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0. Abstract.

The size and power of Student's t-test are discussed under

weaker than normal conditions. It is shown that assuming only

a symmetry condition for the null hypothesis leads to effective

bounds on the dispersion of the t-statistic. (The symmetry

condition is weak enough to include all cases of independent but

not necessarily identically distributed observations, each

symmetric about the origin.) The connection between Student's

test and the usual non-parametric testsis examined, as well as

power considerations involving Winsorization and permutation

tests. Simultaneous use of different one-sample tests is also.

discussed.



1. The Geometry of Student's One-sample t-statistic.

The distribution of Student's one-sample t-statistic

T i i i~l x-i)
n / n-1

is usually derived under normal sampling theory, with the Xi

assumed to be independent, identically distributed normal random

variables,

ind 2X.i N(u, ), i ,2,...,n.

In his essentially geometrical derivation of Student's distribution,

Fisher [6) showed that the rotational symmetry of the randor.

vector

X (X lX 2 ,X 3 , ... Xn)

under the null hypothesis v 0 is sufficient to yield the

standard null distribution for Tn

To be more precise, let U be the unit vector U = X/•1,

so that

U. = X-/r X2- i = 1,2,...,n.

Under the null hypothesis X iid N(O,a 2 ), U will be uniformly

distributed on the surface of Sn, the unit sphere in Euclidean

n-space En
n

Sn {u: n u2 11.

i1 1

For any set A on Sn' P(UcA) : A{A), where A is the usual measure

of n-I dimensional "area" on Sn' normalized so that X{Sn i
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[This follows from the fact that the density of X in En depends

only on IixII.)

Student's statistic is a monotonic function of

n n 2 nSn= X .

(T =S n/ ). If we let

/n in--/ne=(1 1 1!l

represent the unit main diagonal, then

S 1= /nCos en

where en is the angle between U and e, (see Figure 1), so that

Sn is a decreasing function of en.

Figure 1

ýIx

n,Q

ji•. s
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The distribution for S now follows from the known fo-mula
n

for the area of a spherical cap on Sn" In particular, if we wish

to choose sn such that

P(S n> sn,c) a,

it is equivalent to find the angular radius e n, of a spherical

cap Cn,a on Sn having

n( n*{Cn } =a.

The rejection set for student's one-sided t-test is then UcCna

where C n, has radius en,a and center e. The value sn,a is

given by sn = C n,:?-

For reasonable values of n and a, the critical angle ena

tends to be quite large. If a = .025 for instance, we have the

following -able of values:

n = 6 11 26 51 -

e = 410 550 680 740 900

Figure ! is misleading since it shows C n, entirely contained in

the positive orthant of S . As a crucial part of our discussion

we will see that ordinarily Cn,a will extend far outside the

positive orthant. For example, when n = 20 and a z .05, Cn ,

contains the center points of 60,460 of the 220 orthants [c.f.

Section 3].
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2. A Summary of This Paper.

The geometry of Section 1 shows that the normal theory for

the null hypothesis distribution of 3tudent's t-statistic remains

valid under the weaker assumption of rotational symmetry, i.e.

that U - X/IIXII is uniformly distributed over Sn" Thus, for

example, the null hypothesis that X is uniformly distributed

within some sphere centered at the origin can be tested at level

a by rejecting for values of Tn greater than the tabled upper a

point of Student's distribution (with n-l degrees of freedom, in

the standard ter-minology).

Unfortunately the usual sampling procedures almost never*

yield rotational symmetry for the normalized vector U except in

the case Xiind N(O,G 2 ). If, for inst6 a , the X. are indepen-

1
dently +1 or -1 with probabilities -T, then U is always the center

point of one of the orthants of Sn$

The central purpose of this paper is to discuss Student's t-

statistic under a much weaker symmetry condition, which is

r.atisfied under the null hypotheses of many standard sampling

situations:

Definition: The random vector U = (UIU 2 ,...,Un) is said to have

ORTHANT SYNMETRY if it has the same distribution as

U= (6 1U1 62U2 ,...,6nU ) for every choice of 6 +1 , i

*A very special "lucky" case is given in Section 5. It is possible
to construct examples where Tn has the t distribution without U
having rotational symmetry.

1

_ .



In particular, orthant symmetry obtains for U X/llxIl when-

ever the components Xi of X are independent and each has a

symmetric distribution about the origin. It is not necessary

that the components have identical distributions.
Our main results are presented in Section 3, and can be

roughly paraphrased as follows: orthant symmet uarantees that

Student's statistic, in the form Sn is less
i i~l n

dispersed about the origin then the random variable - Ai,
/nil

where the Ai are independent and equal +1 or -1 with probabilities
11

That is, among all cases of orthant symmetry, the centered

binomial case is the worst, in a sense to be described. We

suggest that the size of Student's one-sample t-test is robust

under the null hypothesis of orthant symmetry, and as a matter of

fact, the type I error tends to decrease from the nominal a level

under such "bad" conditions as the Xi having Cauchy distributions.

Sections 4 and 5 contain heuristic discussions of this point,

as well as an Edgeworth-type expansion to help assess the magni-

tude of the decrease. Section 5 is particularly concerned with

the effects of long-tailed errcr laws, such as the Cauchy, on the

Student's ratio. As an aid to int~ition, a particularly tractable

long-tailed err-or law is introduced and examined in detail.

Orthant symmetry is preserved under many familiar statistical

operations: taking signs, ranks, censoring, Winsorizing, etc.

