REAL TIME RECOGNITION OF HANDPRINTED TEXT: PROGRAM DOCUMENTATION

G. F. Groner

PREPARED FOR:
ADVANCED RESEARCH PROJECTS AGENCY

The RAND Corporation
SANTA MONICA • CALIFORNIA
MEMORANDUM
RM-5550-ARPA
MAY 1968

REAL TIME RECOGNITION
OF HANDPRINTED TEXT:
PROGRAM DOCUMENTATION
G. F. Groner

This research is supported by the Advanced Research Projects Agency under Contract No. DAHC15 67 C 0141. RAND Memoranda are subject to critical review procedures at the research department and corporate levels. Views and conclusions expressed herein are nevertheless the primary responsibility of the author, and should not be interpreted as representing the official opinion or policy of ARPA or of The RAND Corporation.

DISTRIBUTION STATEMENT
This document has been approved for public release and sale; its distribution is unlimited.
This Memorandum documents a computer program for the recognition of symbols handprinted on a RAND Tablet or similar device used in conjunction with a CRT display. This documentation describes the program in sufficient detail to facilitate its use, maintenance, and/or recoding in another computer language. Since the program is written in IBM-360 assembly language, understanding of the documentation requires familiarity with this language. The study resulting in this program is but one facet of an overall search for techniques to increase the facility of the man-computer interface.
This Memorandum documents a computer program that permits an on-line computer user to print text naturally and have it recognized accurately. The program recognizes handprinted letters, numbers, punctuation marks, and geometric figures; it separates characters written in quick succession and in close proximity. The program is written as a re-entrant process in IBM-360 assembly language; it requires about thirty-seven hundred 32-bit words of storage. The user must provide programs that 1) communicate with an input device such as the RAND Tablet to supply a sequence of writing-instrument coordinates to the recognition program; 2) select options in real-time based on context; and 3) use the recognition program's outputs for displaying and editing information on a CRT display device.

This documentation describes the program at two levels. The most general description lists the symbols recognized and discusses feature extraction, character separation, symbol recognition, and user options. The second level provides a computer listing of the assembly-language program. This listing includes descriptions of the logical functions, calling sequences, and input/output parameters of each of the major processes comprising the program, and outlines the information processing and flow of control. The Appendix briefly describes processes and macros that perform functions required by the recognition program.
CONTENTS

PREFACE .. iii

SUMMARY ... v

Section

I. INTRODUCTION ... 1
The Program ... 2
The Documentation ... 3
Glossary .. 5

II. GENERAL DESCRIPTION OF THE PROGRAM 11
The Symbols Recognized .. 11
Feature Extraction ... 11
Character Separation .. 13
Character Identification .. 13
User Options ... 17
Controls ... 17
Vector Length .. 18
Character Size ... 18
Between-Character Time Delay 18

III. FUNCTIONAL AND PROCEDURAL DESCRIPTIONS OF
THE PROCESSES AND RCS'S 20
CHAREC ... 20
CHAREC Function .. 20
CHAREC Call ... 21
CHAREC Inputs .. 21
CHAREC Outputs .. 22
CHAREC Exits .. 22
CHAREC Parameters .. 22
CHAREC Read-Only Constants 24
CHAREC Sequence of Information Processing 24
CHAREC Program Listing 29
CHAREC RCS'S ... 51
ANG4 ... 51
CHECK ... 55
CORNER ... 61
DOT ... 64
DELTAS .. 65
FN56 ... 67
HYST ... 68
MXMNC ... 69
MXMNS ... 71
QMM ... 72
RAZE ... 74
RELM ... 75
SMOOTH .. 78
Appendix

The OS/360 Operating System--2250 Display Recognition Program ... 161
CRT Display Character Codes 162
Register Assignment .. 163
Processes ... 163
CHAR ... 163
CLOCK ... 164
Macros ... 165
BEXIT ... 165
BOX ... 165
CLEAR ... 166
EPLOG (Epilogue) .. 166
INST (Instance) .. 167

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCRNR</td>
<td>79</td>
</tr>
<tr>
<td>THIN</td>
<td>80</td>
</tr>
<tr>
<td>TURNER</td>
<td>81</td>
</tr>
<tr>
<td>TRAVEC</td>
<td>83</td>
</tr>
<tr>
<td>REC</td>
<td>86</td>
</tr>
<tr>
<td>REC Function</td>
<td>86</td>
</tr>
<tr>
<td>REC Call</td>
<td>86</td>
</tr>
<tr>
<td>REC Sequence of Information Processing</td>
<td>87</td>
</tr>
<tr>
<td>REC Program Listing</td>
<td>88</td>
</tr>
<tr>
<td>INTERP</td>
<td>99</td>
</tr>
<tr>
<td>INTERP Function</td>
<td>99</td>
</tr>
<tr>
<td>INTERP Call</td>
<td>99</td>
</tr>
<tr>
<td>INTERP Sequence of Information Processing</td>
<td>100</td>
</tr>
<tr>
<td>INTERP Program Listing</td>
<td>101</td>
</tr>
<tr>
<td>REC RCS'S</td>
<td>121</td>
</tr>
<tr>
<td>AHSTR1</td>
<td>121</td>
</tr>
<tr>
<td>BFI</td>
<td>124</td>
</tr>
<tr>
<td>BHITE</td>
<td>125</td>
</tr>
<tr>
<td>BSDP</td>
<td>126</td>
</tr>
<tr>
<td>BSMNW</td>
<td>128</td>
</tr>
<tr>
<td>BSRPRM</td>
<td>130</td>
</tr>
<tr>
<td>BSSM</td>
<td>132</td>
</tr>
<tr>
<td>BSVM</td>
<td>134</td>
</tr>
<tr>
<td>BTEST1</td>
<td>136</td>
</tr>
<tr>
<td>BTEST3</td>
<td>137</td>
</tr>
<tr>
<td>KNYTST</td>
<td>139</td>
</tr>
<tr>
<td>KNY1T</td>
<td>141</td>
</tr>
<tr>
<td>KVXYT</td>
<td>143</td>
</tr>
<tr>
<td>MWT</td>
<td>145</td>
</tr>
<tr>
<td>PSTEST</td>
<td>147</td>
</tr>
<tr>
<td>SYMT</td>
<td>148</td>
</tr>
<tr>
<td>TILDT</td>
<td>155</td>
</tr>
<tr>
<td>TPXY</td>
<td>157</td>
</tr>
<tr>
<td>VERTST</td>
<td>159</td>
</tr>
</tbody>
</table>

Appendix
The OS/360 Operating System--2250 Display Recognition Program ... 161
CRT Display Character Codes 162
Register Assignment .. 163
Processes ... 163
CHAR ... 163
CLOCK ... 164
Macros ... 165
BEXIT ... 165
BOX ... 165
CLEAR ... 166
EPLOG (Epilogue) .. 166
INST (Instance) .. 167
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARM (Parallel)</td>
<td>168</td>
</tr>
<tr>
<td>PAWS (Pause)</td>
<td>169</td>
</tr>
<tr>
<td>PROCS (Process)</td>
<td>170</td>
</tr>
<tr>
<td>PROL (Prologue)</td>
<td>170</td>
</tr>
<tr>
<td>RCS (Remote Code Sequence)</td>
<td>171</td>
</tr>
<tr>
<td>REGS (Registers)</td>
<td>172</td>
</tr>
<tr>
<td>SET</td>
<td>173</td>
</tr>
<tr>
<td>SVCS</td>
<td>173</td>
</tr>
<tr>
<td>TABLE</td>
<td>174</td>
</tr>
<tr>
<td>WATE (Wait)</td>
<td>175</td>
</tr>
</tbody>
</table>

REFERENCES 177
I. INTRODUCTION

This Memorandum documents a symbol-recognition program† that is part of an experimental software system called GRAIL (GRAphical Input Language) [2] under development at The RAND Corporation (and supported by the Advanced Research Projects Agency). The objective of GRAIL is to investigate methods by which a user may deal directly, naturally, and easily with his problem. As one means of eliminating distracting operational mechanics from problem solving, the system features the ability to communicate with a computer via a single pen-like instrument moved over a two-dimensional surface in conjunction with a CRT display.†† Communication is enhanced by incorporating a program that interprets freehand motions and provides immediate feedback.†††

This symbol-recognition program allows an on-line computer user to print or draw symbols naturally, and have them recognized accurately and quickly, even though it recognizes a large set of symbols. Designed to work for many users, the program imposes few constraints on style, speed, or position of writing; it is not intended to be modified for individual printing styles. It makes use of size and position information to differentiate among symbols not distinguishable by shape alone. Preliminary experiments [1] indicate that recognition accuracy (not including lower-case letters and geometric symbols) is about 90 percent for inexperienced

†A general description of this program together with a discussion of user interaction, a performance evaluation, and references to related work appear in Ref. 1.

††Italicized words are defined in the Glossary at the end of this section (pp. 5-10).

†††An immediate, continuous track on the display corresponds to the writing instrument position. A completed track is replaced by a symbol after a few milliseconds for recognition plus a time delay for symbol separation.
users. This error rate is tolerable because of the quick response and the GRAIL editing facilities.

The recognition program has been used daily, as part of the GRAIL system, while developing means for creating, editing, and executing computer code and flowcharts. The GRAIL system is being developed on an IBM System/360 Model 40 and is written in 360 assembly language.

The recognition program within the GRAIL system is written to operate under a nonstandard GRAIL supervisor and in conjunction with a nonstandard CRT display; a modified version has been written that operates under the IBM OS/360 operating system and in conjunction with an IBM 2250 display unit. The differences between the GRAIL recognition program documented here and the OS program are summarized in the Appendix. The OS program also has a number of users at RAND (its use is described in Ref. 3).

THE PROGRAM

The user must provide programs that: 1) communicate with an input device such as the RAND Tablet [4] in order to provide a sequence of x, y coordinates to the recognition program; 2) select options in real-time based on the context of the input; and 3) use the recognition program’s outputs for displaying and editing information on a CRT display based on context. When the recognition program has been provided with a time-ordered set of x, y coordinates (describing the motion of a writing *stylus*) and a set of control bits, it normally places *vector* strings (which approximate the stylus motion) directly into a display *buffer* as it receives the inputs; upon completion of each symbol, the program returns a *character code* (its interpretation of the input) along with some geometrical properties of the symbol.

The recognition program is written as a *reentrant process* in 360 assembly language. It requires about thirty-seven hundred 32-bit words of storage. Each logical *instance*
of this process requires 26 words for data and context; the remaining storage is for the read-only code, which is required only once.

The user program calls the process CHAREC, which in turn calls the processes REC and CLOCK and a set of remote code sequences (processes with general-purpose register input/output operating in the environment of the calling process context) referred to herein as RCS's. CHAREC and its RCS's perform "inking" (generation of the vector strings), feature extraction, and character separation. CLOCK is used as a real-time clock for separating characters by timing. REC, together with its RCS's, identifies characters by testing the features computed by CHAREC. Most of the tests are performed in INTERP, an RCS comprised of decision tables. Figure 1 outlines the input/output parameters and logical functions of the two processes CHAREC and REC. The processes and RCS's called by CHAREC and REC are indicated by asterisks. The figure was drawn using the GRAIL system (but does not illustrate this system's scope or symbology).

THE DOCUMENTATION

The following documentation describes the program at two levels. The most general description lists the symbols recognized and discusses feature extraction, character separation, character identification, and user options.

The second level provides a computer listing of the assembly-language program. This listing includes descriptions of the logical functions, calling sequences, and input/output parameters of each of the processes and RCS's (except CLOCK); and outlines the sequence of information processing in CHAREC, REC, and INTERP. Entry points in these outlines are labeled (e.g., ****ENTRY****) identically to the corresponding entry points in assembly-language program listings. Also described are the program's parameters, features, and indicators used by CHAREC, REC, and the RCS's.
Fig. 1—CHAREC and REC outlines
In addition to summarizing the difference between the GRAIL and OS programs, the Appendix lists the CRT display character codes and briefly describes CLOCK, CHAR (the GRAIL process that allows the user's application program to interact with the Tablet by providing a convenient interface), and the GRAIL macros as used by the recognition program.

GLOSSARY†

A(NAME) The address of NAME.

ANAME In a call to process NAME, this is a linkage between the calling process context and NAME's context; the label "ANAME" is user determined.

aspect ratio A character's height divided by its width.

buffer A number of bytes used for transmitting x,y coordinates to the recognition program or vector strings from the program.

byte Eight bits; referred to as 0 to 7, left to right.

call Transfer of flow of control to another process.

calling sequence The sequence of information and commands required to call a process.

cannot interpret A sequence of input coordinates not interpretable as one of the allowable symbols; same as "no character."

CRT Cathode ray tube.

†In addition to those italicized above, other words and phrases used throughout the text are also defined.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>character</td>
<td>A sequence of input coordinates encoded as an entity by this program; same as "symbol" (see The Symbols Recognized, Sec. II).</td>
</tr>
<tr>
<td>character code</td>
<td>A 1-byte encoding of a character (see CRT Display Character Codes, Appendix, p. 162).</td>
</tr>
<tr>
<td>context</td>
<td>1) a continuous storage block consisting of linkages between parent (calling) and daughter (called) processes, formal parameters, and other information; 2) the environment used to interpret the meaning of an action or inputs.</td>
</tr>
<tr>
<td>data</td>
<td>1) x,y coordinates; 2) indicators or computed quantities used by the program.</td>
</tr>
<tr>
<td>daughter process</td>
<td>A process called by a parent process.</td>
</tr>
<tr>
<td>display</td>
<td>A programmed output device that presents an image.</td>
</tr>
<tr>
<td>display stream</td>
<td>The sequence of instructions controlling the display.</td>
</tr>
<tr>
<td>EEXIT</td>
<td>Appears in a call to a process or RCS; EXIT is a re-entry point in the calling (parent) process corresponding to a return from the called (daughter) process or RCS; the label "EXIT" is user determined.</td>
</tr>
<tr>
<td>ending point</td>
<td>The x,y position at which the writing stylus micro switch is opened when terminating a stroke.</td>
</tr>
<tr>
<td>entry point</td>
<td>The place at which control resumes.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>F</td>
<td>1) full computer word (32 bits); 2) formal (input/output) parameter.</td>
</tr>
<tr>
<td>feature</td>
<td>A computed attribute of a symbol which is used for identification.</td>
</tr>
<tr>
<td>formal parameter</td>
<td>An input/output data location provided a process by its parent.</td>
</tr>
<tr>
<td>FPARAM</td>
<td>In a call to a process, refers to the formal (input/output) parameter PARAM of the calling (parent) process; the label "PARAM" is user determined.</td>
</tr>
<tr>
<td>geometric corner</td>
<td>A detected sharp change (90° or more) in the direction of the writing stylus motion.</td>
</tr>
<tr>
<td>GPARAM</td>
<td>A reference to the parameter PARAM in a call to a process. G = F for a formal (input or output) parameter of the calling process; G = I for an informal (local) parameter; the label "PARAM" is user determined.</td>
</tr>
<tr>
<td>H</td>
<td>Computer halfword (16 bits).</td>
</tr>
<tr>
<td>informal parameter</td>
<td>Temporary or constant data defined within a process.</td>
</tr>
<tr>
<td>ink</td>
<td>1) same as "ink track"; 2) the action of generating an ink track.</td>
</tr>
<tr>
<td>ink track</td>
<td>A displayed string of vectors that approximates the writing stylus motion.</td>
</tr>
<tr>
<td>instance</td>
<td>The appearance of a calling sequence to a process in the program.</td>
</tr>
<tr>
<td>IPARAM</td>
<td>In a call to a process, refers to the informal (local) parameter PARAM of</td>
</tr>
</tbody>
</table>
the calling (parent) process; the label "PARAM" is user determined.

NAMEA

In a call to process NAME, a read-only link to NAME; the label "NAMEA" is user determined.

no character

A sequence of input coordinates not interpretable as one of the allowable symbols; same as "cannot interpret."

parameter

Temporary or constant data.

parallel task

An instruction sequence initiating two lines of control within the program.

parent process

The process that called a daughter process.

pen

The writing instrument that is moved on the Tablet writing surface; same as "stylus."

pendown

Closure of the writing stylus micro switch due to a downward force.

penup

Opening of the writing stylus micro switch by release of a downward force.

PSG

Program Status Group, a GRAIL conceptual entity used for parallel task synchronization.

process

A computer program segment, somewhat akin to a subroutine, accessed by a formal call (see "reentrant process").

raster unit

1/1024 of the Tablet or display surface dimension--0.01 in. in the case of a standard 10.24 by 10.24-in. Tablet.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw data point</td>
<td>A writing stylus coordinate pair as received from the input device.</td>
</tr>
<tr>
<td>read-only</td>
<td>Computer storage that is read (and executed if code) but not modified.</td>
</tr>
<tr>
<td>reentrant process</td>
<td>A process requiring separate linkage and data storage blocks for each usage, but only a single storage block of read-only code. When executed, the code is not modified and therefore may be re-used even if the process has been suspended before completion.</td>
</tr>
<tr>
<td>RCS</td>
<td>Remote code sequence.</td>
</tr>
<tr>
<td>remote code sequence</td>
<td>A process with general-purpose register input/output operating in the environment of the calling (parent) process context; has no context but is reentrant.</td>
</tr>
<tr>
<td>starting point</td>
<td>The (x,y) position at which the writing stylus micro switch is closed when initiating a stroke.</td>
</tr>
<tr>
<td>stroke</td>
<td>The sequence of (x,y) coordinates between closing and opening the writing stylus micro switch.</td>
</tr>
<tr>
<td>stylus</td>
<td>The writing instrument that is moved on the tablet writing surface; same as "pen."</td>
</tr>
<tr>
<td>subcharacter</td>
<td>A set of (x,y) coordinates encoded internally by the program, but which may not be a complete character and has not been outputted by the program.</td>
</tr>
</tbody>
</table>
symbol A sequence of input coordinates encoded as an entity by this program; same as "character" (see The Symbols Recognized, in Sec. II).

tablet An input device comprising a pen-like writing instrument and a writing surface [4]; as the *stylus* is moved over the surface its x,y coordinates are sent to the computer for processing.

task A sequence of instructions initiating lines of control (see "parallel task").

time-pause corner A detected deceleration-acceleration of the writing *stylus* motion.

track 1) same as "ink track"; 2) the action of generating an *ink track*.

vector A line segment described by its length (2, 4, 6, or 8 *raster units*) and direction (1 of 16 in 22.5° increments).

x The writing surface horizontal coordinate.

X (or any other non-blank character in column 72) A continuation indicator.

y The writing surface vertical coordinate.
II. GENERAL DESCRIPTION OF THE PROGRAM

THE SYMBOLS RECOGNIZED

Upper-case Latin alphabet.

Numbers: 0 through 9.

Lower-case (script) Latin alphabet: these characters are not recognized very accurately in the present program. A lower-case character output code may be changed to the corresponding upper-case output code by a one instruction change in CHAREC.

Punctuation marks: + - = / () * $. , ' #

Left bracket, right bracket, less than, greater than, karat, tilda (tilda is not fully implemented--see TILDT, p. 155).

Geometric symbols (must be single stroke and larger in one dimension than twice the normally expected character height): Rectangle, circle, triangle (one side horizontal, the other two of approximately equal length), ellipse, diamond, trapezoid.

Erasure (scrubbing action).

Cannot interpret.

FEATURE EXTRACTION

The on-line nature of this program enables processing of the data point-by-point as the stylus is moved across the writing surface. In order to minimize time and storage requirements, therefore, CHAREC (together with its RCS's) extracts features as the data arrive. These features are:

The sequence of directions (right, left, up, or down) of stylus motion.

The number and relative (to character extents) positions of geometrically determined corners.
The number of pause-in-time determined corners.
The number and relative positions of relative maxima and minima in y (the vertical direction).
The number and relative positions of stroke starting and ending points.
The absolute size of the character in raster units (1 raster unit = 0.01 inch).
The ratio of height to width of the character.
The absolute position of the center of the character on the writing surface.

The first process in feature extraction is data reduction (thinning). When a data point arrives, its position is compared with that of the most recently accepted data point. It is accepted (used in further analysis) if these two points are sufficiently far apart; otherwise it is rejected. When this thinning distance is set to 0.02 in., data are reduced by a factor of about seven without losing any significant information about a 1/4-in.-high handprinted character. (The number of raw data points between thinned data points is required, however, for detecting pause-in-time corners.) Upon the acceptance of each new data point, tests are made for stylus direction, corners, and relative maxima and minima.

CHAREC is called into action when the stylus is placed on the writing surface (micro switch closed), and is notified (via an indicator) when it is lifted (micro switch opened). CHAREC is thus informed about the starting and ending of each stroke. When a stroke is completed, tests are made to determine if it is part of the same character as the previous stroke set (previous subcharacter). If so, the character extents are updated, the positions of various features are computed relative to these character extents, and this subcharacter is identified. Otherwise, the
previous subcharacter is outputted as a character, this stroke treated as a new subcharacter, relative positions computed, and the stroke identified.

CHARACTER SEPARATION

CHAREC groups sets of strokes into characters by considering timing, and the geometric extents and identifications of the strokes. If a prespecified time elapses following the end of the most recent stroke, a character is considered completed regardless of what follows. This between-character time delay must be greater than the maximum expected delay between two strokes belonging to the same character--0.3 sec has proven optimum for experienced users. A set of strokes is considered to be a completed character if it cannot be combined with the following stroke to form an allowable character. Some stroke sets (e.g., those that form 8, Q, A, and E) cannot be combined with any other stroke to form an allowable character. Some other stroke sets (e.g., 0, 2, 3, T, and F) can be combined with some strokes but not with others. Strokes written in quick succession, which can be combined to form an allowable character, are tested for overlapping or adjacency--thus separating groups of strokes too far apart to form a character of the normally expected size.

CHARACTER IDENTIFICATION

REC (together with INTERP and RCS's) uses the set of features generated by CHAREC (and its RCS's) to decide what character was written. Individual strokes are identified, as they are drawn, via a data-dependent sequence of tests. The first test groups stroke descriptions according to the first four stylus directions. This test reduces the number of stroke possibilities--typically, to one or two. Any further test depends on the set of possible stroke
identifications, and on previously tested features. The program thus has a tree structure as outlined in Fig. 2.

The recognition of a multiple-stroke symbol is based on the identities of the constituent strokes and on their relative positions—it is independent of stroke order. In most cases, each constituent stroke requires only a general, rather than a precise, identification (which is a code in P or PAD). For example, a stroke recognized as a 1,), (, or / if standing alone, need only be considered as a vertical (P=1) if part of a multiple-stroke symbol. This simplifies decision making.

REC performs a few simple tests, but mostly acts as a link between CHAREC and the testing procedures (INTERP and the RCS's), or between INTERP and the RCS's. INTERP performs sequences of tests on encoded 1-byte parameters, thereby including nearly all of the decision-making tree structure. Most of the RCS's perform complicated tests to discriminate among a particular set of characters.

The following comments may be useful when adding or deleting a character description. To add a description, write the character, observe its description (set of features calculated by CHAREC) either visually or in computer memory, and note the character code(s) outputted by the decision-making routines. If multiple characters are outputted, or if a single character with fewer strokes than the written character is outputted, then either this particular stroke combination is not allowed and must now be added to CHECK, or a new PAD code and a new PAD table (see INTERP, p. 116) entry must be added. If this problem does not occur, find the direction sequence (as encoded by ANG4) entry into INTERP; then follow through the tests, eventually reaching the test resulting in the outputted character. At this place, enter a feature test that will consistently distinguish between the written character and the outputted character. If no such feature (or set of features) exists,
INPUT:

STROKE DESCRIPTION

TEST:

FIRST 4 DIRECTIONS

TEST:

FURTHER DIRECTIONS CORNERS ENDPOINT ... SIZE

TEST:

OUTPUT: 2 3 [C 0 6 1

Fig. 2—Outline of tree structure for character identification
it will be necessary to add a new CHAREC RCS to extract some new feature from the raw data. If this decision point occurs in the middle of a sequence of tests, it may be necessary to introduce a new PAD code and table entry. If strokes may be added to this character to generate new multi-stroke character descriptions, it must be added to CHECK. To delete a character description, follow through the tests as above, but delete the test(s) that result in this character. There may also be corresponding deletions from CHECK and the PAD codes and table entries.

A modification of the recognition program has been written that recognizes the mathematical symbols square root, infinity, integral, summation, and diagonal (upper-left to lower-right) in addition to the current symbols (except apostrophe and the geometric symbols). In order to allow any symbol to be written any size and at any position, the section of CHAREC that separates characters according to size and position (see CHAREC, p. 41) and the call (in REC, p. 93) to SYMT (which recognizes large single-stroke symbols as geometric symbols) were deleted. The tests for apostrophe were deleted from PSTEST so that a comma can be recognized when written in any position. The only new multi-stroke symbol--infinity comprised of the same strokes (2 0-like strokes) as a description of the number 8--did not require a change in CHECK or a new PAD code. The new symbols were added, however, to certain places in CHECK so that they can be combined with additional strokes to form multi-stroke symbols--e.g., if diagonal were not added to the vertical stroke section of CHECK, the letter x could not be written as a diagonal followed by a vertical. Since one of the first-4-direction descriptions (right-down-up-right) was previously a unique description (recognized as a script v), but could now also be a description of square root, a new code in ANG4 and a corresponding new entry into INTERP were added. All other changes--either feature tests
or setting character codes—were made in INTERP. For example, a stroke with the direction sequence up-down-up—starting point not in the lower quarter of the stroke, and ending point in the lower half of the stroke—was recognized as the number 2; but now, in addition, it could be the symbol integral. At the place where these tests result in a branch to set the character code to 2 (see SNLCl in INTERP, p. 111), this branch was replaced by a 2 versus integral test. This new test results in a branch to set character code to 2 if the stroke starting point is in the left half of the stroke; otherwise, it results in a branch to set character code to integral.

USER OPTIONS

Controls

CHAREC normally provides an ink track (constructed of vectors of user-specified length), and outputs character codes along with some character size and position information. The ink track for a handprinted character is deleted upon recognition of that character. The user may control the operation of CHAREC by specifying no-track and/or no-recognize, or halt with each group of data points (including during mid-stroke).

No-Track. CHAREC continues to process the data normally and recognize characters, but does not store an ink track. Any existing ink track is deleted.

No-Recognize. CHAREC continues to process the data normally and generate an ink track, but waits for more data when it would usually (with the recognize option) take a character or no-character (cannot interpret) exit.

Halt. CHAREC deletes any existing ink track and takes the halt exit. This allows the user to ignore the character recognizer when taking a control action not involving printing.
Vector Length

The user specifies the vector length to be 2, 4, 6, or 8 raster units, where 1 raster unit = 0.01 in. CHAREC generates (and stores in an ink buffer) a string of vectors of this length to approximate the raw data-point track—this is the ink track. The thinning distance used for data reduction is set equal to the vector length. If the vector length is 8 raster units, the between-character time delay is set to zero. The vector codes generated by CHAREC are for a particular CRT display and are not generally compatible with other displays.

Character Size

The user specifies the normally expected character height and width. This information is used for distinguishing between large and small symbols (e.g., geometric symbol versus not-geometric,) versus ', upper-case c versus lower-case c, etc.), and for character separation. Character separation by position is based on the distance (relative to the normally expected character width) between strokes, and on the positions of strokes within character spaces. Comma and apostrophe are distinguished by the position of the stroke within a character space. CHAREC assumes that the writing surface is divided into a grid of character spaces the size of a normal character. Each such character space's left (or bottom) edge is an integer number of character widths (or heights) from the writing surface's left (or bottom) edge.

