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ABSTRACT

This report presents the results of an investigation on
coupled microstrip propagation and related problems. Included is
a conformal mapping approach to coupled microstrip propagation in
the quasi-static limit. Numerical analysis of the treatment shows
that it does not agree with known results in the limit of narrow
strip width. A Green's function solution to the problem has been
developed and is contained in a separate report. The method is
illustrated by applying it to a related problem -- a dielectric
rod situated symmetrically between two parallel conducting plates.
A perturbation method is considered for the problem of non-reciprocal
propagation in coupled microstrip. The method has been adgpted so
as to make use of numerical results from the Green's function
solution of the reciprocal propagation problem. As a preliminary
test of the perturbation approach, it is applied to a problem which

can be solved exactly.
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PROBLEMS RELATING TO PROPAGATION ON

COUPLED MICROSTRIPS

1. Introduction.

The purpose of this report is to summarize the work performed
under Subcontract No. 351 during the period September 15, 1967 --
June 15, 1968, on coupled pairs of microstrip transmission lines and,
in particular, the problem of non-reciprocal propagation in these struc-
tures. Microstrip is a two-conductor transmission line made up of a
conductive strip on one surface of a sheet of dielectric material, the
other surface being completely coated with conductor to form a ground
plane. Introducing a second strip parallel to the first gives rise to
coupling and two normal modes of propagation. It has been found with
regard to coupled pairs of microstrip that by employing ferrites as the
substrate material, nonreciprocal propagation effects can be produced.

As yet, however, such effects are only qualitatively understood.

The physical structure of the coupled microstrip lines is
shown in Figure 1. The parameters which characterize the microstrip are
W/H, S/H and the dielectric constant of the substrate. W is the strip
width, H the substrate height, and S the spacing between adjacent edges
of the two strips. Calculation of the transmission-line parameters such
as propagation velocity and characteristic impedance is complicated by
the unsymmetrical geometry of the microstrip cross-section. There are,
however, general methods such as conformal mapping and the theory of
Green's functions which have been successful in treating structures with

similar geometries.




2. Conformal Mapping Approach.

A method of solution of the coupled microstrip problem in the
"quasi-static" limit, i.e. in the frequency range in which propagation
is approximately TEM, was developed by T. G. Bryant and J. A. Weiss at
Lincoln Laboratory. The conformal mapping approach which was used
involved successive transformations of the original microstrip configu-
ration to a parallel plate configuration suitable for determining the
capacitance, characteristic impedance, and velocity of propagation for
each of the two normal modes. The transformations for each mode are given

in Figures 2 and 3.

In order to adapt this procedure into a form suitable for
numerical computation, a single equivalent transformation was determined

for each mode. The transformation equation for the odd mode is

[(cz+|)"‘+ |
(e®+ 17 -| (1)

2%
wzy=s 2H (e 0* L H |p
n e %v T

and for the even mode

2 z y
Wwiz) = '-%H-cosh (?2“)+anh—£+-t'—,fl - iH (2)

Using these equations the parameters which characterize the microstrip
(S/H, W/H) can be expressed as functions of the parameters which determine
the capacitance, etc. for the transformed configurations in Figures 3A

and 3C.

Consider the even mode. When w = §/2, Z= ¥p + 1T and from

equation (2),



S/H = 2/7( (sinh X, + Xs) -

For W= S/z"" w/L )y 2= xc,d + i and (2) becomes

-2/%[2515'\1'\( )COH“(%“)“’?‘"] */ (3b)

In the case of the odd mode when W= S/z ) £= xb and
o, \
. (e 1) z [(e il *']
M e ¥b + Ln e¥es1)s -| (4a)

When w = 2+ w/z y 2= ¥ed 5o that
w d) Y] (7% %+
L 4’ ? Bt (e"‘:“u)‘ﬁ-l (4b)

Equations (3b) and (4b) are double-valued for specified S/H and
W/H. Since neither equations (3) nor (4) can be solved explicitly for
Xy, 3 Zc and 'Kd, a program was written to compute these variables by
interpolation. Corresponding values of S/H and 'Xb were computed
according to (3a) for the even mode and stored in the program. The desired
value of S/H was then read into the program and xbwas obtained. Using
the result, corresponding values of W/H and ZC,J were determined from
(3b) and stored. A value for W/H was then read in and x e and xdwere

obtained. The same procedure was used with the odd mode.