In Section 6 we use this fact to discuss the sign test and

Wilcoxon's signed rank test as "generalized Student's tests".*

*Our definition of this term is not that of Hajek [8].
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Section 7 extends tiis concept to Winsorization and permutation

tests, and shows how orthant symmetry allows some "cheating" for

increased power, that is looking at the data before choosing the

test statistic, without compromising the a level.

The use of more than one test on the same data, for instance

Student's test and the sign test, is discussed in Section 8, and

a method of evaluating the a level of the simultaneous testing

procedure is suggested. The question of conditional versus

unconditional tests, which is largely ignored in most of the

paper, is discussed in Section 9 in relation to another geometri-

cal distribution, that of the angle between X and a vector other

than e. We conclude with a discussion of references. Mathemati-

cal details are collected in an appendix to the paper.

3. The Main Results.

We will work with Student's statistic in the form*
n willIX'V'Xn

S I X .Xi. Our main assumption will be that X = (XI•X,...,Xi=l 
2

has orthant symmetry as defined in Section 2, and to avoid trivial-

ities we also assume that P(Xi = 0) = 0 for . = 1,2,...,n.

Let An be the probability distribution of U X/=IXI on the

unit sphere Sn (so that An = A, the uniform distribution, if

ind 2X i ~ N(O, )). Orthant symmetry is equivalent to the statement

that An is identical over each of the 2n orthants of Sn" In

*Use of S rather than the traditional T almost obviates the
n n ind 2

need for special tables in the standard case Xi ,0. N(Oa ).

The upper 5% point of S6 for instance is 1.640, as compared to

1.645 for a N(0,1) variable. (c.f. Section 4).
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particular we can consider only the positive orthant S n
n'

= + • > • ' 2 ' '• ) : • 0, 2i = i ,
n i1~ .. $l

+ .

and define the probability measure A on Sn by

n n
X+(). =A 2 nA {AI

+ +
for ACS n We see that Xn determines on all of S via the

orthant symmetry. In the case An we have X +=X then n

uniform distribution on S.n n
Definition: Let & r S n Then Sr C A where the A, are

independent random var~iables taking values +1 or -1 with proba-

bilities 1, will be called a generalized binomial random variable.
n

The case Se - 1 . will be called the centered binomial

random variable.

The following simple lemma is basic to our results.

Lemma: Under orthant symmetry Sn is a mixture of generalized
+

binomial random variables with An as the mixing distribution.n

That is, P(S < S): P(S < s)dx + () for every v--2ue of s.
n fj n

n
The lemma is only a statement of the fact that if we condi-

tion on the vector of normalized absolute values (&lt2,...,n

defined by

E = (Iu l , Iu 2 1 ,. . . , U n l ) I

then orthant symmetry guarantees that each of the 2 n possible

unit vectors

U : (61•i,162&2,...,'6n~n)

where 6. +1 i .i2,...,-n,1-



is equally likely.

Notice that the lemma expresses the distribution of Sn in

terms of an integrand P(SE < s) that does not depend on the

distribution of the observations X. (This distribution enters

only through the induced measure An.)Therefore, anything we
n

can prove about the class of generalized binomial random variables

yields a general theorem about Student'- statistic under orthant

symmetry. A simple but not very useful example is Tchbycheff's

inequality: P(IS 1 > c) < for every •, since S has mean 0
c C 1

and variance 1. Therefore P(ISnI > c) < under orthant symmetry.
nl c

Morents are convenient to work with here, since they pass

easily throug) the mixture process. For every value of f,

ES2 = -1rV2S -E = 0 for v odd, so that the same statements hold

for S.n (in particular, Sn has mean 0 and variance 1.) Our main

result is a bound on the higher even moments of Sn-

Theorem: Under orthant symmetry, ESnV< ESe for v = 4,6,8,...,n - e

with equality if and only if the X. are identical independent
i

centered Bernoulli trials, Xi = +c with probabilities 1 for

Recall that Se I= ti where the Ai independently equal
Si= 1th

+1 or -1 with probabilities 'T. The theorem says that the v
central moment of Sn is bounded by the corresponding momei.t of

the centered binomial random variable, which equals 2" times the

moment of P standard binomial random variable with n trials and

=1

The theorem follows from the lemma by showing that ESv <

ESe for C A e. A proof of this statement is given in the
e



appendix to this paper.

Corollary: ES0 is less than the corresponding moment of a N(0,1)n

random variable.

By the theorem, it is necessary and sufficient to prove this

for ESe , which is done in the appendix.

Our theorem bounds the moments of Sn rather than the type I

error probabilities P(S > s In the next section we willn ,a

use the mixture lemma to develop an Edgeworth expansion for the

distribution -,f Sn. The random variable Sn has mean 0 and

variance 1, and differs from a N(0,1) distribution by an Edg2worth

sum whose leading term depends on the kurtosis* of Sn,

kurt(Sn) ES4 - 3.n n

The next corollary provides some justification for the statement

in the summary that Student's test tends to behave conservatively

(smaller than nominal a level) under orthant symmetry.

Corollary: Sn has negative kurtosis under orthant symmetry. Under

the additional assumption that the variables U; are exchangable

(index symmetry),
14kurt(S ) -2nEU 1 .

We calculate directly
4 n

ES: 3 - 2

4 ~n U

and therefore ES n 3 - 2E i: 3- 2nEU under exchangeability.
i-l

*Many writers call this the "coefficient of excess" rather than
the kurtosis.
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Note that U will have both symmetries if the random variables

Xi are independent and identically distributed symmetrically about

the origin.

