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0. Abstract.

The size and power of Student's t-test are discussed under
weaker than normal conditions. It is shown that assuming only
a symmetry condition for the null hypothesis leads to effective
bounds on the dispersion of the t-statistic. (The symmetry
condition is weak encugh to include all cases of independent but
not necessarily identically distributed observations, each
symmetric about the origin.) The connection between Student's
test and the usual non-parametric testsis examined, as well as
power considerations involving Winsorization and permutation
tests. Simultaneous use of different one-sample tests is also

discussed.
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1. The Gecmetry of Student's One-sample t-cstatistic.

The distribution of Student's one-sampie t-statistic

is usually derived under rnormal sampling theory, with the X
assumed to be independent, identically distributed normal random

variables,

X R New,0?), i=1,2,...,0.
In his essentially geometrical derivation of Student's distribution,
Fisher [6] showed that the rotational symmetry of the random

vector

X = (xl’XZ’X3"'°’xn)

under the null hypothesis u = 0 is sufficient to yield the
standard null distribution for T, -
To be more precise, let U be the unit vector U = X/|X},

so that

7 x2 i=1,2,...,n.

Under the null hypothesis Xi 1£§ N(O,az), U will pe uniformly

distributed on the surface of Sn’ the unit sphere in Euclidean

n
n-space Lk,

~N

n
S_ = fu: J uf =1},
. i
i=1

! For any set A on Sn’ P(UeA) = A{A}, where A is the usual measure

cf n-1 dimensional "area" on Sn’ normaiized so that A{Sn} = 1.

= ————
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[{This follows from the fact that the density of X in E" depends
only on [[X].]

Student's statistic is a monotonic function of

? g 2 ?
g = X XS = u.,
S 5 WY I P =5 W 5 R
(T_ =S E). If we let
n n 2
Jn-S
e = (_1,_1,...,_];)
/n /n /n

represent the unit main diagonal, then

S, = /n Cos CIS

where ., is the angle between U and e, (see Figure 1), so that

S, is a decreasing function of e,-

Figure 1




The distribution for Sn now follows from the known formula
for the area of a spherical cap on S, In particular, if we wish

to choose s such that
n,a

P(Sn > sn,a) z a,

it is equivalent to find the angular radius 8, 4 0f a spherical
9

cap Cn,u on Sn having

The rejection set for student's one-sided t-test is then UeCn s
b 3

a

w“here Cn a has radius 0 and center e. The value s is

N n,a n,a

iven by s = /n C .
g y n,u .08 e.’l,a

For reasonable values of n and a, the critical angle 8 a
k]

tends to be quite large. If a = .025 for instance, we have the

following vable of values:

] 41° 58° 90°

"
RIS S—

680 ] 740

Figure 1 is misleading since it shows Chia entirely contained in
b

the positive orthant of Sn' As a crucial part of our discussion

we will see that ordinarily Cn - will extend far outside the
b}

positive orthant. For example, when n = 20 and a = .08, C
20

contains the center points of 60,460 of the 2 orthants [c.f.

Section 3].
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2. A Sumrmary of This Paper.

The geometry of Section 1 shows that the ncrmal theory for
the null hypothesis distribution cf Student's t-statistic remains
valid under the weaker assumption of rotational symmetry, i.e.
that U = X/||X|| is uniformly distributed over S . Thus, for
example, the null hypothesis that X is uniformly distributed
within some sphere centered at the origin can be tested at level
e by rejecting for values of T, greater than the tabled upper a
point of Student's distribution (with n-1 degrees of freedom, in
the standard terminology).

Unfortunately the usual sampling procedures almost never#
yield rotational symmetry for the normalized vector U except in
the case Xi iﬂp N(U,Gz). If, for instaz @, the Xi are indepen-
dently +1 or -1 with probabilities %, then U is always the center
point of one of the orthants of S .

The central purpose of this paper is to discuss Student's t-
statistic under a much weaker symmetry condition, which is
zatisfied urnder the null bypotheses of many standard sampling
situations:

Definition: The random vector U = (Ul,Uz,...,Un) is said to have

ORTHANT SYMMETRY if it has the same distribution as

06 = (6101,62U2,...,6nUn) for every choice cf 61 = 41, i =1,2,...,n.

*A very special "lucky" case is given in Section §. It is possible
to construct examples where Tn has the t distribution without U
having rotational symmetry.
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In particular, orthant symmetry obtains for U = X/||X|} when-
ever the components Xi of X are independent and zach has a
symmetric distribution about the origin. It is not necessary
that the components have .identical distributions.

Our main results are presented in Section 3, and can be

roughly paraphrased as follows: orthant symmet uarantees that

n n
Student's statistic, in the form S = ) X ) x2, is less
i=l

:?
. i=1 * 1 B
iispersed about the origin than the random variable = } a;,
n i=1
where the 4; are independent and equal +1 or -1 with prcbabilities

%. That is, among all cases of orthant symmetry, the centered

binomial case is the worst, in a sense to be d=scribed. We
suggest that the size of Student's one-sample t-test is robust
under the null hypothesis of orthant symmetry, and as a matter of
fact, the type I error tends to decrease from the nominal c¢ level
under such "bad" conditions as the Xy having Cauchy distributions.
Sections 4 and 5 contain heuristic discussicns of this point,
as well as an Edgeworth-type expansion to help assess the magni-
tude of the decrease. Section 5 is particularly concerned with
the effects of long-tailed errcr laws, such as the Cauchy, on the
Student's ratio. As an aid to intuition, a particularly tractab.e
long-tailed error law is introduced and examined in detail.
Orthant symmet is preserved under many familiar statistical
operations: taking signs, ranks, censoring, Winsorizing, etc.
In Section & we use this fact to discuss the sign test and

Wilcoxon's signed rank test as "generalized Student's tests".®

*Our definition of this term is not that of Hajek [8].

e e ———————— i o S




m"t‘ﬂ:«\ [ TR B

Section 7 extends tlis concept to Winsorization and permutation
tests, and shows how orthant symmetry allows some "cheating" for
increased power, that is looking at the data before choosing the
test statistic, without compromising the a level.

