL.RS. TIME.DT,CS.CR,
18R, TIMEL
FBR=R(100)
RTEST=R(1)
NPL sNMC
GO '0 1036
1000 READ INPUT TAPE S.42.NMC.NR, (NMC,R(K) UCK). VI(K).QCK), T(K).P(K).NR,
1000 IK.X=1,100)
READ INPUT TAPE S.43.NMC.NR. (NMC,RZ(K),R2(K). ZMAS(K)., m(K)-MZ[KJ
I.TR(K)-W.K-KII.IOO)
READ INPUT TAPE S.30.NR.TIME,. TEE.WKT, TON2, TDO2
READ INPUT TAPE S,S0,NR.SCALE.EQUAL.Q71,.G47. TIMEW
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0032
0033
0054
0033
0036
0057
0038
0039
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085

0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
o100
0101
0:i02
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4
1
NB=NMC+ 1 03103 3
LZ=100 0104 :
NLPaNLP+2S 0103
DTMIN=DT«Q, } 01086
CALL REJUST 0107
1P§=90 0108
NPL =NMC 0109
1034 WRITE OUTPUT TAPE 6.1035,0T,DRC1), (K.RCK),RHOZ(KY, VIK), TCK).UCK).Q 0110
1(K3. ZHAS(K ) OR(K ), K=1,100) 0111
1033 FORMATCIHL, 1OHINPUT DATA, 10X, 3HOT=E12.4,5X, IHOR=E12.4/3H K.2X.4HR 0112
1L ). 8Xe ZHRHOZCK ) » SXo 4HVEK) 2 BX. 4HTCK ), BX, 4HUCL ) BX. 4HOCK) . 8X. 7HZMAS 0113
1{X). 5. SHOR(K) /(14.1PBE12.4)) ng
115
WRITE OUTPUT TAPE 6,44 ,MODE.NMC.NZONE.NGS.MCL.RS. TIME.DT,CS,CR. 0116
18R, T IMEL 0117
FBR=R(100) o118
RTEST=RC1) 0119
1036 NTAPE=]S 0120
GO TO 3000 0121
C MASTER CYCLE RE-ENTRY POINT 0122
2000 TIME=TIME+DT 0123
C ROUTINE TO CHANGE NUMBER OF ZONES IN USE * " LIMIT 100 ZONES 0124
10 00 14 J=1,100 . 06125
K=101-J 0126
IFCUCK)-1.0E+02) 11.12,12 o127
1 IFCTCKYI-2.02TC100)) 14.14.12 0128
12 LZsK+6 0129
13 GO TO 16 0130
14 CONT INUE 0131
15 LZ=100 0132
16 IFCLZ-100) 18.18.17 0133
17 1L.2=100 0134
18 LZ¥1=LZ-1 0135
19 LZM2=LZ-2 0136
20 LZP1=1.Z+1 ‘ 0137
21 LZP23L7+2 0138
22 FLEX=FLEX+FLOXeDT 0139
23 IF(NMC) 33.24.26 0140
24 NTAPE=1S o141
CN(LZ)=0.0 0142
TFLUX=FLAX 0143
FLEX=0.0 0144
23 Go 10 732 0145
26 IF(NMC- 3) 27.,27.29 0146
27 NTAPE =6 0147
28 GO T0 32 0148 :
29 IFCTIME-TIMEW? 33.30,30 0149 St
30 TIMEWsTIMEWS(10.000(],0/18.0)) 0150 ,
IF(NMC- 4) 31,29.31 0151
31 NTAPE=1S 0152
LZP2=N] 0153
131
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484
409

414
c
4130
4133
c
413
c
416
4160
4161
c
4170
414i
4140

417
4013

R it

CNILZ)=(TIME-TIMES)/FLOATF (NMC--NICS)
TFLUK=CFLEX-FLIX)/CTIME-TIMES)

CALL CasPO

NOP=NDP

FLIX=FLEX

NNCS =ML

TINES=TIME

LZIP2=L2+2

CONT INUE

IFCNMC-MCOC) 414,409,409
MCDC=MCDC+S0
REVIND 16
MOOE =MODE + 1
WRITE OUTPUT TAPE 16.40:NR,MODE . NMC NLP,NEG,LZ. NZONE « NGS, MCL .
1TIMEL.BLANK, AST, TEE. PLUS. PER10D. DASH. EGUAL . PINUS, FFF, U, PPP
WRITE OQUTPUT TAPE 16.41.NR.NMC, TIME.OT.FLEX.CS,CR.BR.RS
WRITE OUTPUT TAPE 16.42,NMC.NR, (NMC,R(K). UKD, V(KI.Q(K), T(K),
1IP(K).NR. K. K=1,.100)

WRITE OUTPYT TAPE 18,43,NMC.NR. (NMC.RZ{K),R2(K),ZMAS(K),DR(K).

IRHOZ(K ), TR(K).NR, K. K=1,100)

WRITE OUTPUT TAPE 16.30.NR, TIME, TEE, WKT. TON2, TDO2
WRITE OUTPUT TAPE 16.50.NR,SCALE.EQUAL.071.047, TIMEW
MODE =MOOE - 1

C REZONE SWITCH

RTESTsR(LZ-3)
NZTS=LZ-11
IF(MCP-3] 413.415,4130

4150 ALL OPTICALLY THICK CASES

NITS=MCP-4
PHMT=2,33
IFINZTS-9) 427.417.417

415  ALL TRANSPARENT CASES

IFCT(4)-2.00TON2) 4:70,4170.416

416 HIGH ALTITUDE EARLY PHASE

CO 4161 L=9.L2

IFCTCL)-1.352TON2) 4160.4161.416)
NZTSsL -1

IFINZTS-9) 427.417.417

CONT INUE

4170 LATE TIME TRANSPARENT CASEK:

00 4140 J=11.L2
IF(RCJI-VW(1,9)) 4140, 4141, 4141
NZTSsJ]-9

PMT=2.0

IFINZTS-9) 427.417.417

CONT INUE

DO 426 K=9,NZTS

IF(NMC-NRZ) 427.427.419
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0134
0135
0136
0137
0138
0139
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0t78
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0196
0199
0200
0201
0202
0203
0204




419
422
423
424

942%

426
C
427

428
429

430
431
432
433
434
435

436
437
440
41
442
443

444

IF({R(K)-R(X-2))-0.08%RTEST) 422,422,428
IFCABSFCT(K)~-T(K-1))-0.300T(K)) 423,423,426
IFCABSF(V(K)-V(K-1))-0.7#V(K)) 424.424.426
IFCIMASCK) +ZMAS(N-1 ) -PHTeZNAS(K-2)) 429,425.426
IF(QIKI-0.030P{K)) 9425,8429,426

LZP2=K

NRZ=NMC

IXC=JXCe1

WRITE QUTPUT TAPE22.49.NMC. TIME.LZP2 ,JXC
WRITE OUTPUT TAPE 6.49.NMC, TIME.LZP2 ,JXC
CALL REZONE

LZ=_Z-1

LZM2=L.2-2

LZMI=LZ-1

LZP1sL el

\LZR=LIR-2

LIP2=L2+2

NRZ=NMC+2

GO T0 427

CONT INUE

OPTICAL SPLIT TEST

NS=L2-5

KS=0

IF(NMSP-NMC) 428.428,448

00 440 Js=3.NS

K=LZ-J

IF(CR(K)-R(K-1))-0. 08#R(LZ)) 430,430,442
IFCTAU(K. 1)-1.7) 440,440,431

KS=KS+1

IF(KS-1) 448,433,448

IF(O(K)-P(K)) 440,434,434
IF(UCK)-1,0E+05) 448,433,433

KST=K

KSPaK+S

DO 436 JsKST,KSP
IF((R(J)-R(J~11)1-200.0) 426,436,437
CONT INUE

GO T0 448

KZ2=J )
IF(T(J)-6.0E+04) 443,448,448

CONT INUE

GO 10 448

K22=K

NMSPsNMC+3

JA0=JXD+1

CALL SPLIY

WRITE OUTPUT TAPE 6,47.NMC, TIME.KZ22,JXD
WRITE OUTPUT TAPE 22.47.NMC.TIME.X22,JXD
LZ=LZ+}

LMi=LZ-1

LZPsLZ¢]
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0203
0206
0207
0208
0209
0210
0211
0212
0213
0214
02135
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0226
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0243
0246
0247
0248
0249
0230
0231

0233
0234
02353




L0222
LD 2-2

IFCMMC-NSTART) 449,.451.440
IFCNMC-NBTART-1) 430,451,450
IFCMMC-NDD) 433,491,433
R32=-431

CALL DIAONS

NNC=NIMC + |

IF(NSTOP) 33,335,368
IFCTINE-C.0) 34,32.52
IFCSENSE SWITCH 1) 352,63

PUNCH 40.NR:MODE » NMC. NLP, NEG, LZ+ NZONE . NQS, MCL ., TIMEL

1. 0LANK. AST. TEE. PLUS, PER1GD. DASH, EQUAL . PINUS. FFF, WU, PPP
PUNCH 41 .NR.NMC, TIME.OT.FLEX.CS.CR.BR.RS

PUNCH 42, NMCoNR, (NMC.RIK), U(K), VIK).Q(K), T(K)P(K)NR:K.K=1,100)
PUNCH 43, NMC.NR, (NMC, RZ(K),R2(K), ZMAS(K),DR(K), RHOZ(K)
1. TRIK). NR. K. K=1, 100)

FUNCH 30.NR. TIME, TEE, KT, TON2, TOO2

PUNCH S0.NR. SCALE. EQUAL.Q71.047, TIMEW

€D FILE 19

€D FILE 23

AEVIND 23

CALL COPY (23.19)

€ND FILE 13

END FILE 22

REVIND 22

CALL COPY(22.13)

END FILE 13

WRITE BUTPUT TAPE 6.,37.J4XC

FORMAT(IH . 1JHREZONE CALLEDI4.6H TIMES)

AEVIND 18

NR=9999

WRITE OUTPUT TAPE 41, 1499,NR.XZ6

WRITE TAPE 31.NR.KZE
FORMAT(2]14)

WRITE GUTAPUT TAPE 32, 43.NR,NMC,TIME,LZ.P(99).T(99),RHNOZ(99), POWER
2:P47,FOR. (K RIK), UIK) . P(KI,URIK), TIXI, FOSIK).FISIK).OM(K),. Q(K).
WLUKI.E(K) . HPPP(K) K=],L2)

JIFCNMC-NMAS) 1502, 1302, 1301
READ INPUT TAPE 16, 40,NR,MODE.NMC: NLP.NEG. LZ. NZONE . NQS . MCL .
'Tl‘t‘““.“'o VEE-PLUSo'Ele-DASH-ENAL-PlWS-FFF.I.MJ-PPP
READ INPUT TAPE 18+, 41.NR,NMC, TIME,DT,FLEX:CS.CR,BR.RS
READ INPUT TAPE 16+ 42, NMC.NR. (NMC. R(K) . UCK) . VIK),QCK): TCK],
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C €

n

1P(X). NR. K, X=1,100) : )

READ INPUT TAPE 18 43, NMCoNR, (NMC.RZIK ). R2(K), ZHAS(K ), DR(KX).
IRHOZIX), TRCK) . NR, K, XK=],100)

READ INPUY TAPE1IR,S50.NR, TIME, TEE. WKT, TON2, TDO2

READ INPUT TAPE1G.30.NR,SCALE.EQUAL:Q73.,047. TIMEY
PUNCH 40:NR.MODE « NMC . NLP: NEG, L2+ NZONE . NGS, MCL . T IMEL
1.BGLANK, AST, TEE. PLUS, PERI0D, DASH. EQUAL « MINUS, FFF , UUU, PPP
PUNCH 41.NR.NMC.TIME.OT.FLEX.CS,CR.BR,RS

PUNCH 42, NMC,NR, (NMC,RIK) o UCK)« VIK), Q(X), T(K).P(K).NR, K. K=1,100)
PUNCH 43, NMC.NR, (NMC. RZCK),R2(K). ZMAS(K).DR(K), RHOZ(K)
1. TR(K) . NR, X, K=1,100)

