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ABSTRACT

The geometric and kinematic description of the motion of an elastic-plastic

body undergoing finite deformation is considered. A configuration distinct from

the initial and current configurations of the body is introduced, which is

supposed to be the state of the body due to its plastic deformation alone, and

also to be the reference configuration for elastic deformation. It is shown

that the rate of deformation tensor may then be written as the sum of the ,rates

of elastic and plastic deformation. Restrictions imposed by some physical

assumptions are considered, and the form of some of the derived relations is

given for two-dimensional deformations in Cartesian and cylindrical coordinates.
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NOTATION
i i Oba
a K, b a, b K - deformation tensors

oBKL' B 8, CKL - Green's tensors

D.. - stretching1]

EKL - strain

oGKL' G 8, gij - metric tensor

SGKL, G , gij - associated metric tensoro
i a

g a' g K' . . . - Euclidean shifters

J, J - measure of dilation
0

K K oa
p i' q K' q i - inverse deformation tensors

Ro, R, r - polar coordinates

S0, S, s - arc length

t - time

XK - material coordinate
0

Xe a- reference coordinate

x - current coordinate

yK ya i
Y , Y a y - Cartesian coordinates

0

Z , Z, z - cylindrical coordinate
6K 6i
6 L' 6 - unit tensors
ri
jk - Christoffel symbols
ijk

Eijk, CKLM - relative permutation tensors of weight +1 and -1, resp.

0 , 0, 6 - cylindrical coordinates

cof ( ) - cofactor matrix of ( )

comma ( )K - covariant derivative

det ( ) - determinant

dot ( ) - material time derivative

hat ( ) - physical component of a tensor

sym ( ) - symmetric part of ( )

tr() - trace of ( )



INTRODUCTION

In recent years, interest in problems concerned with large stress, high

speed loading of bodies of elastic-plastic material has been generated due to

several important applications. Among these are penetration of armor plat-

ing by projectiles and the use of explosives in metal forming. Because of the

large traction amplitudes and high loading rates involved, it has become

necessary to construct constitutive models for such materials for the case of

finite deformations. Before the existing theories of plasticity can be gener-

alized to the case of finite deformation, however, certain questions about the

geometric and kinematic description must be reconsidered. For example, the

most obvious restruction imposed by introduction of finite deformation is that

the elastic and plastic strains are no longer simply additive.

Even though consideration here is limited to discussion of kinematics and

geometry, the terminology associated with a particular material, namely

elastic-plastic, is used. This is because the work here is intended solely

for applications involving such materials. As usual, the descriptions elastic

and plastic deformation refer to the recoverable and irrecoverable parts,

respectively, of a homogeneous deformation of an elastic-plastic body.

As is well known, the description of the motion of an elastic or

viscoelastic body may be given by considering the relation between two config-

urations of the body, the initial and the current configurations. To discuss

the motion of an elastic-plastic body it is found to be convenient to introduce

a third, intermediate configuration. Thus, in addition to the initial and cur-

rent configurations,we consider a varying intermediate configuration which is

the state the body would be in due to its plastic deformation alone, and which

is treated as the reference configuration for elastic deformation.
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With the introduction of this intermediate state, it is shown that the

total rate of deformation or stretching tensor can be written as the sum of

the rates of elastic and plastic deformation. The significance of this is

recognized when one considers the usual development of constitutive equations.

An appropriate law of elasticity gives the rate of elastic deformation in terms

of stress and stress rate. In addition, the rate of plastic deformation is

prescribed in terms of stress by an appropriate flow rule. These two terms

can then be added to yield the total rate of deformation in terms of stress.

The idea of introducing an intermediate configuration to discuss

elastic-plastic deformation was apparently first put forth by Eckart [1] to

discuss materials with rate effects. Related discussions concerned with kine-

matics or particular constitutive laws have been given by Backman [2],

Eglit [3], Sedov [4], Truesdell [5], and Truesdell and Toupin [6]. The con-

cepts were finally put to use by Lee and his colleagues, as discussed in a

series of papers on the propagation of large amplitude, one-dimensional strain

waves [7,8,9].