The use of more than one test on the same data, for instance
Student's test and the sign test, is discussed in Section 8, and
a method of ev2luating the « level of the simultaneous testing
procedure is suggested. The question of conditioral versus
unconditional tests, which is largely ignored in most of the
paper, is discussed in Section 9 in relation to another geometri-
cal distribution, that of the angle between X and a vector other
than e. We conclude with a discussion of references. Mathemati-

cal details are collected in an aprendix to the paper.

3. The Main Results.

We will work with Student's statistic in the form*
n n o,
S_ = 2 X. 2 X;. Our main assumption will be that X = (X, ,X,y+.¢,X )
n . i 1°7°2 n
i=1 \ 1
has orthant symmetry as defined in Section 2, and to avoid trivial-
ities we also assume that P(Xi =2 0) =0 for 4 = 1,2,...,0.
Let A be the probability distribution of U = X/[X]| on the

unit sphere Sn (so that A F A the uniform distribution, if

Xi %2? N(O,oz)). Orthant symmetry is equivalent to the statement

that An is identical over each of the 2" orthants of Sn‘ In

*Use of Sn rather than the traditicnal Tn almost 9bviates the
need for special tables in the standard case Xi %29 N(O,oz).
The upper 5% point of S6 for instance is 1.640, as compared to

1.645 for a N(0,1) variable. (c.f. Section 4).

- - . .- PR SR © —— —
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. . s +
particular we can consider only the positive orthant Sn,

+

S N AN S RN

and define the probability measure k; on S; by
+ . N
A (A} = 27 (A}

+ + . .

for ACSn. We see that A determines ) on all of S via the
+ +

orthant symmetry. In the case An = A we have An = X2 , the

uniferm distribution on S;.

n
Definition: Let £ ¢ S'. Then S, = ] E&:;b:, where the 4. are
—_— n 521 1i i
independent random variables taking values 41 or -1 with proba-

¢ N

bilities %, will be called a generalized binoinial random variable.
n

The case S_ = 2 8; will be called the centered binomial

) /n i=1

random variable.

The following simple lemma is basic to our results.
Lemma: Under orthant symmetry Sn is a mixture of generalized
binomial random variables with A; as the mixing distribution.
That is, P(Sn < s) = I* P(SE < s)dl;{e} for every va2lue of s.

sn

The lemma is only a statement of the fact that if we condi-
tion on the vector of normalized absolute values (El,ez,...,sn)

defined by

€= (Ul IU,lheeslU D,

then orthant symmetry guarantees that each of the 2R possible

unit vectors

U = (6151,6252,. .o ,Gnﬁn)

Where 6i = il i = 1,2,...,'21,

A e A

o




is equally likely.
Notice that the lemma expresses the distribution of S, in

terms of an integrand P(S_ < s) that does not depend on the

£
distribution of the observations X. (This distribution enters

. + .
orly through the induced measure An.) Therefore, anything we
can prove about the <lass cf generalized binomial random variables
yields a general theorem about Student's statistic under orthant

symmetry. A simple but not very useful example is Tchbycheff's

inequality: P(lsi: > ¢) < —% for every £, since S, has mean 0

c
and variance 1. Therefore P(ISpI > c) < —% under orthant symmetry.
- c

Morents are convenient to work with here, since “hey pass
easily throug!' the mixture process. For every value of &,
Esz = 1, ESE = 0 for v odd, so that the same statements hold
for S, - (in particular, Sy has mean 0 and variance 1.) Our main
result is a bound on the higher even moments of Sn'
Theorem: Under orthant symmetry, ESK < Es; for v = 4,6,8,...,
with equality if and only if the Xi are identical independent
centered Bernoulli trials, Xi = 4c with probabilities % for
1= 1,2,...50.

X 1 ¥ 3

Recail that Se = 7§ izl £s where the 85 independently equal
+1 or -1 with probabilities 3. The theorem says that the yiP
central moment of Sn is bounded by the correspcnding momernt of
the centered binomial random variable, which equals 2V times the
moment of ~ standard binomial random variable with n triale and

v

The thecrem follows from the lemma by showing that ESg <

ES: for ¢ # e. A proof of this statement is given in the

—— B . T ] - . g -
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appendix to this paper.
Corollary: Es; is less than the corresponding moment of a N(0,1)
random variuble.

By the theorem, it is necessary and sufficient to prove this
for Es:, which is done in the appendix.

Our theorem bounds the moments of Sn rather than the type I
error probabilities P(Sn > sn’u). In the next section we will
use the mixture lemma to develop an Edgeworth expansion for the
distribution ~f S,+ The random variable S, has mean 0 and

variance 1, and differs from a N(0,1) distributior by an Edgzworth

sum whose leading term depends on the kurtosis® of Sn’
kurt(Sn) = ES_ - 3.

The next corollary provides some justification for the statement
in the summary that Student’s test tends to behave conservatively

(smaller than nominal a level) under orthant symmetry.

Corollary: Sn has negative kurtosis under orthant symmetry. Under
the additional assumption that the variables U, are exchangable

(index symmetry),

ﬁ:' _ q
! kurt{(S_) = -2nEU,.
l We calculate directly
ESY = 3 - 2? £y
£ i’
1
y oy Y
and therefore ES = 3 - 2E ) §; = 3 - ZnEU; under exchangeability.
i=1

*Many writers call this the "coefficient of excess" rather than
the kurtosis.

S




Xi are independent and identically distributed symmetrically about
the origin.

Negative kurtosis tends to give a distribution that has
smaller than the N(0,1) probability of exceeding any constant s
greater than 3. The tabled values of Sn,a’ derived from normal
theory, are close to the a points for a N(0,1) distribution.