Between-Character Time Delay

The user cannot set this delay which is used for separating characters. It is presently a CHAREC parameter (see CHAREC Read-Only Constants, p. 24). However, this time should become a user option by adding it to the list of
CHAREC inputs and changing CHAREC accordingly. This change does not alter the call for CHAREC, but does alter the parent routine's block of data for CHAREC.
III. FUNCTIONAL AND PROCEDURAL DESCRIPTIONS OF
THE PROCESSES AND RCS'S

CHAREC

CHAREC Function

*CHAREC IS GIVEN THE TIME-SEQUENCE OF PEN-DOWNS, STYLIST COORDINATES,
AND PEN-UPS. IT PERFORMS THREE PRIMARY FUNCTIONS.
*1. GENERATE A VECTOR-INK TRACK (SPECIFIED VECTOR SIZE).
*2. CALCULATE A SET OF FEATURES FROM THE STYLUS COORDINATE SEQUENCE.
THESE FEATURES ARE PRESENTED TO THE ROUTINE 'REC' EACH TIME A
STROKE IS COMPLETED, AND 'REC' TRANSLATES THEM INTO A SUBCHARACTER
CODE.
* THE FEATURES ARE:
* FOR THE CURRENT STROKE:
 * STYLUS DIRECTION SEQUENCE (QUANTIZED TO EAST, NORTH, WEST,
 SOUTH FOR CHARACTERS. QUANTIZED TO 16 DIRECTIONS FOR INK AND
 GEOMETRIC FIGURES).
 * THE NO. AND POSITION OF GEOMETRIC CORNERS.
 * THE NO. OF TIME-PAUSE CORNERS.
 * THE NO. AND POSITIONS OF RELATIVE MAXIMA AND MINIMA IN Y.
* FOR EACH STROKE
 * THE POSITIONS OF THE PENDOWN(STARTING) AND PENUP(ENDING) PTS.
* FOR THE CHARACTER
 * THE BOUNDS
 * THE NO. OF STROKES.
* QUANTIZATION OF DIRECTIONS TO 1 OF 4 PREVENTS THE GENERATION OF
TOO MANY DESCRIPTIONS OF THE SAME CHARACTER WHILE, WITH THE OTHER
FEATURES, IS SUFFICIENT FOR DISCRIMINATION.
* MOST FEATURES ARE REPRESENTED AS 1-BYTE NUMBERS TO EASE TESTING.
* FEATURE POSITIONS ARE INDEPENDENT OF WHERE THE CHARACTER IS DRAWN
ON THE TABLET BECAUSE THEY ARE CALCULATED RELATIVE TO CHARACTER
.getBounds.
3. DETERMINE WHEN A CHARACTER IS COMPLETE AND SEND THE CURRENT SUB-
CHARACTER CODE (ALONG WITH SOME GEOMETRIC INFORMATION—SEE OUTPUTS
LIST) TO THE USER.

*CHAREC HAS NO INK-TRACK, NO RECOGNIZE, HALT, AND SUPPRESS TABLET
OPTIONS. NO TRACK, AND NO RECOGNIZE ARE INDEPENDENT.

CHAREC Call

* INST ACHRCC,CHRCA,GDATA,GCHPSG,GINDEX,EFINX,ENCHARX,ECHARX,EXTX
* TN,EXTC
* WHERE ALL THE LABELS ARE SELECTED BY THE USER
* ACHRCC IS A LINKAGE BETWEEN THE CALLING PROCESS CONTEXT AND CHAREC'S
* CONTEXT
* CHRCA IS A LINK TO CHAREC
* DATA IS THE ADDRESS OF THE INPUTS-OUTPUTS DATA BANK (SEE 'CHAREC
* INPUTS, OUTPUTS')
* CHPSG IS CHAREC'S PSG, 3F
* INDEX IS THE DATA/TIME EXPIRATION INDEX (0 = DATA, 1 = TIME), IF
* EXITS FINX, NCHARX, CHARX, XTN, XTC ARE DESCRIBED UNDER 'CHAREC
* EXITS'

CHAREC Inputs

*ICP A(INK CGW), NO. OF BYTES DISPLAYED IS IN POSITION 6
*MCH A(MATCH DATA), NOT USED
*KEYB A(KEYBOARD DATA), EQU MCH, NOT USED
*PENU A(PEN UP DATA), EQU MCH, NOT USED
*INPB A(INPUT BUFFER), TIME SEQUENCE OF 12-BIT X, 12-BIT Y
* WHEN EACH IS 10-BIT NO. OF RASTER UNITS, THEN THE 2 LEAST SIGN-
IFICANT BITS ARE 00. THE NO. OF COORDINATE PAIRS IS VARIABLE
* IT IS GIVEN IN 'INPL'.
*INKB A(INK BUFFER), INK DESCRIPTION IS PLACED HERE WITH BYTE SEQ-
UENCE 00,LX,X,LYJ,Y,4S,V1,V2,V3,...,00 WHERE EACH SYMBOL
* BETWEEN COMMAS IS 1 BYTE, (LX,X) IS LOAD X, (LYJ,Y) IS LCAC Y
* AND JUMP TO NEW (X,Y), 4S IS ENTER VECTOR MODE WITH VECTOR
* LENGTH CODE S (SEE 'IND') AND THE VI'S ARE VECTOR DIRECTION
* CODES.
*INPL INPUT BUFFER LENGTH, THE NUMBER OF STYLUS COORDINATE PAIRS
* A GROUP OF 7 DATA POINTS ARRIVING IN 30 MS HAS BEEN FOUND CON-
VENIENT. HALF WORD
*INKL INPUT BUFFER LENGTH, THE MAXIMUM ALLOWABLE NO. OF BYTES IN THE
* INK DESCRIPTION
* HALF WORD
*IND INDICATORS. A 1 IN THE FOLLOWING BIT POSITIONS INDICATES POS-
ITIVE ACTIONS. 0=TRACK, 1=RECOGNIZE, 2=PENUP, 3=HALT, 4 AND 5=
CCDE FOR SIZE OF INK VECTORS (00=2 RASTERS, 01=4 RASTERS, 10=6 RASTERS, 11=8 RASTERS), 6, 7 NOT ASSIGNED

*BOX EXPECTED CHARACTER WIDTH, HEIGHT: 12-BIT DX, 12-BIT DY
* WHEN EACH IS 10-BIT NO. OF RASTER UNITS, THEN THE 2 LEAST SIGNIFICANT BITS ARE 00.

CHAREC Outputs (Set in CHAREC or REC)

*CET GEOMETRIC CENTER OF THE CHARACTER: 12-BIT X, 12-BIT Y (END OF CHAREC)
*SIZE ACTUAL CHARACTER WIDTH, HEIGHT: 12-BIT DX, 12-BIT DY (END OF CHAREC)
*CHARA CHARACTER CODE--SEE 'RAND CHARACTER CODES' (REC OR CHAREC)
*AR 1-BYTE NO. OF GEOMETRIC CORNERS, 1-BYTE ASPECT RATIO = 4 HEIGHT/WIDTH. (END OF CHAREC)

CHAREC Exits

*FINX HALT EXIT
*NCHARX NO CHARACTER EXIT, MORE DATA PENDING (PARALLEL TASK)
*CHARX CHARACTER EXIT, MORE DATA PENDING (PARALLEL TASK)
*XTN TERMINAL NO CHAR EXIT, NO MORE DATA
*XTC TERMINAL CHAR EXIT, NO MORE DATA

CHAREC Parameters

*EACH X OR Y COORDINATE IS A 12-BIT NO. RIGHT JUSTIFIED IN A HALF-WORD
* ALL PARAMETERS ARE REFERENCED IN CHAREC. OTHER REFERENCES ARE GIVEN IN PARENTHESES. (REC) REFERS TO A REFERENCE IN ANY REC RCS (EXCEPT INTERP) IN ADDITION TO REC ITSELF. (ANGLE) REFERS TO THE IN-LINE CODE SECTION OF CHAREC CALLED ANGLE.
* *
*II TOP OF DATA BANK, ALSO TRANSLATION OF 'CODE' (ANG4,CHECK)
*PAD CONTAINS THE ADDRESS OF A PLACE IN 'INTERP' (REC,INTERP)
*CODE SEQUENCE OF STYLUS DIRECTIONS--EACH 2 BITS IS A DIRECTION
* 00=E, 01=N, 10=W, 11=S (ANGLE,FN56,ANG4,REC,INTERP)
*XS,YS X,Y COORDINATES OF A SMOOTHED DATA POINT
*XT,YT X,Y COORDINATES OF A THINNED DATA POINT (MXXNS,RELM)
X, Y DISTANCES BETWEEN 2 PTS IN A THINNED TRACK (RELM)

ABSOLUTE VALUES OF DX, DY

CODE (SEE CODE) FOR PREVIOUS DIRECTION IN THE TRACK (ANGLE,

TURNER, RELM)

CODE (SEE CODE) FOR PREVIOUS ACCEPTED DIRECTION. (ANGLE, TURNER)

NO. DIRECTIONS IN THE LAST STROKE (ANGLE, FN56, ANG4, REC, INTERP)

TOTAL NO. OF STROKES (CHECK, DELTAS, REC, INTERP)

CHAR INDICATOR. BYTE 0 NOT USED. 1 IN THE FOLLOWING BIT

POSITIVE POSITIONS OF BYTE 1 INDICATE POSITIVE ACTIONS: 0=1=NCT USEC

2=REQUEST FOR REC, 3=2 CHARACTERS, 4=PEN-UP-DELAY HAS HAPPENED

5=CLCCK HAS BEEN CALLED, 6=TAKE HALT EXIT, 7=NOT FIRST PENDOWN

NO. BYTES OF INK

CODE (NE=00, NW=01, SW=10, SE=11) FOR QUADRANT OF PREVIOUS DIRECTION

INDEX BASED ON DIRECTIONS 5 AND 6, VALUES 0-16 (FN56, INTERP)

X, Y EXTREMS OF CHARACTER (XMNC, REC)

RIGHT, LEFT EXTREMES OF CHARACTER (DELTAS, XMNC, REC)

TOP, BOTTOM EXTREMES OF CHAR. (DELTAS, QMM, XMNC, BSRRM, BRITE)

ASPECT RATIO = 4*CYC/DXC (INTERP)

NO. OF THINNED POINTS (TCRNR)

NT AT WHICH LAST TIME-CORNER OCCURRED (TCRNR)

NO. OF BYTES OF INK IN THE FIRST CHARACTER

SEQUENCE OF POSITIONS OF END, START POINTS OF

STROKES--1/2 WORD FOR EACH STROKE ENDPT, STARTPT. (DELTAS, REC,

INTERP)

3 2 1 0

XLC 7 6 5 4

11 10 9 8

15 14 13 12

WIDTH, HEIGHT EXPECTED NORMAL CHARACTER WIDTH, HEIGHT--SEE BX IN

INPUTS LIST (PSTEST)

Y CENT, X COORDINATE OF CENTER OF PREVIOUSLY OUTPUTTED CHARACTER

CODE FOR PREVIOUSLY OUTPUTTED CHARACTER

TEMPORARY STORAGE (TCRNR, REC, INTERP)

NO. GEOMETRIC CORNERS (INTERP)

NO. RAW DATA PTS. SINCE LAST THINNED PT. (TCRNR)

MINIMUM X OR Y DISTANCE BETWEEN THINNED POINTS (DERIVED FROM

INC--SEE INPUTS). (RELM)

CODE INDICATING TYPE OF PREVIOUS STROKE OR STROKES. 1=DOW

VERT, 2=HORIZ, 3=7-LIKE, 4=V-LIKE, 5=C-LIKE, 6=O-LIKE, 7=U-LIKE, 8=2 HORIZS., 9=UP VERT, 10=1 VERT AND 1 HORIZ, 11=2

VERTS. (REC, INTERP)

CHARACTER CODE (SEE CHARA IN LIST OF OUTPUTS) (REC, DCT, INTERP)

TEMPORARY STORAGE (REC, INTERP)

NOT USED

X, Y COORDINATES OF SEQUENCE OF STARTING PTS. OF STROKES--1/2

WORD EACH (DELTAS, BSMV)

X, Y COORDINATES OF SEQUENCE OF ENDING PTS. OF STROKES--1/2

WORD EACH. (DELTAS, REC)
*ALXYJ 7 BYTES CONTAINING CO, LX, X, LYJ, Y, ENTER VECTOR MODE, 00. GCES
* INTO INK BUFFER (SEE INKB IN LIST OF INPUTS)
*XL, YL RAW DATA POINT COORDINATES
*XLG, YLG XL, YL USED BY TRAVEC (CORNER)
*AX, AX1, AX2, AX3 16-DIRECTIONS USED FOR GEOMETRIC CORNERS (CORNER)
*AXO1, AXO2, AX12, AX23
* DIFFERENCES BETWEEN 16-DIRECTIONS (CORNER)
*NC NO. GEOMETRIC CORNERS (CORNER)
*C INTERNAL CORNER PARAMETER (CORNER)
*DYM 3/2 EXPECTED NORMAL CHARACTER HEIGHT--SEE BX IN INPUTS LIST
* (BHTE, PSTEST, TILDT)
*DXS, DYS X, Y EXTENTS OF CURRENT STROKE (MXMNS)
*XRS, XLS RIGHT, LEFT EXTREMES OF CURRENT STROKE (MXMNC, MXMNS)
*YTS, YBS TCP, BOTTOM EXTREMES OF CURRENT STROKE (MXMNC, MXMNS)
*CENT X CENTER, Y CENTER--SEE CET IN OUTPUT LIST (RAZE, PSTEST)
*MVC ADJUSTABLE MVC INSTRUCTION
*TURN CODE (SEE CODE) FOR A SINGLE DIRECTION TURN (TURNER)
*TURN CODE (SEE CODE) SEQUENCE OF SINGLE DIRECTION TURNS (INTERP)
*XC, YC SEQUENCE OF X, Y COORDINATES OF GEOMETRIC CORNERS (CORNER)
* (XC=BSMN, YC=BSRPRM)
*D0 THRU D15 NO. OF OCCURANCES OF DIRECTIONS 0 THRU 15 (SYMT)
*DN SUM OF D0 THRU D15 (SYMT)
*NTCUSP NO. OF TIME CORNERS (TCRNR, REC, INTERP)
*PNPTS PREVIOUS NPTS (TCRNR)
*PYMAX, PYMIN Y LOCATION OF PREVIOUS RELATIVE Y MAX, MIN (RELM)
*NYPYMAX, NYMIN NO. OF RELATIVE Y MAX, MIN (RELM, REC, INTERP)
*YMAX, YMMin SEQUENCE OF Y LOCATIONS OF RELATIVE Y MAX, MIN FOR THE
* CURRENT STROKE--1/2 WORD EACH (QMM, RELM, INTERP)
*QYMAX, QYMIN SEQUENCE OF QUANTIZED Y MAX, MIN --1 BYTE EACH (QMM, REC, INTERP)
* ALSO USED AS AN INDICATOR (RELM)
*PYMAXXX, PYMAXXX X LOCATION OF PREVIOUS RELATIVE Y MAX, MIN (RELM)
*YMAXXX, YMXX SEQUENCE OF X LOCATIONS OF RELATIVE Y MAX, MIN FOR THE
* CURRENT STROKE--1/2 WORD EACH (RELM, INTERP, BSMNW, BTEST3)

CHAREC Read-Only Constants

*TIME PEN-UP-DELAY TIME FOR CLOCK, F"01CO" = 0.1 SECOND
*LXYJ LOAD X, CO, LOAD AND JUMP TO Y, CO
*CDOT THE CHARACTER CODE FOR A POINT
*HEX10 THE DECIMAL EQUIVALENT OF HEX 10
*HEX90 THE DECIMAL EQUIVALENT OF HEX 90

CHAREC Sequence of Information Processing

****START****
*
*GO TO NEW CHARACTER ENTRY, THEN CONTINUE
*
****NEW CHARACTER ENTRY****
*
*INITIALIZE
*RETURN
*
****NEW DATA POINT ENTRY****
*
*IF HALT DESIRED, GO TO FINISH ENTRY 1
*IF PEN UP, GO TO PEN UP SIGNAL ENTRY
*IF NOT FIRST PEN DOWN, GO TO MIDSTROKE NEW DATA POINT ENTRY
*
****NEW STROKE ENTRY****
*
*INITIALIZE
*SET NOT FIRST PEN DOWN INDICATOR
*SET UP STARTING POINT AND INK-VECTOR SIZE IN INK BUFFER
*SET UP THINNING DISTANCE
*IF INK DESIRED, SET DISPLAY COUNT
*
****MIDSTROKE NEW DATA POINT ENTRY****
*
**THIN'' DETERMINES IF THE CURRENT DATA PT. IS SUFFICIENTLY FAR FROM THE
* PREVIOUS THINNED PT.
* NO, GO TO ANGLE SECTION-END
**TCNRN'' DETERMINES IF A TIME-PAUSE CORNER HAS OCCURRED
*CALCULATE INCREMENT BETWEEN NEW AND OLD THINNED POINTS
**TCRVR' CALCULATES 16-DIRECTION FOR INK
*IF NO INK-TRACK DESIRED, ZERO (SET TO 2) DISPLAYED INK COUNT, THEN
* SKIIP TO 'CORNER' CALL
*STORE INK IF NEW THINNED PT. IS SUFFICIENTLY FAR FROM THE LAST PT. IN
* THE INK TRACK.
**CORNER'' DETERMINES IF A GEOMETRIC CORNER HAS OCCURRED AND CALCULATES
* ITS POSITION.
**MXMNS' UPDATES STROKE BOUNDS
**RELM' UPDATES RELATIVE MAXIMA AND MINIMA
*
****ANGLE SECTION-START****
*
*DETERMINE QUADRANT OF DIRECTION
**HYST'' MODIFIES DIRECTION FOR HYSTERESIS ZONE
*DETERMINE WHETHER EAST, NORTH, WEST, OR SOUTH
*IF NOT THE SAME AS THE PREVIOUS DIRECTION, 'TURNER' DETERMINES IF THIS
* WAS A 180 DEGREE TURN, THEN GO TO WAIT FOR NEXT DATA POINT
*IF THE SAME, PLACE IN DIRECTION SEQUENCE
*
****ANGLE SECTION-END****
*
*UPDATE THE DATA POINT COUNTER
*IF ALL DATA POINTS IN THE INPUT BUFFER HAVE NOT BEEN EXAMINED, GO TO
* MIDSTROKE NEW DATA POINT ENTRY
* OTHERWISE WAIT FOR NEXT DATA POINT GROUP
*
****WAIT FOR NEXT DATA POINT GROUP****
*
*(WAITING FOR A DATA POINT GROUP DOES NOT TIE UP THE CPU)
*WHEN NEW DATA POINT GROUP ARRIVES, THEN
*IF HALT DESIRED, GO TO FINISH ENTRY 3
*SET UP INK-VECTOR SIZE AND THINNING DISTANCE
*NEGATE REC REQUEST, 2 CHARACTERS, AND PEN-UP-DELAY INDICATORS
*GO TO NEW DATA POINT ENTRY
*
****PEN UP SIGNAL ENTRY****
*
NEGATE NOT FIRST PENDOWN INDICATOR
*IF STRCKE IS A DOT, 'DOT' CHECKS FOR POSSIBLE SCRIPT I OR J
* IF YES, GO TO MULTI-STROKES ENTRY
*IF THIS IS THE ONLY STROKE, GO TO MULTI-STROKES ENTRY
*IF THE PREVIOUS SUBCHARACTER CANNOT BE COMBINED WITH ANY STRCKE, GC TO
* THE MULTI-STROKES ENTRY
**ANG4' AND 'CHECK' DETERMINE IF THE PREVIOUS SUBCHARACTER CAN BE
* COMBINED WITH THIS STROKE
* IF NOT, GO TO THE MULTI-CHARACTERS ENTRY
*IF CURRENT STROKE IS A COMMA, GO TO MULTI-CHARACTERS ENTRY
*IF CURRENT STROKE AND PREVIOUS SUBCHARACTER ARE NOT GEOMETRICALLY
* CLOSE ENOUGH TO BE COMBINED AS A CHARACTER, GO TO MULTI-CHARACTERS
* ENTRY. (IF IT IS NOT DESIRED TO SEPARATE CHARACTERS BASED ON THEIR
* POSITIONS, REPLACE 'PTEST LA R7,1 WITH 'PTEST EQU *' AND DELETE ALL
* THE FOLLOWING CODE UP TO, BUT NOT INCLUDING, THE LINE LABELLED
* 'CASE1').
*
****MULTI-STROKES ENTRY****
*
**MXMNC' UPDATES CHARACTER BOUNDS
*
****NEW CHARACTER PARAMETERS ENTRY****
*
*SET FIRST CHARACTERS INK COUNT TO TOTAL INK COUNT
**DELTAS' QUANTIZES STARTING PT. AND ENDING PT. LOCATIONS
**QMM' QUANTIZES RELATIVE Y MAX AND Y MIN LOCATIONS
**ANG4' TRANSLATES FIRST 4 DIRECTIONS TO A 1-BYTE CODE CORRESPONDING TO
* A SET OF CHARACTERS
**FN56' TRANSLATES DIRECTIONS 5 AND 6 TO A 4-BIT CODE
*COMPUTE ASPECT RATIO
*STORE NO. GEOM-CORNERS, AND NO. TIME-CORNERS
*COMPUTE CENTER
*IF NO. OF STROKES IS NOT 2, SKIP AROUND TESTS FOR SCRIPT I AND J
*IF PREV. SUBCHARACTER IS SCRIPT I, GO TO REC EXIT
*IF PREV. SUBCHARACTER IS SCRIPT J, 'RAZE' INCREASES Y CENTER
*IF NO. DIRECTIONS GTR 15, CHAR IS SCRUB, GO TO REC EXIT
*IF NO. DIRECTIONS NOT GTR 8 GO TO REC CALL
*IF NO. DIRECTIONS GTR 12, OR CHARACTER IS LARGE, SET CHAR=SCRUB, GC TO
* REC EXIT
*
****REC CALL****
*
CALL REC, THEN GO TO REC EXIT
*
****MULTI-CHARACTERS ENTRY****
*
*IF FIRST CHARACTER INK COUNT=TOTAL INK COUNT, I.E. IF THERE IS ONLY 1
* CHARACTER PENDING, GO TO RESTORE INK COUNT ENTRY
*SET INK COUNT TO INK COUNT LESS FIRST CHARACTER INK COUNT, I.E. TO 2ND
* CHARACTER INK COUNT
*ZERO (SET TO 2) DISPLAYED INK COUNT, AND SAVE PREVIOUS DISPLAYED INK
* COUNT.
*MOVE 2ND CHARACTER INK TO THE HEAD OF THE INK BUFFER.
*IF NO TRACK DESIRED, GC TO ZERO INK COUNT ENTRY
* CHARACTER INK COUNT, I.E. TO 2ND CHARACTER INK COUNT.
*
****ZERO INK COUNT ENTRY****
*
*SET TOTAL INK COUNT TO ZERO
*
****DON'T RESTORE ENTRY****
*
*SET REC REQUEST AND 2 CHARACTERS INDICATORS
*
****2 CHARACTERS ENTRY****
*
*IF NO RECOGNITION IS DESIRED, GO TO WAIT FOR NEXT DATA POINT GROUP.
*IF CHARACTER IS NOT RECOGNIZABLE, GO TO NO CHARACTER ENTRY
*IF REC HAS NOT BEEN REQUESTED, GO TO TERMINAL CHARACTER ENTRY
*INTIATE PARALLEL PROCESS. HIGH PRIORITY TAKES CHARACTER EXIT. LOW
* PRIORITY GOES TO RESET FOR NEW CHARACTER ENTRY
*
****RESET FOR NEW CHARACTER ENTRY****
*
*RESET CHAR SIZE, STARTING AND ENDING POINT LOCATIONS, CENTER, ETC.
*GO TO NEW CHARACTER PARAMETERS ENTRY
*
****REC EXIT****
*
*IF NO. DIRECTIONS GTR 8, AND CHARACTER IS NOT SCRIPT, SET CHAR=SCRUB
*NEGATE REC REQUEST AND 2 CHARACTERS INDICATORS
*SET TIME/DATA EXPIRATION INDEX TO TIME
*IF DESIRED INK-VECTOR SIZE IS 8 RASTERS, GO TO CLOCK EXPIRED ENTRY
*SET CLOCK HAS BEEN CALLED INDICATOR
*CALL CLOCK, THEN GO TO CLOCK TURNED OFF OR CLOCK EXPIRED
*
****CLOCK EXPIRED (DUE TO RUNNING LONGER THAN 'TIME') ENTRY****
* TURN OFF CLOCK (SET)
* PAUSE, THEN GO TO CLOCK TURNED OFF ENTRY
* ****CLOCK TURNED OFF (DUE TO PENDOWN) ENTRY****
* * IF HALT DESIRED, GO TO FINISH ENTRY 3
* NEGATE CLOCK CALLED INDICATOR
* IF TAKE FINISH EXIT INDICATOR IS SET, GO TO FINISH ENTRY 2
* GO TO SET UP OUTPUTS ENTRY, THEN RETURN HERE
* IF 2 CHARACTERS INDICATOR IS SET, GO TO 2 CHARACTERS ENTRY
* IF TIME/DATA EXPIRATION INDEX IS SET TO DATA, GO TO NEW DATA PT. ENTRY
* RESET ALL INTERNAL INDICATORS
* GO TO 2 CHARACTERS ENTRY
* ****FINISH ENTRY 1****
* * IF CLOCK HAS BEEN CALLED, GO TO FINISH ENTRY 2
* SET TAKE FINISH EXIT INDICATOR
* GO TO CLOCK EXPIRED ENTRY
* ****SET UP OUTPUTS ENTRY****
* * MOVE APPROPRIATE INTERNAL VALUES TO OUTPUTS
* RETURN
* ****NO CHARACTER ENTRY****
* * IF REC HAS NOT BEEN REQUESTED, GO TO TERMINAL NO CHAR ENTRY
* INITIATE PARALLEL PROCESS. HIGH PRIORITY TAKES NO CHAR EXIT. LOW
* PRIORITY GOES TO RESET FOR NEW CHARACTER ENTRY
* ****FINISH ENTRY 2****
* * GO TO SET UP OUTPUTS ENTRY, THEN RETURN HERE
* ****FINISH ENTRY 3****
* * GO TO SET UP INK ENTRY, THEN RETURN HERE
* TAKE HALT EXIT
* ****TERMINAL CHARACTER ENTRY****
* * GO TO SET UP INK ENTRY, THEN RETURN HERE
* TAKE TERMINAL CHARACTER EXIT
* ****TERMINAL NO CHAR ENTRY****
* * GO TO SET UP INK ENTRY, THEN RETURN HERE
* TAKE TERMINAL NO CHAR EXIT
*
****SET UP INK ENTRY****
*
*IF DESIRED INK-VECTOR SIZE IS 8 RASTERS, RETURN
*ZERO (SET TO 2) DISPLAYED INK COUNT
*RETURN
*
****END OF CHAREC****

CHAREC Program Listing

USING XR1,R1
USING XR3,R3
USING XR4,R4
SVCS
REGS
CD1 DSECT
XR1 DS 3F
AREC DS 1F
CLK1 DS 1F
DATA DS 1F
WAITBX DS 1F
INDEX DS 1F
FINX EQU 0
NCHARX EQU 4
CHARX EQU 8
XTN EQU 12
XTC EQU 16
CD4 DSECT
XR4 DS 0F
ICP DS 1F
MCH DS 1F
KEYB EQU MCH
PENU EQU MCH
INPB DS 1F
INKB DS 1F
INPL DS 1H
INKL DS 1H
EP DS 2F
CET DS 1F
SIZE DS 1F
IND DS 1G
CHARA DS 1G
AR DS 1H
BCX DS 1F.
LU3 DSECT
XR3 DS 0F
II DS 1F
PAD DS 1F
CODE DS 1F
XS DS 1H
YS DS 1H
XT DS 1H