The object here is to generalize the kinematical concepts given by Lee

et al. to the case of orthogonal curvilinear coordinates. To accomplish this,

use is made of the standard tensor notation and the theory of double tensor

fields, as presented by Ericksen [10]. For a discussion of the general theory

it would, of course, be simpler and more reasonable to consider only Cartesian

coordinates. We have particular applications in mind, however, which are best

suited for curvilinear coordinate systems. The slight extra effort required

here will hopefully be justified when the results are applied to these

particular problems.

After the general geometric and kinematic relations have been derived, the

forms of the assumptions of zero plastic volume change and infinitesimal shear
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deformations are investigated. Finally, brief remarks are made with regard to

two-dimensional deformations in Cartesian and cylindrical coordinate systems.

GEOMETRIC AND KINEMATIC RELATIONS

Consider a simply-connected body of elastic-plastic material, prior to

application of any loading, whose material particles may be located by a fixed

Cartesian coordinate system. A fixed set of orthogonal curvilinear coordinates

XK is then prescribed in the region occupied by the body, and each material
0

particle is identified with the coordinate XK which it occupies, i.e., the
0

XK are material coordinates. Since, in this configuration, the material co-
o

ordinate system possesses an underlying Cartesian coordinate system the corre-

sponding metric space "is Euclidean, and the distance dS between points XK
0 0

and XK + dXK is given by
0 0

dS2 G K dXL()
d0  o GKL d0d 0 1

The tensor oGKL is the Euclidean metric tensor of the curvilinear coordinate

system. If the system itself is rectilinear, this metric is just the identity

tensor.

Suppose that now the body is subjected to (time-dependent) loading,

resulting in a change of configuration and temperature distribution. It is

assumed that the loading is severe enough so that part, and perhaps all, of the

body undergoes some plastic deformation. The particle which was originally at
xK i
X now moves to the place x . The deformation carrying this arbitrary parti-
0

cle from XK to xi is assumed to satisfy the axiom of continuity, as well as
0

iThe word "space" is used here merely to denote the totality of points
corresponding to all values of the coordinates within certain ranges. This
is to be distinguished from "metric space," which is a space in which the
concept of length has been introduced.
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the principles of impenetrability and permanence of matter. The deformation

is then a uniquely invertible topological mapping, and is described by the

differentiable function

i ixK
x =x ( K , t) , (2)

which determines the current configuration of the body. Explicit dependence

on time is included because the loading may be time-dependent or the material

may be rate-dependent. The motion (2) prescribes the rule not only for the

motion of an arbitrary particle, but also for the deformation of the neighbor-

hood of the particle. Thus, if dXK is a line element emanating from X ,

o o

it is deformed into the line element dxi emanating from xi by the differ-

ential relation

i i i KK idx X oK dX 0 a . (3)

i
The tensor a K is the deformation gradient.

i
Since x is also a point in the aforementioned space of orthogonal

curvilinear coordinates, the metric tensor gi., which determines distance

between xi and xi + dxi by

ds 2 = gij dx1 dx3 , (4)

has the same components as o GKL' except that they are evaluated at x

rather than at X K i.e., if G = F(X ). then g = F(x The mathemati-
0 0 11 0

cal relation between oGKL and gij can be given by introduction of the

Euclidean shifter. If YK and yi are the points in the underlying
0

Cartesian system corresponding to XK and x i, then there exist invertible
0

coordinate transformations XK = XK(yL) and xi = xi(y!). The shifters gi
0 0 0K

and giK (from XK to x i) and g K and i (from xi to XK)arethen
0 i 0K

defined as
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L K
~ g'L g i g.i 5 - _

K K L 1yj aXK g iyL ax6

0 0

where 61L and 6 L" are the shifters for a rectilinear coordinate system and

equal 1 or 0 according as the indices are the same or different. The rela-

tion between metrics at the two points is then

g.. = G gKL Lgi o oKL 9 ig j"(6

Relation (6) may be verified by direct substitution.