These two facts together wculd indicate that P(Sn > ) < a

'
t - lO -
Note that U will have both symmetries if the random variables
s

F under orthant symmetry for the usual values of ao. This statement
is not actually true in general, but the violations of the a-level
seem to be slight, particularly in the case of i.i.d. observations.
We will examine this phenomena more closely the next two sections.

R. R. Bahadur and J. Eaton have communicated the following

interesting bound on P(Sn > s), and have been kind enough to

allow me to include it in this paper:

Theorem (Bahadur and Eaton): Under orthant symmetry, P(Sn > s) <

1?2
e L]
The proof follows from thezmixture lemma and the fact that
s(S, -s) -1/2 s
P(SE > s) < Ee” ¢ <e .
¥
4, Edgeworth Expansion For Student's Statistic. .

We can obtain an expansion for the c.d.f. of Sn from the
mixture lemma in the following way: we expand the generalized

binomial c.d.f. in a standard Edgeworth series ([2], Chapter 17),

P(S. < s) = &(s) + ku(E)Q(“)(s) + kG(E)o(s)

£ (s) + ...,

(4)

where ¢ i3 the standard N(0,1) c.d.f., ¢ (s) its fourth

T SIS £ i SRR T
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derivative, etc. The constants kj depend on ¢, and hence on n,
and vanish for odd values of 3 by symmetry. The second corollary
cf Section 3 guarantees that k“(c) = kurt(sc) is negative.

The mixture lemma now yields

(4)

P(S_ < s) = #(s) + Ek,(£)e¢*(s) + Eks(c)o(s)(s) o,

. . +
where the expectations are with respect to Ao

Ex.(g) = ‘f k. (£)dAT(E)
j . 3 n
S
n
(recall that &; = IUil = IXiI/ﬂX“ for i = 1,2,...,n). These

expectations become particularly simple wnen U has index symmetry
(exchangeable coordinates) as well as orthant symmetry.

.Edgeworth Expansion:assuming that U = X/[JXll has orthant and

index symmetry,

P(S_ < s) = ols) - {I%(Enu;>o(“’(s)}

+ {H§(Enu§>o‘5’(s) + f%gcnnug + En(n-l)Ugug)o(e)(s)}

+ ¢ e

(See the appendix for the derivation of this formula.) ilere the
first bracketed term comes from the "%“ term in the Edzeworth

series for SE’ while the second bracketed term is "—%". The

n
quotation marks are necessary since, as we shall see in Section 5,
these terms will approach non-zero limits if the X; have long tails.
The usefulness of an asymptotic (non-convergent) series, such

as the expansion given above, can usually be determined only by

experience. Cramer suggests in [2] that the Edgeworth expansion

-l
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not be 1sed beyond the first correction term. Since in our case
the te.m is either negligible or positive for values of s in the
usual testing range, say 1.5 < s < 2.5, the simple approximation
of Sn's c.d.f. by ¢(s) would seem to err usually in the conserva-
tive direction.

A simple test case for the expansion formula is that where
the Xi are independent N(0,1), i.e. in the case of the genuine

Student's distribution.

s+ .50 .75 1.00 1.50 2.00 .50 1.00 2.00 2.50

Actual Value P(Sn<s) .665 .743 .813 .928 .992 .675 .824 .9fuw ,9398

¢(s) .682 ,773 .841 .933 .977 .692 .841 .977 .99%4
0(s)-r=(EnU*) s ") (o) 980 .997
-15(EnUy $ (s .674 754 ,824 ,8928 ,981 L.679 .829 . .

W J ~—
_——
n=S n=8
(4 degrees of freedom) (7 degrees of frecdom)

Chung [1] has given an expansion for S, directly from the
moments of the Xi, rather than through the normalized vector U.
His expansion does not require orthant symmetry. On the other hand,
it does require the existence of higher order moments of the Xi'
while the formula given here does not. We can therefore apply our
expansion to such interesting cases as the Xi ?29 Cauchy. We

discuss long-tailed error laws in some detail in the next section.

5. Long-tailed Error Laws.

Looking again at Figure 1, let us imagine computing the c.d.f.

PE(S) = P(Sg < s)

T e s s i M PR3




of the generaliized binomial random variable SE (defined in
Section 3) for each value of ¢ in S;. If n is even moderately
large, say n > 10, FE will be reasonably well approximated by the
N(0,1) c.d.f. ¢ »Hr values of s in the usual testing range, as
long as £ is near che main diagonal point e = (—l,...,—l). The

/n n
central limit theorem will fail more and more drastically as £
approaches the corners* of S;, which is to say as the components
of £ become more unequal in magnitude. The extreme case is

€= (1,0,0,...,0), which yields S, = +1 with probabilities 1

3 ?°
As we have discussed, the deviations of FE from ¢ will always
n
be in the platykurtic direction, kurtosis (SE) = -2 ) Eg, with
i=1

a general tendency for Pg(za) to exceed the nominal value

o(za) = 1l-a for the customary a values. (Computer experimentation

has shown that for small values of n this tendency to err in the

conservative direction is more drastic than indicated bv the
Edgeworth correction.)

Now let us consider the case where the Xi are independent and
identically distributed random variables, symmetric about 0. If

the Xi have finite variance, then writing S, as

Pt
>
9

n /n
shows that Sn is asymptotically N(C,1), since the numerator

approaches N(O,az) by th: central limit theorem while the

*It should be remembered that in higher-dimensional space there are

3 "zero-dimensional corners'", "one-dimensional corners", "two-
dimensional corners", etc; We use "corner" here for a low
dimensional boundary of Sn’ in a sense which will be made explicit.
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denominator approaches o by the law of large nwabers. In terms
of our picture, this means that the mixing distribution x; must,
for large n, put nearly all of its mass in that portion of S;
sufficiently near e for the central limit theorem to yield good
approximations.*

If 02 is infirite our derivation of limiting normality for
S, fails in both the numerator and denominator. Intuitively, we
expect that if the Xi have a long-tailed error law, 02 = e, then
A; will put much more of its mass near the corners of S;. The
very term "long-tailed" implies occasional freakishly large
values for the Xi’ which result in £ vectors near these corners.
From the mixture lemma we then expect Sn to have a much morz
platykurtic distribution, the most extreme case being kurt(Sn) = -2
if ¢ always has only one non-zero component.