According to the conformal mapping approach described above
the strips were divided into proximal and distal halves (see Figure 2A).

Fields of the proximal half-strips were characterized by the value of



il

S/H of the actual structure. Fields for the distal half-strips were taken
to be the same as those of the proximal halves in the limit of large
spacing (S/H = 200). Values of X , Y and ¥4 were determined in each

case and were used to get the capacitance for a single coupled strip.

In both even and odd modes the dielectric-air boundary in the
transformed configuration is a complicated function of S/H and W/H. It
is obtained by letting W(@Irange between 0 and S/2. For the even mode

the two equations which determine the boundary are

2%
h2(Z%) dan (4) [ |- tank” 3 :
2smh’ 2’) om( 2') ! ++an"%+auk"_7=] i S

(5)
w2 = == ’ll’ smh"("‘")-l-un )[""ha" +%
|++an’~%+onl« X
The corresponding equation for the odd mode is
wLti 3
7C e %o e’““l-n)z—l (6)

Rether than attempt to solve these equations or incorporate them into
the program, an average dielectric filling was used as a first approx-
imation to determine the capacitance for both the proximal and distal

half-strips. For no dielectric the capacitance is given by

Go= [eo(xd—uc)/ﬁ + e (%- %')/7(] (7)

where the primed quantities refer to solutions for the desired value of

W/H with S/H = 200. For partial dielectric filling with dielectric constant

k)
C= {'/l[keo('ld- %) /7 + keo (Y- i) /7 (&)

beo (Mo X /v | + 4| ke (2a-2) fa + ke Xi-W) /e

+e.(¥(.-'%¢')/7r]}
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The propagation velocity of the medium is determined from the relation

. &
U= ey (9)

where c is the velocity of light and ee;’= 'Zi‘ . The impedance for each
°

strip is then given by

)
Z:50 (10)

In the limit of large S/H spacing there is no coupling and the
even and odd modes are degenerate. This limiting case corresponds to
the single strip, a problem which was treated by Wheelerl. As a test of
the correctness of the approach, this limiting case was investigated.
Not only should the impedances, etc. for each mode approach the same value
when W/H is specified, but that value should be the same as obtained by

Wheeler.

Results indicated that both even and odd mode impedances were
identical in this limit, but the values obtained did not correspond to
those reported by Wheeler. Agreement with Wheeler's results was not
expected because of the arbitrariness of the averaging procedure used to
get the capacitance, etc. In order to determine whether or not the
solutions for this limiting case could be made to agree with Wheeler's
results, impedances were obtained for each mode &t various values of W/H

assuming maximum and minimum dielectric filling.

These values are plotted along with Wheeler's curve in Figures 4
and 5. When W/H is less than 1.0, Wheeler's curve lies outside the region

in which agreement is possible. This suggests that some portion of the



field in air had been thrown away. The reason for this difficulty can
be understood by considering Figures 6 and 7. It was assumed in the
transformations for both modes that each strip could be divided into
half-strips which could then be considered separately. This assumption
is good only if none of the field lines on the distal half terminate in
the region of the proximal half. Such field lines are not accounted for
in the final result. Apparently there is an appreciable amount of the
field strongly dependent on W/H for which this is not the case and the
loss of this portion of the field in the resulting transformation would

account for the discrepancy with Wheeler's results.

3. Green's Function Solution.

Due to the inherent difficulties with the conformal mapping
approach, a Green's function solution was developed by J. A. Weiss and
T. G. Bryant. For a discussion of the theory see "Parameters of Microstrip
Transmission Lines and of Coupled Pairs of Microstrip Lines" which is
contained in a separate report under the same contract as the report given
here.2 The method is quite general and can be used to determine the field
configuration in a number of related problems. As an illustration, it is
applied to the problem of a dielectric cylinder situated symmetrically
between two infinite conducting plates.