In an attempt to separate the elastic deformation from the plastic

deformation, we follow Lee and Liu [7] in defining a particular intermediate

state. This configuration is the one that the body would be in due to its

plastic deformation only, that is, the stresses in the body which resulted in

elastic deformation are completely relieved and the local temperature is

reduced to its initial value. For a body which has undergone nonhomogeneous

plastic deformation this configuration cannot, in general, be achieved; it is

a conceptual configuration rather than a physical one. This is due to the fact

that when the loads and temperature variations are removed from the body, after

resulting in nonhomogeneous plastic deformation, a residual stress and associ-

ated elastic strain remain in the body. To reach the desired stress-free

configuration, the body must be considered to be cut up into small elements.

When a material element is removed from its neighboring elements, which have

restrained it, the stress-free state is approached. The small, almost stress-

free elements then no longer fit together to form a continuous body. As the

size of the little elements approaches zero, the truly stress-free state is

approached. Also, as the size of the elements diminishes, the aforementioned

geometrical mismatch loses its interpretation. It is replaced by the
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assumption, however, that in the limit of elements with vanishing dimension the

configuration of the body is the result of an incompatible deformation (in the

sense of integrability of the deformation tensor) of a continuous body.2 This

intermediate state is called the reference configuration because it is the

(time-varying) state of vanishing elastic deformation.

In an attempt to develop the desired relations with a minimum of confusion,

notational rules to be followed in selecting indices for the various tensor

kernels are introduced. Upper case Latin indices relate to the initial config-

uration, lower case Greek to the reference configuration, and lower case Latin

to the current configuration.

Let X a be the coordinate in the reference configuration of the material

Kparticle which was originally at X . The deformation from the initial to theo

reference state cannot be written as a differentiable function of material

coordinate, as in (2), because of the assumption of incompatibility. Indeed,

it is precisely the lack of such a deformation function that is implied by

incompatibility. The plastic deformation of a line element dX emanating
0

from XK in the initial configuration into line element dX at Xa is
0

defined by the deformation tensor °baK through

dXK = b a dX K (7)
K o

Again, because of the assumption of incompatibility, oba is not a matrix ofK

partial derivatives, regardless of the coordinate system being used.

Since the plastic deformation carries the particle with material coordinate
K a i

XK to the place X , and the total deformation (2) carries it to x , the
0

2The foregoing argument is not a mathematical one, but a physical one leading
to mathematical assumptions.
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i
elastic deformation carries it from Xa to xi. This is a deformation from

an incompatible configuration to the compatible current state and, therefore,

the tensor describing this deformation is again not a matrix of partial deriva-

tives, regardless of the coordinate system. The elastic deformation of the

line element dXa at Xa into the element dxi at xi is defined by the

tensor bi through the non-integrable relation

dxi = bi dX . (8)a

Substituting dXa from (7) into (8) there results

dx = bi0 b a dXK
a K o

Comparing this with (3) and recalling the continuity assumption, we get a

relation between deformation tensors

i bi oba (9)aKa K "b

Thus, even though the elastic and plastic parts of the deformation are defined

by tensors which, in general, are not gradients, the total deformation is

described by a tensor, each component of which is a partial derivative. A

simple physical example of this phenomenon where incompatible deformations

combine to yield a compatible one is easily devised. Consider a plate of

elastic-plastic material, out of which we cut a piece of material, say of

square shape. Loads are applied to, and then removed from, the cut out piece,

resulting in homogeneous plastic deformation and no residual elastic deforma-

tion. The plate now resides in a configuration resulting from nonhomogeneous

plastic deformation only. This state does not satisfy the continuity axiom,

however, because we had to introduce the cut to achieve it. To restore the

plate to a continuous configuration the cut out piece is welded back into the

TEOCINTOAT, LIBEAJY
BLDG. 313

ABERDEEN PROVING GEOUT1) XD.
STEAP-TL
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vacant square, so that initially adjacent particles are again adjacent,

assuming this can be done without causing further plastic deformation. A

residual elastic deformation will, in general, result. With this example in

mind, an interpretation of (9) is that, even though nonhomogeneous plastic

deformation alone leaves a body of elastic-plastic material in a physically

impossible configuration, the body takes advantage of its elasticity to relieve

this state so that it can reside in a continuous configuration.