Two asymptotic results supporting these intuitive arguments
can be reported for the case where the Xi have a stable distribu-

tion law of order a, 0 < a < 2. (We are still assumring that the

X. are i.i.d. and symmetric about 0.) Darling [3] shows that, in

i
our notation, E ————l——f - 1/(1-%) as n + «, which implies
max &;
l<i<n -
lim E (imax &i) > 1 - -g—. We cannot expect limiting normality,
<i<n

. + . . aq s
therefore, since An must give high probability to & vectors whose

. X . . +_.+ ey s
*In the case of the uniform distribution ALA for example, it 1is

easy to prove that for any e¢,6 > 0 we have x+{£:sup |F_(s)-¢(s)|>¢}

-0l{g<>

3
<§ for all n sufficiently large.

*“Wm
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components are not uniformly small (UAN). In an unpublished
paper [14], Logan, Mallows, Rice, and Shepp* show that S, must
approach a limiting law when the X; are i.i.d. stable variates,
and give an integral expression for the characteristic function
of the limit. This law has kurtosis = -2 + a, s0 as a goes to
0 we approach the degenerate case.

We conclude this section with an example of a long-tailed
error law very closely related to the normal law. This example
has the advantage of easy calculation of x; for any velue of n,
and is helpful in picturing many of the bizarre sampling effects

of long-tailed distributions, such as Darling's result above.

We let
1 .
Xi = ﬁ- for 1 = 1,2,...,n,
i
where the ii are independent N(0,l1) random variables. Then Xi
has the density 1
T2
£X) = 2= Ze i,
/2% X;

and has Cauchy-1like tail behavior, being attracted to a stable

law of order a = 1. (The square Zi = Xg has density

31
f(Z)=—1—Zi7e§Z-i- ,
%X

which is exactly the positive stable law of order %, a fact we use

below. See [5], page 170.)

*]I am grateful to the authors for allowing me to report these results.
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o~/
Cconsider the mapping X = g(X) which takes vectors into

vectors by inverting each component, Xi = —l, i=1,2,...,0.

i
Since g(cf) = % g(%) for any ¢ > 0, this mapping induces a mapping

. . . . . +
on rays in En, and in particular induces a nmapping of Sn onto

itself, say £ = g+(2). (For example, if n = 3 and ¥ = (2,1,2),

~ 2 ~ + 2
so € = (5,3,5,), then g(X) = (3,1,3) and g"(D) = (}—;,75-,—/::).)

. . . + . + .
We see that the distribution A 1induced on S by taking the
Xi to be inverted normals, as defined above, is obtained by

. . . . . . + . :
"inverting" the uniform distribution A~ via g°,

+, + +
An{g (A)} = a{A} for ACSn,

. Y . . + . .
(since X itself induces, A ). By putting coordinates on st we
ax_{¢} n
can easily calculate ——— for any value of ¢, from the proper-
dr {¢g}
ties of g*. (This is done in the appendix.) Let us just note
dx;{e}
here that ——— = 1, which is not surprising since e is the fixed
. + . n
point of g , and more importantly, +
dx {¢}
corner of S; of dimensicn¥* d < 5 - 1. This is clear since g+ maps

+ » as g approaches any

any boundary line of Sﬁ into the opposite corner. Rcughly speaking,
. . . . +

g+ maps points ¢ near high dimensional boundaries of S, » where SE

is nearly normal, into points g near low dimensional corners of

S;, where S, tends to be non-normal in the platykurtic sense.

12
The formula for the kurtosis of Sn given in Section 3 can be

2

evaluated explicitly here by making use of the fact that Xi is

stable of order %:

¥ ¥
*In the case n = 2, An = A and there are nc poles.

- et B O Eei s e Wy, y’a‘m 5’1




I G AT M S e @ e Ve e

]2 de

kurt(S_)
n 0 1+(n-1)2 tanze

"
1
15
(S
)
bt

1 1
-1 - a3 + 0(;7)-

The approach to the limiting value -1 given by Logan et. al. is

seen to be rather rapid. (Details given in appendix.)

6. The Sign Test and Wilcoxon's Signed Rank Test.

Orthant symmetry of the vector U = X/|X|| is preserved under

mar- amiliar statistical operations. In general we can define

¢

g(u)

L=
1]

by simply specifying that g map every orthant into itself in a

manner defined by a mapping
T=g"®

of S; into itself. If U has orthant symmetry with measure x; on
S;, then the mapped vector U will also have orthant symmetrv with

induced measure
~e_ o+ +
xn{g (A)} = xn{A}

+  as .
for every A.C:Sn. The theorems and heuristics of the previous

sections then apply as well to the statistic

S, = 2 Ui

n .
1

e

n
as to the original Student's statistic S = ] U;. To emphasize
i=1

this point, we will call S, @ generalized Student's statistic.
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Generalized Student's statistics include most of the common
nonparametric tests for the one sample problem. For instance, if
+ ) . .
g (£) = e, that is g maps U into —l(Al,Az,...,An) where 4; = szgn(Ui),

o~ n
then S is simply the "sign test" for symmetry about the origin.