PUNCH SO,NR. TIME, TEE. KT, TON2, TDO2

PUNCH S0.NR.SCALE,EQUAL.Q71.,047. TIMEY

END FILE 16

CALL UNLBAD(16)

CEASE=1.0E+29

END FILE 32

END FILE 42

REVIND 42

CALL COPY(42,.32]

CALL UNLOADC42)

XTRA COPY OF USER TAPE 32 INFO COPIED AS FILE 2 OF TAPE 1S
END FILE 32

REWIND 32

CALL COPY(32.13)

END FILE 13

CALL COPY (32,13)

END FILE 1S

CALL UNLOAD(13)

CALL UNLOAD(32)

END FILE 41

CALL UNLOAD?41)

END FILE 31

CALL UNLDAD(31)

CALL EXIT

NTI=0

IF(NMC-MCL) 64,64,32
IF(TIME-TIMEL) 68.68,32
RETARDED VARIABLES

00 71 K=i.100
VR(K)=V(K)

ER(K)I=E(K)

PR(K)=P(K)

V(K. 4)=T(K)
W(K.6)=V(K)
W(K.7)sP(K)

V(K. 8)=0(K)
W(K.9)sE(K)
DIVFR(K)=DIVFA(K)
KRT=(0
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0308
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0310
0311
0312
o3
0314
0313
0316
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0319
0320
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0322
0323
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0325
0326
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0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
034)
0342
0343
0344
03435
0346
0347
0348
0349
0330
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0334
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72 [F(DT-30. 0#0TMIN) 74.74.73
73 OTMIN=DT/30. 0
74 CALL HYDRO
K14=KZ4
IF(UCS9)-1.0E+03) 290.290.52
C INITIAL TEMPERATURE EXTRAPOLATION
290 CONTINUE
C ITERATION CYCLE RE-ENTRY POINY

C DERIVATIVES W]TH RESPECT TO TEMP op

3000 00 30Ul Ke=1,L2Z
3001 IFCT(K)) 23002,3002.300
3002 K22=-30060
CALL DIAGNS
GO 10 32
300 TP(K)=1,02:T(K)
301 TS(K)=TP(K)
303 CALL STATE
304 00 310 K=i.L2Z
303 PP(K)=P(K)
306 EP(X)=E(X)
309 TM(K)=0,98+T(K)
310 TS(K)=TM(X)
311 CALL STATE
312 00 318 K=1.,L2
313 PM(K)=P(K)
314 EM(K)=E(X)
1S OPTLK)=(PP(K)-PM(K))/(TP(K)-TM(K])
316 DET(K)=(EP(KI-EM(K]})/(TPIK)-TM(X))
318 TS(K)=T(K)
320 CALL STATE
C CALL RADIATIVE PROPERTIES ROUTINE
CALL SWABZ
501 LZR=LZR
MCP=MCP
KZ1sKZ1
KZ2=KZ2
KZ3=KZ3
KZ8s=KI8
KZ9=K29
321  NCW=NCW
322 OTAUCLZPI.1)=0.0

C INVENSITY INTEGRATION

300 CALL FLUXS

%02 IFCIPS) $03.303.330

503 IPS=[PS+]

504 TIMESTIME-DT

505 0O TO 2000

C TEMPERATURE TEST BYPASS ON FIRST GUESS
930 IF(NTI) $540.540.332

C TEMPERATURE TEST
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0338
0339
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0336
0367
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0403
0406
0407
0408



532 00 336 Kel.L? 0409
333 IF(ABSFIDTMCK)/T(K))-0.1 ) 936.338,540 0410
S36  CONTINUE 0411
C MAIN CYCLE COMPLETED -- RETURN TO 2000 0412
537 GO TO 2000 0413
540 NTI=NTI+] 0414
C ENERGY EQUATION BLOCK €00 0415
600 IF(NTI-3) 601.601,2000 0416
601 00 617 K=1.L2 0417
602 LsK 0416
603  Nsj10+K 0419
613  DECK)=(E(K)-ER(K))/OT 0420
614  PACKI=(PR(K)+P(K))/2.0 0421
615  RESOUE(K)=DE(K)+(PACK)*QCK)I#(Y(K)-VR(K))/DT 0422
623 1+(DIVFACK)+DIVFR(K))/2,0 0423
617  CONTINUE 0424
C TEMPERATURE ITERATION OF ENERGY EQUATION 0425
700  IF(LZR-4) 703.703.701 0426
701  CALL COEFF 0427
702 GO TO 829 0428
C NO ITERATION OF RADIATION 0429
703 DO 704 K=1,L2 0430
704 DTM(K)=-RESDUECK)/CCDETCK)/DT)+(DPT(K)/(2. 080T ) )eCV(K)-VR(K)}) 0431
705  IFCNMC-NLP) 906. 706, 906 0432
706  NLP=NLP+S0 0433
PRINT 707.NMC. TIME,DT.L2Z 0434

707 FORMAT(23H PROGRESS REPORT  NMC=14. SX.SHTIME=1PE12.3,5X. IINTIME 0433
707 1 STEP=1PE12.3. 10X, SHNORADI4///) 0436
708 GO TO 906 0437
0438

C  RADIATIVE [TERATION 0439
829  CONTINUE 0440
830 IF(NMC-NLP) 987,831,987 0441
831  NLP=NLP+S0 0442
PRINT 332.NMC,TIME.OT,LZ 0443

832 FORMAT(23H PROGRESS REPORT  NMC=14, SX.SHTIME=1PE12.3.5K. 1IHTIME 0444
832 1| STEP=1PE12.3, 1 0X. BHRADHYOROI4///) 0445
C 0446
C COEFF ICIENTS NOW KNOWN-SOLUTION FOR DTM(K) 0447
987 L2JLIR+1 0448
00969 KsL2J.LZ 0449

988 OTM(K)=-RESDUE(K)/((DET(N)/DT)+(DPTCKI/(2. 00DT))e(V(K)I-VR(K))) 0450
900 OTMCLZRI=(ENCLZR)-EN(LZR-1))/(CNILZR)-CN(LZR-1)) 0451
902 OTMCLZR-1)s(ENCLZR-1)-CNCLZR-1)#DTH(LZR)) 0432
00 9035  J=3,LIR 0433
KsLZJ-J 0454

905  DTM(K)ISENCK)-DNCK)#DTM(K+2)-CNCKI*DTHCK+1) 0453
906 CONTINUE 0436
C STABILITY CHECK 0437
907 00 930 Ksl.LZ 0458
908 IF(OTM(K)) 909,930,910 0439
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927
9290

930

IFCADSF(DTHM(X))-0.3eT(X)) 930.930.918
IFCTIR)-2.0E+03) 912.911.911
IFCADSF(DTHIN))-0.90T(K)) 930.930.918
IFCABSF(OTMIK))-S,0eT(K)) $30.930.918
K12=-920

KZJsK

CALL DIAGNS

RATSKRT+|

IF(XRT-I) 923,933,933

00 927 Ls=i.L2

UL )sW(L. D)

TCL)eW(L. 4)

RLIeW(L. D)

vIL)=W(L,.6)

PLLIsW(L,7)

QlL)=w(L.®)

E(L)eaw(L. D)

R2CL )sR(L Joeo2

CONT INUE

YRITE QUTPUT TAPE 6.929,NMC, XRT,K
PRINT 929, NMC.KRT,K

FORMAT(418)

NTIs=0

GO TO 74

CONT INUE

C NODIFY TEMPERATURE

93 00 *34 K=1,L2
934 TCR)=T(K)+DTM(K)
33 GO0 70 3000
996 END
° FORTRAN
Ccrisv
SUBROUT INE SWABZ
C ssmkzooolmmlm AND COMMON STATEMENTS AS IN MAIN PROGRAM
- -
00 126 K=|.LZ
00 133 N=1,NSZ
TS(K)=TSIK)/11608.3
ETA(K)=],293E -03eV(K)
ALPHARY, 0¢+EXPF(-TIME/]1.0E-03e(ETA(K)n02))
GETA=((G,. 0E-180V(K))0e0.5)0(TS(K)#e0.1)
300 ZICK, 1 )SEXPF(-1.90¢{R(K)-R(K-1)) ZCCETA(K)ae] . S)/7(CTSIX)eeALPHA)
300 2+8ETA) +0,20(ETAIK)®01,91)/(TS(KIne2,73)
308 340.0230(ETA(K) 2], 8)0(TS(K)ee),25)+]1.0E-070(ETAIK)®22.0)/
30

4(CT8(K)ee(-5.0))+4,.0E-140V(K))))
Z1(Ke 1)=21(K, 1)00.99999000
ZI(K.2)s21(K. 1)
HFPs(ETACK)®01 . SI/(C(TS(K)2aALPHA)+BETA)
120, 20(ETA(K)®0].9]1)/(T8(K)#02,73)
240.0230(ETA(K)an],08)0(TS(K)0e0.25)
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0460
0461
0462
0463
0464
0463
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0493
0496
0497
0498
0499
03500
0501
0502
0503
0504
0305
0506
0307
0508
0309
0510




o

3+1.0E-07¢CETACK) 002, CIo( TSCX) 008, 00) G311 5
HIFFeg, JE-080 CETACK)#02, 0)o( TS(K) 003, S) 0512 ¥
IFCTS(RI-10,0) 301,298,298 0513

298  [F(HMFF-HMFP) 299,301,301 0314
299 HMF P FF 03193
301 DTAUCK, 1)=],3e(RIK)-R(K-1))/HMFP 0S16
302 A(K.N)=EXPF (-DTAUIK.N)) 03817
312 BCI(K.N)=S.B7E-03e(T(K)neq) 03516
TS(K)=TS(X)»116086.5 0319
133 CONTINUE 0320
126  CONTINUE ggg;
c SOURCE FUNCTION INTERPOLATION 0523
00 201 K=1,L2 0324
D0 202 N=1,NS2 0323
311 BBC(K.N)sCCCCCRIK*1I-RIX))IeT (KInaq)+((RIKI-R{K-1):eT (Keldeuaqg))/ 0326
311 J(R(K+1)-R(X-1))))eS.87€E-0S 0827
BB(K. 2)=88(K, 1) 0528
5086 SIKN)=(BCIK.N)-BCIK+1,N)I/C(PTAUCK . N)+DOTAUCK+1,.N)) 0529
507 WEK«N)=1, 0-ACK.N)-A(K. N)2DTAUCX,N) 0330
508 IF(W(K.,N)-1.0E-04) $09,202.202 03531
509 W(K.NI=0.S»(OTAUCK.N)®e2) 0332
202 CONT [ NUE 0533
201 CONT INUE 0334
0535
C SET OPTICAL INDICES 0536
KM=(Q 0337
S0t KD=0 0336
302 KN=0 0539
303 TAUCLZ. 1)=DTAUCLZ,. 1) 0540
S11 DO 9822 J=1.L2ZMI 0541
$12 K=LZ-J 0542
S13 TAUCK: 1 )sTAUCK+1,]12+0TAU(K, 1) ' 0543
Si4 IFCTAU(K,1)-S.0E-068) 9522,9518.38i% _ 0544
1S KN=sKN+1 05495
S18 IF(KN-1) 9518.317.518 0546
S$17 LIR=K+3 0547
S18 IFCTAUCK,. 1)-.44) 522,.919.%19 0548
319 KD=KDe+ 1 0349
320 IF(KD-1) 622.323.622 0550
$23 FBR=2R(K) 0551
622 IF(TAUCK.1)-1.0) 322,623,623 0552
623 KMaiXMe+ | 0353
624 IFC(KM-1) $22.625.522 0S54
623 MCP=K 0993
S22 CONTINUE 0SS6 ;
%25 IFC(LZR-LZ*1) $530.330.529 0557 f *
5” Lm“-z" osw X
S30 CONTINE 0559 '
IF(KD) $21,521.524 0360 ! !
S21  FBR=0, 0 0361 !
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324

MCP=0
CONT INUE

C SET CUTOFF WAVELENGTH CWL(X)