Negative kurtosis tends to give a distribution that has

smaller than the N(0,1) probability of exceeding any constant S

greater than /T. The tabled values of sn,a' derived from normal

theory, are close to the a points for a N(0,1) distribution.

These two facts together would indicate that P(Sn > s ) < a

under orthant symmetry for the usual values of a. This statement

is not actually true in general, but the violations of the a-level

seem to be slight, particularly in the case of i.i.d. observations.

We will examine this phenomena more closely the next two sections.

R. R. Bahadur and J. Eaton have communicated the following

interesting bound on P(Sn > s), and have been kind enough to

allow me to include it in this paper:

Theorem (Bahadur and Eaton): Under orthant symmetry, P(S n> s) <
12-IS

e

The proof follows from the mixture lemma and the fact that
s(S )-1/2 s

P(S > s) < EeS(SE-S) < e

4. Edgeworth Expansion For Student's Statistic.

We can obtain an expansion for the c.d.f. of S from the; n

mixture lemma in the following way: we expand the generalized

binomial c.d.f. in a standard Edgeworth series ([2], Chapter 17),

P( & < s) = O(s) + k4 )4(4) (s) + k6 (00 (6)(S) +

st(4)where 0-'-s the standard N(0,1) c.a.f., (4)(s) its fou~rth
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derivative, etc. The constants k. depend on •, and hence on n,

and vanish for odd values of i by symmetry. The second corollary

of Section 3 guarantees that k4U•) kurt(S ) is negative.

The mixture lemma now yields

P(Sn < s) = t(s) + Ek 4(E) (4)(s) + Ek6(&)o(6)(s) +
+

where the expectations are with respect to Xn+

L. n

Sn
(recall that &i = IUil = IxiljIiXII for i = 1,2,...,n). These

expectations become particularly simple when U has index symmetry

(exchangeable coordinates) as well as orthant symmetry.

.Edgeworth Expansion:assuming that U = X/IIXI has orthant and

index symmetry,

P(Sn < s) = O(s) - (EnU4)*(4)(s))

+ 1-(EnU 6 )' 6 (s) + 1 (EnU8 + En(n-I)U4 U2)0 8 )(s))
_T 1288 1 1 2

(See the appendix for the derivation of this formula.) Here the

first bracketed term comes from the " term in the Edgeworth

series for S•, while the second bracketed term is l-i . The
n

quotation marks are necessary since, as we shall see in Section 5,

these terms will approach non-zero limits if the Xi have long tails.

The usefulness of an asymptotic (non-convergent) series, such

as the expansion given above, can usually be determined only by

experience. Cramer suggests in [2] that the Edgeworth expansion



- 12 -

not be ,'sed beyond the first correction term. Since in our case

the t•.'m is either negligible or positive for values of s in the

usual testing range, say 1.5 < s < 2.5, the simple approximation

of Sn 's c.d.f. by 0(s) would seem to err usually in the conserva-

tive direction.

A simple test case for the expansion formula is that where

the Xi are independent N(0,1), i.e. in the case of the genuine

Student's distribution.

s-* .50 .75 1.00 1.50 2.00 .50 1.00 2.00 2.50

Actual Value P(S <s) .665 .743 .813 .928 .992 .675 .824 .9P4 .999
n

0(s) .692 .773 .841 .933 .977 .692 .841 .977 .994

0(s)- 1•(EnU4)0(4)(s) .674 .754 .824 .928 .981 .679 .829 .980 .997

n=5 n=8
(4 degrees of freedom) (7 degrees of frecdom)

Chung [E] has given an expansion for Sn directly from the

moments of the Xi, rather than through the normalized vector U.

His expansion does not require orthant symmetry. On the other hand,

it does require the existence of higher order moments of the Xi-

while the formula given here does not. We can therefore apply our

ind
expansion to such interesting cases as the Xi . Cauchy. We

discuss long-tailed error laws in some detail in the next section.

5. Long-tailed Error Laws.

Looking again at Figure 1, let us imagine computing the c.d.f.

F (s) P(S s)

t9
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of the generalized binomial random variable S (defined in

Section 3) for each value of E in S . If n is even moderatelyn

large, say n > 10, F & will be reasonably well approximated by the

N(0,1) c.d.f. 0 )r values of s in the usual testing range, as

long as E is near Ehe main diagonal point e = (-, ... -). The

central limit theorem will fail more and more drastically as E

approaches the corners* of Sn which is to say as the components

of C become more unequal in magnitude. The extreme case is

E (1,0,0,...,0), which yields S• = +1 with probabilities 1.

As we have discussed, the deviations of F from t will always
n

be in the platykurtic direction, kurtosis (S ) -2 E C, with
C ~i=l 2

a general tendency for F (z a) to exceed the nominal value

#(za) = 1-a for the customary a values. (Computer experimentation

has shown that for small values of n this tendency to err in the

conservative direction is more drastic than indicated by the

Edgeworth correction.)