+ 2
g (¢) = Jn . (Rl’R2""’Rn)’

where Ri is the rank of Ei among {El,Ez,...,En}, (the smallest

If

having rank 1), then En is Wilcoxon's signed rank test.
The effect of these transformations is to move £ away from
the corners of S;. For the two transformations given above, it
is easy to see that we move close enough to the center point e
so that limiting normality is guaranteed under orthant symmetry¥%.
A reasonable question at this point is "why worry about
limiting normaiity if the type I errors tend to be in the conser-
vative directicn in any case?" The answer, of course, is that we
are also interested in the power of the test, which for the unmodi-
fied t-test may be nil in long-tailed cases. Power considerations
are discussed, in an atbreviated manner, in the next two sections.
It should be noticed that the question of power involves a
property of the X vector which we have ignored up until now--
namely its length, f|X||. To see this, consider what happens to
the distribution of the generalized binomial S, if we move the

13
center of orthant symmetry from the origin to the point

®
For the sign test this is immediate, while for the signed rank
test it follows from the Lindeberg condition, [5], p. 256.
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e = ._.6...§. _6.
/H’/R”"’JH), 6§ > 0, i.e. we undergo a component-wise trans-

lation to the right. The rough effect is to translate the distri-

bution of SE a random amount fgﬁ to the right, where LE has the

conditional distribution of [[X]| given ¢, (calculatec for the case

6§ = 0). In the normal case Xi %BF N(-i,l), L£
n

bution, independent of £, and all the SE distributions translate

in the same way. In general, this will not be the case. For trans-

has a /xz distri-

lations of the Inverted normals of Section 5, for instance, it is

n
easy to show that L _~v c(&)//gg, where c(g) = Z

1
. Thus the
¢ i1 €2

1¢
b

translation effect on Sg’ which yields the power of the test, is
largest for ¢ = e, and decreases as indicated as £ moves away

from e.

7. Legalized Cheating for Increased Power: Winsorization.

The two examples of generaliized Student's statistics given
i:. Section 6 relate to rank tests rfor the cne-sample problem.
Other familiar statistical operations can be discussed from this
point of view. The example of this section relates permutation
tests to Winsorization via generalized Student's statistics.

Ccnsider the problem of testing the null hypothesis

Hy + X i.i.d. random variables, symmetric about O

versus the specific alternative

o' i
Hl : Xi i.i.d.- with density 7l e s uw > 0.

o]
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It is well known that if we want a genuine level a test for H,,
we must content ourselves with a permutation test (see [7 ], page

203, problem 11). That is, we must condition on

Y 2 (Y,Y,..0,Y ), ¥ o= lxil iz 1,2,...,0,

i
and for each Y choose 100a% of the 2" rossible vectors
X = (61Y1,62Y2,...,6nYn), Gi = 41, as rejection points.

Just as in the more familiar two-sample permutation test

(L7 1, page 175), we maximize the conditional power of the test if

we reject for those ¥ with the maximum probability density under

Hl’ y b
— Y.~
2 g L lesYyl
fH (X) = (20) e .
1

Since we can write

n n n

- ftul (vl

where Y&"J = min (Yi,u), it is equivalent to reject for those

choices of 6§ = (61,62,...,6n) maximizing

tul

e~

i
Now suppose we do not know the correct value of u, so we

"cheat™ by first looking at the values of Yl’Yz""’Y and

n’

calculating some scale invariant estimate of u, say 4,

A
ulcY) = c;’Y) for all ¢ > 0.

[An example would be to choose ¥ to maximize the number of observed

. . A . .. .
Yi points in 1:!Y“, where ¢ is a positive constant; i.e. choose

PURNERNIDUPRS | 3 PO
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A L3 A LR Y

u to be a modal point of the Y.'s., Or we could use maximum like-
n
1
i=1

: . . A A . 1 ‘%‘Yi'“l

lihood estimation, choosing (u,c) to maximize 7;(e
1

-5 1Ys+ul

2 ). ]

+

A A A A

The mapping which takes Y into ybud . (YE"],YEHJ,...,Yﬁul)
takes rays into rays, that is it takes cY into cYEUJ for any

¢ > 0. It therefore induces a mapping on S; of the form discussed

in Section 6:

A A
EtU(E)]/“E[H(C)]".

E = g*(E)

This is turn induces a mapping U = g(U) on all of Sn by copying
+ . .
the map g 1in each of the 2"-_ other orthants. The corresponding

generalized student's test, which rejects for
N
$ =} u,>%

is seen to be an approximation to the most powerful level a test

for HO versus H . Theoretically § should be chosan to give

£,a
n Lo d
a+2" values of 2 §.E., 8§, = +7, greater than ¥ , but from our
i=l 11 2 had E,u
previous discussion of generalized binomials we feel safe in
choosing § = s » the upper & point of S_ under normality, or
£,a n,a ¢ n

zven more simply Zc’u =z, the upper a point of a N(0,1) raendom
variable. (Note that the mapping T = g(&) once again moves us
away from the corners of S;.) We know that the generalized
Student's test we have constructed will have approximate size a
for the null hypothesis of orthant symmetry, which includes HO,
and if the estimate u of u is at all a~ccurate, it should have good

power under Hl.
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There is nothing particularly compelling about the choice
of a double exponential distribution for the xi, except that it
leads to a Student's test based on Winsorized values of the
observations, rather than the raw values. What is striking,
though, is how little one may deviate from the normal translation
model without inducing drastic changes in the forw ¢of the appro-
priate test statistic (c.f. [12]).

In general, suppose we are *testing H, versus

0
- R e
Hy ¢+ X; 1.1.d. with density = f( )y w > 0.

o}

Defining Yi = IXiI, i=1,2,...,n, as before, the most powerful

level a test is a permutation test which rejects for the 100 %

n Lol
largest values of ) GiYi’ 6; = +1, where
i=1 Y -u
~ 3 f( S ) .
Yi = '2"1°g -Y.-u £y 1 = l’z,ooo,no
f( )

If we do not kncw the parameters u and ¢, we can estimate them
from the absolute values Yl’Y2""’Yn in any way we want, subject
only to the restriction that the resulting mapping Y + Y takes
rays into rays (maximum likelihood estimation will always have
this property). As in the exponential case, we are led to a
generalized Student's test which rejects for large values of Sn‘
The mapping £ = g*(E) which determines which generalized Student's

test we use is given by

o el A A el TN
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AN, . .
where (u,0) is the estimate of y and o given that Y

£. We have
not actually cheated on our a-level, since mappings based on Y
preserve orthant symmetry under the null hvpothesis.