540
341

c
342

CWMAX=0, 0
KCWMAX=0
CWL(MCP, ] )=0.0
NCYsMCP
TR(MCP )= T(HCP)

080 365 K=1,L2
IF(T(K)-TDN2) 546,542,542

OPACITY DUE TO ATOMIC SPECIES
CWL(K.1)= 70G. 0sEXPF(-0.360(T(X)-11606.%51)/11606.3)

8344 OTHIN)=212121212121

549
S46

c
83

S48

550

c
551

IF(CWML(K.1)-275.0) 543,360,360
CWL(K,1)=275.0

GO TO 360

IF(T(R)-TDO2) S51.547.347

OPACITY DUE TO N2 MOLECULE

47 DTH(K)=434345454345
TCN2=5. 0E-07¢1.293€-03+V(K)
CWL(XK.1)=1140.0eC((R(K)-R(K-13)/(V(K)#1.293€-03))e20.11)
1901.0-EXPF(-TIME/TCN2))
IFCCWL(X.1)-1000.0) 330.3560.3560
CwL(X.1)=1000.0
GO TO 560

OPACITY DUE 7O 02 MOLECULE
TC=4250. 0-271. 0#LOGF (1.293z-03» V(X))
YCO2=3. 0E-07#1.293E-03+V(K)

B8 552 DTH(K)=676767676767

5353
334
554
3335
356

IF(T(K)-TC)354. 554,536

CWL(K. 1121300, 0+TS(X)#(0. 163+0. 0745+LOGF (DR(X)*RHOZ(K}/1.293E-03))
Je(1.0-EXPF(-TIME/TCOZ))

GO 10 357

1SB=TSI{K) (. 0647+LOGF (R(K)-R(K-1))-0.25-. 109¢LOGF(1.293E-03#V(X)))
CWL(K.1)=3300, 0+TSB-(2000. 0+TSB)*EXPF(-TIME/TCD2)
1F(CWL(K.1)-1500.0) 958,360,560

CWL(K,1)=1500.0

IF(K-MCP) 363,363,561

IFCCWML(K. 1)-CWMAX) 563.3563.3563

CYMAX=CWL (K. 1)

KCWMAX =K

CONT [NUE

NCW=KCWMNAX

IF(LZR-NCY) 603.603.604
LZR=NCW+1

3
CALCULATE Z0O VALUES
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0562
0363
0564
0565
0566
0367
0368
0369
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587

0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
05389
0600
C601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612




607
608

610
611
615
616
617
620
627

630
831
632

2001, 1)=21C14 1) 0613
D=0 0614
00 €70 L=2,L2 0615
TREL)=TCL) 0616
IFCT(L)-8. 0E+04) 607,668,668 0617
KO=KD* | 0618
IF(KD-1) ©08.608.609 0619
MSaL. | 0620
IFCOTAUCL, 1)-1.0) 610,668,660 0621
SELECT TR(L)= TEMPERATURE OF RADIATION TRAVERSING ZONE L 0622
LiMsL-1 0623
TAUSUM=0. 0 0624
DO 630 NN=1,LIN 0625
M=l -NN 0626
TAUSUM= TAUSUM+DTAUCM, 1) 0627
IF(TAUSUM-0.7)  630.627.627 0628
TR(L)=T(M) 0629
IF(M-2)  630.630,638 0630
CONT INUE 0631
IF(T(L)-2500.0) 631,632,632 0632
TR(L)=TR(L-1) 0633
60_T0 637 0634
EPTSUM=0. 0 0635
EPSUM=0. 0 0636
00 635  Ks3.LIN 0637
EPSUMZEPSUM+DTAUCK. 1) 0638
EPTSUM=EPTSUM+T(K)#DTAUCK. 1) 0639
IFCT(K)-2500.0)  636.636,635 0640
CONT INUE 0641
TR(L ) =EPTSUM/EPSUM 0642
M=2 0643
1ZxMe1 0644
D0 646 I=1Z.L 0645
IFCTRCL)*CWLC1.1)-2. 0E+08) 641,641,644 0646
Z1C1,2)= EXPF((-3.41E-08CWL(1.1J8TRC L )+2.SE-25sC(CWLCI. 1)8TR(L 0647
2))#83) YeEXPF(-3. 07E+13/C(CWL(I, 130TRC L ))#e1.8))) 0648
GO T0 646 0649
Z1C1,2)=7.61€+22/((CWL(T,1)#TRC L ))ee3) 0650
CONT INUE 0651
ZHAX=Z1(M+1.2) 0652
Z0(L. 1)321(M+1,2) 0653
IF(L-M-1) 668.663,6 0654
CORRECT 104 FOR INTERMEDIATE ZONES 0655
1Z=M+2 0656
CULTST=CWL(Ms1,1) 0657
00 660 NZ=1Z.L 0658
IFCCWL(NZ, 1)-CWLTST) 654,654,657 0639
IF(NZ-L) 660,653,668 0660
Z0(L.1)x1.0 0661
GO TO 660 0662
ZOCL. 1)=Z1(NZ. 2)/ZMAX 0663
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630 CWL.TSTsCWL(NZ.1)

639 IMAXsZI(NZ.™)

G680 CONTINUE

663 IF(Z8(L.1)-21CL.1)) 670.660.660

66 JOCL. 1)=Z1CL. 1)

670 CONTIME

671 00 676 K=1,L2

822 IFCOTAU(K. 1)-1.0E-04) 673,675,673

673 ALK, 1 )s0TAU(K. 1)

674 GO TO 676

€73 ACK,1)=i.0-A(K. 1)

676 CONT INUE
00 699 K»1.LZ
IF(S(K. 1)-1.69€+38) 767.787.677

767 HI(K)=BB(X.1)eA(K+1,1)
DZ(K)=2, 0eS(N, ]| )oW(K+]1,1)
HPIK)=BC(K+1, 1)nA(Kel,1)
IFCHZ(K)-02¢(K)-HP(K)@D.01) 677,677,699

677 S(K.,1)=0.0

678 9B(K, ]1)sBC(KX+]1,1)

679 88(X,2)=BC(K,.1)

699 CONT INUE

900 IF(BC(1,:)-BC(2.1)) 913,916,916

915 88(1,2)=6C(1,1)

916 CONTINE
EMS=ZIC(NCV.2)
179 RETURN
ENOD
. FORTRAN
CFIRJSY

SUBROUT INE REJUST

C STANDARD OIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
700227100, 0¢EXPF( (0. 43429+L.0GF (RHOZ(99)/1.293E-03))/5.3)
TON2=13000, 0#EXPF ( { 0. 43429+LOGF (RHOZ(99)/1.293€-03))/4.2)

RE TURN
END
. FORTRAN
CF IRINE

C STANDARD DIMENSION AND COMMON STATEMENTS AS [N MAIN PROGRAM

1 M= ZP2
ZETAS(T(M-1)+T(MIIZ(E(M-1)+E(M))
C ROUTINE TO COMBINE IZONES M AND M-)
FKE= (ZMAS(M-2)o(U(M-2)082)+ZMAS(M~])e(CUCM-1)082)¢(U(M-2)a02)
2)+2MASCHIRCCUCM-1)882)6CUCMINE2) )+ ZMAS(M+1 ) e (U(M)I*22))
FMVs{ ZMAS(M-2)8U(M=-2)+THAS(M-1 Jo(UCM=1)+UCM-2) )+ ZMASTIM)I #CUCM-1)
22UCM) )+ ZMAS(M+ 1 )eU(M))
FKASZMAS(M=~2)+TMAR(M-1)+ZMAS(M)
FRBsZMASIM-1)+ZHAS(M] +ZHAS(M+])
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0664

0677
0678

0682

o688
0689
0690
0691
0692
0693
0634
0695
0696
0697
0698
0699
0700
0701

0702
0703
0704
0705
0706
0707
0708
0709
0710
0711

0712
0713
0714
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7700

7701

7711

7722
733

FXB=FKB/TKA

FRE=FKE /FKA

FHVsFMV/FKA
FSRe(FRKESFKB)#(FKB+1,0)-FKD*(FMVee2)
IF(FSR) 7700.,7701.7701

U(N-2)=U(N-2)

U(M-1)=U(N)

GO 10 7733

FSR=.(FSRe 00, 3)/FKB
UPLUS=(FMV+FSR)/(FKB+1.0)
UMINSa(FMV-FSR) /(FKB+1, 0)
IF(U(M-2)-U(MY)  7722.7711.7711
UiM-2)=UPLUS '

U(M-1)sUMINS

GO TO 7733

U(M-2)=UMINS

U(M-1)aUPLUS

CONT INUE
E(M-1)=(ZMAS(M-1)2E(M-1)+ZMAS(MI=ECM) ) /(ZMAS(M-1)+ZMAS(M))
T(M-1)=(E(M-1) wZ€ °)
IMAS(M-1)=ZMAS(M-1)+ v 50 M)
DIVFA(M-1)2(R2(M)/ZHAS(M-1))e(FOSIM)-FIS(M))
1-(R2(M-2)/IMAS(M-1))e(FOS(M-2)-FIS(M-2))
R(M-1)=R(M)

R2(M-1)=RZ(N)

R2(M-1)=R2(M)

OR(M-1)=0R(M-1)+0R(M)

RR(M-1)=RR(N)

TR(M-1)=TR(M)
VIM-1)=(R(M-1)223-R(M-2)e83)/(3. 0e7ZMAS(N-1))
P(M-1)=(P(M-1)+P(M))/2.0
G(M-1)=(Q(M-1)+0(M)3/2.0

OTM{M-1)=0.0

C  SHIFT IN EXTERIOR ZONES

00 50 XzM.99
V(K)=V(K+1)
T(K)=T(K+1)
RHOZ(K)=RHOZI(K+1]
U(K)=sU(K+1)
P(K)sP(K+1)
R(K)=R(K+1)
R2{K)=R2(K+1)
RZ(K)SRZI(X+1)
OR(K)=OR(K+1)
Q(K)=0(K+1)
E(K)=E(K+1)
OIVFA(K)=OIVFA(K+1)
UR(K )=UR(Ke1)
IMAS(K)nZMAS(K+1)
RR(K)*RR(Ke+1]
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0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0743
0746
0747
0748
0749
0750
0751
07352
0753
0754
0755
07356
0757
07358
0739
0760
0761
0762
0763
0764
0763

i ety i 0




- wapeesmary

c

30
c

SN wWEm. ¥ e e

DTMCK)=DTH(X+1)
TRIK)=TR(K1)

ADDITION OF NEW ZONE 100

R(100)=R(99)+0OR(99)
R2¢100)=R(100)ee2
RZ(100)=R(100)
RHOZ(100)=RHOZ(99)
RR(100)=1,0
OR(100)=0R(99)

ZHAS(100)=(RHOZ(100)/3.0)2((RZ2(100)%#3)-(R2(99)24+3))

U(100)=0.0
T(100)=7(99)
v(100)=v(99)
Q(100)=0.0

T(101)=7(100)

RE TURN

END

FORTRAN
SUBROUTINE SPLIT

STANDARO ODIMENSION AND COMMON STATEMENTS AS [N MAIN PROGRAM

M=100-KZ2

00 30 J=i.M
K=101-J
R(K)=R(K-1)
OR(X)=DR(K-1)
RR(X)=RR(K-1)
RHOZ(X)=RHOZ(K-1)
RZ(K)=R2(K-1)
R2(K)I=R2(K-1)
U(K)=U(K-1)
RR(X)=RAR(K-1)
TR(K)=TR(K-1)
V(K)=V(K-1)
P(K)sP(K-1)
IMAS(K)=ZMAS(K-1)
OtK)=Q(K-1)
T(K)=T(K~1)
E(X)=E(K-1)
DIVFA(K)=D]VFA(K-1)
URIK)=UR(K-1)
CONT INUE

ADD ZONE JUST OUTSIDE K=KZ2

IMASIKZ2)=ZMAS(K22)/2.0
ZMAS(KZ2+1)=ZMAS(KZ2)

V(KZ2+1)sV(K22)

RHOZ(KZ2+1)=RHOZ(KZ22)