TIME/DATA EXPIRATION INDEX

TERmINAL NO CHAR EXIT
TERmINAL CHAR EXIT

A(INK CCW)
A(MATCH DATA)
A(KEYBOARD DATA)
A(PEN UP DATA)
A(INK BUFFER)
INPUT BUFFER LENGTH
INK BUFFER LENGTH
END POINTS
CENTER
ACTUAL CHARACTER SIZE
INDICATORS
CHARACTER
CORNERS, ASPECT RATIO
MAX CHARACTER SIZE
YT CS 1H
DX CS 1H
CY CS 1H
MDX CS 1H
MDY DS 1H
PANG CS 1H
PACANG DS 1H
N CS 1H
SN DS 1H
PUP DS 1H
INKIND CS 1H
PQUAD DS 1H
BR56 CS 1H
DXC CS 1H
DYC CS 1H
XRC DS 1H
XLC DS 1H
YTC CS 1H
YBC DS 1H
ASPR CS 1H
NT DS 1H
NTC DS 1H
INKC DS 1H
XYE CS 10C
XYS DS 10C
WIDTH DS 1H
HEIGHT CS 1H
YCENT CS 1H
PCHAR CS 1G
CUSP CS 1C
NCUSP DS 1H
NPTS DS 1H
CEL DS 1H
P CS 1C
CHAR DS 1G
TEMP CS 1C
TINK CS 5C
XSP CS 10C
YSP CS 10C
XEP CS 10C
YEP CS 10C
ALXYJ CS 8C
XL DS 1H
YL DS 1H
XLQ DS 1H
YLQ DS 1H
AX3 DS 1H
AX2 DS 1H
AX1 CS 1H
AX CS 1H
AX23 DS 1H
AX12 DS 1H
AX01 DS 1H
AX02 DS 1H
NC DS 1H
C DS 1H
cym DS 1H
dx DS 1H
cys DS 1H
xrs DS 1H
xls DS 1H
yts DS 1H
yts DS 1H
cent DS 1F
mvc DS 6C
tturn DS 1H
turn DS 1F
xc DS 10C
cy DS 10C
do DS 1H
d1 DS 1H
d2 DS 1H
d3 DS 1H
d4 DS 1H
d5 DS 1H
d6 DS 1H
d7 DS 1H
d8 DS 1H
d9 DS 1H
d10 DS 1H
d11 DS 1H
d12 DS 1H
d13 DS 1H
d14 DS 1H
d15 DS 1H
cn DS 1H
ntcusp DS 1H
pnpnts DS 1H
pymax DS 1H
pymin DS 1H
nymax DS 1H
nymin DS 1H
nymax DS 1H
ymin EQU YMAX+10
ymin EQU YMAX+10
ymin EQU YMAX+10
ymin EQU YMAX+10
chrrec PROCs CLEAR=5,CNTX=9,AUTO=86,PRCLG=XCHR,X,1D=9000021F
TIME DC F'030C'
LXYJ DC X'54006000'
CDOT DC X'80'
HEX10 DC F'16'
HEX90 DC F'144'
MOVER MVC 0(C,R6),0(R7)
ANG56 DC V(FN56)
ANG4A DC V(ANG4)
DELT DC V(CELTA)
RECA DC V(REC)
SMTH DC X'800CC21C'
THINN DC V(THIN)
MAXMNS DC V(MXMNS)
HYSTR DC V(HYST)
CLK2 DC V(CLOCK)
MAXMNC DC V(MXMNC)
TRAVC DC V(TRAVC)
CORNR DC V(CORNER)
TURNA DC V(TURNER)
CHECKA DC V(CHECK)
RELMMA DC V(RELM)
QMA DC V(QMM)
COTA DC V(ODT)
TCRNRA DC V(TCRNR)
RAZEA DC V(RAZE)
XCHRX PROLG
*
*
****START****
*
*
CLEAR PSG=WAITBX,CNTX=F
MVI ALXYJ,X'CO'
MVI ALXYJ+5,X'40'
MVI ALXYJ+6,X'00'
MVC MVC(6),MOVER
BAL R15,TOP
B WAITZ
*
*
****NEW CHARACTER ENTRY****
*
*
TOP XC I(4),I1
XC PAD(4),PAD
XC SN(2),SN # STROKES
XC INKIND(2),INKIND INK INDEX
XC INKC(2),INKC
XC PUP(2),PUP
XC XRC(2), XRC
XC YTC(2), YTC
XC CHAR(1), CHAR
XC P(1), P
XC TTURN(2), TTURN
XC D0(32), D0
XC DN(2), DN
LA R6, 1024
SLL R6, 2
STH R6, XLC
STH R6, YBC
L R4, DATA
L R7, CET
STH R7, YCENT
L R4, DATA
MVC PCHAR(1), CHAR
L R4, DATA
L R7, BCX
LR R8, R1
STH R8, HEIGHT
SRL R8, 16
STH R8, WIDTH
LR R8, R7
SRL R8, 1
AR R7, R8
STH R7, DYM
BR R15

* *
****NEW DATA POINT****
* *
WAITZ L R4, DATA
TM IND, X'10'
BC 1, FIN
TM IND, X'20'
BC 1, IND2
LH R12, INKIND
TM PUP+1, X'01'
BC 1, PENDWN

* *
****NEW STROKE****
* *
LH R6, SN
LA R8, 5
CR R6, R8
BC 4, SNLSS5
SR R6, R6
SNLSS5 LR R8, R6

STORE PREV CENT Y IN YCENT
STORE PREV CHAR IN PCHAR
STORE MAX ALLOW DY IN DYM
1 1/2 CHARACTER HEIGHT
ENTRY FROM WAIT BOX
B TO FIN IF HALT
B TO IND2 IF P.U.
R12=INK BUFF IND
STROKES OVERFLOW TEST
SLL R8,1
LA R6,1(R6)
STH R6,SN

*INITIALIZATION
XC NC(4),NC
LA R6,16
STH R6,AX1
STH R6,AX
MVC AX3(4),AX1
XC NTCUSP(2),NTCUSP
XC NPTS(2),NPTS
XC NT(2),NT
XC NTC(2),NTC
LA R7,20
STH R7,PNPTS
XC Nymax(2),Nymax
XC Nymmin(2),Nymmin
XC N(2),N
XC C(2),C
MVI Qymax,X*O1
MVI Qymin,X*O1
LA R6,4
STH R6,PANG
STH R6,PACANG
STH R6,PQuad
XC XRS(2),XRS
XC YTS(2),YTS
LA R6,1C24
SLL R6,2
STH R6,XLS
STH R6,YBS
OI Pup+1,X*Cl
L R4,DATA
L R10,INPB
LH R7,0(R10)
STH R7,XS
STH R7,XT
STH R7,XSP(R8)
STH R7,XL
STH R7,PYmax
STH R7,PYmxx
LH R7,2(R10)
STH R7,YSP(R8)
STH R7,YL
STH R7,YSP(R8)
STH R7,PYmax
STH R7,PYmin
LA R13,4
B REBUFF

CLNBUF L R4,DATA
L R7,ICP
LA R8,2
STH R8,6(R7)
REBUFF L R4,DATA
LH R15,INKL
LA R6,7(R12)
CR R6,R15
BC 4,INKLOK
SR R12,R12
B CLNBUF
INKLOK LH R6,XL
SRL R6,2
LH R7,YL
SRL R7,2
SLL R6,16
CR R6,R7
C R6,LXYJ
ST R6,TEMP
MVC ALXYJ+1(4),TEMP
L R4,DATA
IC R15,INC
LA R14,12
NR R15,R14
LA R14,64
LR R6,R15
LA R6,4(R6)
SLL R6,1
STH R6,DEL
CR R15,R14
STC R15,ALXYJ+5
L R15,INKB
LA R15,0(R12,R15)
MVC 0(7,R15),ALXYJ
SR R6,R6
STC R6,7(R15)
L R4,DATA
*TEST FOR NO INKING
TM INC,X*80
BC 8,ENTER1
L R7,ICP
LH R15,6(R7)
LA R15,6(R15)
LA R12,6(R12)
LA R6,2(R12)
CR R15,R6
BC 2,R15GTR
LA R15,1(R15)
R15GTR STH R15,6(R7)
B ENTER
*
*
****MIDSTRCKE NEW DATA POINT****

PENDWN SR R13,R13
ENTER SR R6,R6
CR R12,R6
BC 8,CLNBUF
ENTER1 L R4,DATA
L R10,INPB
LH R6,(R13,R10)
STH R6,XS
LA R13,2(R13)
LH R6,(R13,R10)
STH R6,YS
LH R8,NPTS
LA R8,1(C,R8)
STH R8,NPTS
LH R7,YT
LH R8,DEL
RCS THINN,E**4
CH R7,YT
BC 8,YSMALL
B OK

YSMALL LH R6,XS
LH R7,XT
LH R8,DEL
RCS THINN,E**4
CH R7,XT
BC 8,YSMALL

*HERE IF NEW POINT ACCEPTED IN THIN TRACK
CK EQU *
RCS TCRNRA,111,E**4
LH R11,YS
LH R10,YT
STH R11,YT
SR R11,R10
STH R11,DY
LPR R11,R11
STH R11,MDY
LH R11,XS
LH R7,XT
STH R11,XT
SR R11,R7
STH R11,DX
LPR R11,R11
STH R11,MDX
NUINK LH R7,XT
LH R9,YT
LH R10,XL
LH R11,YL
STH R10,XLO
STH R11,YL0
L R4,DATA
L R15,INC
SRL R15,26
LA R14,3
NR R15,R14
LA R15,1(R15)
RCS TRAVC,E*+4
C R0,HEX10
BC 8,INKST
LR R8,RC
SLL R8,1
LH R7,DC(R8)
LA R7,1(R7)
STH R7,DC(R8)
LH R7,0N
LA R7,1(R7)
STH R7,0N
STH R0,AX
STH R10,XL
STH R11,YL
L R4,DATA
LH R15,INKL
BCT R15,A1
A1 L R4,DATA
TM INC,X=*80'
BC 1,STOINK
L R4,DATA
L R7,ICP
LA R8,2
STH R8,6(R7)
SR R12,R12
B NOSTO
STOINK EQU *
L R4,DATA
L R7,ICP
LH R8,6(R7)
LA R8,1(R8)
STH R8,6(R7)
L R4,DATA
C R0,HEX90
L R6,INKB
STC R0,0(R12,R6)
SRL R0,8
LA R12,1(R12)
STC R0,1(R6,R12)
NCSTC EQU *
*GEOMETRIC CORNER DETECTOR
LH R7,AX
SH R7,AX1
LPR R7,R7
INCREMENT CNT FOR THIS DIRECTION
INCREMENT TOTAL COUNT
TEST FOR NO INKING
CLEAR INK COUNT
STROKE BOX SIZE AND LOCATION

UPDATE RELATIVE MAX AND MINS

ANGLE SECTION START

DETERMINE QUADRANT

* MEASURE ANGLE = ANG

* DX POS, TEST SIGN OF DY

* DX NEG, TEST SIGN OF DY

* DX, DY NEG, QUAD = 2

DETERMINE DIRECTION

* AND CHECK FOR 2 EQUAL SUCCESSIVE ANGLES

* B IF QUAD = PREVC

* SET PQUAD = QUAD

* B IF MDX LESS THAN MDY

* ANG EVEN, TEST SIGN (DX)
BC 4, ANG2
SR R6, R6
B PRVANG

ANG2 LA R6, 2
B PRVANG

ODDANG LH R6, DY
LTR R6, R6
BC 4, ANG3
LA R6, 1
B PRVANG

ANG3 LA R6, 3
B PRVANG

QEPPQ STH R6, PQUAD
LH R6, PANG
LA R7, 1
NR R6, R7
BC 8, EVPANG

*PREV ANGLE ODD
LH R6, MDX
LH R7, MDY
RCS HYSTR, E**4
BC 2, EVPANG
B EVANG

EVPANG LH R6, MDY
LH R7, MDX
RCS HYSTR, E**4
BC 2, ODDANG
B PRVANG

PRVANG CH R6, PANG
BC 8, PRVANG
LR R9, R6
RCS TURN, I11, E**4
LR R6, R9
STH R6, PANG
B SMALL

PRVTST EQU *
LH R6, PANG
CH R6, PACANG
BC 8, SMALL

** ANGLES OVERFLOW TEST
LH R7, N
LA R8, 15
CR R7, R8
BC 4, NLOW
MVI CHAR, X'72'
SR R7, R7

NLOW L R10, CODE
LH R9, TTURN
LA R8, 16
SR R8,R7
SHFT
SR R10,R2
SRL R11,R2
BCT R8,SHFT
SLL R10,R2
SLL R11,R2
LH R6,PANG
CR R10,R6
CR R11,R9
LA R8,15
SR R8,R7
SHFT1
SLL R10,R2
SLL R11,R2
BCT R8,SHFT1
ST R10,CCDE
ST R11,TURN
MVI TTUN+1,X'00'
LA R7,1(R7)
STH R7,N
 INC N
B SMALL
*
*
*****ANGLE SECTION END*****
*
*
SMALL LA R13,2(C,R13)
 HERE PROCESSING OF NEW RAW COMP
L R4,DATA
LH R10,INPL
CR R13,R10
BC 4,ENTER
 GET NEXT POINT
STH R12,INKIND
 KEEP INK BUFF IND
*
*
*****WAIT FOR NEXT DATA POINT GROUP*****
*
*
WATRL WATE PSG=WAITBX,CNTX=F
L R4,DATA
TM INC,X'10'
BC 1,GOFINX
L R6,INKB
IC R15,INC
LA R14,X'GC'
NR R15,R14
LA R14,64
CR R14,R15
STC R14,5(R6)
LA R15,4(R15)
SLL R15,1
STH R15,DEL
NOFIN NI PUP+1,X'C7'
B WAITZ

PEN UP SIGNAL

IND2 NI PUP+1,x*FE9 HERE CAN PU TRAP
 LH R7, DN TEST FOR INK
 LTR R7, R7
 BC 8, NOSANG
 CLI N+1, x*CO1
 BC 6, PTEST

*TEST FOR SINGLE ANGLE

LA R7, 4
CH R7, PANG
BC 8, NOSANG
LA R7, 1
STH R7, N
LA R10, PANG
LA R11, PANG
LA R8, 3

SBFT2 SLL R10, 2
AR R10, R11
BCT R8, SHFT2
SLL R10, 8
ST R10, CCDE
BC 15, PTEST

*UPDATE STROKE SIZE TO PREPARE FOR CENTER, ETC.

NCANG LH R6, X5
STH R6, XLS
STH R6, XRS
LA R6, YS
STH R6, YTS
STH R6, YBS

STROKE IS A DOT

*IS THIS THE 2ND STROKE OF A SCRIPT I OR J

CLI SN+1, x*C29
BC 6, PTEST
RCS DOTA, III, ECASE1, EPTEST

*MAKE POSITION DECISION HERE, 1ST CHECK FOR SINGLE STROKE

PTEST LA R7, 1
CH R7, SN
BC 10, CASE1 ONLY 1 STROKE

*CAN OLD CHAR BE COMBINED WITH ANY STROKE, I.E. IS THERE A P AND/OR PAD

L R7, PAD
LTR R7, R7
BC 6, NOTDK
CLI P, x*CC9
BC 8, TOBIG

*CAN OLD CHAR BE COMBINED WITH STROKE

NCCK RCS ANG4A, III, E**4
RCS CHECKA,III,ETOBIG,ECOMBOK

*OLD CHAR CAN BE COMBINED WITH THIS STROKE, TEST FOR COMMA

COMBOK
CLI N+1,X'Cl'
BC 6,COMOK1 NOT ANG
TM CODE,X'C0'
BC 8,COMOK1 RIGHT HORIZ
BC 4,COMOK2 UP OR LEFT HORIZ.
LH R15,DYM
SRL R15,2
LH R7,YTS
SH R7,YBS
CR R7,R15
BC 10,COMOK1 NOT SHORT

*SHORT VERTICAL, IS IT AT THE BOTTOM
LH R7,YBS
CH R7,YBC
BC 2,COMOK1 NO

*YES, DOES IT SLANT TO THE LEFT, I.E. IS ENDPT TO LEFT OF STARTPT
LH R8,SN
BCT R8,SLFT

SLFT SLL R8,1
LH R7,XSP(R8)
CH R7,XT
BC 4,COMOK1

*SPECIAL TEST FOR T, IS THE FIRST STROKE A MINUS?
CLI P,X'C2'
BC 8,COMOK1
B TOBIG

*TEST FOR HORIZ. COMMA
COMOK2 TM CODE,X'80'
BC 8,COMOK1 UP

*LEFT HORIZ., IS IT AT THE BOTTOM
LH R7,YBS
CH R7,YBC
BC 2,COMOK1 NO
BC 12,TOBIG YES,COMMA

*STROKE NOT A COMMA
COMOK1 LH R7,XRC
CH R7,XLS
BC 4,CASE1C
CH R7,XRS
BC 4,CASE1B
LH R7,XLC
CH R7,XRS
BC 4,CASE1

CASE1C CLI SN+1,X'02'
BC 6,TSTS2
CLI P,X'O1'
BC 8,CASE1A

TSTS2 CLI N+1,X'O1'
BC 6,TOBIG

NO. IS OLD CHAR VERTICAL

NO. IS NEW STROKE VERTICAL
TM CODE,X'CC'
BC 12,TOBIG
CLI CHAR,X'CE'
YES, IS OLD CHR A PLUS
BC 8,CASE1E
CLI CHAR,X'D2'
NO, IS IT A K
BC 8,CASE1E
BC 6,TOBIG

*1ST STROKE IS A VERTICAL, IS IT A 1
CASE1A CLI CHAR,X'FI'
BC 8,CASE1B
CLI CHAR,X'E1'
NO, IS IT A SLASH
BC 8,CASE1B
CLI CHAR,X'CD'
NO, IS IT A R. PAREN.
BC 8,CASE1B
CLI CHAR,X'CD'
YES
BC 6,TOBIG

*TEST FOR SHORT VERT SECOND STROKE
CASE1B CLI N+1,X'CL'
BC 6,CASE1D
TM CODE,X'CO'
BC 12,CASE1D

CASE1E LH R15,0YM
SRL R15,2
LH R7,YTS
SH R7,YBS
CR R7,R15
BC 4,TOBIG

*NO, IS DIFF BETWEEN CENTERS GTR R RASTERS
*GET HERE WHEN
*FIRST STROKE VERT, SECOND NOT
*AND FIRST STROKE RIGHT CLOSE TO SECOND LEFT
*OR BOTH STROKES VERTICAL
CASE1F EQU *
LH R15,WICTH
LR R10,R15
SRL R10,1
AR R15,R1C
R =3/4 WIDTH
LH R7,XRC
AH R7,XLC
2 OLD CENTER
LH R8,XRS
AH R8,XLS
2 NEW CENT
LR R9,R8
SR R8,R7
LPR R8,R8
CR R8,R15
BC 12,CASE1

*YES, IS DIFF GTR R1(R1 GTR R) RASTERS
LH R15,WICTH
SLL R15,1
R1 = WIDTH
CR R8,R15
BC 2,TOBIG
*IS NEW XCENT IN LEFTMOST 1/4 OF A GRID POS?
LH R15,WIDTH
SRL R15,3 CHAR WIDTH IN RASTERS
SR R8,R8
SRL R9,3 NEW XCENT IN RASTERS
DR R8,R15 NEW XCENT MOD(WIDTH)
LR R10,R15
SRL R10,2 1/4 WIDTH
CR R8,R10 REMAINDER IN R8
BC 4,CASE1

*IS OLD XCENT IN RIGHTMOST 1/4 OF A GRID POS
SR R6,R6
SRL R7,3 OLD XCENT IN RASTERS
DR R6,R15 OLD XCENT MOD(WIDTH)
SR R15,R10
CR R6,R10 3/4 WIDTH
LA R10,11
CR R6,R10 REMAINDER IN R6
BC 2,CASE1
BC 12,TOBIG

*2ND STROKE IS NOT VERTICAL
*IS DIFF BETWEEN 2ND STROKE LEFT AND 1ST STROKE RIGHT GTR R RASTERS
CASE1D EQU *
LH R15,WIDTH
SRL R15,2
LR R10,R15
SRL R10,1
AR R15,R10 R = 3/8 WIDTH
LH R7,XLS
SR R7,R15
CH R7,XRC
BC 2,TOBIG
BC 12,CASE1F

****MULTI-STROKE****

****NEW CHARACTER PARAMETERS****

REINK LH R7,INKIND
STH R7,INKC
MCHR LH R8,SN ENDPOINTS
BCT R8,REDR8
REDR8 SLL R8,1
LH R6,XT
STH R6,XEP(R8)
LH R6,YT
STH R6,YEP(R8)
RCS DELT,II1,E**4

*QUANTIZE REL MAX AND MINS
RCS QMMA,II1,E**4

*SET UP I1 AS A TRANSLATION OF CODE
RCS ANG4A,II1,E**4
CLI I1+3,X*EF'
BC 6,*ANG56X

EF13 MVI I1+3,X*13'
ANG56X RCS ANG56,II1,E**4
LH R7,DXC
LTR R7,R7
BC 8,ASPR3
SR R8,R8
LH R9,0YC
SLL R9,2
DR R8,R7
LR R7,R9
B ASPR2

ASPR3 LA R7,4095
SLL R7,4

ASPR2 STH R7,ASPR
LH R8,NC

NTC1 STH R8,NCUSP
NTX EQU *

*NO. OF TIME CORNERS
LH R8,NT
BCT R8,TNT1
TNT1 CH R8,NTC
BC 2,TNTX
LH R8,NTCUSP
BCT R8,TNTC1

TNTC1 STH R8,NTCUSP
TNTX EQU *

LH R7,YTC
AH R7,YBC
SRL R7,1
LH R8,XRC
AH R8,XLC
SRL R8,1
SLL R8,16
AR R7,R8
ST R7,CENT

*TEST FOR SPECIAL CHARACTERS
CLI SN+1,X*02'
BC 6,TSTSCB
CLI CHAR,X*89'
BC 8,RECRTN
CLI CHAR,X*91'
BC 6,TSTSCB
*SCRIPT J
RCS RAZEA, III, ERECRTN
TSTSCB EQU *
 CLI CHAR, X'72'
 TEST FOR SCRUB (N GTR 15)
 BC 8, ERECRTN
 CLI N+1, X'08'
 BC 12, CALREC
* N GTR 8, CHARACTER IS A POTENTIAL SCRUB
* IF N GTR 12, , OR CHARACTER IS LARGE, SET CHAR=SCRUB
* OTHERWISE ALLOW FOR A POSSIBLE SCRIPT CHARACTER
 CLI N+1, X'0C'
 BC 2, SCBX
 LH R8, DYM
 CH R8, DYZ
 BC 4, SCBX
 DYC GTR DYM
 CH R8, DXC
 BC 10, CALREC
 DXC LSS DYM
SCBX EQU *
 MVI CHAR, X'72'
 B ERECRTN
*

****REC CALL****
*

CALREC INST AREC, RECA, III, III, ERECRTN
*

****MULTI-CHARACTERS****
*

TOBIG LH R7, INKC
 LH R8, INKIND
 CR R8, R7
 BNH OVR2
 SR R8, R7
 STH R8, INKIND
 L R4, DATA
 MOVE INK
 L R9, ICP
 LH R10, 6(R9)
 SR R10, R7
 LA R11, 2
 STH R11, 6(R9)
 L R6, INKB
MOVINK STC R8, MVC+1
 LA R7, O(R7, R6)
 EX 0, MVC
 L R4, DATA
 DON'T UPDATE CCW COUNT IF NO INK
 TM INC, X'80'
 BE OVR21
 STH R10, 6(R9)
B OVR2

****ZERO INK COUNT****

OVR21 XC INKIND(2),INKIND

****DON'T RESTORE****

OVR2 CI PUP+1,X*30'

****2 CHARACTERS****

ALPHA L R4,DATA TEST FOR NO RECOGNITION
TM IND,X*40' CK IF CHAR OR NO CHAR
BC B,WATR1 NO CHAR
CLI CHAR,X*EF' CHAR(1),CHAR
BC B,NCEXT
TM PUP+1,X*20'
BC B,TCE NO MORE DATA TAKE TERMINAL
PARL CNTX=F,LCW=PHI,HIGH=CHARX

****RESET FOR NEW CHARACTER****

RESET CHAR SIZE, LOCATION, ETC.

PHI MVC DXC(12),DXS
LH R6,SN
BCT R6,DECR6

DECR6 SLL R6,1
LH R7,XSP(R6)
STH R7,XSP
LH R7,YSP(R6)
STH R7,YSP
LA R6,1
STH R6,SN
XC P(1),P
XC PAD(4),PAD
XC CHAR(1),CHAR
L R4,DATA
L R7,CET
STH R7,YCENT
MVC PCHAR(1),CHARA
B REINK
*
****REC EXIT****
*
*REC EXITS TO HERE

RECRTN EQU *

*IF N GTR 8 AND CHAR IS NOT A SCRIPT CHARACTER, SET CHAR=SCRUB

CLI CHAR,X*A9'
BC 2,SCBX2
CLI CHAR,X*81'
BC 10,SCRPT

SCBX2 EQU *

CLI N+1,X*08'
BC 12,RECRTN1
MVI CHAR,X*72'
B RECRTN1

SCRPT EQU *

*THIS IS A SCRIPT CHARACTER

*THE FOLLOWING CODE CONVERTS A LOWER CASE CHARACTER TO THE SAME
*UPPER CASE CHARACTER

OI CHAR,X*40'

RECRTN1 EQU *

NI PUP+1,X*CF'
L R4,INDEX
PRESET EXPIRATION = TIME

MVI 3(R4),X*01'

*SKIP AROUND THE CLOCK IF CHAR IS A GEOMETRIC SYMBOL, I.E. INK VECTOR
* SIZE IS 8 RASTERS

L R4,DATA
TM IND,X*OC'
BC 1,CLEXF

NOSKIP EQU *

CI PUP+1,X*04'
IND CLOCK RUNNING

RECX INST CLK1,CLK2,FWAITBX,ITIME,ECLEXP,ECLXF

*

****CLOCK EXPIRED (DUE TO RUNNING LONGER THEN TIME)****
*
CLEXP EQU *

SETCK EQU *

SET PSG=WAITBX,CNTX=F
TURN OFF CLOCK

PAWS

*

****CLOCK TURNED OFF (DUE TO PENDOWN)****
*
CLEXF EQU *

L R4,DATA
TM IND,X*10'
HALT CLOCK EXIT
CHECK IF PENDING CHAR EXIT
WHY CLOCK EXPIRED
MORE DATA
RESET ALL INDICATIONS

CALLER INDICATES TO FINISH
SET BOX FOR CLOCK

OUTPUT CHAR
OUTPUT CENTER
AR, CHAR SIZE

OUTPUT NO CHARACTER

TERMINAL EXIT NO MORE DATA

-49-
****FINISH ENTRY 2****
*
*
FINSH BAL R15,OUTPTS
*
*
****FINISH ENTRY 3****
*
*
GOFINX EQU *
BAL R15,CUTINK
EPLOG FINX
*
*
****TERMINAL CHARACTER****
*
*
TCE EQU *
BAL R15,CUTINK
EPLOG XTC
*
*
****TERMINAL NO CHAR****
*
*
TNE EQU *
BAL R15,CUTINK
EPLOG XTN
*
*
****SET UP INK****
*
*
CUTINK EQU *
L R4,DATA
TM INC,X'CC'
BC 1,OUTSKP
L R7,ICP
LA R8,2
STH R8,6(R7)
OUTSKP EQU *
BR R15
*
*
****END OF CHAREC****
*
*
END
FUNCTION

* TRANSLATES THE FIRST FOUR STYLUS DIRECTIONS (IN CODE) TO A 1-BYTE INDEX (IN I1+3) CORRESPONDING TO A SET OF POTENTIAL STROKES.