If £ is the normal density then the procedure above yields
the ordinary Student's test, but with other even slightly
different kernals, far different tests are called for. This
approach is not limited tc translation and scale parameter
families, but the author has not investigated the more interesting
problem of obtaining useful estimates of f from the absolute

values Yi in general situations.

8. Simultaneous Use of Student's Test and The Sign Test.

Another approach to safeguarding the power of a one-sample
test is to use more than one test on the data. For instance, we
might use Studen;'s statistic Sy ° izl ug in conjunction with the
sign ta:st §; =z 'Zl Sign(Ui)/ﬁ. In the language of Section 6, we
would be simult;;eously using two generalized Student's statistics,
one based on £ itself, the other on E'= e.

If E; is any generalized Student's statistic, based on the

"

mapping € = g+(£), then the vector (Sn,g;) can be expressed as
g ~
(S_,S.) = 8.(E.,E.)
3o 71774

where, as before, Ai = Sign(xi), i=1,2,...,n, Conditioning on
the value of ¢, the b, are independently *1 with probabilities %
under the null hypothesis of orthant symmetry. Conditionally, the
random vector will have mean (0,0) and covariance matrix

1 r

T 1l N
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n -~ +
where T = .z £i€i = £+g (g). 1In the case of the sign test,
i=
n Lard
r= ) £i//ﬁ. By the central limit theorem,(Sn,Sn) will have,
i=1

approximately, a normal distribution

o~ T\
(sn,sn)rvn((o,m,@ 1)"

the approximation holding best for £ and £ near e.
Now if we wish to use both Sn and g; simultaneously on the
same set of data, we can accept the normal approximation as being

sufficiently accurate, and base our decision on
N ~
Sn = max(Sn,Sn)

whose distribution can be read out of standard bivariate normal

tables. Here is a small table for the approximate upper 5% point

A
of S_:
n
n
r= ) 585 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95 1.00
i=1
Approximate ]
5% Point | 1.91 1.91 1.90 1.89 1.88 1.86 1.85 1.83 1.80 1.76 1.65

These numbers should be compared with 1.96, the upper 5% point if
you use the usual bound P(gn < s) > l—P(Sn > s) - P(§; > s), and
1.65, the upper 5% point if you perform either one of the tests
seperately.

The value of 1 depends only on ¢, and so, as in the last
section, we can compute it before we decide whether or not we want
to use a simultaneous test. In the case where E; is the sign test,

n

r= J zi//ﬁ, the computed value of r should ordinarly be quite
i=1

» L P RS
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» P . € .
large. If the ki are i.i.d. with Xinv X0 + 75 for i =1,2,...,n,
where X, has a finite second moment and is symmetrically distributed

about the origin, then r will apprcach in probability the constant
E|X0|/JEXZ as n goes to infinity. If Xo ™ N(O,oz) this limit is
Y27* = .798, while if X, is double exponential the limit equalis

g .707. The variance of r in the case of normal components is

/_2- ~
e £

about - If the computed value of r is not large, we have a
strong indication of non-normality, and it is probably best not
to use Sn at all.

The normal approximation to the conditional joint distribution
of (Sn,gg) given £ matches exactly the first and second moments
(i.e. the mean vector and covariance matrix), and is conservative
with respect to the higher moments exactly as in the theorem of
Section 3: we can consider the general casz of k simultaneous
generalized Student's statistics,

a ~ ~ ~ n ~ -~ ~
S = (S (1),5 (2),...,5 (k)) = izl B5CE (1),E,(2) 5000 ,8: (KD,
where £ determines the k vectors‘E(j) via E&j) = g;(E), and given
£, the Ai are independently +1 or -1 with probabilities % as before.

~

S has conditional mean vector (0,0,...,0) and covariance

matrix *E = [Ekjl)-ﬁ(jz)]jl’jz = 1,2,...,k" For any vector

V = (Vl,Vz,...,V ), we thern have

k

v

2

E(V-3)Y <« (Vi v ENY(0,1)

for v = 4,6,8,... . (This follows from Section 3 by noting that

V.S is itself a generalized binomial scaled by a factor (Vtv')llz.)

The expectation here is conditional with respect to the
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observed value of §. The inequality may not hold with respect
to the unconditional dis“ributicn of g, which has mean vector 0

and covariance matrix { = Et This brings up an interesting

£
point: there is no particular reason to approximate the uncon-
ditional distribution of g with a multivariate normal, since it

is really a mixture of such approximations with different
covariance matrices. Asymptotic normality of S comes from the
fact that under certain conditions tE will go to a limiting matrix
in probability as n gets large. However, for moderate n it seems
more sensible to work directly with the conditional distribution,

which is a fortiori approximately normal. This point is made more

emphatically in the next section.

9. Conditional Versus Unconditional Distribution: Angle From an

Arbitrary Vectcr.

So far we have been able to gloss over the distinction between
applying the generalized Student's tests conditionally (conditional
on g) as opposed to unconditionally. This was primarily because
the conditional random variable SE had the same mean and variance
for all values of £. We can destroy the pleasant situation, and
further exprlore the nature of the approximations we have been

using, by considering the random angle between X and an arbitrary

+ . .
fixed vector ¢ ¢ Sn’ c £ e. Let IV be this angle, and define
b}

n
s,(e) = /n Cos Oy, 0" /n lz c

where U = X/||X|l as before (recalling that Sy ° /n Cox 8, )"
*
Conditioning on ¢ = (|U1},iU2§,...,}Un|), this can be written

as

- Tt A

e % alla
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;s ——
(“ 2 2
%Cigi

and under orthant symmetry the 8, equal +1 or -1 independently
with probabilities %. The sum SE = 'gl AiE; is a generalized
binomial random variable, as definedlgn Section 3, and we see
that the mixture lemma of that section takes the following form

in our present situation:

= ~ < —S5 +
P(Sn(c) < s) = J~ P{S~ < dxn(c) .