R(KZ2)I=C(R(KZ2+1)9283)-(3. 0aIMAS(KZ2+1)e

R2Z(KZ2)s((RZ(KZ2+1)203)-(3. 00ZMASIKZ2+1)/RHOZ(KZ2+1)))#e(1.0/3.0)

RR(KZ2)=R(KZ22)/RI(K22)
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V(KZ2+1)))eel1,0/3,0)

0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781

0782
0783
0784
0785
0786
0787
0788
0789
0790
0791

0792
0793
0794
0795
0796
0797
0798
0799
0800
0801

0802
0803
0804
0805
0806
0807
0808
0809
0810
0811

0812
0813
0814
0815
0816
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OR(KZ2+1)=RI(KT2+1)-R(KZ2) 0817
OR(K22)=R(K22)-R(K22-1) 06818
R2(KZ2)sR(KZ2)0e2 0619
UIKZ2)=( ((UIKZ2-13022)+(U(K22+1)9002))/2.0)000.3 0020
TR(K22+1)=TR(KZ2) 0821
P(K22+1)=P(K22) 0822
Q(KZ2+1)=0(KZ2) 0823
T(KZ2+1)=20.9eT(KZ2) 0624
T(K22)=1.1eT(K22) 0823
E(K22+1)=0.8S*E(KZ2) 9826
E(XK22])=1.15¢E(KZ2) 0827
OIVFA(KZ2+1)=DiVFA(KZ2) 0828
UR(KZ21=0.3#(UR(KZ2-1)+UR(K22+1)) 0829
RETURN 0830
END 0831
. FORTRAN 0832
CF1CGSPO CGS PRINT OUT PACKAGE FIRE | 0833
SUBROUTINE CGSPO 0834
c STANDARD DIMENSION AND COMMON STATEMENTS AS [N MAIN PROGRAM 0835

495 FORMATC(IH1//739H AT COMPLETION OF MASTER CYCLE NUMBER 14,25X.IS. 0836
43 240X IHSE=0PF10.3/7/76H TIME=IPE] 0, 3. 21X, GHPOWER=1PE] 0.3, 2X, SHYATTS, 0837
45 1IN 1ONTIME STEP=1PE]0.3.20X. 14HPASSES ENG EQ 14// 0838
45 43H K, 2X.6HRADIUS, SX, SHPART VEL.2X. 4HPRES. EX, 3HQ/P, IX, IHTEV, 4X, 3HR 0839
45 SHO: 7X e IHE/Ge 7Xo 4HFOUT . IX, SHF [ /7F0, 2X. 4HDIVF . SXo 4HTEMP . 4X. SHGAMHA . 0840
43 6X. 4HPART , X, 1HC,. 2X+ IHTAU, SX. 4HDTAU//( 14, 1PE10, 3, IP2€10. 2, OP2F6. 2. 0841
43 71P3€10.2, 0PF6.2. 1P2E10. 2, 0PFS. 2, OPFE. 2, 1AL, OPF7.2. 1AL, IPED. 2)) 0842
46 FORMAT(IHN /784 T PART=IPE12.4.9H FRACT +SX,GHOTHYD=IPE12.4,84 SEC 0843
46 1S e SN, 6HPOW03=1PE12.4.86H WATTS ,SX,SHTEFF=0PF6.0,.8H DEG X .5X, 0844
46 24HLZIR=14/9H TYIELD=1PE12.4 94 ERGS ¢ SX.6HOTRAD=1PE12.4,8H SECS 0845
46 3 SX.GHPOWI4=IPEL12.4.8H WaATTS ,3X.SHTCOL=0PF6.0.84 DEG K .SX. 0846
46 44HNCY=14/81 [N ENG=1PE12.4,94 ERGS +S5X. BHOTMIN=1PE12.4,8H SECS 0847
46 S SX.GHPOWAS=IPE12.4,.0H WATTS 5X.SHWLMX=0PFG. 0.8H4 ANG ' X, 0848
46 64HN0D1=14/8H4 KN ENG=1PE12.4.94 ERGS «5X. 6HDTLST=1PE12,.4.8H SECS 0849

46 7 SX.GHPOWS7=1PE12.4.8H WATTS .3X.3HTY41=0PF7.2. 7HKT » SX, 0850
46 B8.4HEMS=0PF3.4) 0851
36 FORMAT(BH TOT ES=1PE12,4,94 ERGS 3X.6HFBRAD=1PE12.4.8H CM « 0832
36 23%A.6MPOV71=IPE12.4.8H WATTS ,3X.SHTYZ?1s0PF7.2, 7HKT o 3X. 0853
36 J4WNSZ=14/8H E AMBT=]PE12.4,.9H4 ERGS SX. GHSHRAD=1PE12,4.84 CM 0854
38 4 SX.GHPOW47=IPE]12.4.8H WATTS ,3X.3HTY47=0PF7.2. 7HKT » 5X. 08355
36 356H01589-12) 0856
47 FORMAT(IMY//, 0837

47 4M X, 2X, BHRADIUS, 3X. BHPART VEL. 2X. 4HPRES. 6X. 3HQ/P, 3K, IMTEV. 4X. IHR 08356
47  SHO. 7%, JHE /G, 7X« 4HFOUT . SX+ SHF [ /F0, 2X: 4HOIVF , SX. AHTEMP . 4X. SHGAMMA, 0839
47  6X.4HPART. X, 1HC, 2X. 3HTAU, SX, 4HOTAU//( 14, 1PE10. 3, 1P2E10. 2. OP2FG. 2. 0860

47 71P3€10.2.0PF6.2, 1P2E10.2, 0PFS.2, 0PFG. 2. 1A1, OPF7,2,1A1, 1PES. 2)) 0861
YIELO=EQUAL 0862
DO 1000 K=4,L2Z 0863
IF(T(K-1)-0.6eT(X)) 1002.1002.1000 0864
1002 %Z2=0 086"
CALL DIAGNS e
1000  CONTINUE Y
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RSHOCK=9, 0

SAVE 1 =07

OT=CN(L2)

STXsP(L2)

POVER=TFLUXe 1, OE-07

TCOL=( TFLUX/( EMS 212,3603.67E-030(FBR®22)))000.23
TEFF=(TFLUX/(12.5603.67€-05+(FBRe#2)))en0,23

CALL PHOTOG

C ESTIMATE OF OBSERVED SPECTRAL DISTRIBUTION

1060
1061
1062
1064
1063
1°3
1063
1067
1068
1164
1163
1165
1187
1168
1264
125%
126"
1267
1267
1364
1363
1363
1367
1368
1464
14635
1463
1467
1468
1564
15635
1363

IF(FBR) 1059, 1059, 1061

P47=0, 37+PONER

047=047+P47*(TIME-TIMES) /4. 186E+12

Q41=0.0

£03=0. 0

P34=0. 0

P4320.0

PS7=0.0

P71=0.0

071=0.0

GO TO 1600

SAVE T=T(MCP)

T(MCP)=TCOL

IFC TC(MCP)eCWLM -2.0E+08) 1065, 1065. 1068
CWLMsCWL(NCV. 1)

FLM = EXPF((-3.41E-080CWLM o T(MCP)+2,5E-2Se((CWLM
1)%EXPF(-3.07€+13/C(CWLM @ T(MCP))##1.8)))

GO T0 1164 '

FLM =7.61E+22/((CWLM #T(M(P))e03)

IF( TCMCP)#3000.0-2. 0E+08) 1165, 1165, 1168

F3 = EXPF((-3.41E-08¢3000.0% T(MCP)+2.SE-25#((3000. e
1)8EXPF (-3, 07€+13/((3000.0¢ T(MCP))ne1.8)))

3 T0 1264

F3 =7.61E+22/((3000.0eT(MCP))#23)

IF( T{MCP)#4000.0-2,06+08) 1263, 1265, 1268

F4 = EXPF((-3.41E-0894000.0¢ T(MCP)+2.SE-25((4000.0¢
YeEXPF (-3. 07€+13/( (4000, 0% T(MCP))e#1.8)))

30 TO 1384

4 =7.61E+22/((4000,09T(MCP))#03)

IF(C T(MCP)*S000.0-2.0E+08) 1363, 1363, 1368

FS = EXPF((-3.41E-08¢5000.00 T{MCP)+2,SE-25¢( (5000, 0r
15¢ iXPF(-3,07€+13/((S5000.0¢ T(MCP))e#1.8)))

GL TO 1464

©=  u7,61€+22/((S5000, 0#T(MCF))ee3)

1L TCMCP)#7000.0-2.06+08) 1465, 1465. 1468

F7 = EXPF((-3.41E-08+7000.0¢ T(MCP)+2, SE-25#( (7000, Os
1)9EXPF (-3. 07€+13/((7000. 08 TC(MCP))ee1.8)))

GO TO 13564

F? 7.61€+22/((7000.00T(MCP))ue3)

IFC TCMCP)#10000.0-2.0E+08) 1363, 1365, 1568

Fi= EXPF((-3.41E-08+10000. 00 T(MCP)+2.5E-25+((10000.0»
1)9EXPF (-3, 07€+13/((10000. 0¢ T(MCP))eei,B)))
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T(MCP))#»e3)

T(MCP))ee3)

TI(MCP))Ine3)

T(MCP))e23)

T(MCP))#e3)

T(MCP))#e3)

0868
V869
0870
0871
0872
18723
0874
0875
0876
0877
0878
0879
0eso
0881
0882
0883
0884
0885
0886
0887
0888
0889
0830
0891
0892
0833
0894
0895
0896
0897
0898
0899
0900
0301
0902
9903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0913
0916
0917
0918




1600

480

489
490

491
492

493

60 TO 1580

Fi =7.61E+22/0110000.0eT(MCP))0e3)
CON " INUE

T(MCP)=SAVET

IFCCWLM-3000.0) 13583, 1583, 19682
FI3=FLM

IF(CWLM-4000.0) 15683.1358%.1384
FasFLN

IFC(CWLM-%000.0) 15687,.1387, 1506
FS=FLM

IFCCWLM-7000.0) 1389.1389, 1388
F7=FLN

IFCCWLM-10000,0) 1591.1391,1990
Fl=FLM

CONT INUE

POIsPOVERS(FLM-FJI)/FLM
PI4=POVERe(FI-F4)/FLM
P4S=POWER®(FA-FS)/FLN
P57sPOVERS(FS5-F7)/FLM
P71=POVER®(F7-F|)/FLM
P47=POVER®(FA-F7)/FLM
Q71=Q71+P71e(TIME-TIMES)/4.186E+12
Q47=Q47+P47+(TIME-TIMES) /4. 1B6E+12
Q41=047+0Q7)

ENC1)=4,189«(R(1)ee)e(ECL)/V(1) )
BNC1)=ENC(1)
CNC1)=3,141598(UC1)ee2)#ZMAS(1)
ONC1)=CNC1)

DPP(1)=BN(1)+DN(1)

00 490 K=2.L2

EN(K)=4, IBI*((R(K)#e3)-(R(K-1)003))e(E(K)/V(K))
CN(K) =3, 141590 (U(K)ee2+U(K-1)002)2ZMAS(K)
BNCK)sBN(K-1)+EN(K)

ON(X) =DN(K-1)+CN(K)
THETA(X)=212121212121

IF(AQ(K)-STX) 430,490,488

STX=Q(K)

J3=K-3

RSHOCK=R(K)

OPP(K)sBN(K)+ONI(K)

EAMB=4, 1892 (R(LZ)#23)+E(99)/V(39)
ESYSM=DPP(LZ)-EAMB
ETOTALSESYSM/4.106E+19
PARTT=sFLEX/YIELD

IF(NMC) 493,492,493

YIELD=ESYSM

EQUALsYIELD

CONT [ NUE

WRITE OUTPUT TAPE22,495,NR,NMC. TIME, EAMB. NCW, MCP,DPP(NCV),OPP(MCP)
1. TRCNCY) . TRCMCP) o (Ko ENCK) «ONCK I« CNCK) . DN(K ), DPP(K). ALK, 1), 20(K. 1),
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400

221N, 1) TR(K) . K=}, LY)

FORMATCIMIL 134 ENERGY CHECK. 1 0X. 4HRUN=14, SX, 4HNMC=214, X, SHTIME=PE
210.3:,SX.BHE AMB=IPE10.37/75H NCW=14.3X. 4NMCP =14, SX. IHDPP(NCW)=IPE 12
3.4.3%. HOPP(MCP)=iPEL12.4,.3X. OMTRINCWY)I=IPE10.3,SX,.BHTR(MCP)=|PEI0
4.3/7/734 ZONE. 3%, 2HOE . 1 0X: 4HSUME : §X+ JHOKE . 7X . SHSUMKE , SX. SHSUMTOTALE .
SUIXK, LA L 1Xe 2HZ0, 10Xe 2HZ1, 10X 2HTR//7C 19, 1PSE12. 4, 3X. 1P4E12.4))

THETA(] )5646464646464

THETA(2)92232323232323

00 29 K=].LZ

HZ(K)=DTAUCK,1)/1.5

OMM({K )=0TAU(K, 1 )/(R(K)-R(KX-1))

FZ(K)=q.20 E-0Be(E(K)+P(K)2V(K))

DZ(K)=TAU(K,1)/1.8

OP(K)=Q(K)/P(K)

FM(K)=T(X)/11606.3

HP(K)=FOS(K)s1.0E-07

HPP(K)=ABSF(FIS(K)/FOS(K))

GMIK)=].0+(P(X)eVIK)I/E(K))

UR(K)=],.0/V(K)

IF(PART(K)-4.0) 29,28.20

OTH{K)=31313131313!

