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ABSTRACT 

This report presents the results of an investigation on 

coupled microstrip propagation and related problems.  Included is 

a conformal mapping approach to coupled microstrip propagation in 

the quasi-static limit. Numerical analysis of the treatment shows 

that it does not agree with known results in the limit of narrow 

strip width. A Green's function solution to the problem has been 

developed and is contained in a separate report. The method is 

illustrated by applying it to a related problem — a dielectric 

rod situated symmetrically between two parallel conducting plates. 

A perturbation method is considered for the problem of non-reciprocal 

propagation in coupled microstrip.  The method has been adapted so 

as to make use of numerical results from the Green's function 

solution of the reciprocal propagation problem. As a preliminary 

test of the perturbation approach, it is applied to a problem which 

can be solved exactly. 
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PROBLEMS RELATING TO PROPAGATION ON 

COUPLED MICROSTRIPS 

1. Introduction. 

The purpose of this report is to summarize the work performed 

under Subcontract No. 351 during the period September 15, 19^7 — 

June 15, 1968, on coupled pairs of microstrip transmission lines and, 

in particular, the problem of non-reciprocal propagation in these struc- 

tures. Microstrip is a two-conductor transmission line made up of a 

conductive strip on one surface of a sheet of dielectric material, the 

other surface being completely coated with conductor to form a ground 

plane.  Introducing a second strip parallel to the first gives rise to 

coupling and two normal modes of propagation.  It has been found with 

regard to coupled pairs of microstrip that by employing ferrites as the 

substrate material, nonreciprocal propagation effects can be produced. 

As yet, however, such effects are only qualitatively understood. 

The physical structure of the coupled microstrip lines is 

shown in Figure 1.  The parameters which characterize the microstrip are 

W/H, S/H and the dielectric constant of the substrate. W is the strip 

width, H the substrate height, and S the spacing between adjacent edges 

of the two strips.  Calculation of the transmission-line parameters such 

as propagation velocity and characteristic impedance is complicated by 

the unsymmetrical geometry of the microstrip cross-section.  There are, 

however, general methods such as conformal mapping and the theory of 

Green's functions which have been successful in treating structures with 

similar geometries. 
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2. Conformal Mapping Approach. 

A method of solution of the coupled microstrip problem in the 

"quasi-static" limit, i.e. in the frequency range in which propagation 

is approximately TEM,.was developed by T. G. Bryant and J. A. Weiss at 

Lincoln Laboratory. The conformal mapping approach which was used 

involved successive transformations of the original microstrip configu- 

ration to a parallel plate configuration suitable for determining the 

capacitance, characteristic impedance, and velocity of propagation for 

each of the two normal modes. The transformations for each mode are given 

in Figures 2 and 3* 

In order to adapt this procedure into a form suitable for 

numerical computation, a single equivalent transformation was determined 

for each mode. The transformation equation for the odd mode is 

„,,,^^au,[<£^] e 
and for the even mode 

(i) 

^^-^cosh^+anhf + V-iH (2) 

Using these equations the parameters which characterize the microstrip 

(S/H, W/H) can be expressed as functions of the parameters which determine 

the capacitance, etc. for the transformed configurations in Figures 3A 

and 3C 

Consider the even mode. When u) = S/2, Er "^b + { 7t and from 

equation (2), 
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S/H= V7r(smh^k + xO 
(3a) 

For      U)-   Vz+ Vjfc.  J    Z- %CJ "*"    * ^t and (2) becomes 

W/n"" s^[*»«Wt(?)eotti(%,)+V]- S/H     (3b) 

In the case of the odd mode when tO -  ^J,  > Zr "X-fe     and 

When LO = Vjt+ ^& J ^ ^C,«l   so that 

(*b) 

Equations (3b) and (Vb) are double-valued for specified S/H and 

W/H.  Since neither equations (3) nor (k)  can be solved explicitly for 

TCfc > ^c an(* "^"A>   a Pr°gram was written to compute these variables by 

interpolation.  Corresponding values of S/H and T^j, were computed 

according to (3a) for the even mode and stored in the program.  The desired 

value of S/H was then read into the program and 3£^was obtained.  Using 

the result, corresponding values of W/H and ^c,d were determined from 

(3b) and stored. A value for W/H was then read in and "S£c and >T,were 

obtained.  The same procedure was \ised with the odd mode. 