¢

If n is moderately large and the components §; are not too
drastically different from one another, the conditional distribution
of Sg(c) can be well approximated by a N(O,ngczﬁi) distribution.

The conditrional variance has expected value 1 over all realizations
of £, but in a testing situation we might prefer to work directly
with the conditional value n?ci{i, particularly since we will
usually be unable to approxi;ate the unconditional distributicn of
Sn(c), except indirectly via the mixture lemma. Thus we may have
asymptotic normality Zor Sn(c), but this will derive from the more

(c) and the fact that 3 2£2
a na n cii

13 .
i=1
approaches a constant as n grows large. The moments theorem,

direct limiting normality of the S

n v/2
ESy(c) < (n%ciii) EN°(0,1) ,
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for v = 4,6,8,..., may ﬁot hold for Sn(c).

Let us consider a hypothetical example: suppose we wish to
test Hy @ X, ind Nee,o?) vs Hy @ X, ind Nesi,o?), 8 > 0,
i-=1,2,...,n (a "regression alternative"), so that the UMP(a)
test is to reject for large valuveg of Sn(c s C = HTH%TT(1’2’3”"’n)’
We observe Sn(c) = 1.75, which is at about the .04 ievel of the
unconditional distribution. However, we compute n{ciﬁi = 1.5, so
the significance level in the conditioral distribution is only
abcut .13. If we have a great deal of confidence in our normal
model we will probably believe the .04 significance. However,
the size of Jngcici already points to some abnormality in the data,
and we will bela good deal safer if we follow the conditional
inference..

There are, of course, ways we can retreat part way from the
full normal hypothesis, without going all the way to the test
based on orthant symmetry. We could, for instance, take HO to be
"the Xi are i.i.d. symmetric about the origin", and test conditionally
given the order statistic of ¢, 5[1] < 5[2] < eee < E[n]' Under
Hy, the resulting statistic will be an equally weighted mixture

of n! scaled generalized binomials, corresponding to taking all n!

pernutations of the order statistic to give different { vectors.

,n
The scaling factors nzcigz(i) average to no more than unity,
1

2

1 2
E"‘E nicileciy = b

iy ale]

3 5 .

Metaphysical statements of preference between the two modes ?f
inference abtound in the literature, but no compelling criterion
of selection seems to exist at present.
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by the concavity of the square root function. Therefore, we
might feel that a N(0,l) approximation to the statistic would
tend to be conservative. However, in this case it is not
necessarily true that the higher moments of the statistic will
be bounded by those of & N(0,1) random variable.

Other sampling characteristics of the angular distribution
of X can be approximated from the central limit theorem. For
example, let Hc a fixed k-dimensional subspace of Rn, determined

by the orthonormal spanning vectors Cy9CpsecesCp - The conditional

2

distribution of n Cos ex
]

given £, where © is the angle
c K X,C
between X and H_, is approximated by 1 Zj(g)xz(j), where the

xz(j) are independent xi randem variables, and the Zj(ﬁ) are the

eigenvalues of

nc'z2c,

C = (cl,cz,...,ck), Z = the diagonal matrix with £158p5--058

as diagonal elements. These considerations are relevant to the

2

permutation distribution of Hotelling's T®, which the author will

consider in a ccmpanion paper.

10. Hotelling's Paper and Other References.

This work was stimulated by Hotelling's 1961 paper "The
Behavior of Some Standard Statistical Tests Under Non-standard
Conditions" [11]. After setting up ﬁhe gecmetry, Hotelling approxi-

dr”(e)

. n . . N
mates the size of the t-test by a DleT (in our notation). This
approximation requires Cn 0’ the rejection set, to be small enough

?

so that the measure An has close to constant density over it,

which leads Hotelling to consider very small g levels, a < —%.
2
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For this range of a, he shows that the size of the t-test relative
to the nominal size may vary from 0 to =, even with i.i.d. symmetric
bounded components. Since we know that reasonable n and e actually

yield very large sets Cn spreading over a good portion of Sn,

,Q
it is not surprising that Hotelling's results are quite different
from those developed here.

By now it is a matter of some hubris to claim originality
for any tepic bearing on the t-test. Many of the topics presented
here have been discussed by other authcrs. Hoeffding's 1952 paper
[10] is particularly relevant. The case of the double exponential
with a translation parameter, discussed in Section 7, has been
investigated by Lehmann [133, and others. For an extensive review
and bibliography cf Student's test under non-normal corditicns
the reader is referred to [ 9].

The auther is indebted to R. R. Bahadur and M. J. Eaton of

Chicago, and J. Hartigan of Princeton for enlightening conversation

and correspondence on the subject presented here.
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Appendix of Mathematical Proofs

Section 3: ES] < ES_ for all 553;, Efe, forv = 4,6,8,... .

Proof: Assume we have proven the result for the case n-1, and

. n-1 2 . n-1
write Sg = CSE + g 8, where c = % g ang S, = E b5€;5/¢c.

[WH

Using the symmetry about zero and independence of é& and L3

(remember that these calculations are conditional on ), we get
v-2_2

Y oVESY s (;)c £n£§“’2 + + gY

ESE £ £ cee n°

By the induction hypothesis, this expression will be increased if

2
we change £s to /kl-cg)/(n-l) fori=1,2,...,n-1, unless the first
n-1 g£; were already equal. By applying the same argument to the

last n-1 £;, we see that £ = e is the only possible maximum point

v

g
It remains to verify the result for the case n = 2. We have

+
for ES_ over the compact set Sn.