Now let us consider the case where the Xi are independent and

identically distributed random variables, symmetric about 0. If

the Xi have finite variance,, then writing S as
n n

shows that Sn is asymptotically N(0,1), since the numerator

approaches N(0,o2) by thi central limit theorem while the

*It should be remembered that in higher-dimensional space there are
"zero-dimensional corners", "one-dimensional corners", "two-
dimensional corners", etc4  We use "corner" here for a low
dimensional boundary of Sn, in a sense which will be made explicit.
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denominator approaches a by the law of large nunabers. In terms+

of our picture, this means that the mixing distribution An must,

for large n, put nearly all of its mass in that portion of S+n

sufficiently near e for the central limit theorem to yield good

approximations.*

If a2 is infinite our derivation of limiting normality for

Sn fails in both the numerator and denominator. Intuitively, weo2

expect that if the Xi have a long-tailed error law, = G, then

X+ will put much more of its mass near the corners of S+. The
n n

very term "long-tailed" implies occasional freakishly large

values for the Xi. which result in E vectors near these corners.

From the mixture lemma we then expect Sn to have a much morc

platykurtic distribution, the most extreme case being kurt(S n -2

if & always has only one non-zero component.

Two asymptotic results supporting these intuitive arguments

can be reported for the case where the Xi have a stable distribu-

tion law of order a, 0 < a < 2. (We are still assuming that the

Xi are i.i.d. and symmetric about 0.) Darling [3] shows that, in

our notation, E( 1x /(l-a)as n s- which implies
max ~

lim E max t? icn 1 We cannot expect limiting normality,U-•i<n2

therefore, since A + must give high probability to E vectors whose+n

*In the case of the uniform distribution An=A÷, for example, it is

easy to prove that for any c,6 > 0 we have AI{%:sup IF (s)-O(s)I>C}

<6 for all n sufficiently large. -



I -15 -

components are not uniformly small (UAN). In an unpublished

paper [14i, 1,ogan, Mallows, Rice, and Shepp* show that Sn must

approach a limiting law when the Xi are i.i.d. stable variates,

and give an integral expression for the characteristic function

of the limit. This law has kurtosis = -2 + a, so as a goes to

* 0 we approach the degenerate case.

We conclude this section with an example of a long-tailed

error law very closely related to the normal law. This example

has the advantage of easy calculation of A+ for any value of n,n

and is helpful in picturing many of the bizarre sampling effects

of long-tailed distributions, such as Darling's result above.

We let

X -1 for i = 1,2,...,n,
1

where the Xi are independent N(0,1) random variables. .Then X.1 1i

has the density 1

1 1 2Xif(X.) ~-- e

and has Cauchy-like tail behavior, being attracted to a stable

law of order a 1 1. (The square Z X2 has density

3 1
f(. Z71 Z e- e

which is exactly the positive stable law of order ½, a fact we use

below. See [5], page 170.)

*I am grateful to the authors for allowing me to report these results.
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Consider the mapping X g(X) which takes vectors into

vectors by inverting each component, X i -= 1 ,2,...,n.

11
Since g(cx) F g() for any c > 0, this mapping induces a mapping

onry n Enot
on rays in E , and in particular induces a mapping of S+ onton

itself, say E g (0). (For example, if n = 3 and ' (2,1,2),
so 2 , ,1,.,), then g(X) 1 i, 1 ) and g+(•) + 1,2

-TT T- ( 61 )6-

We see that the distribution A+ induced on Sn by taking the

Xi to be inverted normals, as defined above, is obtained by

"inverting" the uniform distribution I + via g I
4 +

+n{g + :J = A{A} for A CS+

(since X itself induces4 A). By putting coordinates on S wedAn} M

can easily calculate + for any value of E, from the proper-
+

ties of g . (This is done in the appendix.) Let us just note

dXn+{e)
here that - i, which is not surprising since e is the fixed

d + {e) dA+ {E}

point of g , and more importantly, P -o - as E approaches any

+ n dX+{E} +
corner of Sn of dimension* d < - 1. This is clear since g maps

any boundary line of S into the opposite corner. Roughly speaking,n

g+ maps points E near high dimensional boundaries of S+, where

is nearly normal, into points E near low dimensional corners of

S +,where S tends to be non-normal in the platykurtic sense.

The formula for the kurtosis of Sn given in Section 3 can be

evaluated explicitly here by making use of the fact that X2 is1

stable of order 1:

2 +

In the case n 2, In AL and there are no poles.
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ku4(S -4n ____1__an 2 denrit l+(n-l) 2 tan2  dO

n 1

S-i - 7 _ + 0( ).
n

The approach to the limiting value -1 given by Logan et. al. is

seen to be rather rapid. (Details given in appendix.)

6. The Sign Test and Wilcoxon's Signed Rank Test.

Orthant symmetry of the vector U = X/X II is preserved under

mar, amiliar statistical operations. In general we can define

U = g(U)

by simply specifying that g map every orth&nt into itself in a

manner defined by a mapping

g ~

of Sn into itself. If U has orthant symmetry with measure A+ onn on
+

S then the mapped vector U will also have orthant symmetry with

induced measure

I+ n(+W = I n{Alng(A)) } A

for every A C Sn" The theorems and heuristics of the previous

sections then apply as well to the statistic

Sn
S n Z = i

i'=

this point, we will call Sn a generalized Student's statistic.
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Generalized Student's statistics include most of the common

nonparametric tests for the one sample problem. For instance, if

g (6) e, that is g maps U into -i(Al112,...,an) where A sign(U

then Sn is simply the "sign test" for symmetry about the origin.

If

g ) (RI$R 2 ''''Rn)

where Ri is the rank of ti among I&l,&2,..$&n }, (the smallest

having rank 1), then Sn is Wilcoxon's signed rank test.

The effect of these transformations is to move C away from

the corners of S+. For the two transformations given above, itn

is easy to see that we move close enough to the center point e

so that limiting normality is guaranteed under or-thant symmetry*.