The Green's tensors, which are the metric tensors for the various deformed
i

configurations, may now be written in terms of the deformation tensors a K'

bi ° b aK. Consider first the total deformation. To express the current

length of a line element ds in terms of the original element in the initial

configuration dXK, (3) is substituted into (4), yielding

ds2 = CK dXK dX L ij (10)
ds KL d0 d0 C K L

It is clear from (10) that CKL is a metric tensor on our original point space.

Furthermore, it can be shown to be a Euclidean metric, that is, to have a

i L i K
vanishing curvature tensor, by using the fact that 3aiK/DX0 = aa L/DX0. In

terms of material coordinates, the total strain EKL, defined by

ds 2 - dS2  = 2E dXK dX•L (11)
o KL o o

may be obtained from (1) and (10) as

2EKL = CKL - oG . (12)

As will subsequently be seen, the total strain cannot, without special inter-

pretation, be written as the sum of elastic and plastic strain, as in the case

of infinitesimal deformation. In a similar manner, the current length of a line

element in terms of the reference configuration is given by
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ds2  B dXadX8  Bi i b b 6 (13)

and the length of a line element in the reference configuration dS in terms

of the initial configuration is

dS2  oB dX dXL B G bab()
oKL o o ' oBKL a8 K L (

where G 0=GKg K and g Ka is the appropriate Euclidean shifter. The

two metric tensors are, in general, non-Euclidean metrics. The corresponding

elastic and plastic strains are given, respectively, by

2E = B - G 2E B - oG " (15)
ao aO aO KL oKL oKL

The fact that the elastic and plastic strains are not additive is readily

demonstrated. By using relations (9), (10), (13), (14), (15) it can be shown

that

C B + 2E e o ba ObBKL oBKL a+ K L

Subtracting oGKL from both sides and making the substitution, which

defines baKV

Kba

ObebK0baK = a K + *,a K

we obtain

KLe a Ee a a aE KL E EKL + E a09 Kg L + E8 gý( K bL + g L b K + £b K b L)

(16)

The left side of (16) is the total strain in terms of the material coordinates.
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The first and second terms on the right side are the plastic and elastic

strains, respectively, in terms of material coordinates. An additional term

appears on the right side because initially the elastic strain is measured

with respect to the varying reference configuration. Accordingly, the trans-

formations indicated must be made to express elastic strains in terms of

material coordinates. In the case of infinitesimal deformation, this additional

term is of "higher order" than the others, the distinction between various con-

figurations becomes negligible, and the total strain is simply the sum of

elastic and plastic strains. Green and Naghdi [11] write the finite strain

tensor as the sum of an elastic and a plastic part. Their elastic strain is

different from ours, that is, it must include all but the first term on the

right side of (16) and therefore must depend on the plastic deformation (as

Green and Naghdi subsequently assume).

Consideration thus far has been limited to the geometrical properties of

the deformation. Attention is now directed toward description of the kinematic

features. The fundamental measure of rate of change of configuration will be

taken to be the stretching tensor, which defines a measure of the rate of

change of current length per unit current length. This tensor then defines a

measure of instantaneous rates, and thus depends only on the current

configuration.

To proceed it is necessary to introduce a few new tensors, related to
K

those previously defined. These are the inverse deformation tensors p i'
a oK

q a q K which are defined by the systems of linear equations

L i = 6L K qabi = 61  a L oLoa = L (17)
andK K d t l transfrma K(

and which define the locally affine transformnations
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dX0 = pL dxi dX8 q .dxi , 0 q a dX (18)0 1 q o qa

These inverse deformation tensors are obtained by solving (17) by Cramer's

rule; for example,

pL cof(aiL)/det(aJK) K (19)

Also, observation of the fact that the metric tensors do not depend explicitly

on time and have vanishing covariant derivatives allows us to treat the metric

tensors as constants when performing material differentiation. The vanishing

of the covariant derivative of the metric tensor can be proven by direct sub-

stitution or by observing its truth in the underlying Cartesian coordinate

system and invoking the invariance property of tensor equations.