Using a program devised by J. A. Weiss, necessary modifications
were made to allow computation of the bound charge distribution on the
surface of the dielectric cylinder. A second program was written to

determine the potential at desired points between the conducting plates



using the distribution of bound charge. Such points were chosen to be
of unit separation and the potentials were printed out in such a way as
to allow their decimal points to form a grid. Lines of equipotential
could then be constructed to give a graphical picture of the result.
A detailed sketch of the lines of equipotential is given in
Figure 8. The potential difference of the plates was taken to be 50 volts
and, for convenience, the unit of distance was taken as l/50th of the plate
separation. According to this scale the dielectric rod was chosen to have
a diameter of 30 units and the width ofthe plates was 60 units. With no
rod present, the capacitance is 10.6 pf/m. When a cylinder of dielectric
constant k = 9 is present, the capacitance as determined from the program
is 14.2 pf/m. The effective dielectric constant for the system is 1.3k.
The same procedure was also carried out for an analogous problem,
that of a cylindrical hole in the presence of dielectric. The capacitance
for the system with dielectric constant k = 16 is 148.3 pf/m and the
effective dielectric constant was found to be 13.99. The equipotential

lines for this problem are shown in Figure 9.

4., Perturbation Method for Non-reciprocal Propagation.

The use of ferrites as the substrate material in microstrip to
produce nonreciprocal propagation is a subject of much interest in the
design of integrated microwave components but is only poorly understood
from a theoretical point of view. As a starting point for the theoretical
investigation of this phenomenon a study was made of perturbation method

3

of Suhl and Walker. The usefulness of their formulation is that
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longitudinal fields are included in the perturbation equations for

transverse components. For completeness a brief review of the theory

is included.

A medium whose dielectric and permeability tensors are diagonal,

isotropic, and independent of the distance along the z-axis is perturbed

such that it is no longer isotropic and the tensors may contain off-

diagonal elements. For the unperturbed system p = u,(x,y), € = €,(x,y).

After the perturbation

[€,(xy) -if(%y) O A () i Kz O]
) = ) /
‘, O O €s(y o o /‘3(“:")

Maxwell's equations for the perturbed system may be written as

X
T, 2k - iwe B wEls o
z

V*E,- %-% riw it Hy + wKH¥= 0

‘;"ti:r"iJuJGE!;E;zflcp
V-Eg+iwMyHp=0

i -0 ¥ *
where V*: ( A‘,) 41\, _E_{z ( E" ,-Ex) ) Ht' (“")-“X)Et
and.LIt may be expanded in terms of the normal modes of the unperturbed

system by the relations

Ee= D a0 Ee%y)  Hem D b Hylxy)
h

n

(11)

(12)



where a, and bn are the amplitude functions for the nth mode. Using

these results

|E

[S(E; )Eat Ee,. 8§ = 2S7(5t Ere., ds
S(/‘s‘/‘:) HIHBM dS]

3‘—% t b, = L2 [S(/«,-/«.)H; B ds -5 JKH Heds
+S(€3-€.\Ez Ean AS]

(13)

%%%E" * ifgncln

+ bz

where
An= S Evw Han ds A =" SH:n'Em ds 52

and the tilde denotes complex conjugation. Equations (13) and (14)

are exact but involve the unknown fields E

=t Ez’ =

., and Hz.

Consider the case in which the perturbation is uniform in z.
In the absence of the perturbation only the mﬁh mode is to be present.
An unmagnetized ferrite material is introduced into the line. Two cases
are to be considered. In the first case the ferrite completely fills the
substrate region. In the second case only part of the substrate is
ferrite, the rest being dielectric. If the material properties of the
ferrite and the original medium are not significantly different, the

resulting fields are nearly the same as for the unperturbed system.

Denoting the fields in the presence of ferrite by Etm and Etm , We may
, o} o}

then set them equal to Etm and Etm' If, on the other hand, the mediums
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are significantly different,then Etm and Etm must be determined by an
o o)

independent method.

The ferrite is then magnetized along the z-direction and the fields
for the m'" mode become Qm(Z) Ee.(%Y) |, Q,(2) Hem(%Yy) ,
bu(@ Hen (29, and b (2) B, (%Y) where Quil2)= Ame —F *
b.= B,.e F* and = Bt J/’@ . Equations (13) and (1k)
then become
2P A = i B = %% ( S [(ere) ée..','til.:ilift:.' Eb»(m)
p (,u,-/u.) Hew, Hawm ] d5) A = 2L AL

i B B8 A = 22 ( § [(plo ) Hes Bewr 1% B, A
+(€3‘6.) EM.BW]AS) ME : MBu.