A reasonable question at this point is "why worry about

limiting normality if the type I errors tend to be in the conser-

vative direction in any case?" The answer, of course, is that we

are also interested in the power of the test, which for the unmodi-

fied t-test may be nil in long-tailed cases. Power considerations

are discussed, in an abbreviated manner, in the next two sections.

It should be noticed that the question of power involves a

property of the X vector which we have ignored up until now--

namely its length, 1fXII. To see this, consider what happens to

the distribution of the generalized binomial S if we move the

center of orthant symmetry from the origin to the point

For the sign test this is immediate, while for the signed rank
test it follows from the Lindeberg condition, [5], p. 256.

I
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6e = (. $ .6 6

'n''''n), 6 > 0, i.e. we undergo a component-wise trans-

lation to the right. The rough effect is to translate the distri-

bution of S a random amount -n to the right, where L has the

conditional distribution of IXII given E, (calculated for the case
ind 6 /distri-6 = 0). In the normal case Xi 0- N(-,!), L has a

bution, Independent of E, and all the S distributions translate

in the same way. In general, this will not be the case. For trans-

lations of the inverted normals of Section 5, for instance, it isn

easy to show that L -,c(&)/ Xn, where c(E) 1 Thus the

translation effect on S,, which yields the power of the test, is

largest for & = e, and decreases as indicated as C moves away

from e.

7. Legalized Cheating for Increased Power: Winsorization.

The two examples of generalized Student's statistics given

i. Section 6 relate to rank tests for the one-sample problem.

Other familiar statistical operations can be discussed from this

point of view. The example of this section relates permutation

tests to Winsorization via generalized Student's statistics.

Consider the problem of testing the null hypothesis

H : Xi i.i.d. random variables, symmetric about 0

versus the specific alternative
H X1

H: ii.i.d.- with density 1- e ,u> 0.

5
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It is well known that if we want a genuine level a test for HOl

we must content ourselves with a permutation test (see [7 ], page

203, problem 11). That is, we must condition on

y = (YIlY 2''... Yn) Yi = 1Xil i = 1,2,...,n,

and for each Y choose 100at of the 2 n possible vectors

X = (6l6 2 Y2 ... , 6nYn), 6 +1, as rejection points.

Just as in the more familiar two-sample permutation test

([7 ], page 175), we maximize the conditional power of the test if

we reject for those X with the maximum probability density under

n -- f 6iY-i-
il(X) =(2o) e

Since we can write

6 I XYi-ul (y.-Yi "]) + n -+ 6iYiY

where Y."] = min (Yi,u), it is equivalent to reject for those

choices of 6 = (61,62,"..,6n) maximizing

n 6.y'[u]

Now suppose we do not know the correct value of P, so we

"cheat" by first looking at the values of YI,Y 2 ,...,Yn' and

calculating some scale invariant estimate of u, say

AI(cY) = cu'Y) for all c > 0.

(An example would be to choose is to maximize the number of observed

Yi points in v +_'Yli, where c is a positive constant; i.e. choose
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Sto be a modal point of the YiE. Or we could use maximum like-

A r• 1n
!ihood estimation, choosing (Va) to maximize H -(e

1 IY +V1 =l 2

+ 0! a1
AA

The mapping which takes Y into Y[(] Y ( [] I... [1n,]

takes rays into rays, that is it takes cY into cY[V] for any

c > 0. it therefore induces a mapping on of the form discussed
n

in Section 6:

+g )

This is turn induces a mapping U g(U) on all of S nby copying

the map g in each of the 2n_ other orthants. The corresponding

generalized student's test, which rejects for

n
in 1 >

is seen to be an approximation to the most powerful level a test

for H0 versus H1 . Theoretically , should be chosen to give
n

a' 2 n values of 6 +', greater than Z E, but from our

previous discussion of generalized binomials we feel safe in

choosing s,,a s  the upper a point of Sn under normality, or

even morre simply • z , the upper a point of a N(0,1) random

variable. (Note that the mapping E = g(E) once again moves us

away from the corners of S+n) We know that the generalized
n

Student's test we have constructed will have approximate size a

for the null hypothesis of orthant symmetry, which includes H0 ,

and if the estimate U of v is at all a':curate, it should have good

power under HI1.
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There is nothing particularly compelling about the choice

of a double exponential distribution for the Xi, except that it

leads to a Student's test based on Winsorized values of the

observations, rather than the raw values. What is striking,

though, is how little one may deviate from the normal translation

model without inducing drastic changes in the fozrm of the appro-

priate test statistic (c.f. [12]).

In general, suppose we are testing H0 versus

1. _.-_

H1  Xi i.i.d. with density I f(- > 0.

Defining Y Ixil, i = 1,2,...,n, as before, the most powerful

level a test is a permutation test which rejects for the 100 %
n

largest values of 6 Yis 6 i = +1, where
1=.I. Y. -iA1 Yi-1

Sf( __ _

2f( 2.
1

If we do not know the parameters U and a, we can estimate them

from the absolute values YIY 2 ,...,Yn in any way we want, subject

only to the restriction that the resulting mapping Y - Y takes

rays into rays (maximum likelihood estimation will always have

this property). As in the exponential case, we are led to a

generalized Student's test which rejects for large values of Sn-

The mapping E g (E) which determines which generalized Student's

test we use is given by

i log _ i

f)
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where (p,o) is the estimate of v and a given that Y :. We have

not actually cheated on our a-level, since mappings based on Y

preserve orthant symmetry under the null hypothesis.