CONTINUE .

SHVELsU(J3)»(1.0+GM(JI))/2.0

PEHK=(2. 0/C(GM(J3)+1,0))eRHNZILZ)I#(SHVEL®e2)

ESMK»0.5¢( (2. 0»SHVEL/(1.0+GM(J3)))ee2)

TRSHK 2T (J3 ) #ESHK/E(JI) :

ETOE=2(S5.67E-0Se(TRSHK®e4)/ RHOZ2(L2Z)eSHYEL))+E(LZ)

TTOE=EYOE*T(LZ)/E(LD)

POWSK=12,.368(R(J342)0e2)25,67E-050( TRSHKa 4 )aFLM

WRITE OUTPUT TAPE 6.496.NR,NMC, 7 ME, SHVEL . PSHKX. TRSHK, TTOE

PUNCH 496. NR.NMC. TIME, SHVEL.PSHK, TRSHK, TTOE

FORMAT(214.,1P3€12.4)

IF(LZ-40) 30.30.81

WRITE OUTPUT TAPE NTAPE, 45.NMC.LZ.ETOTAL, TIME.POWER,DT,.NTI,
1(K.R(K) . U(K)P(K).OPCK) FMIK) s UR(K),ECK). HP(K) . HPP(K), OIVFA(K). TCK
2).GMIK)PART(K). THETA(K) DZ(K) . OTH(K), HZ(K),K=1,40)

WRITE OUTPUT TAPE NTAPE.47.
1(KR(K), UCK)P(K).OP(K) FM(K), URCK),ECK), HP(K),. HPP(X), DIVFA(K), T(X
ZéaG?éKaaPART(K)-THETA(K)oDZ(K)oDTH(K).HZ(K)-K’QI-LZ)

WRITE OUTPUT TAPE NTAPE.43.NMC.LZ.ETOTAL. TIME,POWER,DT.NTI,

TR RIK), UIK)PIKI.OPIK), FHIK) . URC(K),ECK) ., HP(K) . HPPIX), DIVFACK), T(K
2).GM(K), PART(K), THETA(X),DZ(K) . DTH(K), H2(K) ., K=1,L2)

WRITE OUTPUY TAPE NTYAPE.46,PARTT,.RJ,P03, TEFF,.LZR. FLEX.RX. P34, TCOL.,
2NCW.BN(LZ) . OTHIN. P4S, CWLINCW, 1).MCP,ONCLZ 3. SAVEL.P57.Q41.EMS
"gz;ENgUY’UT TAPE NTAPE, 36.0PP(LZ).FBR.P71.Q71.NSZ.EAMB. RSHOCK. P47

v(1,9)=RSHOCK

DT=SAVE!

IF(NMC-1) 403,400.400

IFCNMC-10) 411.411,403
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04970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0982
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
o1
012
1013
1014
1013
1016
1017
1018
1019
1020
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403 CONTINUE

C USER TAPE PRINT OUT
WRITE QUTPUT TAPE 32.300.NR.NMC,TIME.LZ,P(98).T(99).RHOZ(99), POVER
2,P47,FBR, (K. RCK) . UIK) . PIK), URCK) . T(K),FOS(K), FIS(K),OMM(K), O(K),
WLK)IE(K) HPPP(K), Kul,.L2)

300 FORMAT(1M1,214.1PE12,3.13.,1P6E12.3/(14.1P12€i0.3))
WRITE OUTPUT TAPE 42,437 .NR.NMC, TIME. T(1),TCOL, TEFF,ETATAL. PARTT,
LBNCL2).DN(LZ).ESYSM,EAMB.FLEX.Q41.047.071,P03.P34.P43,P37.P71.P47.
2FBR, RSHOCK

437 FORMAT(IM ,214,1P10E11.3/1P12E11.4//7/)

410 IF(NMC) 300.420.411

411 IF(TIME-6.826-03) 3500.412.412

€12  NSIX=NSIX+1

413 IF(NSIX-3) 500,420,300

420 NSIX=0
421 CALL SIXDPO
500 RETURN

ENO
» FORTRAN
CF1S1x0

SUBROUT INE SIXOPO
c STANDARD OIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
FLAG=1, 0E+J1
SOUNDS=SORTF(1.42P(99)/RHO2(99))
DO 10 K=1,L2
BN(K)=P(K)}/P(99)
CN(K)=V(99)/V(K)
ON(K)=T(K)/T(99)
ENC(K)=U(K) /SOUNDS
(o AVERAGE ZONE RADIUS IN FEETY
10 OP(K)=(R(K)+R(X-1))/60.96
WRITE TAPE 31.NR.TIME.LZ, (DPCK),BN(K).CNCK).ON(K),ENCK), GM(K),
1IK=1,L2).FLAG
WRITE QUTPUT TAPE 41.50.NR, TIMNE,LZ, (OP(K).BN(KI.CNCK), DNC(X).EN(K).
IGM(X),K=1,L2)
1 FORMAT(IHL/14,X, 270 SIXDPLOT DIAGNOSTICS TIME=IPE10.3.5K.3HL. Z=14
30 2///7(1P6E16.4))

KZE6sKZ6+ 1
20 RE TURN
€ND
. FPRTRAN

CF {PHOTOG PHOTOGRAPHIC BRIGHTNESS ROUTINE
SUBROUT INE PHOTOG

c STANDARD OIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
IF(NMC) 32,30.32

30 JTAPE=23

AN GO TO 40

32 JFCNMC- 3)  33.33.30

33 JTAPE=6

40 CONT INUE

C SOURCE FUNCTION EM(K) AND ABSORPTION COEFF BN(K)
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003 Kel.LZ
@2 e (VIK)/(

TEA=3,938€+04/T(X)
IF(TEA-80.0) 1.1.2
EM(K)«0.0

GO T0 9

CONT INUE

OPTICAL DEPTHS
00 200 K=1.L2Z
OM(X)=0.0
0Z(X)=0.0

LS=K
00 100 L=LS.LZ
300 IF(L-K) 320.310.320

311 OMCLI=DZ(L)
313 GO TO 100

324  OMCL)=DM(L-1)+02(L)

o BRIGHTNESS INTEGRATION
HP(LZ)=0.0
LSeLZ-K+1
DO 7 J=1.LS
Ml Z-J

LS=K
00 6 J=LS.LZ

HPP(K)=HP(LZ)

150 HNORM=HPP(3)

IF(NMC) 133,151, 133
131 SCALE=HPP(3)#10.0
155  CONTINUE
199 HPPP(K)=HPP(K)/SCALE
200 HPP(K)=HPP(K)/HNORM

210 1LZ)

200 RETURN
END

I

OP(K)=(R(K)*R(K-1))/2.0

310 OZ(L)=SORTFC(R(L)ee2-DP(K)#22)

100 HZ(L)=EXPF(-BNIL)ADZ(L)I/V(L))

1F(K-3) 155,130,133

320 DZ(L)=SORTF(R(L)e22-DP(K)##2)-0M(L-1)

6 HR(J)sHP(J-1)oHZ(J)+ (1. 0-HZ(J))eEM(J)

150

EM(K)=], 0E+0S/(EXPF(3.936€+04/T({K))-1,0)

? HP(M)eHP(M+] JaHZ(Me1)4( 1. 0-HZ(M+1))2EM(M+1)

210 WRITE QUTPUT TAPE JTAPE,201.NMC. TIME, (K. OP(K), HPPP(K),HPP(K).K=1,

201 FORMAT(1MH]1.GHPHOTOG, 14, 10X, SHTIME=IPE10.3//3H ZONE. 3X.6HMEAN R, 4X,
201 23HABS B.5X.SMREL 8//(16,1P3E10.3])

18, 30( (1.0 - _avIK))ee] 15)/(C(CT(K)/11608.5)¢08.0)+2,8E-120V(K)) 1074
290.1800(( .2 “E-030V(K)) 0] ,91)/7((T(K)/11608.3)00(3.9))
48, 00K -030(( . 2903E-030V(K))0e2,0)e((T(K)/11608.5)000.59)
S¢1.008-090(( {,293E-030V(K))00a2,0)e((T(K)/11806.5)2e24.00)))
Ge(1.0-EXPF(..3.2€<04/7(K)))
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) FOGRTRAN 1123
CF101AG 1124
SUBROUTINE OIAGNS 1125

C STANDARD OIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM 1126
33 FORMAT( IH]L . AHNMC=[4,3X. 4NNT =14, SX, 4HKZ 2 (S, SX, SHZONE =14, SX. 4HRUN2> 1127
2i47) 1120
M=KZ3 1129
IF(KZ2 ) 5,110,193 1130

3 WRITE QUTPUT TAPE 6,6.K22 1131
1) FORMAT( 1M1, 21HDIAG CALLED FROM MAINIS) 1132
GO YO 20 1133

10 WRITE OQUTPUT TAPE G.11.K22 1134
1t FORMAT( 1M1, 224D1AG CALLED FROM CGSPOLS) 113S
GO TO 20 1136

15 WRITE OUTPUT TAPE 6.16.KZ2 1137
16 FORMAT( 1M1, 22H01AG CALLED FROM +YOROIS) 1138
20 WRITE OUTPUT TAPE 6,21 NMC,NTI.LZ.LZR.MCP.MCL,. TIME.DT,.CS.CR.BR,RS. 11239
20 1{K.V(K), VR(X).EC(K).ERIK), RESDUE(K), PA{K),DIVFA(K),DIVFR(K) ., K=x}],L2) 1140
21 FORMATCIH ,4HNMC= 4, 2X AHNT I =14, 2X. INL 2[4, 2X, 4HLZR=1 4, 2X, 4HMCP= 14 1141
21 1e2X, 4WMCL=14/76H TIME=IPEL12,4,2X, 3HOT=IPE12, 442X, IHCS=0PFS, 2. 2X. 1142
21 Z2IHCR=0PFS, 2, 2X. 3HBR=0PFS, 2, 2X. IHRS=0PFS,2//3H K,EX. 1HV. 13X, 2HVR, 1143
21 J12X. 1HE. 13X, 2HER. 12X, BHRESDUE , 8X, 2HPA, 12X, SHDIVFA, 9X,. SHDIVFR// 1144
21 4(14,1PBE14.7)) 1149
22 WRITE OUTPUT TAPE 6.23.NMC,NTI,DTMIN, YIELO,SCALE. TFLUX,.FBR: TIMEW, 1146
22 1K TCKIOTMIK) OETI(K). DPT(X 1. BNCKI, CNCK).ONCK) . EN(K) . K=1,L2) 1147
23 FORMATC1H], AHNMC=14,2X, 4HNT1=74, 2X. 6HOTMIN=1PE12, 4. 2X, GHYIELD=1PE]1 1148
23 12.4. 2X.6HSCALE=1PE12. 4, 2X/7H TFLUX=1PE12,4,2X. 4HFBR=1PE12.4.2X.6HT 1149
23 Z2IMEWSIPE12,.4//73H K,BX, INT, 13X IHOTM, 1 1 X, JHDET, L1X. IHOPT, 1 IX. 2HBN. 1150
23 312X, 2HCN, 12X. 2HON, 12X, 2HEN//{ 14, 1PBE14.7)) 1151
WRITE QUTPUT TAPE 6,35,NMC.NTI,KZ2,M.NR 1152