The change in B is determined by adding and then subtracting
equations (16) and (17). Requiring that the resulting equations give
non-trivial solutions for Am and B 0 Oone then has that
dp+L dp+ M

=0

28- J,e—L —z,e+5,a-m

Since L, M, and ¢SB are small, higher order terms in these variables may

be neglected. The result is then

5/@—— (L+M)

The perturbation equations, as they stand, are not suitable for

(18)

determining the fields for the microstrip problem since analytic expressions

for the fields in this case are not available. However, when the only mode
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present in the unperturbed system is TEM the perturbation equations can
be conveniently expressed in terms of a potential function ¢. For this

case Maxwell's equations take the form

Vxértnz f_%)./,( Hrem th'_"":—f-?we _E..nn

and are satisfied if we let

1(B2~wt) i(B2-wt)
Even=- Vi Plxyle £ Hien= Va CP*(%W e (19)

If one assumes that gtmo = By and gtmo = Hpmy» then (16) and (17)
become

i s A= i 8 B= i L Ay
é/gn7l3»1' é/ﬂ/q”,= iu,1li“

(20)

where

L= Z%MS [(ez‘el) Vep- Ve b -2 X V.'¢ V& ] ds

_ W

- L ST () W W0+ kT W] ds @

Zirslt

Dyem = SV:Q)' V£x¢ ds A SVtcp Vtcp ds = E;en (22)

The advantage of the formulation above over equations (16) and
(17) is only one of form. However, further modifications may be made so
as to allow important simplifications in numerical solutions to the micro-

strip problem.
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As an example of the method, consider the case of a coaxial
cable which is perturbed when part of the medium between the two conductors

is altered as in Figure 10. For the unperturbed system

- A b
Ev® 2mer q)—i'ﬁl’"('“) asr<b

The wave and line impedance are

= €~ 12070 Z .= 7= bn (%)J%: (23)

Let the potential remain fixed when the medium specified by © is altered.

Furthermore, let € >e¢_ and p = p_ in this region. Then M = 0 in (21).

Therefore

ﬁ:\r-/:l,w/'\' (e-€.) W= Ve M

€ess= (VE. + Yy (____e\;?e?_:) )*

From equations (20)

V €s Mo 8
(Ve pto + Yan (e-€,))

A=
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The current and potential difference are
. -‘:ﬁz
T=8Hdr-2e8e ™" G-(edr= A ae” (k)

The wave impedance is then

L2 \Pl:;; W [ eo/'/: %/41(6 6-)]

and the line impedance is

A V He€Eo
Z A(a) \pe-l: [ \j/';‘é‘, + 6/ w(€-€s)

In the case where p » My and € = € the same procedure gives the

following results

3= [ Vet + %vc(/u«)] Y

Ma)\)‘; [r‘é.»let,;m-// >]

Ly \/751} [+ o (ALVE:;:/,]

When both p » o and € > €5 the results are

/3= [\}7,‘,2', ¥ 94,(6-6.+/u7ua)]“}
,5.1( ) Useo + g (- Ho)
b ‘J—e_[ Vi.C. + O/un (€- 6"/"/’)]

< JE [ 8fLx (M) + Jp.€. %
Zis JZT"[ 6/p (€-E.) + VUE. ]
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It can be seen that the impedances and propagation constants have the
correct limiting value when € = eo and p = Ky
In order to determine L and M in equations (21) for a general

problem one must know the potential and its gradient at every point where
the field exists. When a functional form for § is unknown but § and grad
¢ may be determined at certain points, e.g. along the boundaries, it is
convenient to have an alternate expression available where the potential
need not be considered everywhere. Such an expression can be found using

Green's first identity.