* FO=NOT ALLOWABLE, 13=DON'T KNOW

* CALL

** WHERE I1 IS AT THE TCP OF CHAREC'S INTERNAL PARAMETER LIST **

** INPUT REGISTER. R6 **

** INTERNAL REGISTERS. R7,R8,R10 **

** USING XR6,R6 REGS EX0 EQU 0 C6 DSECT XR6 CS 0F I1 DS 1F DS 1F CC6E DS 1F DS 5F N CS 1F ANG4 BOX LA R10,8 SH R10,N BC 12,ANGOUT LH R7,CODE SRTG SRL R7,2 BCT R10,SRGT LA R8,3 NR R8,R7 LA R10,8
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH R10,N</td>
<td>SHIFTS R10 to N position</td>
</tr>
<tr>
<td>SLFT R7,2</td>
<td>Shifts R7 to position 2</td>
</tr>
<tr>
<td>CR R7,R8</td>
<td>Copies R7 to R8</td>
</tr>
<tr>
<td>BCT R10,SLFT</td>
<td>Branches to SLFT if R10<0</td>
</tr>
<tr>
<td>STH R7,COOE</td>
<td>Stacks R7 to COOE</td>
</tr>
<tr>
<td>ANGCUT MVC</td>
<td>ANGCUT r+3(1),CODE</td>
</tr>
<tr>
<td>TR II+3(1),THET4</td>
<td></td>
</tr>
<tr>
<td>ANGE</td>
<td>BEXIT EXO</td>
</tr>
<tr>
<td>THET4</td>
<td>DS OH</td>
</tr>
<tr>
<td>CC X'CC'</td>
<td>CCCC SBARM</td>
</tr>
<tr>
<td>CC 15C*0</td>
<td>ILLEGAL</td>
</tr>
<tr>
<td>CC 2X'13'</td>
<td>0100-0101 DK</td>
</tr>
<tr>
<td>CC X'40'</td>
<td>0102 RSC</td>
</tr>
<tr>
<td>CC X'3F'</td>
<td>0103 SCRPT</td>
</tr>
<tr>
<td>CC C*0'</td>
<td>0110 ILLEGAL</td>
</tr>
<tr>
<td>CC X'13'</td>
<td>0111 DK</td>
</tr>
<tr>
<td>CC 2C*0'</td>
<td>ILLEGAL</td>
</tr>
<tr>
<td>CC X'13'</td>
<td>0120 DK</td>
</tr>
<tr>
<td>CC X'21'</td>
<td>0121 S5</td>
</tr>
<tr>
<td>CC X'13'</td>
<td>0122 DK</td>
</tr>
<tr>
<td>CC X'3E'</td>
<td>0123 S09M</td>
</tr>
<tr>
<td>CC X'3D'</td>
<td>0130 S9LC1</td>
</tr>
<tr>
<td>CC X'41'</td>
<td>0131 SCPFP</td>
</tr>
<tr>
<td>CC X'43'</td>
<td>0132 RSS</td>
</tr>
<tr>
<td>CC X'42'</td>
<td>0133 SCPEL</td>
</tr>
<tr>
<td>DC X'0D'</td>
<td>0200,0201 S2MRZ</td>
</tr>
<tr>
<td>DC X'2A'</td>
<td>0202 S3SCR</td>
</tr>
<tr>
<td>DC 2X'0F'</td>
<td>0203,0210 S3MBR</td>
</tr>
<tr>
<td>DC 3X'0D'</td>
<td>0211-0213 S2MRZ</td>
</tr>
<tr>
<td>DC 2C*0'</td>
<td>ILLEGAL</td>
</tr>
<tr>
<td>DC X'20'</td>
<td>0222 SLKRTM</td>
</tr>
<tr>
<td>CC C*0'</td>
<td></td>
</tr>
<tr>
<td>DC X'02'</td>
<td>0230 S23MB</td>
</tr>
<tr>
<td>DC X'0D'</td>
<td>0231 S2MRZ</td>
</tr>
<tr>
<td>DC X'0E'</td>
<td>0232 S3MB</td>
</tr>
<tr>
<td>CC X'14'</td>
<td>0233 S7MGK</td>
</tr>
<tr>
<td>CC X'0D'</td>
<td>0300 S2MRZ</td>
</tr>
<tr>
<td>CC X'0E'</td>
<td>0301 S8</td>
</tr>
<tr>
<td>CC X'0F'</td>
<td>0302 S3MB</td>
</tr>
<tr>
<td>CC X'44'</td>
<td>0303 S3MB</td>
</tr>
<tr>
<td>CC X'49'</td>
<td>0310 RSV</td>
</tr>
<tr>
<td>CC X'40'</td>
<td>0311 S8LCV</td>
</tr>
<tr>
<td>CC X'40'</td>
<td>0312 RSC</td>
</tr>
<tr>
<td>CC X'01'</td>
<td>0313 STPM</td>
</tr>
<tr>
<td>CC X'02'</td>
<td>0320 S23MB</td>
</tr>
<tr>
<td>CC X'38'</td>
<td>0321 S023MB</td>
</tr>
<tr>
<td>DC X'12'</td>
<td>0322 SRPRM</td>
</tr>
<tr>
<td>CC X'0D'</td>
<td>0323 S2MRZ</td>
</tr>
<tr>
<td>CC 3C*0'</td>
<td></td>
</tr>
<tr>
<td>CC X'14'</td>
<td>0333 S7MGK</td>
</tr>
<tr>
<td>DC X'1E'</td>
<td>1000 SFE</td>
</tr>
</tbody>
</table>
CC 3C'O' 1010 DK
CC X'13' 1011 DK, POSSIBLY TILDA
CC X'13' 1012 DK
CC X'13' 1013 DK
CC X'02' 1020 S23MB
CC X'06' 1021 S3MB
CC X'13' 1022 DK
CC X'02' 1023 S23MB
CC X'0F' 1030 S3MBR
CC X'45' 1031 SCPNRZ
CC X'03' 1032 S23MBP
CC X'38' 1033 SA7
CC 5C'O' 1111 S1MAK
CC 10C'O' 1200, 1201 DK
CC 2X'13' 1202, 1203 SSM
CC 4X'13' 1210-1213 DK
CC 2C'O' 1222 DK
CC C'O' 1230 SMC
CC X'04' 1231 S8
CC X'05' 1232 S8M
CC X'15' 1233 STPA
CC X'11' 1300 S24
CC X'17' 1301 SNMA
CC 2X'35' 1302, 1303 S3
CC X'00' 1310 S2MRZ
CC X'17' 1311 SNMA
CC X'36' 1312 SASTAR
CC X'18' 1313 SMLC
CC X'36' 1320 SASTAR
CC X'00' 1321 S2MRZ
CC X'13' 1322 DK
CC X'46' 1323 RSZ
CC 3C'O' 1333 SCOMAM
CC X'1A' 2000 SBARMK
CC 3C'O' 2010 SG
CC X'33' 2011 SG069M
CC X'06' 2012 SG06M
CC X'08' 2013 S9
CC X'34' 2020 SGSCRB
CC X'18' 2021 SSM
CC X'30' 2022 SG06M
CC X'47' 2023 SE
CC X'4A' 2030 SEQ
CC X'48' 2031 SCPGQ
| CC | X'05' | 2032 SS8M |
| CC | X'1C' | 2033 S9MK |
| CC | 3X'13' | 2100-2102 DK |
| CC | X'3C' | 2103 S09 |
| CC | C'0' | 2111 DK |
| CC | X'13' | 2111 DK |
| CC | 2C'0' | 212C-2133 DK |
| CC | 10C'C' | 2111 OK |
| CC | X'0C' | 2222 SBARM |
| CC | 5C'O' | 2300 SCMEG |
| CC | X'10' | 2301 SG069M |
| CC | X'06' | 2302 SGS |
| CC | X'2F' | 2303 SS589M |
| CC | X'07' | 2310 STP5 |
| CC | X'22' | 2311 S8 |
| CC | X'32' | 2312 SG |
| CC | X'33' | 2313 SS589M |
| CC | 2X'32' | 2320, 2321 S8 |
| CC | X'1B' | 2322 SSM |
| CC | X'47' | 2323 SE |
| CC | 3C'O' | 3010 SG81 |
| CC | X'1E' | 3011 SUMJU |
| CC | X'1F' | 3012 SGC6M |
| CC | 3C'O' | 3013 SUMAM |
| CC | X'3A' | 3020, 3021 STP5 |
| CC | X'10' | 3022 STP6 |
| CC | 3X'22' | 3023-3031 STP5 |
| CC | X'22' | 3032 STP5 |
| CC | X'23' | 3033 SK5 |
| CC | X'24' | 3100 STPH |
| CC | X'13' | 3101 DK |
| CC | X'2C' | 3102 SBDRP1 |
| CC | X'09' | 3103 SBDP1 |
| CC | C'O' | 3111 SVM |
| CC | X'25' | 3111 SVM |
| CC | 2C'0' | 3120, 3121 STPH |
| CC | X'26' | 3122 SDMH |
| CC | X'39' | 3123 SCG |
| CC | X'2B' | 3130 BR |
| CC | X'0A' | 3131 SMNW |
| CC | X'2C' | 3132 SBDRP1 |
| CC | X'27' | 3133 SUMAM |
| CC | 4X'13' | 3200-3203 DK |
| CC | X'3C' | 3210 S09 |
CHECK

*FUNCTION
*
CHECKS TO SEE IF THE PREVIOUS SUBCHARACTER (PREV. REC OUTPUT) CAN BE
*COMBINED WITH THE CURRENT STROKE (AS ENCODED FROM THE FIRST FOUR
*DIRECTIONS BY *ANG4*) TO FORM ONE OF THE ALLOWABLE CHARACTERS.
*
*
*CALL
* RCS CHECKA, I1, ENO, EYES
*WHERE I1 IS AT THE TOP OF CHARC'S INTERNAL PARAMETER LIST
* I1+3 CONTAINS THE STROKE CODE
* EXIT NO WHEN STROKE AND SUBCHARACTER CANNOT BE COMBINED
* EXIT YES WHEN STROKE AND SUBCHARACTER CAN BE COMBINED
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7 THRU R10
*
*
USING XR6, R6

EX0 EQU 0
EX4 EQU 4
REGS DSECT
XR6 DS 0F
I1 CS 1F
DS 2F
DS 1IH
-56-

SN CS 1H
CS 14H
CS 20C
CS 3F
CS 1H
CS 2C
CS 3H

P CS 1C
CHAR CS 1C
CHECK BOX
SR R8,R8
IC R8,I1+3
BCT R8,MULT
MULT SLL R8,2 4 TIMES (I1-1)
EX 0,CHKTAB(R8)
CK SR R8,R8
IC R8,CHAR

*ALL VERTICALS TREATED THE SAME
CLI SN+1,X'02'
BC 6,CK2
CLI P,X'01'
BC 8,CK1
CLI P,X'09'
BC 6,CK2

*OLD CHAR IS VERT
*CHANGE CHAR CODE TO 1
CK1 LA R8,1
CK2 SR R9,R9
SR R10,R10
CK3 IC R10,0(R7)
CR R10,R9
BC 8,CKX
CR R10,R8
BC 8,CKOK
LA R7,1(R7)
BC 15,CK3

*END OF POSSIBLE OLD-CHAR LIST
CKOK BEXIT EX4
CKX BEXIT EX0
CHKTAB DS OF
LA R7,S1 B1
LA R7,S2 B2
LA R7,S2 B3
LA R7,S10 B4
LA R7,S4 B5
LA R7,S10 B6
LA R7,S4 B7
LA R7,S10 B8
LA R7,S3 B9
LA R7,S4 B10
LA R7,S12 B11
LA R7, S13 B12
LA R7, S3 B13
LA R7, S1 B14
LA R7, S1 B15
LA R7, S2 B16
LA R7, S7 B17(11)
LA R7, S3 B18
LA R7, S4 B19
LA R7, S5 B20
LA R7, S4 B21
LA R7, S6 B22
LA R7, S7 B23
LA R7, S4 B24
LA R7, S8 B25
LA R7, S3 B26
LA R7, S4 B27
LA R7, S1 B28
LA R7, S1 B29
LA R7, S14 B30
LA R7, S9 B31
LA R7, S10 B32
LA R7, S4 B33
LA R7, S4 B34
LA R7, S1 B35
LA R7, S1 B36
LA R7, S11 B37
LA R7, S1 B38
LA R7, S1 B39
LA R7, S4 B40
LA R7, S4 B41
LA R7, S1 B42
LA R7, S4 B43
LA R7, S7 B44
LA R7, S1 B45
LA R7, S15 B46
LA R7, S10 B47
LA R7, S10 B48
LA R7, S10 B49
LA R7, S4 B50
LA R7, S4 B51
LA R7, S4 B52
LA R7, S4 B53
LA R7, S4 B54
LA R7, S4 B55
LA R7, S4 B56
LA R7, S4 B57
LA R7, S4 B58(3A)
LA R7, S2 B59(3B)
LA R7, S2 B60(3C)
LA R7, S4 B61(3D)
LA R7, S10 B62(3E)
LA R7, S4
LA R7, S4 B63(3F)
LA R7, S4 B64(40)
LA R7, S4 B65(41)
LA R7, S4 B66(42)
LA R7, S4 B67(43)
LA R7, S4 B68(44)
LA R7, S4 B69(45)
LA R7, S4 B70(46)
LA R7, S4 B71(47)
LA R7, S4 B72(48)
LA R7, S4 B73(49)
LA R7, S4 B74(4A)

S1
DS OH
DC X'01' 1
DC X'00'-

S2
DS OH
DC X'01' 1
DC X'00'-
DC X'F0' C
DC X'E4' U
DC X'C3' C
DC X'F6' 6
DC X'C7' G
DC X'E2' S
DC X'F5' 5
DC X'F8' 8
DC X'00'-

S3
DS OH
DC X'01' 1
DC X'00'-

S4
DS OH
DC X'00'-

S5
DS OH
DC X'01' 1
DC X'00'-
DC X'F0' 0
DC X'F6' 6
DC X'C3' C
DC X'C7' G
DC X'D2' K
DC X'E3' T
DC X'E5' V
DC X'E7' X
DC X'E8' Y
DC X'CE' +
DC X'CD' ()
DC X'E1' /
DC X'00'-

S6
DS OH
CC X'01' 1
CC X'E0' -
CC X'E7' X
CC X'E8' Y
CC X'E5' V
CC X'D2' K
CC X'F7' 7
CC X'DD' J
CC X'00'

S7 DS OH
CC X'E0' -
CC X'CO'

S8 DS OH
CC X'01' 1
CC X'E0' -
CC X'D2' K
CC X'FE' =
CC X'F0' C
CC X'F6' 6
CC X'C7' G
CC X'E7' X
CC X'E8' Y
CC X'E5' V
CC X'CO'

S9 DS OH
CC X'F0' 0
CC X'E4' U
CC X'C3' C
CC X'F6' 6
CC X'C7' G
CC X'CO'

S10 DS OH
CC X'01' 1
CC X'E5' V
CC X'D2' K
CC X'E7' X
CC X'E8' Y
CC X'F0' C
CC X'E4' L
CC X'C3' C
CC X'F6' 6
CC X'C7' G
CC X'00'

*VERTICAL STROKE
S12 DS OH
DC X'01' 1
*FUNCTION

*DETECTS CORNERS BASED ON SHARP CHANGES IN DIRECTION, AND UPDATES NC.
*OF GEOMETRIC CORNERS (NC) AND THE ARRAY OF POSITIONS OF GEOMETRIC
*CORNERS (XC,YC).
*USES 16-DIRECTION SEQUENCE AX THRU AX3 AND DIFFERENCES.
*INDEX C=0 IS WAIT FOR CORNER, C=1 IS POTENTIAL CORNER, C=2 IS JUST GOT
*CORNER.
*
*
*CALL
* RCS CORNERA,III,EEXIT
*WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7 THRU R9
*
*
USING XR6,R6
EXO EQU 0
REGS
D6 DSECT
XR6 DS OF
DS 3F
DS 26H
DS 20C
DS 3F
DS 1H
DS 2C
DS 3H
DS 56C
DS 2H
XLO DS 1H
YLO DS 1H
AX2 DS 1H
AX DS 1H
AX23 DS 1H
AX12 DS 1H
AX01 DS 1H
AX02 DS 1H
NC DS 1H
C DS 1H
DS 7H
DS 1F
DS 6C
DS 1H
DS 1F
XC DS 10C
YC DS 10C
CORNER BOX
*CORNER DETECTOR
CLI C,X'02'
BC 8,COUT
CLI C,X'01'
BC 8,CEQ1
CLI AX01+1,X'04'
BC 4,AXX2
CLI AX01+1,X'0C'
BC 2,AXX2

AX1EC2
LH R7,AX12
STH R7,AX02
BC 15,IEEQJ

AXX2
LH R7,AX
SH R7,AX2
LPR R7,R7
STH R7,AX02
CLI AXC2+1,X'04'
BC 4,COUT
CLI AX02+1,X'04'
BC 2,COUT
LH R7,AX23
STH R7,AX02

IEEQJ
CLI AX02+1,X'01'
BC 12,SETC1
CLI AX02+1,X'0F'
BC 6,COUT

SETC1
CLI C,X'01'
BC 8,INCN
MVI C,X'01'

**STORE POSITION OF POTENTIAL CUSP

LH R9,NC
LA R8,5
CR R9,R8
BC 4,NCLS5
SR R9,R9

NCLS5
SLL R9,1
LH R8,XLO
STH R8,XC(R9)
LH R8,YLO
STH R8,YC(R9)
BC 15,CEQ1

CEQ1
LH R7,AX01
STH R7,AX02
BC 15,IEEQJ

INNC
LH R7,NC
LA R7,1(0,R7)
STH R7,NC
MVI C,X'02'
BC 15,CEQ1

COUT
MVI C,X'00'

CEQ1
BEQ1 EXO
END
*FUNCTION
*USED WHEN THE SECOND STROKE IS A DOT.
*DETERMINES IF THE FIRST STROKE RESULTS IN A SCRIPT I OR J.
*
*CALLE
RC5 DOTAT,II1,EYES,END
*WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*EXIT YES WHEN SCRIPT I OR J
*EXIT NO WHEN NOT SCRIPT I OR J
*
*INPUT REGISTER. R6
*INTERNAL REGISTERS. R7 THRU R10
*
*
USING XR6,R6
REGS
EXO EQU 0
EX4 EQU 0
D6 DSECT
XR6 DS OF
DS 3F
DS 26H
DS 20C
DS 3F
DS lH
DS 2C
DS 3H
DS 1C
CHAR DS 1C
DOT BX
*2ND STROKE IS A DOT
*DOES 1ST STROKE RESULT IN A SCRIPT I OR J
*IF YES, TAKE EXO, OTHERWISE EX4
SR R8,R8
IC R8,CHAR
SR R9,R9
SR R10,R1C
LA R7,ILIST

CKLIST EQU *
 IC R10,C(R7)
 CR R10,R9
 BC 8,NOX NOT I OR J
 CR R10,R8
 BC 8,IJX
 LA R7,1(R7)
 B CKLIST

IJX LA R8,JLIST
 CR R7,R8
 BC 10,IX

IX MVI CHAR,X'89'
 B YESX

JX MVI CHAR,X'91'

YESX BEXIT EXC
NOX BEXIT EX4

ILIST DS OF
 DC X'89' I
 DC X'85' E
 CC X'A5' V
 CC C'1' L
 CC C'2' 2
 CC X'82' B
 CC X'70' KARAT

JLIST EQU *
 DC X'86' F
 DC X'91' J
 DC X'F8' B
 DC X'E5' V
 DC X'DD' RIGHT PAREN
 DC X'00' END OF LISTS

END

DELTAS

*FUNCTION

*QUANTIZES THE STARTING POINT AND ENDING POINT LOCATIONS OF EACH STROKE
*BY CONSIDERING THE CHARACTER REGION AS A 4 X 4 GRID CODED AS
*
* YTC
*
* 3 2 1 0
* XLC 7 6 5 4 XRC
*
* 11 10 9 8
*
* 15 14 13 12
*
* YBC
CALL RCS DELTASA,I1I,EEXIT
WHERE I1 IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST

* INPUT REGISTER: R6
* INTERNAL REGISTERS: R7 THRU R14

USING XR6,R6
REGS
EX0 EQU 0
D6 DSECT
XR6 CS 0F
DS 3F
DS 11H
SN CS 1H
DS 6H
XRC CS 1H
XLC CS 1H
YTC CS 1H
YBC CS 1H
DS 4H
XYE CS 10C
XYS CS 10C
DS 3F
CS 1H
CS 2C
CS 3H
CS 8C
XSP CS 10C
YSP CS 10C
XEP CS 10C
YEP CS 10C
DELTAS BX
SR R7,R7
LA R8,2
LH R9,SN
SLL R9,1
BCT R9,DELI
CEL1 LH R10,XRC
SH R10,XLC
SRL R10,2
LH R11,YTC
SH R11,YBC
SRL R11, 2
LA R13, 3
LR R14, R13
LH R12, XLC

DEL3
AR R12, R10
CH R12, XSP(R7)
BC 2, DEL2
BCT R13, DEL3

DEL2
LH R12, YBC

DEL5
AR R12, R11
CH R12, YSP(R7)
BC 2, DEL4
BCT R14, DEL5

DEL4
SLL R14, 2
OR R13, R14
STH R13, XYS(R7)
LA R13, 3
LR R14, R13
LH R12, XLC

DEL6
AR R12, R10
CH R12, XEP(R7)
BC 2, DEL7
BCT R13, DEL6

DEL7
LH R12, YBC

DEL8
AR R12, R11
CH R12, YEP(R7)
BC 2, DEL9
BCT R14, DEL8

DEL9
SLL R14, 2
OR R13, R14
STH R13, XYE(R7)
BXLE R7, R8, DEL10
BEXIT EX0
END

FN56

*FUNCTION
*
*PRODUCES INDEX IN BR56 BASED ON NO. OF DIRECTIONS (N) AND DIRECTIONS
*5 AND 6.
*N=4 GIVES BR56 = 16, OTHERWISE BR56 GETS BITS 8 THRU 11 OF CODE.
*
*
* RCS FN56,III,EEXIT
* WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
* INPUT REGISTER. R6
*
* INTERNAL REGISTERS. R7
*
* USING XR6, R6
REGS
EX0 EQU 0
D6 DSECT
XR6 DS 0F
CS 2F
CCDE DS 1H
CS 10H
N DS 1H
CS 4H
BR56 CS 1H
FN56 BCX
LA R7,16
STH R7, BR56
CLI N+1, X*CS
BC 4, FN56E
SR R7, R7
IC R7, CCDE+1
SRL R7, 4
STH R7, BR56
FN56E BEXIT EX0
END

HYST

*FUNCTION
*
*TRANSFORMS STYLUS INCREMENTAL DISTANCE TO PROVIDE HYSTERESIS ZONES
*WHEN COMPUTING STYLUS DIRECTION.
*
* CALL
* RCS HYSTA,EEXIT
*
* *INPUT REGISTERS
*
*C(R6) = SMALLER (EITHER X OR Y) INCREMENT
*C(R7) = LARGER (EITHER Y OR X) INCREMENT
*
* *
*CUTPUT REGISTERS
*
*C(R8) = 3/4 LARGER INCREMENT - SMALLER INCREMENT
*
*
*INTERNAL REGISTERS. NONE OTHER THAN THE ABOVE
*
*
* USING XR6,R6
REGS
EXO EQU 0
D6 DSECT
XR6 DS OF
HYST BOX
LR R8,R6
SRA R6,2
SR R8,R6
SR R8,R7
BEXIT EX0
END

XMNC

*FUNCTION
*
*UPDATES THE X BOUNDS (XLC,XRC) AND Y BOUNDS (YTC,YBC) OF THE CHARACTER
*
*
*CALL
* RCS XMNC,III,EXIT
*WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7
*
*
USING XR6, R6
REGS

EXO EQU 0
D6 DSECT
XR6 DS 0F
 DS 3F
 DS 16H
DXC DS 1H
CYC DS 1H
XRC DS 1H
XLC DS 1H
YTC DS 1H
YBC DS 1H
 DS 4H
 DS 20C
 DS 3F
 DS 1H
 DS 2C
 DS 3H
 DS 56C
 DS 17H
XRS DS 1H
XLS DS 1H
YTS DS 1H
YBS DS 1H
MXMNC BOX
 LH R7,XRS
 CH R7,XRC
 BC 12,MAX1
 STH R7,XRC
MAX1 LH R7,XLS
 CH R7,XLC
 BC 10,MAX2
 STH R7,XLC
MAX2 LH R7,YTS
 CH R7,YTC
 BC 12,MAX3
 STH R7,YTC
MAX3 LH R7,YBS
 CH R7,YBC
 BC 10,MAX4
 STH R7,YBC
MAX4 LH R7,YTC
 SH R7,YBC
 STH R7,DYC
 LH R7,XRC
 SH R7,XLC
 STH R7,DXC
*FUNCTION
*
*UPDATES THE X BOUNDS (XLS,XRS) AND Y BOUNDS (YTS,YBS) OF THE CURRENT
*STROKE
*
*
*CALL
*
RCS MXMNSA,II1,EEXIT
*WHERE II1 IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**

USING XR6,R6
REGS

EXO EQU 0
C6 DSECT
XR6 CS 0F
DS 3F
DS 2H
XT CS 1H
YT CS 1H
DS 22H
DS 20C
DS 3F
DS 1H
DS 2C
DS 3H
DS 56C
DS 15H

CXS CS 1H
CYS CS 1H
XRS CS 1H
XLS CS 1H
YTS CS 1H
YBS CS 1H
*FUNCTION
*QUANTIZES YM (THE Y COORDINATE OF A RELATIVE MAXIMUM) ARRAY TO QYM,
*ARRAY, AND QUANTIZES YM IN TO QYM. THE QUANTIZATION INTERVAL IS 1/4
*CHARACTER HEIGHT WITH QYM = 0 IN THE TOP 1/4 OF THE CHARACTER, ETC.
*
*CALL
RCM QMMA,II,EEXIT
*WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
*INPUT REGISTER. R6
*INTERNAL REGISTERS. R7 THRU R14
*
USING XR6,R6
REGS

EX0 EQU 0
D6 CSECT
XR6 DS OF
 DS 3F
 DS 20H
YTC DS 1H
YBC DS 1H
 DS 4H
 DS 20C
 DS 3F
 DS 1H
 DS 2C
 DS 3H
 DS 56C
 DS 21H
 DS 1F
 DS 6C
 DS 1H
 DS 1F
 DS 20C
 DS 23H
YMAX DS 10H
QYMAX DS 10C
QMM BOX

*NOTE THAT YMIN=YMAX+1C, QYMIN=QYMAX+5

SR R7,R7
LA R8,2
LA R9,20
LH R13,YTC
SH R13,YBC
SRL R13,2
LH R10,YBC
AR R10,R13
LR R11,R10
AR R11,R13
LR R12,R11
AR R12,R13
ALF EQU *
LR R14,R7
SRL R14,1
LA R14,QYMAX(R14)
CH R11,YMAX(R7)
BC 4,Q01
CH R10,YMAX(R7)
BC 4,Q2
C3 MVI 0(R14),X'03'
 B BXLE
C2 MVI 0(R14),X'02'
 B BXLE
Q01 CH R12,YMAX(R7)
RAZE

*FUNCTION
*
*INCREASES THE Y COORDINATE OF THE CHARACTER CENTER BY (NORMAL CHAR-
*ACTER HEIGHT/2) RASTERS SO THAT A CHARACTER WHICH STRADDLES A LINE
*WILL BE DISPLAYED IN THE PROPER POSITION.
*
*CALL
*
* RCS RAZEA,II1,EEXIT
*WHERE II1 IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R8,R15
*
* USING XR6,R6

EXO EQU 0
REGS
C6 DSECT
XR6 DS OF
DS 3F
DS 26H
DS 20C
DS 1H
HEIGHT DS 1H
DS 2F
DS 1H
DS 2C
DS 3H
DS 56C
DS 21H
CENT DS 1F
RAZE