According to the conformal mapping approach described above 

the strips were divided into proximal and distal halves (see Figure 2A). 

Fields of the proximal half-strips were characterized by the value of 



S/H of the actual structure. Fields for the distal half-strips were taken 

to be the same as those of the proximal halves in the limit of large 

spacing (s/H = 200).  Values of Xy y'V-c.  and T^j were determined in each 

case and were used to get the capacitance for a single coupled strip. 

In both even and odd modes the dielectric-air boundary in the 

transformed configuration is a complicated function of S/H and W/H.  It 

is obtained by letting U)(l)range between 0 and S/2. For the even mode 

the two equations which determine the boundary are 

The corresponding equation for the odd mode is 

DM 
(6) 

Rather than attempt to solve these equations or incorporate them into 

the program, an average dielectric filling was used as a first approx- 

imation to determine the capacitance for both the proximal and distal 

half-strips. For no dielectric the capacitance is given by 

C0- [e.(%j-Tte)/$r + e» ftf-*')/*] (7) 

where the primed quantities refer to solutions for the desired value of 

W/H with S/H = 200. For partial dielectric filling with dielectric constant 

C- j^[kejxj-vj/n + ke. (*j-*>)/* (8) 
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The propagation velocity of the medium is determined from the relation 

v- c//e;w (9) 

where c is the velocity of light and €-*-* "57~ .  The impedance for each 
wo 

strip is then given by 

Z- <ir d ("» 

In the limit of large S/H spacing there is no coupling and the 

even and odd modes are degenerate.  This limiting case corresponds to 

the single strip, a problem which was treated by Wheeler .  As a test of 

the correctness of the approach, this limiting case was investigated. 

Not only should the impedances, etc. for each mode approach the same value 

when W/H is specified, but that value should be the same as obtained by 

Wheeler. 

Results indicated that both even and odd mode impedances were 

identical in this limit, but the values obtained did not correspond to 

those reported by Wheeler.  Agreement with Wheeler's results was not 

expected because of the arbitrariness of the averaging procedure used to 

get the capacitance, etc.  In order to determine whether or not the 

solutions for this limiting case could be made to agree with Wheeler's 

results, impedances were obtained for each mode at various values of W/H 

assuming maximum and minimum dielectric filling. 

These values are plotted along with Wheeler's curve in Figures h 

and 5* When W/H is less than 1.0, Wheeler's curve lies outside the region 

in which agreement is possible.  This suggests that some portion of the 



field in air had been thrown away. The reason for this difficulty can 

be understood by considering Figures 6 and 7.  It was assumed in the 

transformations for both modes that each strip could be divided into 

half-strips which could then be considered separately.  This assumption 

is good only if none of the field lines on the distal half terminate in 

the region of the proximal half. Such field lines are not accounted for 

in the final result. Apparently there is an appreciable amount of the 

field strongly dependent on w/H for which this is not the case and the 

loss of this portion of the field in the resulting transformation would 

account for the discrepancy with Wheeler's results. 

3« Green's Function Solution. 

Due to the inherent difficulties with the conformal mapping 

approach, a Green's function solution was developed by J. A. Weiss and 

T. G. Bryant. For a discussion of the theory see "Parameters of Microstrip 

Transmission Lines and of Coupled Pairs of Microstrip Lines" which is 

contained in a separate report under the same contract as the report given 

2 
here.  The method is quite general and can be used to determine the field 

configuration in a number of related problems. As an illustration, it is 

applied to the problem of a dielectric cylinder situated symmetrically 

between two infinite conducting plates. 