The energy of a charge distribution is given by
U= % S,/o(r’) ¢(rdv’ (21)

’
In a dielectric div E" 4n (P+/0 , where primed quantities refer to

bound charge. Alternately this relation may be written
2 o ’
\V4 (p- 4’7((/0"'/0 , (25)

Combined with Green's identity

S[ovie+ (vorld - §ove ds

equations (24) and (25) give the result

OB RO 47 § darad-ds + ) [(p1p) dv

When only surface charge exists this expression becomes

o7 SO RO L § 9 v0-ds + 4 S o1 0ds’
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where S' includes all surfaces within S on which charge exists. The useful-

ness of equation (26) is demonstrated in the following simple example.

Consider a coaxial cable partially filled with dielectric in a
cylindrically symmetric fashion as shown in Figure 11. Using Gauss' law

we obtain the following expressions for the potential ¢,

KV .
= ) £r<
¢ kﬁu(%)i-/u(%)h(/ berec

b= kVo (%) + v, I (%)
k L (S6) + b (%) kh(c/b)"'/&*(b/a)

a<r<b

At the interface of the inner conductor and dielectric the bound surface
charge is
' - (k-1)Vo
70 [ kba (%) + I (2) ]
At the outer boundary of the dielectric
/ (k-DNV,
C, = = '&b(b )]
476 [ kb () + Bl 72

There is no volume bound charge density. The free surface charge density

oy

on the inner conductor is

o KV _
470 [ k e (0)4 e (%) ]

We now desire the energy of the field within the dielectric only. This

may be obtained directly from the potential function.

= \E'dv = 1 Vo 2 /n(l}a (27)
wrg CT [klu(c/b)’r/«(b/o.)] |
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where ‘ is the length of the cable. The same result is obtained by
considering a closed surface just inside the outer boundary of the

dielectric and using the right-hand side of (26).

7 §s¢‘1'“°|¢' ds + /2 Ss.(d,""") d(a) ds’

o4 v [kt + (5] + A Ve
4 [t (%) b)) Ak fue () 4l )]

In the limit as r = b this expression is the same as (27). A closed
surface just outside the dielectric boundary also gives the same result
in the 1limit as r =+ b. In this case however one must consider both

bound charge densities.

Lo GErdv 45 §, @ gradd-ds ¢ J{o+0) b ds”

+ 4 sz;’cp(b) ds’
In addition to verifying equation (26) this problem provides
a useful test for the limits of the perturbation method since it can be
solved exactly. The perturbation approach is essentially the same as
that given in the first example., Assuming that p = My and € > €

within the dielectric results of this method are

At LA« o 1%

= (%) [T
"z, >x V€. [W + 4 Au(ble) (c-e0)

A (a)
= © eCe
Z < B [ |

[\F/TE.* Yy () (e_¢,)
M (/a)

/a.
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The exact solution was not completed although the field components were

obtained. They are listed below.

= L@ Tk + by, Ny(ky nle

- (wt-82)
Her w;h [Q»I(k:r)"bn"’-"“r"] e

Eps Yo [£(anT0ar) + b NUE)

1 (ut-lsz)

b G (7,000 - TEn) ¢ e (Neliee)

- M) |

where (k: Y"-l-pz': wz/cl /ae” , h=1T,1 . Six auxiliary

equations are needed to determine the constants a s bn, and kr. Four of

s i (wt-p2)

the six equations are obtained from the boundary conditions. From the
requirement that the normal component of E be continuous at the boundaries,
one has that 52‘0 at rza ) E:" Oatr=c¢ , and 5:" 5: at r=b.
The remaining boundary condition is obtained by requiring that the normal
component of the electric displacement vector, D, be continuous at ¥= b .

The other two equations which relate the unknown constants are
IT,2 2
(k) + %= ©f: péx
(kFV+ 8= WY fEn

The existence of surface waves on a sheet of dielectric bounded
on one side by a conductor was investigated. The resulting fields of this

problem closely resemble those in microstrip. In addition, the effect
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of surface waves is prominent in the high frequency range. The results
are not reported here because this problem is treated in greater detail

in the literature.LL
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Figure 6 Actual Field of the Coupled Strip (s/H = 200)
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Figure 7 Assumed Field of the Coupled Strip (S/H = 200)
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Figure 11 Cylindrically Symmetric Dielectric Filling
in Coaxial Cable
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