The tensor D.. is called the stretching tensor and is defined by
1J

ds 2 = 2D..dx dx] , (20)
1]

where the dot denotes material derivative. Substitution of (10) into (20)

and performance of the indicated differentiation leads to

.16 6KpipLj

i 2 KL j

•.k K

sym(gika Kp j) (21)

The stretching is thus linear in the material derivative of the deformation

tensor which implies that it is linear in the gradient of the velocity and,

therefore, linear in the velocity itself. We cannot, however, expect to obtain

a split of the stretching into a sum of elastic and plastic parts by writing

the total particle velocity as a sum of the two particle velocities (which

do indeed exist) corresponding to the elastic and plastic parts of the
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deformation, because these two velocities cannot be written as differentiable

fields. The assumption, tacit in the statement following (21), of the exis-

tence of the usual kinematic relation stating that the time derivative of the

deformation tensor equals the gradient of the velocity is invalid for each of

the elastic and plastic deformations separately.

The total stretching tensor can, however, be separated into the sum of

an elastic stretching tensor and a plastic stretching tensor. Substitution of

(9) into (21) and using relations between metrics, such as (6), leads to the

result

D. k a ko~ao L
Din = sym(gikb q)+sym(gik b b L g 8q j

sym(gikbk qaj) + g i g j sym(G abg k ob b L q Yg q ) " (22)

It is clear that the first term on the right side of (22) defines the instan-

taneous rate of deformation of the current configuration with respect to the

reference configuration, while the second term defines the instantaneous rate

of deformation of the current configuration due to the changing reference con-

figuration. The former term is therefore the elastic stretching and the latter

is the plastic stretching. The plastic stretching takes on a much more compli-

cated form than the elastic because it is actually the part of the instantaneous

motion of the current configuration in terms of the instantaneous motion of the
058 o L caatrzstemto

reference configuration. The interior term b L q Y characterizes the motion

of the reference configuration. This term is then contracted with b and

q m which deforms the characterization into the current configuration, where

the actual measurement is made. Representing the elastic and plastic stretch-

eings by D.. and D1 j?, (22) is written as
1J 1)

D.. = De. D[ = D e + +gligVDp (23)
1] 1) 1] ii i PV
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One additional quantity of interest is the stretching of the reference

configuration (i.e., the measure of plastic strain rate). This rate Ds is

defined by

dS 2 = 2Ds dXdX , (24)

and is easily determined to be

D a sym(GayTbLqL8 ) . (25)

Following Truesdell and Toupin, this rate is called the slippage tensor and is

different from the plastic stretching above. (The terminology Drobably stems

from the fact that plastic flow is the macroscopic manifestation of progressive

microscopic slip, or dislocation motion, on discrete planes in the crystal

lattice.)

In summary, expressions for the following rates have been derived:

D?. - measure of instantaneous motion of the current1J configuration due to elastic deformation

Dý. - measure of instantaneous motion of the current
1] configuration due to plastic deformation

Dpe - measure of instantaneous motion of the current
configuration due to plastic deformation, referred
to the intermediate configuration

D s8 - measure of instantaneous motion of the reference

configuration.

Furthermore, although only stretching of lineal elements has been considered

above, shearing (i.e., instantaneous shear rate) can also be determined from

these tensors. For example, let * be the angle between elements dx1  and

i idx 2 in the coordinate directions at xi. For any two elements

ds ds Cos gi dx3
1d 2 cos1 2dX
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Then at any instant w ir/2 and

dx 1  dxj
2Dij ds 1 ds2 (26)

where the element lengths are measured as in (4).

RESTRICTIONS IMPOSED BY PHYSICAL ASSUMPTIONS

In the preceding section the geometric and kinematic features of the

deformation of a body of elastic-plastic material, undergoing finite displace-

ments, were considered, without regard for actual deformation processes of

such material. We now consider some of the simplifications introduced by

applying assumptions resulting from experimental observation.