24 WRITE OUTPUT TAPE 6,23, (K.FOS(X),FIS(K).BB(K,1).8C(K.1).RIK). 1153
24 1Z0(K. 1) ACK. 1) ZI(K. 1) Km1,L2) 1154
23 FORMAT(IH /734 K.6X.2HF0. 12X, 2HF [, 12X, 2HBB, 12X, 2HBC, 12X, 1HR, 13X, 1135
23 12HZO0, 12X, THA. 13X. 2HZ1/(14.178€14.7)) 1156
WRITE OUTPUT TAPE 6.33,NMC,NTI,KZ2.M,NR 1157

26 WRITE QUTPUT TAPE 6:27,(K.S(K.1). WIK.1),DVAUCK. 1), R2(K). ZMASI(K), 1158
26 ITAUCK, 1), CWLCK. 1), TR(K),K=1,L2) 1159
2?7 FORMAT(IH /3M  K,.BX. 1HS. 13X, 1HW. 13X, 4HOTAU, 1 0X: 2HR2. 12X. 4HZMAS. 10X 1160
27 1o IHTAU 11X: IHCWL, 11X, 2HTR/( 14, 1PBE14.7)) 1161
WRITE QUTPUT TAPE 6,35,NMC,NTI,KZ2.M.NR 1162

28 WRITE OUTPUT TAPE 6,29, (K. DMM(K),.DM(X).DZ(K),OP(X),OPP(K).B(K). 1163
28 1IFO(K,2),FI(K.2).K=1,L2) 1164
29 FORMAT(IH /73H K,6X, INOMM, 11X, 2HOM. 12X, 240Z, 12X, 2HOP, 12X, 3HDOPP, 1 I1X 1165
29 1. 1HQ, 13X, SHFOTJZ,. IX. SFITIZ/( 14, IPBE14.7)) 1166
WRITE OUTPUT TAPE 6,35.NMC.NTI.K22.M.NR 1167

30 WRITE OUTPUT TAPE 631, (Ko FMM(K) FM(K).FZIK)  HZIK) . FP(K). HP(K), 1168
30 IHPP(K) . HPPP(K) K= ,L2) 1169
31 FORMATOIM /3K K.BXs JHFMM, 11X, 2HFM, 12X, 2HFZ, 12X, 2HHZ, 12X, 2HFP, 12X, 1170
N 12HHP, 1 2% 3HHPP, | 1 X, 4HHPPP/( 14, IPBE14.7)) IR KA
WRITE OUTPUT TAPE 6,33.NMC.NT1.KZ2,.M.NR 1172

32 WRITE QUTPUT TAPE 6,33, TON2, TOO2, TIMES.Q47,071.FLIX,FLOX.FLEX, 1173

151
- s e ae ey ————.  i—— o i i e e et e e e —_———————

P

¥y




A

IRM.RX. RJ. (K FOIK.I)DTRIK), RZIK) . PIK) . DECK), RRIK ), RHOZ(K], U(K),

FORMAT(IM +2X. SHTON2=1PE12.4.,2X.SHTDD2=1PE12.4,.2X.EBHTIMES=1PE12, 4,
12X. 4HQ4A7=1PE12. 4. 2X, 4HO7 1= IPE12.4,2X/6H FLIX=1PE12.4,2X, SHFLOX=1PE
212.4,2X. SHFLEX=1PE12.4.2X, 3JHRM=1PE 12, 4, 2X. IHRX=1PE12, 4. 2X. IHNRJ = | PE
12,4778 K.6X: MOTH, 11X, IHOTR, 11X, 2HRZ, 12X, 1HP, 13X, 2HDE ., 12X, 2HRR,

STANDARD DIMENSION ANC COMMON STATEMENTS AS IN MAIN PROGRAM

32 2XM=i.100)
2
kX
KX
33
33 412X, 4HRHOZ, 10X. 2HU /7(14.1PBE14.7))
RE TURN
END
® FORTRAN
CFIFLUX
SUBROUTINE FLUXS
c
300 LZAls=L2-1

DO 330 N=1,NSZ

C BOUNDARY CONDITION WNO INWARD FLUX AT OUTER BOUNDARY

FLIKNI=FI(Ke1 NIeZT (Kol ,NI+BB(K, ( Je(A(K+1.N)) -2, O#SIK. NI#W(K+

C STEFAN =0,00 TO DELETE RADIATION ENERGY AND PRESSURE

STEFAN=0.0

1174
1175
1176
1177
1178
1179
1180
1181

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

1202
1203
1204
1205

- 12086

FI1tLZ.N)=0.0
S10 DO 512  Ja1.L2Ml
Sit K= L2-J
512
512 11.N)
520 FOC)I.NI=FIC1.NI*ZIC1.N)+BBC1.2)8(AC1.,NI)+2,00S{1.NI#WC(1,N)
522 DO 525 K=2,L2
525 FOCK NIZFO(K-1.NIe{R2(K~1I/R2(%))I*ZOCK.N)
525 2+BB(K.2)9(AIK,N))I+2, 0oS(K,NI*W(K,N)
525 3+(1.0-(R2(K-1)/R2(KIIIeFI (K. NI#ZI(K.N)
S30 CONTINUE
; 549 DO 555 K=1.LZ
i F1S(X)=0.0
i FOS(X)=0,0
; DO 5SSO0 N=1,NSZ
; FIS(X)=F ISIK)+F1(K.N)
; 530 FOS(X)=FOS{X)+FO(K.N)
i s8]  IF(K-1) 552.552.554
‘ 582 D1=0.0
1 583 GO TO S3%
! 54 DO1=1.0
! &S5  DIVFA(K)=(R2(K)/ZMASC(K) I (FOSIK)-FIS(K))
! $8%  1_-D1s(R2(K-1)/ZMASIK) ) e{FOSIK-1)-FIS(K-1))
! 841 FLOX=12.56#R2(L2-3)#FOS(L2-3)
H 590 RETURN
f s31  END
» FORTRAN
i CFISTE
SUBROUT INE STATE
c STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
C STEFAN 22.S14E-09 TO INCLUDE RADIATION ENERGY AND PRESSURE

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1421
1222
1223
1224
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00 126 K=1.LZ

ETACK)s1.0/(1,.293E-03» V(K))
TS(K)=TS(K)e1, OE-04
XS(K)=1,.0E+Q04eTSIK)/( ETA(K)2+0.006)
GNUCK ) =LOGF (XS(X)/2000.0)/LOGF ( 1250. 0)
IF(XS(K)-2000.0) 106.106.108
PART(X)=1,0

GO T0 112

IF(XS(K)-2.5€+06) 109.111.111

PART(K)=1.0+15.42( GNU(K)#e#3)n(4.0-3.0s GNU(K))

GO 70 112

PARY(X)=16.4

PI(K)= (2.8818(TS(K)/ VIKI)e PART(K)+STEFAN#(TS(K)ne4q4))r].0E+10
Y=20,0784/02.6881#TS(K)s PART(X))
UZ=1.0+(27.00Y+3.0)/(5.00Y+1.0)+861.0e(1.0-Y)»Y/(3000.00(Yee2)+],0
1)4(2356.0¢(1.0-Y)8Y)/(9.0E+04n(Yee2)+1,0)+( 41000.00(1.0-Y)oY)/
2(12.0E+060(Y082)¢1,0)+(2.13E+05¢(1.0-Y)2Y)/(1.5E+1Qe(Yenq)+],0)
UT=(24,.08(Y802)+4,.0E-10)/(4.0(Y202)+1,E-10)-(0.0970aCYn22)0(1.0-Y)
1)/7(2,0E-06+Y2e3)+(4, 1BE-05(Yaa3)e(1,.0-Y))/(1.14E-11+Yne6)
UC=UZ-0, 09#{UZ-UT)#LOGF( ETA(K))

E(K)= (0.039200(UC-1.0)/Y+3, 08STEFAN®(TS(K)ee4)a V(X)Iel 0E+10
TS(K)=TS(K)#1, 0E+04

1S(2)=TS(2)s), 0E--04

TS(1)=7S(1)e1. 0E-04

P(1)=(0.53BE+10+TS(1)enl.5)/V(1)
€0(1)=2.53€+10#(((V(1)9e0.25)+10.0)/(3.0eV(1)220,.5+10.0))»
1C(V(1)e00.25)-0.13)#(TS(1)ae1.5+,02722/V(1)#01.5)
P§2)=36.IBOTSCZJOl.0E0100(920.O*TS[2J!G2)I(V(2)O(TS(ZJO'Z*I.085004
1)

E(2)=((649.0+TS5(2)#22)/(100.0+75(2)))
;0(;g23;;TSE2)G1.OE’IO)/(IIS.0/(V(2)|l0.25)*TS(2)0(1.0‘0.IZI(V(Z)!'
ol ’

TS{1)=TS(1)+1,0E+04
TS(2)=TS(2)=1.0E+04
176 RETURN
177 END
* FORTRAN
CF 1HYDO
SUBROUT INE HYDRG
C STANDARD DIMENSION AND COMMON STATEMENTS AS IN MAIN PROGRAM
KHR=0
KRS=!
KZ4=0
c TEST FOR [IMPROPER CONVERGENCE
0O 195 K=1.L2Z
IFC(DTM(X)) 192.195. 191
191 IF(T(K)-2,.0E+03) 1688. 168,189
188 IF(ABSF(DOTM(K))-4,99¢T(X)) 195,195,193
189 IFCABSF(DTM(K))-0,.80eT(X)) 195,195,193
192 IFCABSF(DTM(X))-0,.25¢T(K)) 195.195.193
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1225
1226
1227
1220
1229
1230
1231

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

1262
1263
1264
1265
1266
1267
12638
1269
1270
1271

1272
1273
1274
1275
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193 ®22=193
ROX=RQX0. 2
RM=ROXe), 3
CALL DIAGNS
194 GO T0 19
199 CONT INUE
198 1IF(ROX) 199,199,200
199 RQX=DTMIN
C RICHTMYER - VON NEUMANN MYORODYNAMIC SCHEME
C ADVANCE VELOCITY - - CHOOSE TIME STEP
200 00 207 K=i,L2Z
201 (K, 3)=U(K)
202 UR(K)=U(K)
203 U(K)= U(K)-2.00((R2(K)
204 1-P(X)-0Q(X))
206 IF(U(K)-1.0E+11) 207,210,210
207 CONT INUE
208 W(LZ)=0.0
209 GO T0 217
210 KZ2=2210
CALL OIAGNS
213 GO TO S2
C HYDRODYNAMIC TIME STEP - - COURANT CRITERION
21?7 RM2RQX®)1,3
218 IFCRM-0.070eTIME) 222.222.219
219  RM=0,.070eTIME
222 00 227 K=1.L2
224 OTHIK)=DR(K)/(RSeSORTF(PIKI/(V(K)I#(RHOZ(K)*#2])))
OTHCK I =DTH(K)I#((RZ(KI/R(K) I ea2)
FOCK,3)=DTH(K)
223 IFCRM-DTHIK) ) 227,226,226
226 RM=DTH(K)
K24=K
227 CONT INUE
228 RJ=RM
Cc RADIATION LIMITED TIME STEP
229 RXsRM
230 00 242 KsKRS.LZ
IF(K-1) 233,233,223
223 IF(R{K)-FBR) 231,231,233
231  AR=BR
232 GO 70 234
233 AR=BRs2,0
234 CONT I NUE
235 DTR(K)I=ABSFCAR®E(K)/DIVFA(K))
238 IFCOTRIK)-OTHIN ) 242,242,239
239 IF(OTR(K)-RX) 240.240.242
240 RX=DTR(K)
241 KZ4=K
242 CONTINUE
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*0T)/(ZMAS(K)+ZMAS(K+1)) ) n(P(K+1)+Q(K+1)