ESz = %£(£1+£2)“ + (51-52)“] = %{(/? + /To)Y + (/Y - /I-VY],

where y = £§. Thus

dES
N R = Ml D R A b M
Y Y 1IN
L+ 2 )],
Y 1=

which can be written as
SECTH-FHIAT? - TR s - OO IR R AT TR

o 4 [(:-1)_(:-1)][/;v/2,I:;v/2—2 _ /?“/2'2fI:7V/2] .
w2 —1
2 2

v

12

This is negative for y > % and positive for y < %, showing the ES

. . . 1
attains its maximum for y = x, or §{ = e.




ESZ < ENY(0,1) for v = 4,6,8,... .

n
Proof: N(0,1) =} Zi//E, Z; "~ ind N(0,1), and S, = ) Aii/ﬁ where
1 1

the 4, are independent, b; = +1 or -1 with probabilities %o The

-
Y

result follows Zmmediately from the fact that EZ% > EA% for j

even, with strict inequality for j > 4,

Section 4: Edgeworth Expansion for P(Sn < s).

n
If 5 = z Vi//ﬁ, where the Vi are independent random variables,
1 n
symmetric about zero, .2 oz(Vi) = n, then the Edgeworth expansion

1=1
for P(Sn < s) (see [2], pp. 221-231) can be written as

x x X
PES_ < 8) = o(s) + = 2 oMoy o _2_{3_ e85y + 5({})»‘8)(9

; XX 1 X
¢ 22 o By« 8 06 %(4—?-)@(12)(5)

Here ;v is the average vth cunulant,

n
) xv(Vi)

Citia o

xv n

where we recall that the characteyistic function of Vi defines
© X, (V )
log 4, (t) = Z (it)V
V. !
i l
The superscripts on ¢ indicate repeated differentiation. The

terms are grouped in such a way that the indicated orders of

1de in n hold for the case of the Vi 1.1.4.

VTV RTTFN  FPRTTS7)
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In our case we let : /n siAi’ and note that the

vV, .
£,
characteristic function is oy (t) = Cos/ﬁzit. A standard expan-

. . -3 v/2-1 ¢ v
sion of log cos now yields x. . = cn ) £y for v = 2,4,6,...,
’ 1

where

<

+]1 v
N LA A A T 7*1
v v v/2

v
= (-1)% (v-1)12(3) [1e—Eede. .1,
n v v

375

B,/2 being the v/2th Bernoulli number (ref [4 ], #603.3 and #u47.3).

If we use the Edgeworth expansion with the values ;5 v Ve
?

get an expansion for the generalized binomial probability P(SE < s).

From the mixture lemma, P(Sn < g) = Eg(P(sg < s)), and we can

take this expectation term by term in the expansion. The leading

X u o
correction term to ¢(s), % —é%—n¢(4}(s), has expectation

1{X¢ u) (%) Sy (u) Dy
ECH(—&-{— MO EACI g %

n
If we assume exchangeable components then z Egg z nEag = nkEU

1
Proceeding in this way yields the expansion of Section 4.

P E

Section 5: Angular Distribution For Vector With Inverted

Normal Combonents.

We calculate the angular distribution of a random vector X

~ ind
with components Xi = l/Xi, where ?i ina N(0,1). Rather than work

. . + .
with the coordinates £,:;£,,...,6_ on S_, which are redundant and
1%>2 n n

must be reduced to an n-1 component set, we calculate cur densities

with respect to the coordinates v = (y2,y3,...,yn),

o

- __i_ N -
y; = N 1 2,3,...4n,
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taking values in y*t = {y : y; ? 0, i =2,3,...,n} . (As before,
it is sufficient to consider only the case of positive observa-
tions because of orthant symmetry.)

It is easy to verify that the normally distributed vector

l o B d o~/
X = (X{5Xy5.--,X ) yields a density

n
~ ~2 =232
'~ ( =
fy.y) cn(l ty, ..t yn)
n
for ; € V+, where e, = 2“‘1r(§)/a7 (the "multivariate Cauchy dis-

tribution"). The transformation Xi = 1/?}, i=1,2,...,n, induces
. ~r . . S 4
the transformation y; l/yi, i=2,3,...,n, in ¥ . We see that

inverted normal components induce a density

n

2 ?

N o2.-1 2 2.
fY(y) = c“(g yi) (1 + l/y2 + l/y3 + ...+ l/yn)

on ¥'. The Radon-Nikcdyn derivative of this density with respect

to the former is

2,2 2 n
fY(y) (; 2,-1 Iyotyst.. oty I3
— = Vs = .
Fgly) ~ 7, i 141/ya+1/ye. . v1ry?

In particular the derivative at y = (1,1,...,1), or equivalently

at £ = e, is equal teo 1 as claimed in Section 5. If we approach

T T T

the corner £ = (1,0,0,...,0) of S; by way of vectors y = (g464...,€),

¢ approaching 0, the derivative goes to infinity as 1/7¢™.

Calculation of Kurtosis of Sn for Inverted Normal Components.

We have

-2nEU;

2 2
-2nE[Xl/(X1 + X

kurt(S_)
n

2
2

2,42
+ ... 4 Xn)] ,
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where Xi = llig,lii iﬂ? N(0,1). Using the fact that Xi is the

positive stable law of order %, this equals

-2nE[1 + <n-1)2x§/x§]‘2 -2nE01 + (n-1)2%2/%2)7?2

*/2

-3%-g [1 + (n-1)’tan?a1"? de,
0

the last step following from the fact that & = tan~

1~ ~r

X1/X2 is

R AN et

uniformly distributed between 0 and ». The substitution

Niyeity

V = (n-1)tan @8 gives

. 4. n 2,-2 vV ,2,-1
3 kurt(sn) = -;(E:T) g (1+4V7) “(1 + (5:T) ) dv.
0
The approximation (1 + (E¥I)2)—1 T1- (Egr)z then gives

kurt(sn) = H:I{l - (H:T) } = -1 - H:T + 0fn )y .

\ ] . . N S R N
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