The most frequent assumption made concerning elastic-plastic deformation

is that the volume change per unit volume is recoverable, that is, the volume

change due to plastic deformation is zero. To determine the mathematical form

of this assumption, consider a small volume element of material dV in the

reference configuration which occupied the element dV in the initial con-o

figuration. In general, these volume elements are related by

dV = J dV (27a)
0 0

where

det (G 8) 1/2(ot K )} det (°bTM) .(27b)

JoL et(

To satisfy the condition of no plastic volume change, set Jo = 1. It can

also be shown that

j02 -= IIIo 0 det (oGKLo B LM)
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so that an equivalent condition is III° = 1. Yet another equivalent condition

is tr(GaYDs8) = 0.

A second assumption, concerning the elastic or recoverable part of the

deformation, might be made. As stated above, the material volume change during

elastic-plastic deformation is completely elastic, and we can conceive of

deformation processes during which this dilatancy is large. This is not the

case, however, for elastic shears. During elastic-plastic deformation of most

metals yielding begins long before the elastic shears increase to the point

where they must be considered large. It seems that in many applications the

assumption that the elastic shears remain small, even though the plastic

shears become large, is a reasonable one.

Before proceeding, some sort of meaning should be attached to the

description "small." Here we say that a deformation tensor hi is small if

h = max h a and h << 1

The above assumption is given a mathematical form by stating that the

elastic deformation tensor is a small deviation from a uniform dilation. This

is written in terms of physical components of tensors (denoted by hat )

because 06i are the physical components of a deformation tensor for uniform

dilation, where 8 is a scalar function, 0 < < -. The assumption takes

the form

6' = 8( + ) , (28)

where h is small. Without loss of generality, we can take tr(h ) 0.a a

3 Note that the corresponding quantity tr(hi ) cannot be formed.
a

4 Physical components of a deformation tensor measure change in length per unit
length, while tensor components measure change in generalized coordinate per
unit generalized coordinate [10].
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For assume this is not true. Setting

1 1 ^~i 1 i

a 8-[8 + I tr(h )]'*hi +16 i tr(h)

* 1 ^ri
8 = 8+ tr(h )

relation (28) reduces to

+ %1

where h is small. Redefining the starred quantities to be their unstarred

counterparts, we again arrive at the form (28), with the trace of 0a vanish-

ing. The nine components of b are thus replaced by 8 and the eight

independent components of h

Reverting to tensor components, (28) becomes

bi = a(gi + hi ) (29)

To determine the volume change of the deformation, suppose that the material

volume element dv in the current configuration occupied the element dV in0

the initial configuration; then

det(g..) 1/2

dv = JdV , J = -eoGL} det(ak) . (30)
0 9fe(o GKL ) de M (0

Substituting (9) into (30) and assuming zero plastic volume change, J

reduces to

det(g..) 1/2

= {detG )1 det(bG)I
Ia8
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Furthermore, substituting (29) into this relation and expanding in a nine-

dimensional Taylor series about h = 0, we obtain

3

det(b Ia) = 03{det(gia) + Y h I cof(gia + 0(h) (31)
i,a=l

A similar expansion about h = 0 yields

cof(bi) = a2{cof(gi ) + Chijkc'ay hJ-h k + o(h) . (32)

This formula is of use in solving (17) for g8. by Cramer's rule.

SPECIAL DEFORMATIONS

We now list some results for specific coordinate systems and special

deformations. In particular, plane strain in Cartesian coordinates and axially

symmetric strain in circular cylindrical coordinates are considered.

In Cartesian coordinates the material coordinates of an arbitrary particle

of the body are XK = (X1, X2, X3 ) before deformation begins. At time t0 0• 0• 0
i

this particle is at place x , and the fact that the deformation is plane

strain (assumed independent of the 3 coordinate) yields the functional

relations

1 1x 1 2 2 2 1 2 3 3
x = x (X0, X0, t) , x =x (X, X, t) x X 0

The deformation tensor has the form

1 1a 1 a01 2

i2 2
[a K] a 1 a 2 (33)

0 0 1
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The elastic and plastic deformation tensors b aand Oba have the same

form as (33), except for the 33 components. These are not each unity but are

related by b 33ob 33=1.

The metric tensor and Euclidean shifters reduce to unit tensors for

Cartesian coordinate systems.