FUNCTION

* UPDATES THE NO. AND POSITION OF RELATIVE Y MAXIMA AND Y MINIMA.
** A STARTING POINT CAN BE A MAX OR MIN, AN ENDING POINT CANNOT

**

CALL

* RCS RELMA,111,EEEXIT
* WHERE 11 IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST

**

INPUT REGISTER. R6

* INTERNAL REGISTERS. R7,R8

*

USING XR6,R6
REGS
EXO EQU 0
C6 DSECT
XR6 DS 0F
DS 3F
DS 2H
XT DS 1H
YT DS 1H
CX DS 1H
DY DS 1H
DS 3H
DS 17H
DS 20C
DS 3F
DS 1H
CS 2C
CS 2H

CEL DS 1H
DS 56C
DS 21H
CS 1F
CS 6C
DS 1H
CS 1F
CS 20C
DS 19H

PYMAX DS 1H
PYMIN DS 1H
NYMAX DS 1H
NYMIN DS 1H
YMAX DS 10H
YMIN EQU YMAX+1C
QYMAX DS 1OC
QYMIN EQU QYMAX+5
PYMXN DS 1H
PYMNX DS 1H
YMAXX DS 10H
YMINX EQU YMAXX+10

RELNO BOX
LH R7, YT
CH R7, PYMAX
BNH NO
STH R7, PYMAX
MVC PYMXN(2), XT

*UPWARD STYLUS MOTION
PMIN CLI QYMIN, X'01'
BNE EXIT

*A MAX HAS OCCURRED PREVIOUSLY
LH R7, YT
LH R8, PYMIN
SR R7, R8
LPR R7, R7
LH R8, DEL
SLL R8, 1
CR R7, R8
BNH EXIT

*MAG(YT-PYMIN)

*A MINIMUM DETECTED
MVI QYMIN, X'00'
MVI QYMAX, X'01'
MVC PYMXN(2), YT
MVC PYMXN(2), XT
LH R7, NYMIN
LA R7, 1(R7)
LA R8, 5
CR R7, R8
BNH NXCK
SR R7,R7
NXCK STH R7,NYMIN
BCTR R7,0
SLL R7,1
LH R8,PYMIN
STH R8,YMIN(R7)
LH R8,PYMNX
STH R8,YMINX(R7)
B EXIT
NC CH R7,PYMIN
BNL PMAX
STH R7,PYMIN
MVC PYMNX(2),XT
B PMAX
PMAX LH R7,DY
LTR R7,R7
BP PMIN
*DOWNWARD STYLUS MOTION
PMA NCL QYMAX,X'01'
. BNE EXIT
*A MIN HAS OCCURRED PREVIOUSLY
LH R7,YT
LB R8,PYMAX
SR R7,R8
LPR R7,R7
LH R8,DEL
SLL R8,1
CR R7,R8
BNH EXIT
*A MAXIMUM DETECTED
MVI QYMAX,X'00'
MVI QYMIN,X'01'
MVC PYMIN(2),YT
MVC PYMNX(2),XT
LH R7,NYMAX
LA R7,1(R7)
LA R8,5
CR R7,R8
BNH NNOK
SR R7,R7
NNOK STH R7,NYMAX
BCTR R7,0
SLL R7,1
LH R8,PYMAX
STH R8,YMAX(R7)
LH R8,PYMX
STH R8,YMAXX(R7)
EXIT BEXIT EX0
END
SMOOTH

*FUNCTION
*
*COMPUTES NEW AVERAGED DATA PT. X OR Y COORDINATE FROM NEW RAW DATA PT.
*COORD. AND PREV. AVERAGED DATA PT. COORD.
*NEW = 3/4 PREV + 1/4 RAW
*
*
*CALL
* RCS SMOOTHA, EEXIT
*
*
*INPUT REGISTERS
*
*C(R6) = PREV AVERAGED X OR Y COORD.
*C(R7) = NEW RAW X OR Y COORD.
*
*
*OUTPUT REGISTERS
*
*C(R6) = NEW AVERAGED X OR Y COORD.
*
*
*INTERNAL REGISTERS. R8
*
*
USING XR6,R6
REGS

EX0 EQU 0
D6 DSECT
XR6 DS OF
SMOOTH BOX
LR R8,R6
SRA R8,2
SK R6,R8
SRA R7,2
AR R6,R7
BEXIT EX0
END
TCRNR

*FUNCTION
*
*DETECTS TIME-PAUSE CORNERS BASED ON NPTS, THE NO. OF RAW DATA POINTS
*WHICH HAVE OCCURRED SINCE THE LAST THINNED DATA POINT, AND UPDATES
*NTCUSP, THE NO. OF SUCH CORNERS
*INDEX CUSP=1 IS TIME-CORNER HAS JUST OCCURRED, OTHERWISE CUSP=0.
*
*
*CALL
*
*RCS TCRNRA,III,EEXIT
*WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R8
*
*
USING XR6,R6
REGS
EX0 EQU 0
D6 DSECT
XR6 DS 0F
DS 3F
DS 23H
NT DS 1H
NTC DS 1H
CS 1H
CS 20C
DS 3F
DS 1H
DS 1C
CUSP DS 1C
DS 1H
NPTS DS 1H
CS 1H
CS 56C
DS 21H
DS 1F
DS 6C
CS 1H
DS 1F
DS 20C
CS 17H
NTCUSP CS 1H
PNPTS CS 1H
TCNR BOX

*TIME CORNER DETECTOR
LH R8, NT
LA R8, 1(C, R8)
STH R8, NT
CLI NT+1, X'02'
BC 12, CUSPIC
LH R8, PNPTS
SLL R8, 2
AH R8, PNPTS
AH R8, PNPTS
CH R8, NPTS
BC 10, CUSPID
CLI CUSP, X'CC'
BC 6, NOCUSP

*CUSP=0
LH R8, NTCUSP
LA R8, 1(C, R8)
STH R8, NTCUSP
MVI CUSP, X'01'
LH R8, NT
STH R8, NTC
B NOCUSP

CUSPID MVI CUSP, X'CO'
NOCUSP LH R8, NPTS
CH R8, PNPTS
BC 10, NPTSO
STH R8, PNPTS

NPTSO XC NPTS(2), NPTS
BEXIT EXC
END

THIN

*FUNCTION
*
*DETERMINES IF THE CURRENT DATA PT. X OR Y COORDINATE IS FARTHER FROM
*THE PREV. THINNED DATA PT. X OR Y COORD. THAN A DISTANCE DELTA.
* *
* *
*CALL
* RCS THINA, EXIT
* * *

INPUT REGISTERS

* \(C(R6) = \) CURRENT COORD
* \(C(R7) = \) PREV THINNED COORD
* \(C(R8) = \) DELTA

* * *

OUTPUT REGISTERS

* \(C(R7) = \) NEW THINNED COORD = CURRENT DATA PT COORD, IF SUFFICIENTLY FAR
* \(C(R7) = \) PREV THINNED COORD IF NOT FAR

* * *

*INTERNAL REGISTERS: \(R8,R9 \)

* * *

\[
\text{USING } XR6,R6 \\
\text{REGS} \\
\text{EX0 EQU 0} \\
\text{C6 DSECT} \\
\text{XR6 DS OF} \\
\text{THIN BOX} \\
\text{LR R9,R6} \\
\text{SR R9,R7 DIFF} \\
\text{LPR R9,R9 MDIFF} \\
\text{SR R9,R8} \\
\text{BG 12,THIN1 EXIT IF MDIFF <= DEL} \\
\text{LR R7,R6 T(J)=S(I) IF > DEL} \\
\text{THIN1 BEXIT EX0} \\
\text{END} \\
\]

TURNER

FUNCTION

DETECTS 180 DEGREE CHANGE IN STYLUS DIRECTION THAT OCCURS AFTER A
SINGLE THINNING DISTANCE
IF SUCH A TURN IS DETECTED, \(TTURN+1 = 1 \) FOR CLOCKWISE TURN, \(TTURN+1 = 2 \)
FOR COUNTERCLOCKWISE TURN, OTHERWISE \(TTURN+1 = 0 \).
*CALL
* RCS TURNERA,II1,EXIT
*WHERE II IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*
 *
*INPUT REGISTERS
*
*C(R6) = II
*C(R9) = ANGLE (AS ENCODED BY 'CHAREC')
*
 *
*INTERNAL REGISTERS. R7, R8
*

USING XR6,R6
EX0 EQU 0
REGS
D6 DSECT
XR6 CS 0F
 DS 3F
 DS 8H
PANG CS 1H
PACANG DS 1H
 DS 16H
 DS 20C
 DS 3F
 CS 1H
 CS 2C
 CS 3H
 CS 56C
 DS 21H
 CS 1F
 DS 6C
TTURN DS 1H
TURNER BOX
*ANG DC ES NCT EC PREV ANG
*TEST F CR 180 DEG TURN
*DOES P REV ANG=PREV ACCEPTED ANG?
 LH R7,PACANG
 CH R7,PANG
 BC 8,NOTURN
*NO
*DO ANG ? PACANG DIFFER BY 2?
 SR R7,R9
 LPR R7,R7
 LA R8,2
 CR R7,R8
 BC 6,NOTURN
*YES
*IS DIR ACTION OF TURN CLKWISE?
*CR COU NTERCLCKWISE?
LR R7,R9
SH R7,PANG
LTR R7,R7
BC 2,CCTUR

*POSSIBLY CLKWISE
*DOES P ANG EQ 0?
SR R7,R7
CH R7,PANG
BC 8,CCT1
CTURN MVI TTURN+1,X'01'
BC 15,TURNX

*POSSIBLY CCLKWISE
*DOES A NG EQ 0?
CCTURN SR R7,R7
CR R7,R9
BC 8,CCTUR

CCT1 MVI TTURN+1,X'02'
BC 15,TURNX

*NOT A 180 DEG WITH SINGLE ANGLE
NOTURN MVI TTURN+1,X'00'

*EXIT
TURNX BEXIT EX0
END

TRAVEC

*FUNCTION
*
*COMPUTES VECTOR DIRECTION (1 OF 16) IF STYLUS HAS MOVED A DISTANCE
*GREATER THAN DELTA (2, 4, 6, OR 8 RASTERS).
*
*
*CALL
* RCS TRAVECA,EEXIT
*
*
*INPUT REGISTERS
*
*C(R7) = X COORD OF NEW DATA PT.
*C(R9) = Y COORD OF NEW DATA PT.
*C(R10) = X COORD OF END PT. OF CURRENT VECTOR TRACK
*C(R11) = Y COORD OF END PT. OF CURRENT VECTOR TRACK
*C(R15) = 1/2 DELTA
*
* *
*OUTPUT REGISTERS
*
*IF STYLUS HAS MOVED X OR Y DISTANCE GREATER THAN DELTA
* C(R0) = DIRECTION CODE (X*O*--X*F*)
* C(R10) = X ENC. PT. OF UPDATED VECTOR TRACK
* C(R11) = Y ENC. PT. OF UPDATED VECTOR TRACK
*OTHERWISE
* C(R0) = X'O'
* C(R10), C(R11) NOT UPDATED
* *
* *
*INTERNAL REGISTERS R6, R8, R14
*
* USING XR6, R6
EXO EQU 0 REGS
C6 DSECT XR6 CS OF TRAVEC BCX
LA R0,16 RAST(DIR) CONSTANT
SR R14,R14 QUADRANT CODE
SR R7,R10 X(I) - X(L)
BC 10,TRAV1
LA R14,4(C,R14) QUAD 2 OR 3
LPR R7,R7 ABS DX
TRAV1 SR R9,R11 Y(I) - Y(L)
BC 10,TRAV2
LA R14,8(C,R14) QUAD 3 OR 4
LPR R9,R9 ABS DY
TRAV2 LR R8,R7 SR R6,R6 LH R7,TRAST MR R6,R15 LR R6,R7 LR R7,R8 CR R7,R6 BC 11,TRAV3 CR R9,R6 BC 4,TRAV8 TRAV3 CR R7,R9 ABS DX AND DY
BC 8,TRAV4 EQUAL
BC 4,TRAV5 DY > DX
SLL R9,2 DX > DY
SR R8,R8 4(ABS DY)
CR R8,R7 4(ABS DY) / ABS DX
LA R9,1(0,R9) 1/2 ROUND
SRL R9,1 RESULT/2
BC 15, TRAV6
TRAV5 SLL R7,2 4(ABS DX)
SR R6,R6
CR R6,R9 4(ABS DX) / ABS DY
LA R7,1(0,R7) 1/2 ROUND
SRL R7,1 RESULT/2
LNR R9,R7
A R9, TRAVK4
BC 15, TRAV6
TRAV4 LA R9,2
TRAV6 A R9,TGAD(R14)
LPR R14,R9
CR R14,R5
BC 4, TRAV7
SR R14,R14
TRAV7 LR R0,R14
SLL R14,1
SR R6,R6
LH R7, TXIN(R14)
MR R6,R15
AR R10,R7
SR R6,R6
LH R7, TYIN(R14)
MR R6,R15
AR R11,R7
TRAV8 BEXIT EX0
TRAVK4 CC F*4*
TQUAD CC F*0*
CC F*-8*
CC F*-16*
CC F*8*
TXIN CC OH TABLE FOR 2 RAST VEC
CC H*8*
CC H*8*
CC H*8*
CC H*8*
CC H*4*
CC H*0*
CC H*-4*
CC H*-8*
CC H*-8*
CC H*-8*
CC H*-8*
CC H*-8*
CC H*8*
CC H*8*
CC H*8*
TYIN CC OH TABLE FOR 2 RAST VECTORS
REC

REC Function

REC Call

* INST AREC,RECA,II1,II1,EEXIT
*WHERE AREC IS A LINKAGE BETWEEN CHAREC'S CONTEXT AND REC'S CONTEXT
* RECA IS A LINK TO REC
* II1 IS AT THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
* EXIT EXIT IS THE ONLY EXIT
*
REC Sequence of Information Processing

****TABLE RE-ENTRY****
*
*LIST OF 'INTERP' LABELS EQU'D TO CODES
*USED FOR ENTERING 'INTERP' RCS
*
****RETURNS****
*
*LIST OF BRANCHES TO 'REC' LABELS
*USED FOR RETURNING TO 'REC' FROM 'INTERP'
*
****INITIAL CODE****
*
*INITIALIZE
*IF PERICO, SET R8, GO TO CALL INTERP
*IF NOT SINGLE STROKE, GO TO SET-UP TABLE RE-ENTRY
*IF CHAR IS NOT LARGE, CALL 'TILDT' TO TEST FOR TILDA
 * IF NOT TILDA, GO TO SET-UP TABLE RE-ENTRY
 * IF TILCA, GO TO EXIT
*IF CHAR IS LARGE, CALL 'SYMT' TO TEST FOR AND RECOGNIZE GEOMETRIC SYM.
 * IF NOT GEOMETRICAL SYMBOL, GO TO SET-UP TABLE RE-ENTRY
 * IF GEOMETRICAL SYMBOL, GO TO EXIT
*
****COMPUTATIONAL SUBROUTINES****
*
*CALL ON AN RCS TO MAKE A TEST
* RETURN TO EXIT WITH A CHARACTER
* OR TO IN-LINE CODE
* OR TO SET-UP TABLE RE-ENTRY
*
****SET-UP TABLE RE-ENTRY****
*
*SET R8 TO ADDRESS OF TABLE RE-ENTRY LABEL
*GO TO CALL INTERP
*
****IN-LINE CCDE****
*
*MAKE TESTS
*GO TO SOMEPLACE IN 'REC'
*
****CALL INTERP****
*
*STORE R8 IN CUSP
*SET UP R14,R15
*CALL 'INTERP'
* IF VALID EXIT, ENTER RETLRNS TABLE BASED ON INDEX = R8
* IF ERROR EXIT, GO TO CALL INTERP WITH R8 = ADDRESS OF 'DON'T KNOW'
* LABEL.
****EXIT****
*
*EXIT TO 'CHAREC'

** REC Program Listing **

USING XR1, R1
USING XR3, R3
USING XR6, R6
REGS
SVCS

DSECT1 DSECT
XR1 DS 0F
REGS DS 3F
BANK DS 1F
INDEX DS 1F
EXIT EQU 0

DSECT3 DSECT
XR3 DS 0F
SCRTCH DS 1F
CCNC DS 1F
CATA DSECT
XRX DS 0F
II DS 1F
PAD DS 1F
CGDE DS 1F
XS DS 1H
YS DS 1H
XT DS 1H
YT DS 1H
CX DS 1H
CY DS 1H
MX DS 1H
MDY DS 1H
PANG DS 1H
PACANG DS 1H
N DS 1H
SN DS 1H
PUP DS 1H
INKIND DS 1H
PGUAD DS 1H
BR56 DS 1H
UXC DS 1H
CYC DS 1H
XR6 DS 1H
XL6 DS 1H
YTC DS 1H
YBC DS 1H
ASPR DS 1H
NT DS 1H
NTC DS 1H
*AX3 THRU AX02 ARE USED AS NTCUSP, NYMAX, NYMIN, QYMAX, AND QYMIN BY REC

INKC CS 1H
XYE CS 10C
XYS CS 10C
WIDTH DS 1H
HEIGHT DS 1H
YCENT DS 1H
PCHAR DS 1C
CUSP DS 1C
NCUSP DS 1H
NPTS DS 1H
DEL DS 1H
CHAR DS 1C
TEMP DS 1C
TINK DS 5C
XSP DS 10C
YSP DS 10C
XEP DS 10C
YEP DS 10C
ALXYJ DS 8C
XL DS 1H
YL DS 1H
XLO DS 1H
YLC DS 1H
AX3 DS 1H
AX2 DS 1H
AX1 DS 1H
AX DS 1H
AX23 DS 1H
AX12 DS 1H
AX01 DS 1H
AX02 DS 1H
NC DS 1H
C DS 1H
CYM DS 1H
CXS DS 1H
CYS DS 1H
XRS DS 1H
XLS DS 1H
YTS DS 1H
YBS DS 1H
CENT DS 1F
MVC DS 6C
TTURN DS 1H
TURN DS 1F
XC DS 10C
YC DS 10C
CO DS 1H
C1 DS 1H
*BEWARE, DATA BELOW D7 CANNOT BE REFERRED TO BY TABLE MACROS

D2 DS 1H
D3 DS 1H
D4 CS 1H
D5 DS 1H
D6 CS 1H
D7 DS 1H

*BEWARE, DATA BELOW D7 CANNOT BE REFERRED TO BY TABLE MACROS

C8 DS 1H
C9 CS 1H
C10 DS 1H
C11 DS 1H
C12 CS 1H
C13 DS 1H
C14 DS 1H
C15 CS 1H
CN DS 1H

NTCUSP EQU AX3
NTCSP1 DS 1H
PNPTS DS 1H
PYMAX DS 1H
PYMIN DS 1H
NYMAX EQU AX2
NYMX1 DS 1H
NYMIN EQU AX1
NYMN1 CS 1H
YMAX CS 10H
YMIN EQU YMAX+10
QYMAX EQU AX
QYMIN EQU QYMAX+5
QYMX1 DS 10C
QYM1 EQU QYMX1+5
PYMX DS 1H
PYMN DS 1H
YMXX CS 1H
YMNX DS 10H
YMN1 EQU YMN1+10

*BEWARE, DATA BELOW D7 CANNOT BE REFERRED TO BY TABLE MACROS

XYSP EQU XYS-DATA XYS DSECT(R6)
XYEP EQU XYE-DATA XYE DSECT(R6)

****TABLE RE-ENTRY****
SBM5 EQU 8
SJMU EQU 9
SUMJU1 EQU 10
SM1 EQU 11
SXMSRE EQU 12
SORCQ8 EQU 13
SCPNU EQU 14
RSB EQU 15
RSC EQU 16
RSE EQU 17
RSF EQU 18
RSG EQU 19
RSI EQU 20
RSJ EQU 21
RSL EQU 22
RSM EQU 23
RSN EQU 24
RSD EQU 25
RSR EQU 26
RSS EQU 27
RSU EQU 28
RSV EQU 29
RSW EQU 30
RSY EQU 31
RSZ EQU 32
SA EQU 33
SG EQU 34
SM EQU 35
SNN EQU 36
SP EQU 37
SR EQU 38
SU EQU 39
SO EQU 40
SB EQU 41
SSTAR EQU 42
SSCRUB EQU 43
DK EQU 44
RSA EQU 45
SE EQU 46
REC PRCCS CLEAR=3,CNTX=6,AUTO=2,PROLG=SINS,ID=8000021C
AHTEST DC V(AHST31)
KNYT DC V(KNYTST)
KNYITA DC V(KNYIT)
KVXYTA DC V(KVXYT)
MWT A DC V(MWT)
PTST DC V(PSTEST)
SYMTA DC V(SYMT)
TILT A CC V(TILCT)
TPXYA DC V(TPXY)
VERT DC V(VERTST)
VFI DC V(BFI)
VSDP DC V(VOIDP)
VSMNW DC V(VOIDMNW)
VSRPRM DC V(VOIDSRPRM)
VSSM DC V(VOIDSSM)
VSVM DC V(VOIDSVM)
VTEST1 DC V(VOIDTEST1)
VTEST3 DC V(VOIDTEST3)
VTERP DC V(VOIDTERP)
WHITE DC V(VOIDWHITE)
VRAZE DC V(VOIDRAZE)

*
*

****RETURNS****
*

RETURNS EQU *
BC 15,XAHSTR
BC 15,XKNY
BC 15,XFI
BC 15,KVXY
BC 15,XMW
BC 15,XMWIN
BC 15,XMW1
BC 15,XPOST
BC 15,XRECD
BC 15,XSDP
BC 15,XSMNW
BC 15,XSMIM
BC 15,XXRPRM
BC 15,XXSSM
BC 15,XTTEST1
BC 15,XTTEST3
BC 15,XTPLUS
BC 15,XTXTRLC
BC 15,XTSALCS
BC 15,XSG8LC
BC 15,XSMLCN
BC 15,XSCBDU
BC 15,XSNLC
BC 15,XSPLC
BC 15,XSRG
BC 15,XS8LC
BC 15,XSULC
BC 15,XS4LC
BC 15,XSCPEL
BC 15,XSCPMW
BC 15,XSCPYZ
BC 15,XSCPBS
BC 15,XSBVMN
BC 15,XRAZE
BC 15, XS8LCV
BC 15, XSULCL
BC 15, XS4MK1
BC 15, XSELCA

S

****INITIAL CODE****

S

SINS PROCLG
 L R6, BANK
MOVE DATA USED BY TABLE MACROS ABOVE FF IN DATA BANK
 MVC NTCSUP(2), NTCSPL
 MVC NYMAX(2), NYMX1
 MVC NYMIN(2), NYMN1
 MVC QYMAX(10), QYM1
 CLI N+1, X'SC'
 BC 7, SYMC
 LA R8, SPER
 BC 15, START
SYMO EQU *
 CLI SN+1, X'01'
 BC 7, REENTR
TILTST EQU *
 LH R15, HEIGHT
 SLL R15, 1
 CH R15, DYC
 BC 12, LARGE
 CH R15, DXC
 BC 12, LARGE
*CHARAC TER IS NOT LARGE
*TEST FOR TILDA
 RCS TILDTA, EREENTR, EXRECD
*POSSIBLY A FLOW CHART SYMBOL
*IS NOT LEAST 2?
 CLI N+1, X'02'
 BC 4, REENTR
*RECOGNIZE FLOW CHART SYMBOL
 RCS SYMTA, EREENTR, EXRECD

*XAHSTR RCS AHTEST, EXRECD
XFI EQU *
 RCS VFI, EXRECD
XKNY RCS KNYT, EXRECD
XKNY1 RCS KNYT1, EXRECD
XKVXY RCS KXYITA, EXRECD
XMWIN RCS MWTA, EXRECD

COMPUTATIONAL SUBROUTINES

*XAHSTR RCS AHTEST, EXRECD
XFI EQU *
 RCS VFI, EXRECD
XKNY RCS KNYT, EXRECD
XKNY1 RCS KNYT1, EXRECD
XKVXY RCS KXYITA, EXRECD
XMWIN RCS MWTA, EXRECD
XPOST EQU *
 RCS PTST, EXRECD
XSDP EQU *
 RCS VSDP, EXRECD
XSM1M EQU *
 RCS VERT, EXSM1, EXKXYM, EXPLUSM, EXPADEX
XSRPRM EQU *
 RCS VSRPRM, EXRECD, EXSDP, EXPOST
XSSM EQU *
 RCS VSSM, EXRECD
XSVM EQU *
 RCS VSVM, EXRECC, EXSMU, EXMWL, EXKNY1, EXSOMG, EXSMJUL
XTEST1 EQU *
 RCS VTEST1, EX8LCG, EXSSM
XTEST3 EQU *
 RCS VTEST3, EXRECD, EXSMB5
XTPLUS RCS TPXYA, EXRECD
XSCPEL EQU *
 RCS VHIT3, EXLEU, EXHL0
XSMLCN EQU *
 RCS VHIT3, EXSCPNU, EXSSM
XSCPMW EQU *
 RCS VHIT3, EXLMW, EXSSCRB
XSALCS EQU *
 RCS VHIT3, EXRSS, EXSA
XSCPBS EQU *
 RCS VHIT3, EXRSS, EXSRB
XMLC EQU *
 RCS VHIT3, EXLMW, EXHMY
XSNLC EQU *
 RCS VHIT3, EXLOV, EXHBIN
XSMNW EQU *
 RCS VSMNW, EXRECD, EXMLC, EXRAZE
XSRLC EQU *
 RCS VHIT3, EXR3N, EXSR
XSPLC EQU *
 RCS VHIT3, EXRSR, EXSSP
XSULC1 EQU *
 RCS VHIT3, EXRSU, EXSU
XS4LC EQU *
 RCS VHIT3, EXRSE, EXSL
XS8LC EQU *
 RCS VHIT3, EXLVD, EXSB
XSULC EQU *
 RCS VHIT3, EXR3N, EXHRI
XSRLC EQU *
 RCS VHIT3, EXCS, EXSSTAR
XS8VMN EQU *
 RCS VHIT3, EXLM3N, EXHBL
XSCBOU EQU *
 RCS VHIT3, EXLOU, EXHBM
XSG8LC EQU *
 RCS WHITE,EXRSO,EXSG8
XSBLCV EQU *
 RCS WHITE,EXRSV,EXS8
XSELCA EQU *
 RCS WHITE,EXRSA,EXSE
XRAZE EQU *
 RCS VRAZE,EXRECD
*
****SET-UP TABLE RE-ENTRY****
*
* REENTR EQU *
 L R4,INDEX
 L R7,0(R4)
 STC R7,TEMP
 LA R8,AAAA
 BC 15,START
XKVXYM EQU *
 LA R8,KVXYM
 BC 15,START
XPADEX EQU *
 LA R8,PADEX
 BC 15,START
XPLUSM EQU *
 LA R8,TPLUSM
 BC 15,START
XSBM5 EQU *
 LA R8,SBM5
 B START
XSJMU EQU *
 LA R8,SJMU
 B START
XSJMUI EQU *
 LA R8,SJMUI
 B START
XSMI EQU *
 LA R8,SMI
 BC 15,START
XSXMST LA R8,SMXSTR
 B START
XSOMQ EQU *
 LA R8,SMQO8
 B START
XHBL LA R8,SHBL
 B START
XSCLNU LA R8,SCPNU
 B START
XRSA LA R8,RSA
 B START
<table>
<thead>
<tr>
<th>Command</th>
<th>LA</th>
<th>Register</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRSB</td>
<td>LA</td>
<td>R8,RSB</td>
<td>START</td>
</tr>
<tr>
<td>XRSC</td>
<td>LA</td>
<td>R8,RSC</td>
<td>START</td>
</tr>
<tr>
<td>XRSE</td>
<td>LA</td>
<td>R8,RSE</td>
<td>START</td>
</tr>
<tr>
<td>XRSF</td>
<td>LA</td>
<td>R8,RSF</td>
<td>START</td>
</tr>
<tr>
<td>XRSG</td>
<td>LA</td>
<td>R8,RSG</td>
<td>START</td>
</tr>
<tr>
<td>XRSI</td>
<td>LA</td>
<td>R8,RSI</td>
<td>START</td>
</tr>
<tr>
<td>XRSG</td>
<td>LA</td>
<td>R8,RSG</td>
<td>START</td>
</tr>
<tr>
<td>XRSJ</td>
<td>LA</td>
<td>R8,RSJ</td>
<td>START</td>
</tr>
<tr>
<td>XRSL</td>
<td>LA</td>
<td>R8,RSL</td>
<td>START</td>
</tr>
<tr>
<td>XRSM</td>
<td>LA</td>
<td>R8,RSM</td>
<td>START</td>
</tr>
<tr>
<td>XRSN</td>
<td>LA</td>
<td>R8,RSN</td>
<td>START</td>
</tr>
<tr>
<td>XRSO</td>
<td>LA</td>
<td>R8,RSO</td>
<td>START</td>
</tr>
<tr>
<td>XRSR</td>
<td>LA</td>
<td>R8,RSR</td>
<td>START</td>
</tr>
<tr>
<td>XRSS</td>
<td>LA</td>
<td>R8,RSS</td>
<td>START</td>
</tr>
<tr>
<td>XRSU</td>
<td>LA</td>
<td>R8,RSU</td>
<td>START</td>
</tr>
<tr>
<td>XRSV</td>
<td>LA</td>
<td>R8,RSV</td>
<td>START</td>
</tr>
<tr>
<td>XRSW</td>
<td>LA</td>
<td>R8,RSW</td>
<td>START</td>
</tr>
<tr>
<td>RSY</td>
<td>LA</td>
<td>R8,RSY</td>
<td>START</td>
</tr>
<tr>
<td>XRSZ</td>
<td>LA</td>
<td>R8,RSZ</td>
<td>START</td>
</tr>
<tr>
<td>XSA</td>
<td>LA</td>
<td>R8,SA</td>
<td>START</td>
</tr>
<tr>
<td>XSE</td>
<td>LA</td>
<td>R8,SE</td>
<td>START</td>
</tr>
<tr>
<td>XSG</td>
<td>LA</td>
<td>R8,SG</td>
<td>START</td>
</tr>
<tr>
<td>XSM</td>
<td>LA</td>
<td>R8,SM</td>
<td>START</td>
</tr>
<tr>
<td>XSNN</td>
<td>LA</td>
<td>R8,SNN</td>
<td>START</td>
</tr>
<tr>
<td>XSPP</td>
<td>LA</td>
<td>R8,SP</td>
<td>START</td>
</tr>
<tr>
<td>XSR</td>
<td>LA</td>
<td>R8,SR</td>
<td>START</td>
</tr>
<tr>
<td>XSU</td>
<td>LA</td>
<td>R8,SU</td>
<td></td>
</tr>
</tbody>
</table>
B START