Using a program devised by J. A. Weiss, necessary modifications 

were made to allow computation of the bound charge distribution on the 

surface of the dielectric cylinder. A second program was written to 

determine the potential at desired points between the conducting plates 
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using the distribution of bound charge. Such points were chosen to be 

of unit separation and the potentials were printed out in such a way as 

to allow their decimal points to form a grid. Lines of equipotential 

could then be constructed to give a graphical picture of the result. 

A detailed sketch of the lines of equipotential is given in 

Figure 8. The potential difference of the plates was taken to be 50 volts 

and, for convenience, the unit of distance was taken as l/50th of the plate 

separation. According to this scale the dielectric rod was chosen to have 

a diameter of 30 units and the width ofthe plates was 60 units. With no 

rod present, the capacitance is 10.6 pf/m. When a cylinder of dielectric 

constant k = 9 is present, the capacitance as determined from the program 

is 14.2 pf/m. The effective dielectric constant for the system is 1.3^+- 

The same procedure was also carried out for an analogous problem, 

that of a cylindrical hole in the presence of dielectric. The capacitance 

for the system with dielectric constant k = 16 is IU8.3 pf/m and the 

effective dielectric constant was found to be 13«99« The equipotential 

lines for this problem are shown in Figure 9. 

h.    Perturbation Method for Non-reciprocal Propagation. 

The use of ferrites as the substrate material in microstrip to 

produce nonreciprocal propagation is a subject of much interest in the 

design of integrated microwave components but is only poorly understood 

from a theoretical point of view. As a starting point for the theoretical 

investigation of this phenomenon a study was made of perturbation method 

of Suhl and Walker.   The usefulness of their formulation is that 



•8- 

longitudinal fields are included in the perturbation equations for 

transverse components. For completeness a brief review of the theory- 

is included. 

A medium whose dielectric and permeability tensors are diagonal, 

isotropic, and independent of the distance along the z-axis is perturbed 

such that it is no longer isotropic and the tensors may contain off- 

diagonal elements. For the unperturbed system u = uf(x,y), e = e,(x,y). 

After the perturbation 

G(X,<))r 
o       o  ej(i^; 

>   /«*>* 
O        O   fatty) 

(11) 

Maxwell's equations for the perturbed system may be written as 

K7*HE- iM£- iioez£t- *)%£*= o 

.i 
where    ?* =   ( fy f HA> §*« ( E, ^ I V (H1 /"HA* 
and H. may be expanded in terms of the normal modes of the unperturbed 

system by the relations 

(12) 
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where a and b are the amplitude functions for the n  mode. Using 

these results 

«     r       a*Lj (l3) 

+ 5(/<i-/ci)M»HlllclsJ 

where 

A.-Sstff*-J>    &-XHL-B.JI (15) 

and the tilde denotes complex conjugation. Equations (13) and (l4) 

are exact but involve the unknown fields E, , E , H. , and H . —t7  z7 —t7     z 

Consider the case in which the perturbation is uniform in z. 

In the absence of the perturbation only the m  mode is to be present. 

An unmagnetized ferrite material is introduced into the line.  Two cases 

are to be considered.  In the first case the ferrite completely fills the 

substrate region. In the second case only part of the substrate is 

ferrite, the rest being dielectric.  If the material properties of the 

ferrite and the original medium are not significantly different, the 

resulting fields are nearly the same as for the unperturbed system. 

Denoting the fields in the presence of ferrite by E.  and H  , we may 
o      o 

then set them equal to E,  and H, .  If, on the other hand, the mediums *     -tm   —tm     ' ' 
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are significantly different,then E.  and H.  must be determined by an 
—tm    —tm 

o      o 

independent method. 