1276
1277
1278
1279
1280
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301

1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321

1322
1323
1324
1325
1326




243
244
243
246
247
2486
249
250
251
232
233
254
255
236

RM=RX

1F(RM-2,000T) 246.246.243

RM=2, 0aD7

IF(RM-DTMIN) 247.248.248

RM=0TMIN

ROX =RM

IFCCTIME+RM)-TIMEW) 252,252,250

IF(NMC- 4) 252,232,251

RM=TIMEVW-TIME

D0 235 Ls=l.LZMI

UACL)=(U(L) /2, 0)+C(UR(L)/2.0)+(UCL)eRM) /(2. 0#DT)-(URCL)#RM)/(2.+0T7)
URTL )=C{UIL )72, 0)+1URCL)Z2.0)-CUCL)I*RM)/(2, 020T)+(URCL)#®RM)/(2, «0T)
UL )sUA(L)

OT=RM

C ADVANCE RADIUS ALL L

260
261
262
263
264

265
266

268

269

00 263 L=1.L2
W(L.3)=R(L)
R(L)I=R(L)+DTeU(L)
RRIL)=R(L)I/RZ(L)
R2(L)>R(L)we2

00 269 K=2.LZ
IF((R(K)-R(X-1))-0.13) 264, 264. 269
KHR=KHR + |

IF(KHR-3) 265.265.270
K22=266

CALL DIAGNS

00 268 L=1.LZ

UL )=w(L,.3)
R(L)=W(L.5)

CONT INUE

ROX=DT#0.2

GO T0 200

CONT INUE

C ADVANCE SPECIFIC vOLUME

270
271
273
274
273
276
277
278
279

282

V(1)=({R(1)#e3)/(RZ(1)%a3))/RHOZ(1)

00 277 K=2.L2
V(K)=(1,0/RHOZ(K))#(((R(K)/DR(1})#23)-((R(K~-1)/0R{1))ee3))/
1CC{RZ(XI/OR(1))223)-((RZ(K-1)/DR(1))#e3))
IF{V(K)-1.0E+20) 276,279,279

IF(V(X)) 279.279.277

CONT INUE

GO TO 283

KZ2=279

CALL DIAGNS

G0 10 S52

C ADVANCE ARTIFICAL VISCOSITY

283
284

IFCNMC-NQS)  284.284.286
vD=CS

GO 10 287

vO=CR

D0 295 Ks1.LZ
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1327
1328
1329
1330
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

1372
1373
1374
1373
1376
1377
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IFIVIK)-VR(K)) 293.2042.2942

1376

293 Q(K)=(VOe( (ZMAS(K)/R(K)*82)002)/(V(K)+VR(K))Ie(((V(K)-VR(K))/DT)ee 1379

12) 1380

% IF(O(K)-1,0E+22) 2941,290,29 1381
2941 IF( Q(X)) 2942.295.29% 1382
2942 0(K)=0.0 1383
295  CONTINUE 1384
296 0(L2)=0.0 1383
297 RETURN . 386
298 K22-2%8 1367
CALL OIAGNS 1388

32 WRITE OUTPUY TAPE 6.43.T(1) 1389
43 FORMAT(IH . ISHEXIT FROM HYDRO. SX,SHT(1)=1PE13.6) 1390
T(1)=0.000000 1391

1500 GO 10 297 1392
END 1393

1394

. FORTRAN 1395
CF 1COEF 1396
SUBROUTINE COEFF 1397

c STANOARD OIMENSION ANC COMMON STATEMENTS AS [N MAIN PROGRAM 1398
700 L2ZR=LZR 1399
C SET FLUX DERIVATIVES NEAR OUTER BOUNDARY OF RADIATIVE REGION 1400
761 FP(LZR)=0.0 1401
702 HWP(LIR)=0.0 1402
703 HPP(LZR)=0.0 1403
704 HPPPILZIR)=0.0 1404
703 HPP(LZIR-1)=0.0 1405
706 MPPP(LZIR-1)=0.0 1406
707 HPPP(LZIR-2)20.0 1407
00 769 J=1.LIR 1408

C SET RIPPLE ZONE PARAMETERS 1409
DG 314 N=1.NSZ 1410

SAVE 1288(J.N) 1411
SAVE2:=88(J-1.N} 1412
SAVEJ3=S(J:N) 1413
SAVE4=S(J-1.N) 1414
SAVES=DTAU(J.N) 1415
SAVEG=A(J.N) 1416
SAVE7=W(J.N) 1417
SAVEB=Z1(J.N) 1418
SAVES=Z1(J-1.,N) 1419
SAVE10=Z0(J.N) 1420
SAVE112Z0(J+1,N) 1421
SAVE12+BC(J.N) 1422
SAVE14=T(J) 1423
SAVE13=7S(J) 1424
SAVE13=CWL(J. 1) 1425
SAVE163Z0(J+2.N) 1426
SAVE|7=88(J.2) 1427

SAVE18=88(J-1.2)

1428
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T

i
31

312

300
300
300
300

298
299
301
302
305
S06

507
508
509
S14

C
540
S41

c
942

545
S46

BBCJ . NI=({({IRC(J*1)-R(JIIeTP(J)aaq)+((R{JI-R(J-1))eT (Jeol)angq))/
1(R(J*1)-R(J-1))))¢S5.67E-03
B8(J-1 . NIs({CC(R(JI-R(JI~1))eT(J-1)eedq)+((R(J-1)-R(J-2))eTP(J)004))
17(R(JI-R(J-2))))nS5.67E-03

88(J-1.2)=88(J-1.1)

88(J.2)=88(J. 1)

BC(J.N)=S5,67E-0Se(TP(J)00q)

TSCJ)=TP(J)/11606.93

THJ)=TP(J)

ETACJ)=1,293E-034V(J)

ALPHA =9, 0+EXPF(-TIME/]. OC-03=(ETA(J)#22))

BETA=((6.0E-18eV(J))#00.5)¢(TS(J)ewn0.1)

Z1(J, 1)=EXPF(-1.5¢(R(J)I-R(J-1)) ZUCETACI)nel,3)/7((TS(JIeeALPHA)
2+BETA) +0.2%(ETA(J)*e].91)/(TS(J)e+2.73)
3+40.023#(ETA(J)ee] . B8)2(7S(J)#e0,.25)+1.0E-072(ETA(J) 002, 0)/
40(TS(J)aa(-5,0))+4.0E-140v(J)}I)

21CJ.11=21(J.1)e0,.99999998

210J.2)=21(J. 1)

HMFP=(ETA(J)o#1,5)/70(TS(J)neALPHA)+BETA)
140.2¢(ETA(J)*01,.91)/(TS(J)ee2,73)
2+0.023¢(ETA(J)ne1,.8)2(TS(J)ee0.25)
3+1,0E-072(ETA(J)2r2, 0)#(TS(J)neS5,00)

HMFF=9,.3E-06#(ETA(J)#e2.0)e(TS(J)#e3,3)

IFCTS(J)-10.0) 301,298,298

IF(HMFF-HMFP) 299,301,301

HMFP zHMFF

OTAUCJ. 1)=1.5¢(R{J)-R(J-1))/H¥FP

A(J:NIZEXPF(-DTAU(J.N})

TS(J)=TP(J)

S(J.NI=(BC(J.NI-BC(J+]1.N)I/(DTAUCJ,NI+DTAULJ+1.N))

S(J-1.N)=(BC(J-1.N)-BC(J.N))/(DOTAU{J-1.N)+DTAU(J.N))

W{J:NI=1.0-ACJ,NI-ACJ.NI=OTAUC(J.N)

IF(W(J.N)-1.0E-04) 509,514,514

W(J:NI=0.5¢(DTAU(J.N)#22)

CONT INUE

SET CUTOFF WAVCLENGTHS
I=J
IFCTCI)-TON2) 346.542.3542

OPACITY DUE TO ATOMIC SPECIES

CWLCl.1)= 700.00EXPF(-0.362(T(1)-11606.5)/11606.3)
IFCCWLC(].1)-275.0) 545,560,560

CwL(1.1)=275.0

GO T0 356

0
IFCTC1)-TDO2) 551,547,547

C OPACITY DUE TO N2 MOLECULE

347

TChZ=S.0E-0701,.283E-03eV(])
CWLCI.1)=1140.0#(C(RCI)-RCI-1))/(V(1)01.293E-03))#00.11)
1#(1.0-EXPF(-TIME/TCN2))
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1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441

1442
1443
1444
1445
1446
1447
1448
1449
1450
1431

1452
1453
1454
1455
1456
1457
1458
1459
1460
1461

1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

1472
1473
1474
1475
1476
1477
1478
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3350

c

331
333
334
334
333
336
337

604
605

607
608

610
611
613
616
617
620
627

€30
631
632

IF(CWM.(1.1)-1000.0) 330.360.380
CW.(1.1)=1000.0
60 10 3890

OPACITY DUE TO 02 MOLECULE

TC=4230. 0-271. 0sLOGF(1.293€-03¢ V(1))

TCO02=3.0E-07+1,293E-03eV(1)

IFCTC1)-TC)354,534.336
CW.C1.1)=1300,0¢T5C1)e(0,.163+0.0743LOGF(DR(1)#RHOZ(1)/1.293E-03))
1e01.0-EXPF(-TIME/TCA2))

GO 70 337

TSS=TS(I)a(. 06G47sLOGF(RCI)-R(1-1))-C.25-.109¢LOGF(1.293E-03eV(I))})
CW.(1.1)=3300.0+7TSB-{2000. 0+TSB)EXPF{-TIME/TCO2)
IFCCWL(].1)-1500.0) 35358.360.3560

CWiL(1.,1)=13500.0

CONT I NUE

CALCULATE 7 VALUES
ZOC(1. 1) . (1.1)
JSTR=J+2
KD=0
09 670 L=J.JSTR
TR(L)=T(L)
IFCT(L)-B.0E+04) 607.668.668
XD=KD+1
IF{KD-1) 608.608.609
M5=L-1

IFCOTAUCL.1)-1 ~) 610.668.668
SEL?STLTQr? - TF TATURE OF RADIATION TRAVERSING ZONE L
LIMsL -,
TAUSUM=0. 0
DO 630 NN=1,.LIM
M=l -NN

TAUSUM= TAUSUM+DT 1trM, 1)

IF{TAUSUM-0.7) ++.627.627
TRIL)I=T(M)

IF(M-2) 630.630.638
CONT I NUE

IFCT(L)-2500.0) 631.632.632
TRCL)=TR(L-1)

GO 10 637

EPTSUM=0. 0

EPSUM=0. 0

00 635 I=3.LIM
EPTSUMSEPTSUM+T(1)#0TAUCL, 1)
EPSUHSEPSUM+OTAUCT. 1)
IFC(T(]1)-2900.0) §636.636.633
CONT INUE

TR(L )=EPTSUM/EPSUM

M=2

1Z=Me1

o A ———— @2

1480
1401
1482
1463
1434
1483
1466
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1303
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
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633 DO 646 1=1Z.L
640 IFCTRCL)IWCWL(1.1)-2.0E+08) E41.641.644
641 Z1C1,2)= EXPFC(-3.41E-00oCULC(1.1)aTRC L )+2.8€E-29«((CWLLI,1)eTRIL
641 2))ee3))eEXPF(-3. 07E+13/7C(CWL(1.1)eTR( L ))#01.8)))
642 GO T0 646
644 21C1.2)=27.61E+22/C(CWLCI.1)eTRC L ))eel)
646 CONTINUE
IMAX=21(M+1,2)
Z0CL.1)2Z21(M+1,2)
647 IF(L-M-1) 668.663,6350
C CORRECTION FOR IMTERMEDIATE ZUNES
650 [2=M+2
651 CULTST=CWL(M+1,1)
652 DO 660 N2=1Z.L
653 IFCCMLCNZ,. 1)-CWLTST) 654,654,637
654 IF(NZ-L) 660.655.668
695 Z0(L.1)=1.0
656 GO Y0 660
637  IOCL.1)=Z1(NZ.2)/ZMAX
658 CWLTST=CWL{NZ,1)
659 IMAX=ZI1(NZ.2)
660 CONTINUE
663 IFCZOCL,.1)-2Z1¢L.1)) 670,668,668
668 ZocL, 1)=21(L. 1)
670 CONTINUE
671 IF(OTAU(J.1)-1,0E-04) 672.674.674
672 A(J.1)I=DTAUCJ. 1)
673 GO TQ 675
674 ACJ.1)=1.0-ACJ. 1)
673 IF(S(J.1)-1.69E+38) ©675.68675.677
8675 IF((BB(J.1)eA(J+1,1)-2,00S7J,1)0W(J+1,1))-BCLJ+1.120A(J¢1,1)40.01)
8675 1 677.680.680
677 S(J.1)=0.0
678 BB(J.1)=BC(J+1.1)
679 BB(J.2)=BC(J, 1)
680 IF(S(J-1.1)-1.69E+38) 6680.8680.6861