XS0 LA R8,50
B START

XS8 LA R8,88
B START

XSSTAR LA R8,STAR
B START

XSSCRB LA R8,SCRUB
B START

* * ****IN-LINE CCDE**** * *

XMW EQU *
LA R13,3
B XMWIN

XMW1 EQU *
LA R13,2
B XMWIN

XS4MK1 SR R15,R15
LA R13,2
K4
LA R7,0(R6,R15)
TM XVEP+1(R7),X'C3'
BC 1,XSKX
BXLE R15,R13,K4
LA R8,S4
B START

XSKX TM XVEP+1(R7),X'0F'
BC 8,XSMST
LA R8,SK
B START

XHBM EQU *
TM XVE+1,X'OC'
BC 1,XSM
B XRSB

XLMW TM XVE+1,X'OC'
BC 8,XRSW
B XRSM

XHMY TM XVE+1,X'OC'
BC 12,XRSY
B XSM

XLCV LH R7,XRC
SH R7,XLC
SRL R7,2 1/4 CHAR WIDTH

LH R8,XEP
SH R8,YMAXX
LPR R8,R8
CR R8,R7
BC 4,XRSO
B XRSV
XHBJN TM XYS+1, X*0C

BC 12, XRSF

TM XYE+1, X*0C

BC 5, XRSB

B XSNN

XHLO TM XYE+1, X*03

BC 8, XRSL

B XS0

XHRU EQU *

*U IF 2ND MAX IN RIGHT 1/2, OTHERWISE R

LH R8, OXC

SRL R8, 1

LH R7, XRC

SR R7, R8

CH R7, YMAXX+2

BC 2, XSR

B XSU

XSCPYZ EQU *

LH R7, YMINX+2

CH R7, YMAXX

BC 4, XRSZ

B XRSY

XCS EQU *

*C IF 2ND OR 3RD ANGLE IS 0

TM CODE, X*3C

BC 8, XRSF

TM CODE, X*0C

BC 8, XRSB

B XRSF

X8LCG CLI CODE, X*B7

BC 8, XRSG

B XRECD

XLEU CLI N+1, X*C5

BC 2, XRSU

B XRSU

XLMNV EQU *

CLI N+1, X*05

BC 8, XNVR

BC 4, XRSN

CLI N+1, X*C6

BC 2, XRSM

B XSCPNU

XNV TM XYE+1, X*08

BC 1, XSCPNU

B XRSV

XLCU TM XYE+1, X*08

BC 8, XRSU

B XRSU

XLVC TM CODE, X*08

BC 1, XRSO

B XRSV
INTERP

INTERP Function

*"INTERP" PERFORMS SEQUENCES OF TESTS ON ENCODED 1-BYTE FEATURES
*THEREBY INCLUDING NEARLY ALL OF THE DECISION-MAKING TREE STRUCTURE.
*"INTERP" IS ENTERED VIA 'REC' AND CALLS RCS'S (WHICH PERFORM THE MORE
*COMPLICATED TESTS) VIA 'REC'. A 'TABLE' MACRO (DESCRIPTED BELOW) IS
*USED TO PERFORM THE TESTS.

INTERP Call
* * RCS INTERPA,EVALIC,ERROR
* WHERE INTERPA IS A LINK TO INTERP
* EXIT VALIC IS THE NORMAL EXIT
* EXIT ERROR IS THE ERROR EXIT

INTERP Sequence of Information Processing

*****INTERPRETER*****
* INTERPRETER FOR 'TABLE' MACRO
* *****TABLE EXITS*****
* LIST OF 'REC' LABELS EQU'D TO CODES
* USED FOR RETURNING TO 'REC' ROUTINE
* *****TABLE TESTS*****
* CALLS ON THE 'TABLE' MACRO TO PERFORM SEQUENCES OF TESTS ON (OR MOD-
* Ifications of) encoded 1-byte features. THE CALL HAS THE FOLLOWING
* FCRM:
* LABEL TABLE /OPl,P1,C1/,C11,L11,C12,L12,...,C1K,L1K,/OP2,P2,C2/,C21,x
* L21,C22,...
* WHERE CONTINUATION TO NEXT CARD IS INDICATED BY A NON-BLANK COLUMN 72
* OPI IS AN ABBREVIATED OP CODE
* TM = TEST UNDER MASK
* MV = MOVE IMMEDIATE
* NI = AND IMMEDIATE
* CL = COMPARE LOGICAL IMMEDIATE
* OI = OR IMMEDIATE
* X2 = EXCLUSIVE OR IMMEDIATE
* TR = TRANSLATE
* SS = SWITCH
* EX = EXIT FROM TABLE
* IF CPI = TR
* PI = THE TRANSATION INDEX
* CI = 00
* CIJ = C
* LIJ = START OF A LIST OF DC'S
* IF CPI = SS
* PI = TEMP
* CI = 00
* CIJ = C
* LIJ = START OF LIST OF BRANCHES
* IF CPI = EX
* PI = A 'REC' LABEL
* CI = 0
* CIJ,LIJ ARE OMITTED
* OTHERWISE
* PI = THE FEATURE TO BE TESTED OR MODIFIED (ONLY 'P', 'PAD', OR
* 'CHAR' MAY BE MODIFIED)
* CI = THE 2 CHARACTER 1-BYTE NUMBER WHICH PI IS TESTED AGAINST OR
* MODIFIED BY
* CIJ = THE CONDITION CODE UNDER WHICH THE SEQUENCE OF CONTROL
* BRANCHES TO LABEL LIJ
*
****SET-UP CHARACTER CODE****
*
*MOVE CHARACTER CODE INTO 'CHAR'
*BRANCH TO THE SET OF ESCAPES
*
****PAD TABLE****
*
*LIST OF BRANCHES TO 'INTERP' LABELS
*USED FOR ENTERING 'INTERP' BASED ON VALUE OF 'PAD'
*
****4 DIRECTION TABLE****
*
*LIST OF BRANCHES TO 'INTERP' LABELS
*USED FOR ENTERING 'INTERP' BASED ON THE VALUES ON THE FIRST FOUR
*DIRECTIONS IN THE DIRECTION SEQUENCE AS ENCODED BY 'ANG4'
*
****SET OF ESCAPES****
*
*EXITS FROM 'INTERP' TO 'REC'
*
****ENTRY SWITCH****
*
*LIST OF BRANCHES TO 'INTERP' LABELS
*USED FOR ENTERING 'INTERP' FROM 'REC'

INTERP Program Listing

USING XRX,R6
REGS

TM EQU X'91' TEST UNDER MASK
MV EQU X'92' MOVE IMMEDIATE
NI EQU X'94' AND IMMEDIATE
CL EQU X'95' COMPARE LOGICAL IMMEDIATE
CI EQU X'96' OR IMMEDIATE
X2 EQU X'97' EXCLUSIVE OR IMMEDIATE
TR EQU X'99' TRANSLATE
SS EQU X'9A' SWITCH
EX EQU X'9B' EXIT THE TABLE

CATA CSECT
XRX DS 0F
I1 DS 1F
PAD DS 1F
C0DE DS 1F
XS DS 1H
YS DS 1H
*AX3 THRU AX02 ARE USED AS NTCUSP, ETC. BY REC
AX1 CS 1H
AX CS 1H
AX23 CS 1H
AX12 CS 1H
AX01 CS 1H
AX02 CS 1H
NC CS 1H
C CS 1H
cym CS 1H
cxs CS 1H
cy5 CS 1H
xrs CS 1H
x15 CS 1H
yts CS 1H
ybs CS 1H
cent CS 1F
mvc CS 6C
turn CS 1H
turn CS 1F
xc CS 10C
yc CS 10C
do CS 1H
d1 CS 1H
do CS 1H
d3 CS 1H
c4 CS 1H
d5 CS 1H
do CS 1H
c7 CS 1H
*BEWARE, DATA BELOW CANNOT BE REFERRED TO BY TABLE MACROS

c8 CS 1H
c9 CS 1H
c10 CS 1H
c11 CS 1H
c12 CS 1H
c13 CS 1H
c14 CS 1H
c15 CS 1H
cn CS 1H
ntcusp EQU AX3
ntcsp1 CS 1H
pnpnt EQU 1H
pymax CS 1H
pymin CS 1H
nymax EQU AX2
nymx1 CS 1H
nymn EQU AX1
nymn1 CS 1H
ymax CS 10H
ymin EQU YMAX+1C
qymax EQU AX
C:YMIX EQU CYMIN + 5
PYMXX DS 1H
PYMNX DS 1H
YMAXX DS 10H
YMINX EQU YMAXX + 10

*BEWARE, DATA BELOW D7 CANNOT BE REFERRED TO BY TABLE MACROS

XYSP EQU XYS-DATA XYS DSECT(R6)
XYEP EQU XYE-DATA XYE DSECT(R6)
EXO EQU 0
EX1 EQU 4

****INTERPRETER****

INTERP BOX
START EQU *
LA R7, BASE
LA R8, GPSw
MVI C(R14), X'00'
AGAIN EQU *
CLI 0(R8), X'90'
BC 4, BRANCH
CLI 0(R8), X'9F'
BC 2, BRANCH
MAGIC EQU *
CLI 0(R8), X'98'
BC 2, T99
COMM EQU *
MVC 0(2, R15), 0(88)
SR R9, R9
IC R9, 2(R8)
LA R9, DATA(R9)
MVC 2(2, R15), OPER
EX 0, 0(R15)
LA R8, 3(R8)
BAL R10, COMM1
COMM1 EQU *
ST R10, 0(R14)
BC 15, AGAIN
T99 EQU *
CLI 0(R8), X'9F'
BC 2, BRANCH
CLI 0(R8), X'99'
BC 7, T9A
MVC 0(2, R15), 3(R8)
LH R9, 0(R15)
LA R9, 0(R7, R9)
SR R10, R1C
IC R10, 2(R8)
LA R1C,DATA(R1C) FIND THE DATA
MVC TEMP(1),O(R1C) ADVANCE THE IC
TR TEMP(1),O(R9)
LA R8,5(R8)
BC 15,AGAIN
T9A EQU *
CLI 0(R8),X'9A'
BC 7,T9B
SR R9,R9
IC R9,2(R8)
LA R10,DATA(R9)
IC R9,0(R10)
SLL R9,1
MVC 0(2,R15),3(R8)
LH R1C,O(R15)
LA R10,0(R7,R10)
LA R10,0(R9,R10)
MVC 2(2,R15),0(R1C)
BC 15,AGREE
T9B EQU *
CLI 0(R8),X'9B'
BC 7,ERROR
MVI 0(R15),X'CO'
MVC 1(1,R15),1(R8)
LH R8,0(R15)
BEXIT EX0
BRANCH EQU *
MVC 0(1,R15),0(R14)
NI 0(R15),X'30'
MVC 2(2,R15),0(R8)
MVC 1(1,R15),2(R15)
NI 1(R15),X'FO'
SR R10,R1C
IC R10,0(R15)
SRL R1C,2
LA R10,TESTM(R10)
EX 0,0(R1C)
BC 1,AGREE
LA R8,2(R8)
BC 15,AGAIN
AGREE EQU *
NI 2(R15),X'0F'
LH R9,2(R15)
LA R8,0(R7,R9)
BC 15,AGAIN
ERROR EQU *
BEXIT EX1
TESTM EQU *
TM 1(R15),X'80'
TM 1(R15),X'40'
TM 1(R15),X'20'
OPER CC X'9000'

****TABLE EXITS****

* TABLE EXITS
XAHSTR EQU 0
XKNY EQU 1
XFI EQU 2
XKVXY EQU 3
XMW EQU 4
XMWIN EQU 5
XMW1 EQU 6
XPOST EQU 7
XRECD EQU 8
XSDP EQU 9
XSMNW EQU 10
XSM1M EQU 11
XSRRM EQU 12
XSSM EQU 13
XSVM EQU 14
XTEST1 EQU 15
XTEST3 EQU 16
XTPLUS EQU 17
XSTRLC EQU 18
XSALCS EQU 19
XSGBLC EQU 20
XSMLCN EQU 21
XSGBOU EQU 22
XSNLIC EQU 23
XSPLC EQU 24
XSRLC EQU 25
XSBLIC EQU 26
XSULC EQU 27
XS4LC EQU 28
XSCEL EQU 29
XSGBP EQU 30
XSGBP EQU 31
XSCEL EQU 32
XS8VC EQU 33
XRAZE EQU 34
XS8LCV EQU 35
XSULC1 EQU 36
XS4MK1 EQU 37
XSELCA EQU 38

****TABLE TESTS****

*
* BASE EQU *
AHSTR TABLE /MV, PAC+3, 3A/, 15, AHSTRX
BR TABLE /TM, COE+1, 80/, 1, TEST3, /TM, COE+1, 10/, 8, TEST3, /CL, N+1, 05X
FIME TABLE /MV, P00/, 15, FIME1
FIME1 TABLE /CL, P, C0/, 8, SE, /CL, P, 01/, 8, SPOUND, /MV, PAD+3, 23/, 15, FI
G6ETST TABLE /TR, P, C0/, 0, PBB, /SS, TEMP, 00/, 0, PBBX
PBB DS OH
DC X'03'*
DC 2X'CC'
DC X'03'*
DC 3X'02'
DC 4X'03'*
PBBX TABLE 15, OQ
TABLE 15, SQ
TABLE 15, S
TABLE 15, SG6X
KNYM TABLE /MV, P, CO/
KNYM1 TABLE /CL, P, C1/, 8, MW, /MV, PAD+3, 24/, 15, KNY
KVXYM TABLE /CL, P, C1/, 8, KNYM, /CL, P, 02/, 8, AHSTR, /MV, PAD+3, 06/, /MV, P, 0X
8/, 15, KVXY
LPRSLA TABLE /CL, XYE+1, 0F/, 8, SSLASH, 15, SLPAR
MK TABLE /MV, P, CO/, /TM, XYS+3, 02/, 1, SM, 15, SK
*P IF SECOND STROKE IS NOT SINGLE ANGLE OR DOUBLE ANGLE
CQ TABLE /CL, N+1, 02/, 2, SP, /TM, XYS+3, 0C/, 5, SQ, /TM, XYS+3, 03/, 1, SQ, 1X
5, SO
PADEX TABLE /SS, PAC+3, 00/, 0, PADD
PARSLA TABLE /CL, XYS+1, 00/, 8, LPRSLA, /TM, XYS+3, 02/, 8, SLPAR, 1, SRPAR
PGTR2 TABLE /MV, P, C2/, 15, PADEX
TEST5 TABLE /MV, PAD+3, 1E/, 15, SVM
TPLUSM TABLE /CL, P, C1/, 8, AHSTR, /CL, P, 02/, 8, FIME, /MV, PAD+3, 36/, /MV, P, 0X
A/, 15, TPLUS
XMK TABLE /MV, P, C0/, 15, XMK1
XMK1 TABLE /CL, P, C1/, 8, SK, /CL, P, 02/, 8, AHSTR, /MV, PAD+3, 18/, /TM, XYS+1X
, 02/, 8, KVXY, /TM, XYS+3, 02/, 8, KVXY, /TM, XYE+3, 02/, 8, SR, /TM, X
XE+3, CC/, 1, SD, 15, SP
EJECT SASTAR TABLE /TM, XYE+1, 0C/, 12, SALC, /EX, XSTRLC, 0/
SALCF TABLE /TM, XYS+1, 0C/, 12, RSV, /TM, XYE+1, 0C/, 8, RSV, /TM, CCDE, 08/, 1, X
SALC, /TM, COE, 04/, 8, SCBPS, /TM, CCDE, 02/, 1, SALCS, 15, SCBPS
SALCS TABLE /TM, XYS+1, OC/, 1, SA, /MV, CHAR, 86/, 15, RECD
SALCS TABLE /EX, XSALCS, 0/
SAMSTR TABLE /MV, P, C0/, 15, SAMST1
SAMST1 TABLE /CL, P, C1/, 8, SSTAR, /MV, PAD+3, 15/, 15, SA
SAT TABLE /CL, P, C2/, 8, SA, /MV, PAD+3, 37/, 15, S7
SBARM TABLE /CL, P, C0/, 8, SETEQM, 2, PGTR2, /CL, P, 01/, 8, STTPLS, /CL, SN+1, 0X
1/, 2, PGTR2, /MV, P, 02/, /CL, COE, 00/, 8, SMINUS, /CL, ASPR, 02/, X
20, SSLASH, 5, SMINUS
SBARMK TABLE /CL, P, C0/, 8, S4MK, /CL, P, 02/, 8, SETEQM, 2, PGTR2, /MV, PAD+, 0DX
/, 15, SCRKT
SBDR

TABLE /TR, BR56+1, 00/, O, II, /SS, TEMP, CO/, O, III
CS OH
CC X* 00*
CC 4X* 00*
CC X* 01*
CC 4X* 00*
CC X* 01*
CC 4X* 00*
CC X* 01*
DC X* 02*

SBDR1

TABLE /TR, BR56+1, 00/, O, KK, /SS, TEMP, CO/, O, KKK
DS OH
CC X* 03*
CC X* 01*
CC X* 02*
CC 2X* 04*
CC X* 00*
CC X* 01*
CC X* 04*
CC 4X* CC*
CC X* 03*
CC X* 01*
CC X* 02*
CC X* 03*
DC X* 00*

KKK

TABLE 15, SDP
TABLE 15, DK
TABLE 15, SB
TABLE 15, TEST3
TABLE 15, SB R1

III

TABLE 15, TEST3
TABLE 15, SDP
TABLE 15, SPRMA

SBM5

TABLE /MV, P, CC/, 15, SBM5

SBM51

TABLE /CL, P, C2/, 8, S5/, /MV, PAD+3, 26/, 15, SB

SBR1

TABLE /CL, N+1, 06/, 12, SR/, /TM, CODE+1, CC/, 12, SB/, /CL, N+1, 07/, 8, SR, X15, SB

SCG

TABLE /CL, N+1, 05/, 2, SG, 12, SCLC

SCLC

TABLE /CL, CYMIN+03/, 8, RSD, 15, SCC

SCLBRC

TABLE /CL, NTCUSP+1, 01/, 10, SLBRAC, /CL, ASPR+1, 05/, 2, SLBRAC, 15, SCX C

SCMEG

TABLE /CL, P, C1/, 8, SK/, /CL, P, 02/, 8, SE/, /CL, P, 03/, 8, SG/, /MV, PAD+3, 1X6/, /MV, P, 05/, /CL, NCUSP+1, 01/, 2, SLBRAC, 8, SCLBRC, /CL, ASPR+X1, 08/, 2, SLPAR, 15, SCC