The ferrite is then magnetized along the z-direction and the fields 

th 
for the HI      mode become    Om(E) Efc*("*,?)     ,    Qm(Z) HEM/*vV>  ) 

-ifi\ 
bJJfiHlm&'V    ) and   bj*) E2tkliV,*j)     where   QmU) = A^ C 

b^ B^e   ^ and /&=/3~+ <fa •    Equations   (13)  and (ik) 

then become 

(16) 

The change in p is determined by adding and then subtracting 

equations (l6) and (17)• Requiring that the resulting equations give 

non-trivial solutions for A and B , one then has that 

Zp-ty-L       -2p + $p*M 
' O 

Since L, M, and <Jf3 are small, higher order terms in these variables may 

be neglected. The result is then 

4s*-j£(i.4-ri) (18) 

The perturbation equations, as they stand, are not suitable for 

determining the fields for the microstrip problem since analytic expressions 

for the fields in this case are not available. However, when the only mode 
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present in the unperturbed system is TEM the perturbation equations can 

be conveniently expressed in terms of a potential function j6. For this 

case Maxwell's equations take the form 

and are satisfied if we let 

i•« - Vt<J>W0e HT.rt
= Vt <p (^)e (19) 

If one assumes that E^ = E^ and H^ = KTm>  then (l6) and (17) 
o o 

become 

(20) 
i/Smdm" iflAm* iM6~ 

where 

£±TSM U 

"s "ffc, S [ (A'/' 1 7t> • 7*0 + i * 7t $ • **4>] «• S (a) 

The advantage of the formulation above over equations (l6) and 

(17) is only one of form. However, further modifications may be made so 

as to allow important simplifications in numerical solutions to the micro- 

strip problem. 
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As an example of the method, consider the case of a coaxial 

cable which is perturbed when part of the medium between the two conductors 

is altered as in Figure 10. For the unperturbed system 

The wave and line impedance are 

w= J?"- izoif Zu-iirMfc)\le; (23) 

Let the potential remain fixed when the medium specified by 9 is altered. 

Furthermore, let e > e        and u = u. in this region. Then M = 0 in (21). •      o o 

7EIH ^ 

Therefore 

From equations (20) 
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The current axid potential difference are 

ZTCCo 
I--§H-di.*cBe",'iEJ   4U-Sfi^r* Jr^e^rt) 
The wave impedance is then 

7 - .[& « VE \ —JMi    1 
**W V€.„   V e. L \^e. + %t(e-e..) J 

and the line impedance is 

v - AI4I rs. r   ink       i 
In the case where u > UQ and e = eQ the same procedure gives the 

following results 

7   = /Ma) 1^ f><7^e.^6lA7r(/<-^.)l 
^L     17 V*. L v^T. J 

When both u > u and e > e the results are r  ^o o 

/3= [y^fi. + %*U-£.+//-/*.)] 
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It can be seen that the impedances and propagation constants have the 

correct limiting value when e = e and u = u . o        o 

In order to determine L and M in equations (2l) for a general 

problem one must know the potential and its gradient at every point where 

the field exists. When a functional form for 0 is unknown but 0 and grad 

0 may be determined at certain points, e.g. along the boundaries, it is 

convenient to have an alternate expression available where the potential 

need not be considered everywhere. Such an expression can be found using 

Green's first identity. 

The energy of a charge distribution is given by 

W-V-L §/>(£') <P<t'\dv' (2k) 

In a dielectric div E- * *in \P   P >       where primed quantities refer to 

bound charge. Alternately this relation may be written 

Vz<p= -4*1t{f>+P') (25) 

Combined with Green's identity 

$ [4>VZ(J> + (^<t>)Z]dv=  §<pV0ds 

equations (2k)  and (25) give the result 

When only surface charge exists this expression becomes 
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where S1 includes all surfaces within S on which charge exists. The useful- 

ness of equation (26) is demonstrated in the following simple example. 

Consider a coaxial cable partially filled with dielectric in a 

cylindrically symmetric fashion as shown in Figure 11. Using Gauss' law 

we obtain the following expressions for the potential 0, 

<J)=   kv,^(%L_    ¥     va A (b/r) 

At the interface of the inner conductor and dielectric the bound surface 

charge is 

-(k-l)Vo 

'  4Xo.[\ch(cA)*Mh/<S\ 
At the outer boundary of the dielectric 

9,tw     (k-oy.  