86680 IF((BB(J-1.1)eA(J.1)-2.085(J-1,1)aW(J.13)-BCC(Je1)RA(Js1)20.01)
86680 1 661.6684.684

681
662
683
664
900
913
916

c

831
832
833
834

e mr s = cemmmew e

$(J-1,1)=0.0
88(J-1,1)=8C(J. 1)
88(J-1,2)=BC(J-1.1)
IF(J-2) 900,900,916
IF(BC(1.1)-8C(2.1)) 915,916,916
88(1.2)=8C(t.1)
T(J)=SAVE 14
CwiL(J.1)=SAVELD
CALCULATE TEMPORARY FLUXS
JSTR=J+2
IF(JSTR-LZR) 834.0834.633
JSTRaLZR
DO 842 N=1.NSZ
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1531
1932
1333
1934
1533
1336
19537
1538
1539
© 540
1541
1542
1543
1514
1545
1546

1547

1548
1549
1550
1531

1552
1553
1554
1555
1556
1557
1558
1559
1560
1561

1562
1563
1564
1565
13566
1367
1568
1369
1570
1571

1572
1573
13574
13735
1576
1577
1578
1579
1380
1581
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747
748

FUVUIPRN

FITLJISTR*1, N)FI(JSTR+1, )

00 830 L=1,JSTR

KeJSTR-L+]

FIT(K.N)=FIT(Ke1,N)®e ZI(R+] ., NYeDB(K, 1 0l A(K+1,N))-2.0¢ S(K.N)
20 W(K+1.N)

FOTCI.NI=FITCI.N)e ZICL.NI+BBCI,2)0l AC1.N))+2,.0% SC1,N)
2¢ ¥{1.N)

00 841 K=2, JSTR

FOT(K.NISFOT(X-) . NY2CR2IR -1 ; FR2(K) ) ZOC(K,N)

240B(XK.2)00 AIMIN. -, 08 SIRLN)E WK )
30(1.0-CR2CK-1I/R2{:HVIBFITINA NI ZI(K.N)

CONT INUE

SPECTRAL SUMMATION

FOrJP2=0.0

FOTJP1=0.0

FOTIZ=0.0

FOTJN1=20.0

FITJI=0.0

FITJN1=0.0

F1TJM2=0.0

FITJM3=0.0

DO 742 N=1.NSZ
FOTJP2=FOTJP2 + FOT(J+2.N)
FOTJPLI=FOTJPL + FOT(J+1,N)
FOTJZ=FOTJZ + FOT(J.N)
FOTJMI=FOTJM] + FOT(J-1.N) .
FITJZaFITJZ « FIT(J.M)
FITIMI=FITJM] + FIT(J-1.N)
FITJM2=F|TJM2 + FIT(J-2.N)
FITIMI=sFITJM3 + FIT(J-I.N)
FO(J.2)=F0TJ2

Fi(J.2)=FITJ2Z

CALCULATE FLUX DERIVATIVES

IF(J-LZR+1) 744.745.746
FMM(J+2)=(FOTJP2 -FOS(J+2)1/(TP(J)-T(J))
FM(J+1)=(FOTJP] -FOS(J+1))/(TP(J)-T(J))
FZ(J)s(FOTJZ-FOS(J))/(TP(J)-T(J))
HZ(JI=(FITJZ-FIS(JIIZCTPIJI-T{J))
IF(J-1) 753.735.749

FP(J-1)=(FOTJM! -FOS(J-1))/(TP(J)-TLJ))
HP(J-1)=s(FITIMI-FIS(J-1))/(TP(J)-TLJ))
IF(J-2) 733,735,732
HPP(J-2)=(FITJIM2-FIS(J-2))I/(TP(JI-T(J))
1F(J-3) 733,733,734
HPPP(J-3)s(FITJM3-FIS(J-3))/(TP(J)-T(J))

RETURN RIPPLE ZONE PARAMETERS TO NORMAL VALUES

00 768 Ns=1.NS2
88(J.N)=SAVEI
88(J-1,N)=SAVE2
S(J.N)=SAVED
S(J-1.,N)=SAVE4
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1582
1983
1384
1583
1566
1587
1568
15689
1590
13591
+ 592
19593
1394
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632




DYAUCJ.N)aSAVES
ACJ.N)=SAVEE
V(J.N)SSAVE?
21CJ.N)aSAVES
Z1CJ-1,N)=SAVED
20CJ. N)=SAVELD
20CJ+1.N)=SAVE L
8C(J.N)=SAVE12
TSCJ)=SAVELD
20CJ+2.N)=SAVE16
BB(J. 2)=SAVE1?
] B8(J-1.2)=SAVELB
| 768 CONTINUE
‘! 769 CONTINUE
|l C GENERALIZED COEFFICIENT ROUTINE DEC 6.1963
. 770 00 789 K=1.LZR
| 771 IF(K-1) 772.772.775
772 OMM(1)=0.0
P D1=0.0
! 773  OM(1)=0.0
| 774 GO TO 780
- 775 Di=1.0
1 IF(K-2) 777.776.778
776 OMM(23#0.0
, 777 GO TO 779
[ 778  DMM(K)=(0.5eR2(K)/ZMAS(K))eFMM(K)
. 778  1-D18(0, SaR2(K-1)/ZMASCK) deFM(K-1)
| 779  OMCK)= (0.5eR2(X)/ZMASCK))eFMCK)
: 779 1-01#(0.SeR2(K TMAS(K) Je(FZ(K-1)-HZ(K-1))
i 780 02(K)= (0.5eF TMASCK) Yo (FZCK)-HZ(K))
i 780 1-D1¢C0.S*R2(N (MASCK) e [FP(K-1)-HP(K-1))
780 2+C(DETCKI/DTI+ . T(K)/(2.9DT))e(V(X)-VR(K))
781 OP(K)= (0.SeR2(K)/ZMASCK))e(FP(K)-HP(K))
781 1-D1sC0.5#R2(K-1)/ZMAS(K) Ja(-HPP(K))
782 OPP(K)=(0.%8R2(K)/ZMASCK) )8 ( -HPP(K))
782 1-D1#(0.5#R2(K-1)/2ZMASCK) ) (-HPPP(K-1))
789  CONTINUE
790 DPP(LZR-1)=0.0
791 DP(LZR)=0.0
792 DPP(LZR)=0,0
C BLOCK 800 SOLUTION OF MATRIX
800 CNC1)eDP(1)/DZ(1)
801 DNC(1)=DPP(1)/DZ(1)
802 ENC1)=-RESDUEC])/02(1)
803 BN(2)=02(2)-DM(2)eCN(1)
804 CN(2)=(0P(2)-DM(2)9ONC11)/BN(2)
803 DNC2)=0PP(2)/BN(2)
w 806 EN(2)=-(RESDUE(2)+OM(2)#ENC1))/BN(2)
‘ 807 0O 811 Ks3,L2R
808 BNCK)=(DZ(K)-DMCKISCNCK-1)-DMMCK) #DNCK-2)+DMMCK ) sCN(K-2) #CNCK-1))
809 CM(K)=(DPCK)-DMC(K)eDNCK=1)+DMMCK 3 eCNCK-2)0DNCK-1))/BNCK)
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1633
1634
1639
1636
1637
1638
1639
1640
1641

1642
1643
1644
1645
1646
1647
1648
1649
1650
1651

1652
1653
1654
1635
1656
1657
1658
1659
1660
1661

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

1682
1683
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@10 ONIK)=DPP(K)/BN(K)

811 EN(K)=-(RESDUE(K) +OM(K)OENCK-1)-DMM(K) oCNCK-2) sENCK-1) +DMM(K) eENIK
811 1-2))/78N(K)

812 ON(LZR-1)+0.0

813  ONCLIR)=DM(LIR)-OMM(LZR)*CN(LZR-2)

814 CNILZIR)=(DZ(LZR)-OMM(LZR)*ON(LZR-2))/BNILZR)

813  ON(LZR)=0.0

818 g‘;&)l-(ﬁ!mﬂ.lﬂ)0W(LZR)IEN(LZR~2)JIBN(LZR)

€ND
c VERSION C ENTRY ROUTINE
STARTING MODEL IS READ IN FROM DATA CARDS GENERATED
@Y TME X-RAY DEPOSIT ROUTINE ON UNIVAC 1107
. FORTRAN
SUBROUTINE ENTRY
SEWODI’ENSIM AND COMMON STATEMENTS AS [N MAIN PROGRAM
=0,
TEE=3. 0E+04
READ INPUT TAPE 3. 9277,.RUNID1.RUNID2. TRCNNI ), TRCNN2) . ENERGY. TIME,
1FXe (Ko R(K).ORCK), TCK) o RHOZ(K ). UIKI.E(K).RUNID1.RUNID2,K=1,100)
9277 FORMAT(2A6. IP3E12.3/(14,1PGE11.3,2A3))
LZ=100
vO=CS
WKT=ENERGY/4.10€+19
T002=7100. 0+EXPF ( (0. 43429LOGF (RHD2(99)/1.293€-03))/5.3)
TON2s13000. CrEXPF ( (0, 43429+L0GF (RHOZ(99)/1,293€-03))/4.8)
1019 00 1033 K=1,100
1026 V(K)=1,0/RHOZ(K)
VR(K)=V(K)
1027 LK
TS(K)=T(K)
R2(L)=R(LI=a2
1029 RIC(L)=R(L)
1030 RRI(L)=1.0
TRI(X)=T(K)
TMAS(K)=(RHOZ(K)/3. 0)e({RZ(L)*e3)-(RZ(L-1)203))
OUs=UtL)-U(L-1)
Q(X)=-(VD/(2. 02V(K) ) )eDUSABSF (DU]
QC1)s-(VD/(2.0eV(1)))IeUC])eABSF(UC(1))
IF(OIRYY)  2233.1033, 10633
2233 Q(K)=0.0
1033 CONTINUE
ZMAS(1)=RHOZ(1)e(R(1)083)73,0
1034 WRITE OUTPUT TAPE 6.1035, TON2, TDO2, RN2, RO2, WKT . (K,R(K),RHOZ(K),
1034 lrzl;;-l’(l]-U(KJ-O(K).MS(K).M(K).W(K).OYAU(K.l).YAU(K.l).Kll.
1
1033 FORMAT(IMN . 10MINPUT DATA, 10X, SHTON2=0PF7, | . 1 0X, SHTDO2xOPFG. 1, SX,
1033 14MRN2s IPED. 2, 3X, 4HRO2=1PES, 2, 3X, AHWKT=0PF7,2//74H K . 2X. 4HR(L)
| o 7Xo THRHOZ K ) o 4X o 4HV(K) o 720 4HT K)o 7X0 4HUCL ) 7X0 4HOCK ), 7X, 7THZMAS
ﬂ;?:.otgnmgl:)o7!.“W(K)o5Xo7WTAO(K)oCXoNTAU//(ll-lPllEll.‘))
]

NO

1000 RETURN
1)
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