If f is the normal density then the procedure above yields

the ordinary Student's test, but with other even slightly

different kernals, far different tests are called for. This

approach is not limited to translation and scale parameter

families, but the author has not investigated the more interesting

problem of obtaining useful estimates of f from the absolute

values Yi in general situations.

8. Simultaneous Use of Student's Teat and The Sign Test.

Another approach to safeguarding the power of a one-sample

test is to use more than one test on the data. For instance, we
n

might use Student's statistic Sn = i in conjunction >4ith the
n il

sign t.st S~ n Sign(Ui)vri-. In the language of Section 6, we

would be simultaneously using two generalized Student's statistics,

one based on E itself, the other on 5 e.

If n is any generalized Student's statistic, based on the

mapping Z g+(c), then the vector (S nS n) can be expressed as
n

nS n i1 1

where, as before, A . = Sign(X), i 1,2,...,n. Conditioning on

the value of &, the A. are independently 11 with probabilities [1

under the null hypothesis of orthant symmetry. Conditionally, the

random vector will have mean (0,0) and covariance matrix

1 r
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n +
where r i = •*g (0). In the case of the sign test,

n
r = F i/nv. By the central limit theorem,(Sn 'Sn) will have,

approximately, a normal distribution

(S n S n N(C020)%( r )i

the approximation holding best for & and & near e.

Now if we wish to use both Sn and Sn simultaneously on the

same set of data, we can accept the normal approximation as being

sufficiently accurate, and base our decision on

Sn = max(Sn ,Sn)

whose distribution can be read out of standard bivariate normal

tables. Here is a small table for the approximate upper 5% point

ofS :
n

n
r = F.i. .50 .55 .60 .65 .70 .75 .80 .85 .90 .95 1.00

Approximate
5% Point 1.91 1.91 1.90 1.89 1.88 1.86 1.85 1.83 1.80 1.76 1.65

These numbers should be compared with 1.96, the upper 5% point if

you use the usual bound P(S n s) > l-PCS n s) - P(Sn > ), and

1.65, the upper 5% point if you perform either one of the tests

seperately.

The value of rl depends only on E, and so, as in the last

section, we can compute it before we decide whether or not we want

to use a simultaneous test. In the case where Sn is the sign test,
n

r //n, the computed value of r should ordinarly be quite
S~i:l
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large. If the Xi are i.i.d. with Xi-. X0 + _s. for i 1,2,...,n,

where X0 has a finite second moment and is symmetrically distributed

about the origin, then r will approach in probability the constant

EiXO0IV'X as n goes to infinity. If X0 - N(0,o 2 ) this limit is

2: = .798, while if X0 is double exponential the limit equals

- = .707. The variance of r in the case of normal components is

about ._•. If the computed value of r is not large, we have an

strong indication of non-normality, and it is probably best not

to use Sn at all.

The normal approximation to the conditional joint distribution

of (SnSn) given E matches exactly the first and second moments

(i.e. the mean vector and covariance matrix), and is conservati`ve

with respect to the higher moments exactly as in the theorem of

Section 3: we can consider the general case of k simultaneous

generalized Student's statistics,

S Z (Sn(1),Sn(2), ... ,S ) Is W)i•()•(2,.,.k)n n n
i~l

where E determines the k vectors E(j) via t(j) = g (E), and given

C, the Ai are independently +1 or -1 with probabilities as before.

S has conditional mean vector (0,0,...,0) and covariance

matrix Z . 1, 2 =,2,...,k- For any vector

V = (VIV 2 ,...,Vk), we then have

V

E(V-§)V < (Vt E VI)" ENv(0,1)

for v = 4,6,8,... (This follows from Section 3 by noting that

V-S is itself a generalized binomial scaled by a factor (VtV)I/2.

The expectation here is conditional with respect to the



- 26 -

observed value of C. The inequality may not hold with respect

to the unconditional dis-ributicn of S, which has mean vector 0

and covariance matrix t = E*. This brings up an interesting

point: there is no particular reason to approximate the uncon-

ditional distribution of S with a multivariate normal, since it

is really a mixture of such approximations with different

covariance matrices. Asymptotic normality of S comes from the

fact that under certain conditions t will go to a limiting matrix

in probability as n gets large. However, for moderate n it seems

more sensible to work directly with the conditional distribution,

which is a fortiori approximately normal. This point is made more

emphatically in the next section.

9. Conditional Versus Unconditional Distribution: Angle From an

Arbitrary Vector.

So far we have been able to gloss over the distinction between

applying the generalized Student's tests conditionally (conditional

on E) as opposed to unconditionally. This was primarily because

the conditional random variable S had the same mean ane. variance

for all values of E. We can destroy the pleasant situation, and

further explore the nature of the approximations we have been

using, by considering the random angle between X and an arbitrary

fixed vector c c S+, c + e. Let 8 be this angle, and definen x,c
n

Sn(c) = i Cos ex,cu i ci

where U X/flXll as before (recalling that Sn = Co x,e

Conditioning on E ( this can be writtenCondtioingon •= (UIIiU21, ... ,IIUnI)

as
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Jr n 2 &2i nS&(c) ci•2 i

i~l i~l

where

- ci~i

Eii
r j c C i2 , , . . n

and under orthant symmetry the A i equal +! or -1 independently

1 n -O
with probabilities T. The sum S is a generalized

binomial random variable, as defined in Section 3. and we see

that the mixture lemma of that section takes the following form

in our present situation:

PS-(c) < s) P(S < 2 d+&
n

'S n In C2_2

If n is moderately large and the components &i are not too

drastically different from one another, the conditional distribution
nn 2.2

of S &(c) can be well approximated by a N(O,n c--) distribution.