There is no volume bound charge density. The free surface charge density 

on the inner conductor is 

<r * ^ra[k^(%)+A(b/J] 
We now desire the energy of the field within the dielectric only.  This 

may be obtained directly from the potential function. 

(27) 
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where jf is the length of the cable. The same result is obtained by- 

considering a closed surface just inside the outer boundary of the 

dielectric and using the right-hand side of (26). 

-L- §  0<jr*d$ • ds + Vz C (orVcr) 4>(a) ds' 

"" '4 PJSOTW ^^ \p§5*tta 
In the limit as r ^b this expression is the same as (27). A closed 

surface just outside the dielectric boundary also gives the same result 

in the limit as r—»b. In this case however one must consider both 

bound charge densities. 

In addition to verifying equation (26) this problem provides 

a useful test for the limits of the perturbation method since it can be 

solved exactly. The perturbation approach is essentially the same as 

that given in the first example. Assuming that u = u and e >   e 

within the dielectric results of this method are 

/3 '• T fW» * /&t(V*)  ( e-e.) "1 ^ 

•z -- M*> .re r     tt*' i 

IK 

A (c/<0 
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The exact solution was not completed although the field components were 

obtained.  They are listed below. 

Co  L 

where ( kj! ^*+/3* s ****/(? /*&*    , H * X , H     .  Six auxiliary 

equations are needed to determine the constants a , b , and k .  Four of 
* n' n'     r 

the six equations are obtained from the boundary conditions. From the 

requirement that the normal component of E be continuous at the boundaries, 

one has that £^*0 a+ r* a , £R * O of r= C , and £g m ^g a"^ i**b. 

The remaining boundary condition is obtained by requiring that the normal 

component of the electric displacement vector, D, be continuous at Y"-  b 

The other two equations which relate the unknown constants are 

The existence of surface waves on a sheet of dielectric bounded 

on one side by a conductor was investigated. The resulting fields of this 

problem closely resemble those in microstrip.  In addition, the effect 
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of surface waves is prominent in the high frequency range. The results 

are not reported here because this problem is treated in greater detail 

in the literature. 
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FIGURES 

1. Coupled Microstrip 

2. Initial transformation — both modes 

3» Final transformations — both modes 

k. Characteristic Impedance versus W/H — odd mode 

5« Characteristic Impedance versus W/H — even mode 

6. Actual Field of the Coupled Strip (s/H = 200) -- both modes 

7. Assumed Field of the Coupled Strip (s/H = 200) ~ both modes 

8. Equipotential Lines for Dielectric Rod (k = 9) between 
Parallel Conducting Plates 

9. Equipotential Lines for Hollow Rod in Dielectric (k = 16) 
between Parallel Conducting Plates 

10. Partial Dielectric Filling in Coaxial Cable 

11. Cylindrically Symmetric Dielectric Filling in Coaxial Cable 
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Figure 2A Representation (W-plane) of proximal half-strips 

as edges of semi-infinite strips 
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Figure 6 Actual Field of the Coupled Strip (s/H = 200) 
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Figure 7 Assumed Field of the Coupled Strip (S/H = 200) 
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Figure 10 Partial Dielectric Filling in Coaxial Cable 

v=o 

Figure 11 Cylindrically Symmetric Dielectric Filling 

in Coaxial Cable 
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function solution to the problem has been developed and is contained in a separate 
report. The method is illustrated by applying it to a related problem — a dielectric 
rod situated symmetrically between two parallel conducting plates. A perturbation 
method is considered for the problem of non-reciprocal propagation in coupled micro- 
strip. The method has been adapted so as to make use of numerical results from the 
Green's function solution of the reciprocal propagation problem. As a preliminary 
test of the perturbation approach, it is applied to a problem which can be solved 
exactly. 
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