SCMG

TABLE /TR, P, CC/, 0, PAA/, /SS, TEMP, OC/, 0, PAAA

PAA

CS OH
DC 2X* 02*
CC 2X* 0C*
CC X* 02*
DC 3X* 01*
CC 4X* 02*
<table>
<thead>
<tr>
<th>PAAA</th>
<th>TABLE 15, SG</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 15, S8</td>
<td></td>
</tr>
<tr>
<td>TABLE 15, SCMGl</td>
<td></td>
</tr>
<tr>
<td>SCMG1</td>
<td>TABLE /MV, PAC+3, 05/, /MV, P, 05/, 15, SCC</td>
</tr>
<tr>
<td>SCOM</td>
<td>TABLE /TM, XYE+1, 0C/, 8, SOMOQ8, 5, SCMG</td>
</tr>
<tr>
<td>SCOMAM</td>
<td>TABLE /CL, PAC+3, 15/, 8, SAMST1, /CL, P, 01/, 8, SXMSTR, /CL, P, 02/, 8, SAXMSTR, /CL, P, 0A/, 8, SSTAR, /MV, PAD+3, 14/, 15, SKARAT</td>
</tr>
<tr>
<td>SCRKRT</td>
<td>TABLE /CL, NTCUSP+1, 01/, 4, SCC, 15, SRKRT</td>
</tr>
<tr>
<td>SDM</td>
<td>TABLE /CL, 01/, 8, SH, /MV, PAD+3, 22/, 15, SD</td>
</tr>
<tr>
<td>SEG06M</td>
<td>TABLE /CL, PAC+3, 09/, 8, SOMOQ8, /CL, PAD+3, 21/, 8, 0Q, /CL, PAC+3, 0A/, 8, G6ETST, /TM, XYE+1, 08/, 8, SOMOQ8, 15, G6ETST</td>
</tr>
<tr>
<td>SESEQ</td>
<td>TABLE /MV, PAC+3, 07/, /MV, P, 08/, 15, SEQL</td>
</tr>
<tr>
<td>SETEQ</td>
<td>TABLE /CL, PAC+3, 07/, 8, SETXX, /MV, P, 00/, 15, SETXX</td>
</tr>
<tr>
<td>SETXX</td>
<td>TABLE /CL, PAC+3, 07/, 8, SETXX, /MV, P, 00/, 15, SETXX</td>
</tr>
<tr>
<td>SET1AK</td>
<td>TABLE /MV, PAC+3, 19/, /MV, P, 09/, 15, SK</td>
</tr>
<tr>
<td>SEQ</td>
<td>TABLE /CL, N+1, 04/, 2, RSQ, 15, SE</td>
</tr>
<tr>
<td>SFE</td>
<td>TABLE /CL, PAC+3, 20/, 8, SFME1, /CL, PAD+3, 1F/, 8, SFME, /CL, P, 08/, 8, SX E, /CL, P, 07/, 2, SFME, /CL, P, 05/, 10, 0Q, /CL, P, 01/, 8, STPK, /CL, X</td>
</tr>
<tr>
<td>SFE1</td>
<td>TABLE /MV, PAC+3, 1F/, 15, LPRSLA</td>
</tr>
<tr>
<td>SFME</td>
<td>TABLE /MV, P, CC/, 15, SFME1</td>
</tr>
<tr>
<td>SFME1</td>
<td>TABLE /CL, P, 02/, 8, SE, /MV, PAD+3, 20/, /CL, XYE+1, 0C/, 8, SXMSTR, /CL, XYE+3, CC/, 8, SXMSTR, /CL, XYE+1, 0D/, 8, SXMSTR, /CL, XYE+3, OD/, 8, SXMSTR, /TM, XYE+3, 02/, 1, SY, 15, SF</td>
</tr>
<tr>
<td>SGS</td>
<td>TABLE /CL, N+1, 04/, 12, S65, /TM, CODE+1, 0/, 8, SG8, 4, SSM, /TM, CODE+1X, 30/, 5, SEG06M, /EX, XSELCA, 0/</td>
</tr>
<tr>
<td>SGSCRUB</td>
<td>TABLE /CL, N+1, 04/, 2, SSCE, 12, SG8</td>
</tr>
<tr>
<td>SGS06M</td>
<td>TABLE /TM, TURN, 08/, 1, SEG06M, 12, SSM</td>
</tr>
<tr>
<td>SG06M</td>
<td>TABLE /TR, B56+1, OO/, 0, FF, /SS, TEMP, 00/, 0, FFF</td>
</tr>
<tr>
<td>FF</td>
<td>DS 0H</td>
</tr>
<tr>
<td>CC</td>
<td>4X'02'</td>
</tr>
<tr>
<td>CC</td>
<td>4X'01'</td>
</tr>
<tr>
<td>CC</td>
<td>4X'00'</td>
</tr>
<tr>
<td>DC</td>
<td>X'03'</td>
</tr>
<tr>
<td>CC</td>
<td>3X'00'</td>
</tr>
<tr>
<td>CC</td>
<td>X'00'</td>
</tr>
<tr>
<td>FFF</td>
<td>TABLE 15, SEG06M</td>
</tr>
<tr>
<td>TABLE 15, S8</td>
<td></td>
</tr>
<tr>
<td>TABLE 15, SG8</td>
<td></td>
</tr>
<tr>
<td>TABLE 15, RSO</td>
<td></td>
</tr>
<tr>
<td>SG069M</td>
<td>TABLE /TR, B56+1, 00/, 0, EE, /SS, TEMP, 00/, 0, EEEX</td>
</tr>
<tr>
<td>EE</td>
<td>DS 0H</td>
</tr>
<tr>
<td>CC</td>
<td>9X'02'</td>
</tr>
<tr>
<td>DC</td>
<td>X'03'</td>
</tr>
<tr>
<td>CC</td>
<td>2X'04'</td>
</tr>
<tr>
<td>CC</td>
<td>4X'01'</td>
</tr>
<tr>
<td>CC</td>
<td>X'00'</td>
</tr>
<tr>
<td>EEEX</td>
<td>TABLE 15, SCM</td>
</tr>
<tr>
<td>TABLE 15, S9MG</td>
<td></td>
</tr>
<tr>
<td>TABLE 15, SG8</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 15, S8
TABLE 15, SGO6M
SG6X TABLE /MV, PAC+3, OA/, /CL, NTCUSP+1, 01/, /0, SG, /TM, XYE+1X
, 02/, /1, S6/, /TM, XYE+1, 01/, /8, SG, /TM, XYE+1, OC/, /1, S6, 15, SG
SG8 TABLE /TM, XYE+1, OC/, /5, SG, /EX, XSG8LC, 0/
SG81 TABLE /TM, XYE+1, OC/, /1, SG, 15, S8
SJMU TABLE /MV, P, CO/, /15, SUMXX
SUMXX TABLE /CL, P, C2/, /8, SU, /MV, PAD+3, 27/, /15, SJ
SK5 TABLE /CL, P, C1/, /8, SK, /MV, PAD+3, 28/, /15, S5
SLKRTM TABLE /MV, PAC+3, 01/, /CL, P, 00/, /0, SLKRT, 2, SRPRM
SLMEK4 TABLE /TR, P, CO/, /0, PEE, /SS, TEMP, 00/, /0, PEE
PEE DC 0H
DC X'03'
CC X'00'
DC X'05'
DC 3X'03'
CC X'04'
CC X'03'
DC X'01'
CC 2X'03'
DC X'02'
PEEE TABLE 15, S4Y
TABLE 15, STPE
TABLE 15, SK
TABLE 15, SLX
TABLE 15, SC
TABLE 15, SXME
SLX TABLE /MV, PAC+3, IA/, /CL, ASPR+1, 08/, /2, SLPAR, 12, SL
SMC TABLE /TR, BR56+1, 00/, /0, OD, /SS, TEMP, 00/, /0, ODD
CC DC 0H
CC 4X'02'
CC X'00'
DC X'01'
DC X'04'
CC X'03'
CC X'04'
CC X'06'
CC X'02'
CC X'05'
DC X'06'
CC 3X'02'
CC X'04'
CC X'01'
CC X'01'
CCDC TABLE 15, SG
TABLE 15, SCMG
TABLE 15, SSM
TABLE 15, SEG06M
TABLE 15, S9MG
TABLE 15, S6S
TABLE 15, SE
SMLC TABLE /CL, N+1, 05/, /2, SCPMWK, /TM, XYS+1, 08/, /8, SCPPYZ, /CL, CYMAX+1, X
00/, /2, SCPBH, /EX, XSMLCN, 0/
<table>
<thead>
<tr>
<th>Code</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM1</td>
<td>/CL, ASPR+1, 20 /, 2, S1 /, CL, ASPR+1, OC /, 12, PARS LA /, TM, XYS+1, 0X 2 /, 1, SPR PAR /, T M, XYE+1, 02 /, 1, S1, 8, SPR PAR /, 15, SPR PAR</td>
</tr>
<tr>
<td>SNMA</td>
<td>/CL, P, C2 /, 8, SA /, CL, P, 01 /, 8, RSX /, MV, PAD+3, 29 /, TM, CODE, OCX /, 1, 1, SN LC, 4, SN LC1 /, TM, XYS+1, OC /, 12, S2 LCY /, EX, XSCBCU, 0 /</td>
</tr>
<tr>
<td>SNLC</td>
<td>/EX, XSN LC, 0 /</td>
</tr>
<tr>
<td>SNLC1</td>
<td>/TM, CODE, 08 /, 1, SN LC /, TM, XYS+1, OC /, 1, SN LC /, TM, XYE+1, 08 /, 1X 52 /, 15, SN LC</td>
</tr>
<tr>
<td>SPRMA</td>
<td>/MV, PAC+3, OC /, /CL, P, 01 /, 8, SM /, CL, P, 02 /, 8, SA /, TM, XYE+1, 0CX /, 12, SPLC /, TM, XYE+1, 02 /, 1, SD, 15, SRLC</td>
</tr>
<tr>
<td>SPLC</td>
<td>/EX, XSP LC, 0 /</td>
</tr>
<tr>
<td>SRLC</td>
<td>/CL, QY MAX+1, 00 /, 8, SRL CX /, CL, N+1, 05 /, 2, RSK, 15, RSH</td>
</tr>
<tr>
<td>SRPRMJ</td>
<td>/CL, P, C2 /, 8, SJ /, CL, P, 06 /, 8, SC /, MV, PAD+3, 2A /, 15, SR PAR</td>
</tr>
<tr>
<td>SS589M</td>
<td>/TR, BR56+1, 00 /, 0, GG /, SS, TEMP, 00 /, 0, GGG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS</td>
<td>0H</td>
</tr>
<tr>
<td>CC</td>
<td>X'05'</td>
</tr>
<tr>
<td>DC</td>
<td>2X'06'</td>
</tr>
<tr>
<td>CC</td>
<td>X'01'</td>
</tr>
<tr>
<td>DC</td>
<td>X'07'</td>
</tr>
<tr>
<td>CC</td>
<td>X'04'</td>
</tr>
<tr>
<td>CC</td>
<td>2X'01'</td>
</tr>
<tr>
<td>CC</td>
<td>X'03'</td>
</tr>
<tr>
<td>CC</td>
<td>X'04'</td>
</tr>
<tr>
<td>CC</td>
<td>X'02'</td>
</tr>
<tr>
<td>CC</td>
<td>X'01'</td>
</tr>
<tr>
<td>CC</td>
<td>X'02'</td>
</tr>
<tr>
<td>DC</td>
<td>X'00'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGG</td>
<td>15, SS MG</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, DK</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, SSM</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, S8</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, TEST 1</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, SE</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, RSQ</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, RSG</td>
</tr>
<tr>
<td>SS8M</td>
<td>/TR, BR56+1, 00 /, 0, HH /, SS, TEMP, 00 /, 0, HHH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH</td>
<td>DS 0H</td>
</tr>
<tr>
<td>CC</td>
<td>5X'01'</td>
</tr>
<tr>
<td>CC</td>
<td>X'03'</td>
</tr>
<tr>
<td>CC</td>
<td>4X'01'</td>
</tr>
<tr>
<td>CC</td>
<td>X'02'</td>
</tr>
<tr>
<td>CC</td>
<td>4X'01'</td>
</tr>
<tr>
<td>CC</td>
<td>X'02'</td>
</tr>
<tr>
<td>CC</td>
<td>X'00'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHH</td>
<td>15, SSM</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, S8</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, DK</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, TEST 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>STPA</td>
<td>/MV, P, CO /, /MV, PAD+3, 2B /, 15, SALCF</td>
</tr>
<tr>
<td>TABLE</td>
<td>MV, P, CC, / MV, PAD+3, 2C, / 15, SE</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>TABLE</td>
<td>CL, P, C1, / 8, SH, / CL, P, 02, / 8, SF, / MV, PAD+3, 2D, / 15, S8LC</td>
</tr>
<tr>
<td>SBLC</td>
<td>EX, XS8LC, 0, /</td>
</tr>
<tr>
<td>TABLE</td>
<td>CL, P, C1, / 8, KXVX, 15, STPK1</td>
</tr>
<tr>
<td>STPK1</td>
<td>MV, P, CC, / MV, PAD+3, 2E, / 15, SK</td>
</tr>
<tr>
<td>STPKJ</td>
<td>MV, PAC+3, 2F, / 15, SJ</td>
</tr>
<tr>
<td>STPM</td>
<td>CL, P, C1, / 8, SM, / MV, PAD+3, 30, / 15, SYLC</td>
</tr>
<tr>
<td>STP5</td>
<td>CL, P, C1, / 8, S8, / CL, CODE, GB, / 6, S5, / TM, TURN, 04, / 8, S6, 15, S5</td>
</tr>
<tr>
<td>STP6</td>
<td>MV, PAC+3, 02, / CL, P, 01, / 8, S0, / CL, P, 02, / 8, S5, / CL, P, 06, / 8, X S8, / MV, P, 06, / 15, S6</td>
</tr>
<tr>
<td>STTPLS</td>
<td>MV, P, CC, / 15, TPLUSM</td>
</tr>
<tr>
<td>SUMAM</td>
<td>MV, PAD+3, 0F, / CL, P, C1, / 8, MK, / CL, P, 02, / 8, SA, / CL, N+1, 05, / X 2, SH, / CL, CODE, C7, / 8, SULC1, 15, SULC</td>
</tr>
<tr>
<td>SULC</td>
<td>CL, QYMAX+1, OC, / 2, RSH, / TM, XYE+1, OC, / 12, RSR, / EX, XSSULC, 0, 0</td>
</tr>
<tr>
<td>SULC1</td>
<td>CL, QYMIN+1, OC, / 2, RSH, / EX, XSSULC1, 0, 0</td>
</tr>
<tr>
<td>SUMJU</td>
<td>CL, P, C2, / 8, SJM, / CL, P, 01, / 8, SY, / CL, P, 07, / 8, S8, / MV, TEMP, X 00, / 15, TEST5</td>
</tr>
<tr>
<td>SUMJUL</td>
<td>MV, P, C7, / MV, PAD+3, 31, / 15, SU</td>
</tr>
<tr>
<td>SXHBL</td>
<td>CL, N+1, 04, / 8, RSL, / CL, NMAX+1, 01, / 12, RSB, / CL, N+1, 07, / 2, RX SK, 15, RSH</td>
</tr>
<tr>
<td>SXME</td>
<td>MV, PAD+3, 1B, / MV, P, COD, / CL, CODE, 00, / 8, SLBRAC, 15, SX 18</td>
</tr>
<tr>
<td>SXMSTR</td>
<td>MV, P, CC, / 15, SXMST1</td>
</tr>
<tr>
<td>SXMS1</td>
<td>CL, P, C2, / 8, SSTAR, / MV, PAD+3, 32, / 15, SX 32</td>
</tr>
<tr>
<td>EJECT</td>
<td>TR, P, CO, / 0, PBB, / SS, TEMP, 00, / 0, PBBB</td>
</tr>
<tr>
<td>PBBB</td>
<td>15, QQ</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, SQ</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, S8</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, SGX</td>
</tr>
<tr>
<td>TABLE</td>
<td>MV, PAD+3, 09, / MV, P, 06, / TM, CODE, CO, / 1, SOD, 15, SQ</td>
</tr>
<tr>
<td>SOD</td>
<td>CL, NTCUSP+1, 01, / 10, SD, 15, SQ</td>
</tr>
<tr>
<td>SODMB</td>
<td>TM, XYE+1, OC, / 1, 1, 8, S23MB, 15, SODMQL</td>
</tr>
<tr>
<td>SOD</td>
<td>TM, XSY+1, OC, / 1, 1, 8, S23MB, 15, SODMQL</td>
</tr>
<tr>
<td>SODMB</td>
<td>CL, N+1, 05, / 2, SODMQL, 15, S9LC1</td>
</tr>
<tr>
<td>SIMAK</td>
<td>TR, P, CC, / 0, PCC, / SS, TEMP, 00, / 0, PCCC</td>
</tr>
<tr>
<td>PCC</td>
<td>DS</td>
</tr>
<tr>
<td>CC</td>
<td>X'02'</td>
</tr>
<tr>
<td>CC</td>
<td>X'00'</td>
</tr>
<tr>
<td>CC</td>
<td>X'01'</td>
</tr>
<tr>
<td>CC</td>
<td>X'03'</td>
</tr>
<tr>
<td>CC</td>
<td>7X'00'</td>
</tr>
<tr>
<td>CC</td>
<td>X'03'</td>
</tr>
<tr>
<td>PCCC</td>
<td>15, SETI1AK</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, STPA</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, SIMAKX</td>
</tr>
<tr>
<td>TABLE</td>
<td>15, STPK</td>
</tr>
<tr>
<td>SIMAKX</td>
<td>MV, PAD+3, 19, / MV, P, 09, / 15, S1 19</td>
</tr>
<tr>
<td>SIRPAR</td>
<td>TM, XYE+1, 02, / 1, SRPAR, 15, S1</td>
</tr>
<tr>
<td>S2MRZ</td>
<td>CL, P, C2, / 8, SZ, / CL, P, 01, / 8, TEST3, / TM, XYE+1, OC, / 1, SASTAR, X</td>
</tr>
</tbody>
</table>
S2LC TABLE /TM,XYE+1,08/,1,S2, /CL,N+1,04/,2,RSP,15,RSF
S2LCY TABLE /CL,N+1,04/,8,S2,15,RSY
S2LCZ TABLE /CL,N+1,04/,8,S2,15,RSZ
S23MB TABLE /TR,BR56+1,00/,0,8B, /SS,TEMP,00/,0,08B
BB DS 0H
 DC X'00'
 CC 4X'02'
 CC X'00'
 CC 4X'02'
 CC X'02'
 CC 4X'02'
 CC X'02'
 CC X'00'
 DC X'01'
S23MBP EQU *
 TABLE /TM,XYS+1,0C/,1,TEST3, /CL,PAD+3,0E/,8,S3MB, /CL,N+1,07/,2X,S3MB, /TR,BR56+1,00/,0,CC, /SS,TEMP,00/,0,08B
CC DS 0H
 DC X'00'
 CC 3X'02'
 CC 10X'CC'
 CC X'02'
 CC X'02'
 CC X'00'
 DC X'01'
BBB TABLE 15,S2MRZ
 TABLE 15,SOMCQ8
 TABLE 15,S3MR
S24 TABLE /TM,XYS+1,0C/,1,S4LC, /MV,PAD+3,0B/,15,S2
S4LC TABLE /TM,XYS+1,03/,12,S4, /MV,PAD+3,3B/, /EX,XS4LC,0/
S3MB TABLE /CL,P,C1/,8,TEST3, /MV,PAD+3,0E/,15,S3LC1
S3LC TABLE /TM,XYE+1,08/,8,RSZ, /TM,XYS+1,0C/,1,RSR,15,S3
S3LC1 TABLE /TM,XYE+1,08/,8,RSZ, /TM,XYE+1,02/,1,S3,15,RSR
S3MBR TABLE /CL,PAD+3,04/,8,S3MBR1, /TM,CCDE,03/,1,S3MBR1, /CL,N+1,04/X,8,S2LC1,15,S3MBR1
S3MBR1 TABLE /CL,P,C1/,8,8R, /MV,PAD+3,04/,15,S3LC
S3SCR TABLE /CL,N+1,04/,2,SSCRU8,12,S3MB
S4MK TABLE /MV,P,CC/,15,S4MK1
S4MK1 TABLE /CL,P,C1/,8,SK, /MV,PAD+3,33/,15,S4MK1X
S4Y TABLE /CL,N+1,01/,12,S4Y1,2,S4MK
*2ND STROKE HAS ONLY 1 ANGLE, 1ST STROKE IS L
*DOES THE 1ST STROKE L HAVE ITS ENOPT IN RIGHT 1/4
S4Y1 TABLE /TM,XYE+1,03/,8,S4MK,15,SY
S6S TABLE /TM,TURN+1,40/,1,SSM,15,STP6
S65 TABLE /TM,TURN,01/,1,SSM,15,STP6
S7MK TABLE /CL,PAD+3,18/,8,XMK1, /TR,P,00/,0,PDD, /SS,TEMP,00/,0,PDD
PDD DS 0H
****SET-UP CHARACTER CODE****
* TABLE /MV,CHAR,C1/,15,RECD
SA TABLE /MV,CHAR,C2/,15,RECD
SB TABLE /MV,CHAR,C3/,15,RECD
SCC TABLE /MV,CHAR,C4/,15,RECD
SD TABLE /MV,CHAR,C5/,15,RECD
SE TABLE /MV,CHAR,C6/,15,RECD
SF TABLE /MV,CHAR,C7/,15,RECD
SG TABLE /MV,CHAR,C8/,15,RECD
SH TABLE /MV,CHAR,C9/,15,RECD
SJ TABLE /MV,CHAR,C10/,15,RECD
SK TABLE /MV,CHAR,C11/,15,RECD
SL TABLE /MV,CHAR,C12/,15,RECD
SM TABLE /MV,CHAR,C13/,15,RECD
SNN TABLE /MV,CHAR,C14/,15,RECD
SO TABLE /MV,CHAR,C15/,15,RECD
SP TABLE /MV,CHAR,C16/,15,RECD
SQ TABLE /MV,CHAR,C17/,15,RECD
SR TABLE /MV,CHAR,C18/,15,RECD
ST TABLE /MV,CHAR,C19/,15,RECD
SU TABLE /MV,CHAR,C20/,15,RECD
SV TABLE /MV,CHAR,C21/,15,RECD
SW TABLE /MV,CHAR,C22/,15,RECD
SX TABLE /MV,CHAR,C23/,15,RECD
SY TABLE /MV,CHAR,C24/,15,RECD
SZ TABLE /MV,CHAR,C25/,15,RECD
S1 TABLE /MV,CHAR,C26/,15,RECD
S2 TABLE /MV,CHAR,C27/,15,RECD
S3 TABLE /MV,CHAR,C28/,15,RECD
S4 TABLE /MV,CHAR,C29/,15,RECD
S5 TABLE /MV,CHAR,C30/,15,RECD
S6 TABLE /MV,CHAR,C31/,15,RECD
S7 TABLE /MV,CHAR,C32/,15,RECD
S8 TABLE /MV,CHAR,C33/,15,RECD
S9 TABLE /MV,CHAR,C34/,15,RECD
SEGL TABLE /MV,CHAR,C35/,15,RECD
SKARAT TABLE /MV,CHAR,C36/,15,RECD
SLBRAC TABLE /MV,CHAR,C37/,15,RECD
SLKRT TABLE /MV,CHAR,C38/,15,RECD
SLPAR TABLE /MV,CHAR,C39/,15,RECD
SMINUS TABLE /MV,CHAR,C40/,15,RECD
SPLUS TABLE /MV,CHAR,C41/,15,RECD
SPER TABLE /MV,CHAR,C42/,15,RECD
SPOUND TABLE /MV,CHAR,C43/,15,RECD
SRBRAC TABLE /MV,CHAR,C44/,15,RECD
SRKRT TABLE /MV,CHAR,C45/,15,RECD
SRPAR TABLE /MV,CHAR,C46/,15,RECD
SSCRUB TABLE /MV,CHAR,C47/,15,RECD
SSLASH TABLE /MV,CHAR,C48/,15,RECD
STSTAR TABLE /MV,CHAR,C49/,15,RECD
STILCA TABLE /MV,CHAR,C50/,15,RECD

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>TABLE /MV,CHAR,EF/, 15,RECD</td>
</tr>
<tr>
<td>SBOX</td>
<td>TABLE /MV,CHAR,73/, 15,RECD</td>
</tr>
<tr>
<td>SCIRC</td>
<td>TABLE /MV,CHAR,74/, 15,RECD</td>
</tr>
<tr>
<td>SELIPS</td>
<td>TABLE /MV,CHAR,76/, 15,RECD</td>
</tr>
<tr>
<td>SPBXX</td>
<td>TABLE /MV,CHAR,77/, 15,RECD</td>
</tr>
<tr>
<td>STRAP</td>
<td>TABLE /MV,CHAR,78/, 15,RECD</td>
</tr>
<tr>
<td>STRI</td>
<td>TABLE /MV,CHAR,75/, 15,RECD</td>
</tr>
<tr>
<td>RSA</td>
<td>TABLE /MV,CHAR,81/, 15,RECD</td>
</tr>
<tr>
<td>RSB</td>
<td>TABLE /MV,CHAR,82/, 15,RECD</td>
</tr>
<tr>
<td>RSC</td>
<td>TABLE /MV,CHAR,83/, 15,RECD</td>
</tr>
<tr>
<td>RSD</td>
<td>TABLE /MV,CHAR,84/, 15,RECD</td>
</tr>
<tr>
<td>RSE</td>
<td>TABLE /MV,CHAR,85/, 15,RECD</td>
</tr>
<tr>
<td>RSF</td>
<td>TABLE /MV,CHAR,86/, 15,RAZER</td>
</tr>
<tr>
<td>RSG</td>
<td>TABLE /MV,CHAR,87/, 15,RAZER</td>
</tr>
<tr>
<td>RSH</td>
<td>TABLE /MV,CHAR,88/, 15,RECD</td>
</tr>
<tr>
<td>RSI</td>
<td>TABLE /MV,CHAR,89/, 15,RECD</td>
</tr>
<tr>
<td>RSJ</td>
<td>TABLE /MV,CHAR,91/, 15,RAZER</td>
</tr>
<tr>
<td>RSK</td>
<td>TABLE /MV,CHAR,92/, 15,RECD</td>
</tr>
<tr>
<td>RSL</td>
<td>TABLE /MV,CHAR,93/, 15,RECD</td>
</tr>
<tr>
<td>RSM</td>
<td>TABLE /MV,CHAR,94/, 15,RECD</td>
</tr>
<tr>
<td>RSN</td>
<td>TABLE /MV,CHAR,95/, 15,RECD</td>
</tr>
<tr>
<td>RSG</td>
<td>TABLE /MV,CHAR,96/, 15,RECD</td>
</tr>
<tr>
<td>RSP</td>
<td>TABLE /MV,CHAR,97/, 15,RAZER</td>
</tr>
<tr>
<td>RSO</td>
<td>TABLE /MV,CHAR,98/, 15,RAZER</td>
</tr>
<tr>
<td>RSR</td>
<td>TABLE /MV,CHAR,99/, 15,RECD</td>
</tr>
<tr>
<td>RSS</td>
<td>TABLE /MV,CHAR,A2/, 15,RECD</td>
</tr>
<tr>
<td>RST</td>
<td>TABLE /MV,CHAR,A3/, 15,RECD</td>
</tr>
<tr>
<td>RST</td>
<td>TABLE /MV,CHAR,A4/, 15,RECD</td>
</tr>
<tr>
<td>RSV</td>
<td>TABLE /MV,CHAR,A5/, 15,RECD</td>
</tr>
<tr>
<td>RSW</td>
<td>TABLE /MV,CHAR,A6/, 15,RECD</td>
</tr>
<tr>
<td>RSX</td>
<td>TABLE /MV,CHAR,A7/, 15,RECD</td>
</tr>
<tr>
<td>SRS</td>
<td>TABLE /MV,CHAR,A8/, 15,RAZER</td>
</tr>
<tr>
<td>RSZ</td>
<td>TABLE /MV,CHAR,A9/, 15,RAZER</td>
</tr>
</tbody>
</table>

* *
****PAD TABLE****
* *

EQU *
TABLE 15,DK
TABLE 15,SDP
TABLE 15,STP6 02
TABLE 15,STP5
TABLE 15,S3MBR1 04
TABLE 15,SCMG 05
TABLE 15,KVXYM 06
TABLE 15,SETXX 07
TABLE 15,SEGCOM 08
TABLE 15,SOMQ8 09
TABLE 15,G6ETST 0A
TABLE 15,S2MRZ 0B
TABLE 15,SPRMA 0C
TABLE 15,SBARMK 0D
TABLE 15,S3MB 0E
TABLE 15,SUMAM 0F
TABLE 15,SRPRM 10
TABLE 15,SRPRM 12
TABLE 15,SSM
TABLE 15,SSM
TABLE 15,SCOMAM 14
TABLE 15,SAMST1 15
TABLE 15,SCMEG 16
TABLE 15,S7MGK 17
TABLE 15,XMK1 18
TABLE 15,SMAK 19
TABLE 15,SLMEK4 1A
TABLE 15,STPE 1B
TABLE 15,SVM 1C
TABLE 15,SVM
TABLE 15,TEST5 1E
TABLE 15,SFE 1F
TABLE 15,SFME1 20
TABLE 15,OQ 21
TABLE 15,SDMH 22
TABLE 15,FIME1 23
TABLE 15,KNYM1 25
TABLE 15,AHSTR 26
TABLE 15,SBM51 27
TABLE 15,SUMXX 28
TABLE 15,SK5 29
TABLE 15,SNMA 2A
TABLE 15,SRPRMJ 2B
TABLE 15,STPA 2C
TABLE 15,SE 2D
TABLE 15,STPH8 2E
TABLE 15,STPK1 2F
TABLE 15,SJ 30
TABLE 15,STPM 31
TABLE 15,SUMJU 32
TABLE 15,SXMST1 33
TABLE 15,S4MK1 34
TABLE 15,S9MG 35
TABLE 15,S9MK 36
TABLE 15,TPLUSM 38
TABLE 15,SA7
TABLE 15,SCPTX 39
TABLE 15,RSX
TABLE 15,SPOUND 3A

**** DIRECTION TABLE****
```plaintext
* AAAA EQU * 
AAA TABLE /SS,TEMP,CO/ , C, AAA 

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,REC</td>
<td>Table 15, REC</td>
</tr>
<tr>
<td>15,STPM</td>
<td>Table 15, STPM</td>
</tr>
<tr>
<td>15, S23MB</td>
<td>Table 15, S23MB</td>
</tr>
<tr>
<td>15, S23MBP</td>
<td>Table 15, S23MBP</td>
</tr>
<tr>
<td>15, SMC</td>
<td>Table 15, SMC</td>
</tr>
<tr>
<td>15, S8M</td>
<td>Table 15, S8M</td>
</tr>
<tr>
<td>15, SG069M</td>
<td>Table 15, SG069M</td>
</tr>
<tr>
<td>15, SS589M</td>
<td>Table 15, SS589M</td>
</tr>
<tr>
<td>15, SBDPR</td>
<td>Table 15, SBDPR</td>
</tr>
<tr>
<td>15, SMNw</td>
<td>Table 15, SMNw</td>
</tr>
<tr>
<td>15, SM1M</td>
<td>Table 15, SM1M</td>
</tr>
<tr>
<td>15, SBARM</td>
<td>Table 15, SBARM</td>
</tr>
<tr>
<td>15, S2MRZ</td>
<td>Table 15, S2MRZ</td>
</tr>
<tr>
<td>15, S3MB</td>
<td>Table 15, S3MB</td>
</tr>
<tr>
<td>15, S3MBR</td>
<td>Table 15, S3MBR</td>
</tr>
<tr>
<td>15, STP6</td>
<td>Table 15, STP6</td>
</tr>
<tr>
<td>15, S24</td>
<td>Table 15, S24</td>
</tr>
<tr>
<td>15, SRPRM</td>
<td>Table 15, SRPRM</td>
</tr>
<tr>
<td>15, DK</td>
<td>Table 15, DK</td>
</tr>
<tr>
<td>15, S7MGK</td>
<td>Table 15, S7MGK</td>
</tr>
<tr>
<td>15, STPA</td>
<td>Table 15, STPA</td>
</tr>
<tr>
<td>15, S1MAK</td>
<td>Table 15, S1MAK</td>
</tr>
<tr>
<td>15, SNMA</td>
<td>Table 15, SNMA</td>
</tr>
<tr>
<td>15, SMLC</td>
<td>Table 15, SMLC</td>
</tr>
<tr>
<td>15, SCCMAM</td>
<td>Table 15, SCCMAM</td>
</tr>
<tr>
<td>15, SBARMK</td>
<td>Table 15, SBARMK</td>
</tr>
<tr>
<td>15, SSM</td>
<td>Table 15, SSM</td>
</tr>
<tr>
<td>15, S9MK</td>
<td>Table 15, S9MK</td>
</tr>
<tr>
<td>15, SCMEG</td>
<td>Table 15, SCMEG</td>
</tr>
<tr>
<td>15, SFE</td>
<td>Table 15, SFE</td>
</tr>
<tr>
<td>15, SLMEK4</td>
<td>Table 15, SLMEK4</td>
</tr>
<tr>
<td>15, SUMJU</td>
<td>Table 15, SUMJU</td>
</tr>
<tr>
<td>15, S5</td>
<td>Table 15, S5</td>
</tr>
<tr>
<td>15, STP5</td>
<td>Table 15, STP5</td>
</tr>
<tr>
<td>15, SK5</td>
<td>Table 15, SK5</td>
</tr>
<tr>
<td>15, STPH8</td>
<td>Table 15, STPH8</td>
</tr>
<tr>
<td>15, SVM</td>
<td>Table 15, SVM</td>
</tr>
<tr>
<td>15, SDMH</td>
<td>Table 15, SDMH</td>
</tr>
<tr>
<td>15, SUMAM</td>
<td>Table 15, SUMAM</td>
</tr>
<tr>
<td>15, STP1</td>
<td>Table 15, STP1</td>
</tr>
<tr>
<td>15, SGSCR8</td>
<td>Table 15, SGSCR8</td>
</tr>
<tr>
<td>15, S3SCR8</td>
<td>Table 15, S3SCR8</td>
</tr>
<tr>
<td>15, BR</td>
<td>Table 15, BR</td>
</tr>
<tr>
<td>15, SBDPR1</td>
<td>Table 15, SBDPR1</td>
</tr>
<tr>
<td>15, SLKRTM</td>
<td>Table 15, SLKRTM</td>
</tr>
<tr>
<td>15, SRPRMJ</td>
<td>Table 15, SRPRMJ</td>
</tr>
<tr>
<td>15, SGS</td>
<td>Table 15, SGS</td>
</tr>
<tr>
<td></td>
<td>2E</td>
</tr>
</tbody>
</table>
```
TABLE 15,SGSC6M
TABLE 15,SCMQQ8
TABLE 15,S8 32
TABLE 15,SG 33
TABLE 15,S9 34
TABLE 15,S3 35
TABLE 15,SASTAR 36
TABLE 15,SCC 37
TABLE 15,SA7 38
TABLE 15,SCG 39
TABLE 15,SG81 3A
TABLE 15,SG23M8 3B
TABLE 15,S09 3C
TABLE 15,S9LC1
TABLE 15,S09M
TABLE 15,SCRPT
TABLE 15,RSC
TABLE 15,SCPFP
TABLE 15,SCPEL
TABLE 15,RSS
TABLE 15,RSV
TABLE 15,SCPNRZ
TABLE 15,RSZ
TABLE 15,SE
TABLE 15,SCPGQ
TABLE 15,S8LCV 49
TABLE 15,SEQ 4A