The conditional variance has expected value 1 over all realizations

of &., but in a testing situation we might prefer to work directly
n 2_

with the conditional value n~ci., particularly since we will

usually be unable to approximate the unconditional distributicn of

Sn(c), except indirectly via the mixture lemma. Thus we may have

asymptotic normality feor S nCc), but this will derive from the moren•2.

direct limiting normality of the S (c) and the fact that n ci2i

approaches a constant as n grows large. The moments theorem,

n 2 v/2
ESV (c) < (n ciQ() ENv(o,l)
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for v 4=,6,8,..., may not hold for Sn (C).

Let us consider a hypothetical example: suppose we wish to

md 2 ind 2test H X N(Oo) vs H1  X. 2• N(Bi,a )9 8 > 0,tsH0 :Ai.-

i = 1,2,...,n (a '*regression alternative"), so that the UMP(G)

test is to reject for large values of Sn(C , c = n ( 192939 ... ,

We observe Sn (c) = 1.75, which is at about the .04 level of the
'~ 22

unconditional distribution. However, we compute n~ci.i 1.5, so

the significance level in the conditional distribution is only

about .13. If we have a great deal of confidence in our normal

model we will robably believe the .04 significance. However,
2C2

the size of $Tntci.C. already points to some abnormality in the data,

and we will be a good deal safer if we follow the conditional

inference

There are, of course, ways we can retreat part way from the

full normal hypothesis, without going all the way to the test

based on orthant symmetry. We could, for instance, take H0 to be

"the Xi are i.i.d. symmetric about the origin", and test conditionally

given the order statistic of E .[l] - 1 - -[n] Under

H0 , the resulting statistic will be an equally weighted mixture

of n! scaled generalized binomials, corresponding to taking all n!

permutations of the order statistic to give different & vectors.
The scaling factors Inc 2 2

1h s f(i) average to no more than unity,

IN 1 -(i

Metaphysical statements of preference between the two modes of
inference abound in the literature, but no compelling criterion
of selection seems to exist at present.
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by the concavity of the square root function. Therefore, we

might feel that a N(0,1) approximation to the statistic would

tend to be conservative. However, in this case it is not

necessarily true that the higher moments of the statistic will

be bounded by those of a N(0,1) random variable.

Other sampling characteristics of the angular distribution

of X can be approximated from the central limit theorem. For

example, let Hc a fixed k-dimensional subspace of En, determined

by the orthonormal spanning vectors clc 2,...,ck. The conditional
distribution of n Cos given C, where e is the angleS x,c k x,c

between X and H, is approximated by ) t 5 (j)x 2 (j, where the

2 2 j=l

x (j) are independent x1 random variables, and the t (M) are the

eigenvalues of

nC, 2C,

C Z (cl,c 2 ,...,ck), E = the diagonal matrix with li,2,...,n

as diagonal elements. These considerations are relevant to the

permutation distribution of Hotelling's T2, which the author will

consider in a companion paper.

10. Hotelling's Paper and Other References.

This work was stimulated by Hotelling's 1961 paper "The

Behavior of Some Standard Statistical Tests Under Non-standard

Conditions" (11]. After setting up the geometry, Hotelling approxi-
dA+(e)

mates the size of the t-test by o dA(e) (in our notation). This

approximation requires Cn,a, the rejection set, to be small enough

so that the measure An has close to constant density over it,

which leads Hotelling to consider very small a levels, 1 <1

2n
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For this range of a, he shows that the size of the t-test relative

to the nominal size may vary from 0 to w, even with i.i.d. symmetric

bounded components. Since we know that reasonable n and a actually

yield very large sets C spreading over a good portion of S n

it is not surprising that Hotelling's results are quite different

from those developed here.

By now it is a matter of some hubris to claim originality

for any topic bearing on the t-test. Many of the topics presented

here have been discussed by other authors. Hoeffding's 1952 paper

[10] is particularly relevant. The ease of the double exponential

with a translation parameter, discussed in Section 7, has been

investigated by Lehmann [13], and others. For an extensive review

and bibliography of Student's test under non-normal conditions

the reader is referred to [ 9].

The author is indebted to R. R. Bahadur and M. J. Eaton of

Chicago, and J. Hartigan of Princeton for enlightening conversation

and correspondence on the subject presented here.
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Appendix of Mathematical Proofs

Section 3: ESv < ESe for all &cS +, &F e, for v 4,6,8,
E__ _F e L- n_

Proof: Assume we have proven the result for the case n-i, and
n-I 2n-i

write S cS& + EnA where c = F;iand S = ! .F./c.

Using the symmetry about zero and independence of S and a n

(remember that these calculations are conditiona) on C), we get

ES c V Ev V2)c v 2E 2E 2 + ... + &nV
&;F 2 n &; n

By the induction hypothesis, this expression will be increased if

we change Ei to !(l-_2n)/(n-l) for i = 1,2,...,n-l, unless the first
i n

n-i were already equal. By applying the same argument to the

last n-i ,ij we see that E = e is the only possible maximum point

for ESV over the compact set S+'
&; n'

It remains to verify the result for the case n 2. We have

E IS V PE(F;+E V) + (&;~ 2 'V3 +B' i/ICT) V + (/ FV]

2 Tu
where y = Thus

dES V __1 v-i
&__ ":/Y + 'i -Y)"(-' - 1 ) + (IT/ 1 -_ Vly

I +

which can be written as

v [(v-1)_(v-1)][/-v-2 -- v-2 + [(V21)-( )][/v-4,--2

+ ....... + [Evl) (V-l)][r-v/ 2 /-y-v/ 2 - 2  /,v/2-2,y-v/2

1 1 V
This is negative for Y > ' and positive for Y < 1, showing the ESv

1
attains its maximum for y = •, or & = e.
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ES < EN4(0,1) for v 4,6,8$.