The condition that the plastic volume change is zero can be stated,

from (27b), for this case as

0b 33( 0b 110b 22- 0b 120b 2 11 (35)

Relation (35) may be used to eliminate 0b 3 from all other relations. The

condition that elastic shears are small becomes

b+ h (36a)
a a a

where

h h 13 = h31 h23 = h32 = 0 (36b)

When the motion is prescribed in terms of material coordinates in a

Cartesian system the material time derivative reduces to the usual partial

derivative with respect to time, and deformation rates may be easily calculated.

Also, in Cartesian coordinates, the covariant derivative reduces to the usual

partial derivative. For the case of one-dimensional strain the geometric and

kinematic relations are given by Lee and Liu [7].

As a second example consider a deformation which is rotationally symmetric

about an axis. The circular cylindrical coordinates of an arbitrary particle

in the initial configuration are X K=(R , 0,1 Z ), and this particle occupies
00 0

i
the place x = (r, e, z) at time t, with the Z 0-axis being the axis of

rotational symmetry. The deformation has the form
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r = r(Ro, Zo, t) , 0 0 , z z(Ro, Z0, t) (37)

and

1 1
a 1 0 a 3

[aiK] 0 1 0 (38)

3 3
a 1 0 a 3

i1o3

As before, b and 0baK have the same form as (38) except that the 22

components are not each unity, but that b 2 °b22 = 1.

The metric tensor and the Euclidean shifters depend on position in this

coordinate system, and may be determined as

1 0 0

1/2

[oG KL] 0 0 gK -i1 (39a)
o KK

0 0 0

where i and K are not summed.

The condition that there be no volume change due to plastic deformation is

determined from (27b) to be

o2 01 b3 ol °b 3
b 22 (°b1 3 - 0b 1 ) R 0 /R (40)

where R is the radial coordinate in the intermediate configuration

Xa = (R, 0, Z).

In this coordinate system, the covariant derivative is written in terms of

the Christoffel symbols r . Of the 27 components only three are nonzero, and
jkh

these are
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r2 r2 1 1 (= = -- ,= -r .(41)

12 21 r 22

The material derivative of bi when considered as a function of XK and t,
a 0

is

abi
b a + r. bk ry bi
a ]t a a8 y

Db i •a ~ 6 i262 r2

at 2 a 2 R (42)

with a similar formula holding for °ba . The elastic and plastic stretching

tensors may be calculated from (22) for this case to be

D = sym{( 6 k - hk g 8 ) a g £n + gihtg] + 62.62 r 2 £n }
3 at E gik g gak] + I R

(43a)

Dý.l] = sym{.R cof(gk ob) a a (g a b K g + (L g g

- g i(hkygYj)] + 626.2. r 2 Xn R (43b)

The conditions of zero plastic volume change and small elastic shear deforma-

tion have been used in obtaining (43).

CONCLUSION

We have considered the finite deformation of a body of elastic-plastic

material by introducing a particular intermediate configuration, distinct from

the initial and current configurations of the deforming body, which is the

state of the body due to its plastic deformation alone. The main result is

that the total rate of deformation tensor, in an orthogonal curvilinear
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coordinate system, can be written as the sum of rates of elastic and plastic

deformation as shown in (22). The elastic stratching takes on an expected

form, while the plastic stretching tensor is not the intuitive rate of defor-

mation (which is called the slippage tensor above). That is, the plastic

stretching is not merely a shift to the current configuration of the rate of

deformation of the reference configuration. It might be called instead a

deformation of this rate, which reduces to a simple shift only when bi = gi .

Whereas a shift leaves the proper numbers and proper vectors of a tensor un-

altered, the proper numbers and vectors of DP. are different from those of
Dss

D and, in general, D?. $ Ds a ja i3 uasg gj

Having established the additivity of the rates of elastic and plastic

deformation, the general scheme for development of proper forms for constitu-

tive equations becomes clear. The particular rates of (22) must be written in

terms of material properties, stress, and temperature, and then added to yield

a stress-deformation-temperature relation for the material. In a recent paper,

Perzyna [12] assumed an additivity resembling that of (22) and from there pro-

ceeded to discuss forms for constitutive equations for viscoplastic materials.
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