Sind n
Proof: N(0,1) 7i/=,, Zi PQ N(0,1), and Se : i A1in where

1the Ai are independent, Ai = +1 or -1 with probabilities ,° The

rebult follows ILmmediately from the fact that EZI > EhI for j

even, with strict inequality for j > 4.

Section 4: Edgeworth Expansion for P(Sn s).

n
If S V i //n-, where the Vi are independent random variables,

1n 1
symmetric about zero, a o2 (V.) n, then the Edgeworth expansionSi~l 1

for P(Sn < s) (see [2], pp. 221-231) can be written as

P(5 < s) Os) +1 X4 0(4) ()+ 1FX 6 0(6)(s+I 4408)s
n 'n'! -T TF 2 s- n%

1 0(8) ( x 6  (10)
(s + 1!(s) + )0 (

+ 4 . .

th
Here XV is the average v cumulant,

n
X V(V.)

-- 1
XV n

where we recall that the charactevistic function of V. defines1

x (V.) by

Sx(V.)

log v. (t) : (it)V*
1 1

The superscripts on 0 indicate repeated differentiation. The

terms are grouped in such a way that the indicated orders of

ide in n hold for the case of the Vi l.l.d.



In our case we let V &i /n •iAi, and note that the

characteristic function is *v.(t) Cos/vi t. A standard expan-
1 v/2-1 n

sion of log cos now yields X c , n or V 2,4,6 ....

where
t+V V v l

C (-l) 2 (2 -l) B (-1) v-l)!2(-) [i+-l+-l+2 ],
v v/2 = 3 v 5V

B v/2 being the v/2th Bernoulli number (ref [4 ], #603.3 and #47.3).

If we use the Edgeworth expansion with the values x&,V, we

get an expansion for the generalized binomial probability P(S& < s).

From the mixture lemma, P(S n < s) = E (P(S•< s)), and we can

take this expectation term by term in the expansion. The leading

correction term to (Cs), j 4! Cs), has expectation

E(91L).(4~) C4~ (4C) 4 £
n 4.N

If we assume exchangeable components then I E&. 4 nE&l 4 nEUI"

Proceeding in this way yields the expansion of Section 4.

Section 5: Angular Distribution For Vector With Inverted

Normal ComDonents.

We calculate the angular distribution of a random vector X
O ^0 i n dN0, Rtethnwk

with components Xi = /Xi., where Xi N(0,1). Rather than work

with the coordinates &i,•2.., on Sn, which are redundant and

must be reduced to ann-1 component set, we calculate our densities

with respect to the coordinates v (y 2 -y 3 ,...,yn),

Yi • -i = 2,3,...,n ,

y.
|1
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taking values in Y + =y Yi > 0, i 2,3,...,n) . (As before,

it is sufficient to consider only the case of positive observa-

tions because of orthant symmetry.)

It is easy to verify that the normally distributed vector

=(X,X 2 ,...,X) yields a density

n
~2 2-7f'l(c) (1 + Y2 + "' + Y n

n
+y 2n-ir n),

for y c Y+, where cn 2 r(7 )Irr (the "multivariate Cauchy dis-

tribution"). The transformation Xi = I/Xi, i = 1,2,...,n, induces

the transformation yi = 1/9, i = 2,3,...,n, in V+. We see that

inverted normal components induce a density

n 2 -i 2 2 i2•+ + /•-
fc (f y.) ( + /y2 3 ... n

2

on Y+. The Radon-Nikodyn derivative of this density with respect

to the former is

(Y) n 2 1 2/Y3+''!÷Yn

f-(Y) 2nY ) 2 2Y 2 x 1 + / y 2 +± / Y 3 + .."/

In particular the derivative at y =(,i,...,i), or equivalently

at • e, is equal to 1 as claimed in Section 5. If we approach

the corner = (1,0,0,...,0) of S by way of vectors y = (C, ... ,C),n

c approaching 0, the derivative goes to infinity as 1!n

Calculation of Kurtosis of Sn for Inverted Normal Components.

We have
kurt(Sn) -2nEU4

:-2nE[X 2/(X 2 + X2 + ... + X 2)] 2
1n
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whreX.Aind 2r X i/Xi' Xi ind N(0,1). Using the fact that Xi is the

positive stable law of order , this equals

-2nE[l + (n-L)2X2/X -2nEl + (n-1)X/2 /]-2 2

C, 1 2

4nn [1 + (n-i) 2 tan2 ]-2 d,

td0
the last step following from the fact that e = tan- X /X is

1 2
uniformly distributed between 0 and z. The substitution

V = (n-l)tan e gives

'4n C V21-2(l (Vý)2)-1
kurt(S --- I- (l+V + n-i dV.

0

The approximation (1 + (nV- 2)l ' i - (nV_)2 then gives

kurt(S) ' n -nn---2 - - 1 + 0 'n-2)n n-i
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