*
*
SET OF ESCAPES
*
*
AHSTRX TABLE /EX,XAHSTR,0/
KNY TABLE /EX,XKNY,0/
FI TABLE /EX,XFI,0/
KVXY TABLE /EX,XKVXY,0/
Mw TABLE /EX,XMw,0/
MWIN TABLE /EX,XMWIN,0/
MW1 TABLE /EX,XMW1,0/
PCSTST TABLE /EX,XPOST,0/
RAZER TABLE /EX,XRAZE,0/
RECD TABLE /EX,XRECD,0/
SCP TABLE /EX,XSCP,0/
SMNW TABLE /EX,XSMNW,0/
SM1M TABLE /EX,XSM1M,0/
SRPRM TABLE /EX,XSRPRM,0/
SSM TABLE /EX,XSSM,0/
SVM TABLE /EX,XSVM,0/
TEST1 TABLE /EX,XTEST1,0/
TEST3 TABLE /EX,XTEST3,0/
TPLUS TABLE /EX,XTPLUS,0/
S8LCVX TABLE /EX,XS8LCV,0/
SRLCX TABLE /EX,XSRLC,0/
S4MK1X TABLE /EX,XS4MK1,0/
*
*
****ENTRY SWITCH****
*
*
GPSW TABLE /SS,CUSP,CO/,0,GPSWTCBH
GPSWTCBH EQU *
TABLE 15,SPER
TABLE 15,SXHBL
TABLE 15,S4
TABLE 15,SK
TABLE 15,AAAA
TABLE 15,KVXYM
TABLE 15,PADEX
TABLE 15,TPLUSM
TABLE 15,SBM5
TABLE 15,SJMU
TABLE 15,SUMJU1
TABLE 15,SM1
TABLE 15,SXMSTR
TABLE 15,SCMCQ8
TABLE 15,SCPNU
TABLE 15,RSB
TABLE 15,RSC
TABLE 15,RSE
TABLE 15,RSF
TABLE 15,RSG
TABLE 15,RSI
TABLE 15,RSJ
TABLE 15,RSI
TABLE 15,RSM
TABLE 15,RSN
TABLE 15,RSO
TABLE 15,RSR
TABLE 15,RSS
TABLE 15,RSU
TABLE 15,RSV
TABLE 15,RSW
TABLE 15,RSY
TABLE 15,RSZ
TABLE 15,SA
TABLE 15,SG
TABLE 15,SM
TABLE 15,SN
TABLE 15,SP
TABLE 15,SR
TABLE 15,SU
TABLE 15,SG
*FUNCTION

* DISTINGUISHES AMONG 3-STROKE A, H, K, AND * BASED ON POSITIONS OF
 * STARTING AND ENDING POINTS
 *
 *
 *
 *CALL
 * RCS AHSTR1A,ECHAR
 *EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
 *
 *
 *
 *INPUT REGISTER. R6
 *
 *INTERNAL REGISTERS. R7, R9-R14
 *
 *
 USING XR6,R6
EXO EQU C
REGS
D6 DSEC
XR6 CS OF
XYEP EQU X'40'
XYZP EQU X'4A'
XSPI EQU X'72'
YSPI EQU X'7C'
XEPI EQU X'86'
YEPI EQU X'90'
CS 3F
CS 26H
CS 20C
CS 3F
CS 1H
CS 2C
CS 3H
P
CS 1C
CHAR CS 1C
AHSTR1 BX
*R10 IS FIRST VERTICAL STROKE REF
*R11 IS SECOND VERTICAL STROKE REF
*R12 IS HORIZONTAL STROKE REF
*IS THIRD STROKE HORIZONTAL?
CLI P,X'C2'
BC 8,H3
*NO, IS FIRST HORIZONTAL?
LA R11,4(R6)
LH R7,XEPI(R6)
SH R7,XSPI(R6)
LPR R7,R7
LH R9,YEPI(R6)
SH R9,YSPI(R6)
LPR R9,R9
CR R7,R9
BC 2,H1
*NO, SECOND STROKE IS THE HORIZONTAL
LA R12,2(R6)
LA R10,C(R6)
B HDONE
*THIRD STROKE IS THE HORIZ
H3 LA R12,4(R6)
LA R11,2(R6)
LA R10,0(R6)
B HDONE
*FIRST STROKE IS THE HORIZ
H1 LA R12,0(R6)
LA R10,C(R6)
HDONE EQU *
*TEST FOR K
*ARE BOTH VERT ENDPNTS AT THE LEFT
TM XYEP+1(R10),X'03'
BC 12,NOTK
TM XYEP+1(R11),X'03'
BC 1,SKX
TM XYSPI+1(R10),X'03'
BC 12,NOTK
*IS HORIZ START OR ENC POINT IN UPPER RIGHT?
CLI XYEP+1(R12),X'C0'
BC 8,ETCP
CLI XYEP+1(R12),X'01'
BC 8,ETOP
CLI XYSP+1(R12),X'00'
BC 6,NOTK
*IS TOP,RIGHT PART OF HORIZ ABOVE TOP OF SECOND VERT?
STOP EQU *
LH R13,YSPI(R12)
B ETOP1
ETCP EQU *
LH R13,YEPI(R12)
ETOP1 EQU *
CH R13,YSPI(R11)
BC 2,SKX
NOTK EQU *
*NOT K, TEST FOR A,H, OR *
*ARE START Pts CLOSE COMPARED TO ENDPts
LH R13,XEPI(R10)
SH R13,XEPI(R11)
LPR R13,R13
SRL R13+2
LH R14,XSPI(R10)
SH R14,XSPI(R11)
LPR R14,R14
CR R14,R13
BC 4,SAX
*NG, DO VERTICAL STROKES CROSS?
LH R13,XEPI(R10)
CH R13,XEPI(R11)
BC 2,END1R
LH R13,XSPI(R10)
CH R13,XSPI(R11)
BC 2,SSTARX
B SHX
END1R EQU *
LH R13,XSPI(R10)
CH R13,XSPI(R11)
BC 4,SSTARX
B SHX
SAX EQU *
MVI CHAR,C'A'
BC 15,BEXIT1
SHX EQU *
MVI CHAR,C'H'
BC 15,BEXIT1
SKX EQU *
MVI CHAR,C'K'
BC 15,BEXIT1
SSTARX EQU *
*FUNCTION

* DISTINGUISHES AMONG 3-STROKE F, I, AND * BASED ON POSITIONS OF STARTING POINTS

* CALL

* RCS BFIA, ECHAR

* EXIT CHAR WHEN A CHARACTER IS RECOGNIZED

* INPUT REGISTER. R6

* INTERNAL REGISTERS. R7, R12, R13, R15

* USING XR6, R6

REGS

EXO EQU 0

D6 DSECT

XR6 CS 0F

XYSP EQU X'4A' XYS (R6) CX YSP (R6)

CS 3F

CS 26H

CS 20C

CS 3F

CS 1H

CS 2C

CS 3H

CS 1C

CHAR CS 1C

BFI BCX

F1 SK R15, R15

LA R12, 2

LA R13, 4

FI1 LA R7, 0 (R6, R15)

TM XYSP +1 (R7), X'03'
FUNCTION

CALL

RCS BHITEA,ESHORT,ETALL

*EXIT SHORT WHEN THE CHARACTER IS SHORT
*EXIT TALL WHEN THE CHARACTER IS TALL

**INPUT REGISTER. R6
**

INTERNAL REGISTERS. R7, R8

*USING XR6,R6 REGS

EX0 EQU 0
EX4 EQU 4
C6 CSECT
XR6 CS 0F
DS 3F
DS 20H
YTC CS 1H
YBC DS 1H
DS 4H
DS 20C
DS 3F
DS 1H
*FUNCTION
*
*DISTINGUISHES AMONG 'O, P, S, AND SCRIPT 'B BASED ON THE POSITION
*OF THE LAST STROKE ENDPOINT, THE POSITION OF THE 2ND REL. Y MAX. IN
*THIS STROKE, AND THE NO. OF STROKES
*
*
*CALL
* RCS BSCPA,ECHAR
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7, R15
*
*
USING XR6,R6
REGS
EXO EQU 0
D6 DSECT
XR6 DS OF
XYEP EQU X'40'* XYE (R6)
DS 1F
PAD CS 1F
DS 1F
SN DS 11H
 DS 1H
 CS 14H
 CS 20C
 DS 3F
 DS 1H
 DS 2C
 CS 3H

P CS 1C
CHAR CS 1C
 CS 54C
 CS 21H
 DS 1F
 CS 6C
 DS 1H
 DS 1F
 CS 20C
 CS 33H

GYMAX CS 10C
BSDP BOX
 CLI PAD+3,X'01'
 BC 8,SDM51
 MVI PAD+3,X'01'

SDP LH R15,SN
 BCT R15,SDP1
SDP1 SLL R15,1
 LA R7,0(R6,R15)
 TM XYEP+1(R7),X'0C'
 MVI CHAR,C'P'
 BC 12,SDPX

SDM5 MVI P,X'00'
 MVI CHAR,C'C'
 CLI SN+1,X'02'
 BC 8,SDSD
 CLI GYMAX+1,X'00'
 BC 8,SDSD
 MVI CHAR,X'82'
 B SDPX

SDM51 CLI P,X'02'
 MVI CHAR,C'5'
 BC 8,SDPX
 MVI CHAR,C'D'

SDSC EQU *
SDPX BEXIT EX0
END
BSMNW

*FUNCTION
*
*Distinguishes among SCRUB, N, W, SCRIPT Y, and a character group (M, SCRIPT M, SCRIPT W, SCRIPT Y) based on no. of directions, aspect ratio
*and the position of the first rel. y min.
*
*
*CALL
*
RCS BSMNW, ECHAR, EGROUP, ERAZE
*Exit char when a character is recognized
*Exit group when the character is M, or script M, W, or Y
*Exit raze when the char. is recognized as a script Y, and the char
*center must be raised
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7, R8
*
*
USING XR6, R6
REGS
EX0 EQU 0
EX4 EQU 4
EX8 EQU 8
C6 CSECT
XR6 CS OF
 CS 3F
 CS 10H
N CS 1H
 CS 5H
CXC CS 1H
 CS 5H
ASPR CS 1H
 CS 3H
 CS 20C
 CS 3F
 CS 1H
 CS 2C
 CS 3H
 CS 1C
CHAR CS 1C
 CS 6C
XSP CS 10C
 CS 38C
 CS 21H
 CS 1F
CS 6C
CS 1H
CS 1F
CS 20C
CS 33H
GYMAX CS 10C
GYMIN EQU GYMAX+5
CS 2H
YMAXX CS 10H
BSMNW BOX
SMNW CLI N+1,X'C5'
BC 4,TEST4
BC 8,SMLCX
MVI CHAR,X'72' SCRUB
B SMNWX
TEST4 CLI ASPR+1,X'04'
MVI CHAR,X'C'
BC 4,SMNWX
*N IF A SP RATIO GTR THAN 2
CLI ASPR+1,X'08'
BC 2,SNLCY
*ARE THE SP AND 2ND MAX CLOSER THAN
*3/8 CHARACTER WIDTH
LH R7,DXC
SRL R7,2 1/4 DELTA X
LR R8,R7
SRL R8,1
AR R7,R8 3/8 DELTA X
LH R8,YMAXX+2
SH R8,XSP
LPR R8,R8
CR R8,R7
BC 4,SNLCY
MVI CHAR,X'C'
B SMNWX
SNLCY MVI CHAR,X'C'
CLI GYMIN,X'C3'
BC 8,SMNWX
MVI CHAR,X'A8' LC Y
BEXIT EX8
SMNWX BEXIT EX0
SMLCX BEXIT EX4
END
BSRPRM

*FUNCTION
*
*CINGUISHES AMONG R, 3, 5, RIGHT BRACKET, AND 2 GROUPS OF CHARACTERS
*{D, P}, {RIGHT PAREN., COMMA, APOSTROPHE) BASED ON THE IDENTITY OF THE
*THE PREVIOUS SUBCHARACTER, THE NO. OF GEOM. CORNERS, AND THE POSITION
*CF A CORNER
*
*
*CALL
* RCS BSRPRMA,ECHAR,EDP,EPAREN
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*EXIT DP WHEN THE CHARACTER IS A D CR P
*EXIT PAREN WHEN THE CHARACTER IS A RIGHT PAREN., COMMA, OR APOSTROPHE,
* TEST SIZE AND POSITION
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7, R8
*
*
USING XR6,R6

EX0 EQU 0
EX4 EQU 4
EX8 EQU 8
REGS
C6 CSECT
XR6 CS OF
CS 1F
PAD DS 1F
DS 1F
DS 20H
YTC CS 1H
YBC CS 1H
CS 4H
CS 20C
CS 3F
CS 1H
CS 2C
NCUSP DS 1H
DS 2H
P CS 1C
CHAR CS 1C
CS 54C
CS 21H
CS 1F
DS 6C
CS 1H
DS 1F
CS 10C
YC CS 10C
BSRPRM BOX
CLI PAD+3,X'11'
BC 8,DPMR
SRPRM CLI P,X'01'
BC 8,DPMR
CLI P,X'02'
MVI CHAR,C'5'
BC 8,SRPRMX
CLI P,X'0B'
MVI CHAR,C'R'
BC 8,SRPRMX
MVI PAC+3,X'10'
SRPRM
CLI NCUSP+1,X'03'
MVI CHAR,C'3'
BC 10,SRPRMX
CLI NCUSP+1,X'01'
RBRAXX MVI CHAR,X'DF'
BC 2,SRPRMX
MVI CHAR,X'CD'
BC 4,SRPMX1
*3 IF THECUSP IS IN THE MIDDLE
LH R7,YTC
SH R7,YBC
SRL R7,1 1/2 DELTA Y
LR R8,R7
SRL R8,1 1/4 DELTA Y
AH R8,YBC
AR R7,R8
CH R8,YC
BC 2,RBRAXX
CH R7,YC
MVI CHAR,C'3'
BC 10,SRPRMX
BC 4,RBRAXX
cpmr MVI P,X'00'
cpmr1 CLI P,X'01'
MVI CHAR,C'R'
BC 8,SRPRMX
MVI PAD+3,X'11'
DPMR1
BEXIT EX4
SRPRMX BEXIT EX0
SRPMX1 BEXIT EX8
END
BSSM

*FUNCTION
*
*DISTINGUISHES AMONG S, 5, 8, 9, AND $ BASED ON THE GENERAL IDENTITY OF
*DIRECTIONS, THE FIRST DIRECTION, AND THE NO. OF TIME-CORNERS
*
*
*CALL
* RCS BSSMA,ECHAR
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*
*INPUT REGISTER. R6
*
*
*INTERNAL REGISTER. R7
*
*
USING XR6,R6
REGS

EXO EQU 0
C6 CSECT
XR6 CS 0F
 CS 1F
PAD CS 1F
CCDE CS 1F
 CS 10H
N CS 1H
 CS 7H
XRC CS 1H
XLC CS 1H
 CS 6H
XYE CS 10C
 CS 10C
 CS 3F
 CS 1H
 CS 2C
NCUSP DS 1H
 DS 2H
P CHAR DS 1C
CHAR DS 1C
TEMP DS 1C
 DS 53C
 DS 21H
 CS 1F
 CS 6C
 CS 1H
 CS 1F
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC</td>
<td>DS 10C</td>
</tr>
<tr>
<td>CS</td>
<td>DS 10C</td>
</tr>
<tr>
<td>CS</td>
<td>17H</td>
</tr>
<tr>
<td>NTCUSP</td>
<td>DS 1H</td>
</tr>
<tr>
<td>BSSM</td>
<td>BOX</td>
</tr>
<tr>
<td>CLI</td>
<td>PAD+3,X'13'</td>
</tr>
<tr>
<td>BC</td>
<td>8, DOLDOCL</td>
</tr>
<tr>
<td>SSM</td>
<td>MVC TEMP(1),P</td>
</tr>
<tr>
<td>TR</td>
<td>TEMP(1),LL</td>
</tr>
<tr>
<td>SR</td>
<td>R7,R7</td>
</tr>
<tr>
<td>IC</td>
<td>R7,TEMP</td>
</tr>
<tr>
<td>EX</td>
<td>0, LLL(R7)</td>
</tr>
<tr>
<td>SSM1</td>
<td>MVI P,X'05'</td>
</tr>
<tr>
<td>MVI</td>
<td>PAD+3,X'12'</td>
</tr>
<tr>
<td>TM</td>
<td>XYE+1,X'08'</td>
</tr>
<tr>
<td>BC</td>
<td>8, S8S8</td>
</tr>
<tr>
<td>*NOT 5 IF 1ST ANGLE IS 1</td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>CODE,X'80'</td>
</tr>
<tr>
<td>BC</td>
<td>1, SSM2</td>
</tr>
<tr>
<td>TM</td>
<td>CODE,X'40'</td>
</tr>
<tr>
<td>BC</td>
<td>1, S9</td>
</tr>
<tr>
<td>*TEST FOR TIME CORNERS</td>
<td></td>
</tr>
<tr>
<td>SSM2 EQU *</td>
<td></td>
</tr>
<tr>
<td>CLI</td>
<td>NTCUSP+1,X'01'</td>
</tr>
<tr>
<td>BC 2, SSSS</td>
<td></td>
</tr>
<tr>
<td>BC 4, SSSS</td>
<td></td>
</tr>
<tr>
<td>BC LEFT</td>
<td></td>
</tr>
<tr>
<td>BC RIGHT</td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>DS 0H</td>
</tr>
<tr>
<td>CC</td>
<td>X'00'</td>
</tr>
<tr>
<td>DC</td>
<td>X'04'</td>
</tr>
<tr>
<td>CC</td>
<td>X'10'</td>
</tr>
<tr>
<td>DC</td>
<td>2X'00'</td>
</tr>
<tr>
<td>CC</td>
<td>3X'08'</td>
</tr>
<tr>
<td>CC</td>
<td>3X'04'</td>
</tr>
<tr>
<td>CC</td>
<td>X'04'</td>
</tr>
<tr>
<td>LLL</td>
<td>CS 0H</td>
</tr>
<tr>
<td>BC 15, SSM1</td>
<td></td>
</tr>
<tr>
<td>BC 15, STPCOL</td>
<td></td>
</tr>
<tr>
<td>BC 15, S8S8</td>
<td></td>
</tr>
<tr>
<td>BC 15, DOLDOCL</td>
<td></td>
</tr>
<tr>
<td>BC 15, SSSS</td>
<td></td>
</tr>
</tbody>
</table>
*POSSIBLE 9, TEST ANGLES, AND TIME CORNERS
S9 CLI N+1,X'06'
 BC 4,SSSS
 CLI NTCUSP+1,X'01'
 BC 4,SSSS
S9S9 MVI CHAR,C'9'
 B SSMX
STPOOL MVI P,X'00'
 MVI PAD+3,X'13'
 DCLDOL DCLLARS
CCLDOL MVI CHAR,X'DB'
 BC 15,SSMX
S5S5 MVI CHAR,C'5'
 BC 15,SSMX
SSSS MVI CHAR,C'S'
 BC 15,SSMX
S8S8 MVI CHAR,C'8'
 BC 15,SSMX
SSM8 BEXIT EX0
 END

BSVM

*FUNCTION
*
*DISTINGUISHES AMONG \(V, W, \) AND 5 GROUPS OF CHARACTERS \((J, U), (M, W), \)
*\((K, N, Y), (O, 8, O, Q), (U, 8) \) BASED ON THE GENERAL IDENTITY OF THE
*PREVIOUS SUBCHARACTER, THE ORIGIN OF THE CALL TO THIS ROUTINE (TEMP
*HAS BEEN ENCODED AS C IN 'INTERP' IF THE CHAR CAN BE U), AND THE DIS-
*TANCE BETWEEN THE STARTING AND ENDING POINTS
*
*
*CALL
*RCS BSVMA,ECHAR,EJU,EMK,EKNY,E080Q,EU8
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*EXIT JU WHEN THE CHAR IS J, POTENTIALLY U
*EXIT MW WHEN THE CHAR IS M OR W
*EXIT KNY WHEN THE CHAR IS K, N, OR Y
*EXIT 080Q WHEN THE CHAR IS O, POTENTIALLY 8, Q, OR O
*EXIT U8 WHEN THE CHAR IS U, POTENTIALLY 8
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7,R8,R10
USING XR6, R6

EXO EQU 0
REGS

EX4 EQU 4
EX8 EQU 8
EX12 EQU 12
EX16 EQU 16
EX20 EQU 20

C6 DSECT
XR6 CS 0F
PAD CS 1F
DS CS 1F
CS 18H

XRC DS 1H
XLC DS 1H
DS 6H
CS 20C
CS 3F
DS 1H
CS 2C
CS 3H

P DS 1C
CHAR CS 1C
TEMP DS 1C
CS 5C

XSP DS 10C
CS 10C

XEP DS 10C

BSVM BOX
CLI PAC+3, X*1D*
BC 8, KNYYXX
CLI PAD+3, X*1E*
BC 8, TEST5

SVM CLI P, X*01*
BC 8, KNYMWW
CLI P, X*02*
BC 8, SJMUXX
CLI P, X*03*
BC 8, MW1X
CLI P, X*04*
MVI CHAR, C*W*
MVI TEMP, X*C4*
BC 15, TEST5
BC 8, SVMX

SVM1 MVI PAD+3, X*1C*
MVI P, X*C4*
MVI CHAR, C*V*
BC 15, SVMX
0 VS U,V TEST

* IF STARTPT AND ENDPNT ARE CLOSER THAN *

* 1/2 CHARACTER WIDTH *

* TEMP CONTAINS CODE FOR RETURN TO U OR V *

TEST5

LH R7,XSP
SH R7,XEP
LPR R7,R7
LH R8,XRC
SH R8,XLC
LPR R8,R8
SRL R8,1
CR R7,R8
BC 4,SOMX
* ENDPNT IN LEFT OR RIGHT 1/4 *
SR R10,R1C
IC R10,TEMP
EX 0,T5SW(R10)

T5SW

CS OF
BC 15,SUJL1X
BC 15,SVM1

SVMX

BEXIT EX0

SJMUXX

BEXIT EX4

MW1X

BEXIT EX8

KNY1X

BEXIT EX12

SOMX

BEXIT EX16

SUJUL1X

BEXIT EX20

END

BTEST1

FUNCTION

* Distinguishes between two character groups (8, SCRIPT G), (S-LIKE CHARACTERS) based on the position of the endpoint *

* CALL *

RCS BTEST1A,E8G,ESSM

*EXIT 8G WHEN CHAR IS 8 OR SCRIPT G, TEST DIRECTIONS *

*EXIT SSM WHEN CHAR IS S-LIKE, TEST FURTHER WITH BSSM *

*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7, R15
*
*
USING XR6, R6
REGS
EX0 EQU 0
EX4 EQU 4
C6 CSECT
XR6 CS 0F
XYEP EQU X'40'
XYE
CS 3F
CS 11H
SN CS 1H
CS 14H
CS 20C
CS 3F
CS 1H
CS 2C
CS 3H
CS 1C
CHAR CS 1C
BTEST1 BCX
TEST1 LH R15, SN
BCT R15, TEST11
TEST11 SLL R15, 1
LA R7, 0(R6, R15)
TM XYEP+1(R7), X'C8'
BC 1, SSMXXX
MVI CHAR, C*8'
BEXIT EXC
SSMXXX BEXIT EX4
END

BTEST3

*FUNCTION
*
*DISTINGUISHES AMONG B, R, U, SCRIPT K, SCRIPT X, AND A CHARACTER GROUP
*(5, B) BASED ON THE NO. OF STROKES, THE POSITIONS OF STARTING AND ENDING
*POINTS, THE DIRECTIONS, THE POSITIONS OF REL. Y MAXIMA
*
*
*CALL
RCS BTEST3A,ECHAR,E5B
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*EXIT 5B WHEN CHAR IS 5, POTENTIALLY B
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7, R8
*
* USING XR6,R6
REGS
EX0 EQU 0
EX4 EQU 4
D6 DSECT
XR6 CS 0F
XYSP EQU X'4A'
XYE EQU X'40'
CODE CS 1F
SN CS 1H
CS 4H
CXC CS 1H
CS 1H
XRC CS 1H
CS 7H
XYE CS 10C
CS 10C
CS 3F
CS 1H
CS 2C
CS 3H
CS 1C
CHAR CS 1C
CS 54C
CS 21H
CS 1F
CS 6C
CS 1H
CS 1F
CS 20C
CS 33H
QYMAY CS 10C
CS 2H
YMAXX CS 10H
BTEST3 BOX
TEST3 CLI SN+1,X'01'
BC 8,TEST31
*2 STROKE CHARACTERS
LH R8,SN
BCT R8,TEST32
TEST32 SLL R8,1
LA R8,C(R8,R6)
MVI CHAR,X*A7'
TM XYSP+1(R8),X*02'
BC 8,TEST3X
TM XYPE+1(R8),X*02'
MVI CHAR,C*B'
BC 1,TEST3X
MVI CHAR,C*R'
BC 8,TEST3X
* SINGLE STROKE CHARACTERS
TEST31 TM XYE+1,X*02'
BC 1,SBM5X
MVI CHAR,C*R'
RLE EGU *
CLI CODE,X*CC'
BC 8,RU
CLI QYMAX+1,X*00'
BC 8,TEST3X
MVI CHAR,X*92'
K
BC TEST3X
RU EGU *
LH R8,DXC
SRL R8,1
LH R7, XRC
SR R7,R8
* IS MAX 2 IN RIGHT 1/2
CH R7,YMAXX+2
BC 2,TEST3X
MVI CHAR,C*U'
TEST3X BEXIT EXC
SBM5X BEXIT EX4
ENC

KNTST

* FUNCTION
*
* DISTINGUISHES AMONG 3-STROKE (ALL VERT) K, N, AND Y BASED ON THE POSITIONS OF THE STARTING AND ENDING POINTS
*
*
* CALL
-140-

* RCS KNYTSTA,ECHAR
* EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
 *
 *
 *
 *INPUT REGISTER. R6
 *
 *INTERNAL REGISTERS. R7-R13, R15
 *
 *
 USING XR6,R6

EXO EQU 0
REGS
D6 DSECT
XR6 CS CF
XYSP EQU X'4A'
XYEP EQU X'40'
CS 3F
CS 26H
XYE CS 10C
XYS CS 10C
CS 3F
CS 1H
CS 2C
CS 3H
CS 1C
CHAR CS 1C
KNYTST BCX
 SR R9,R9
 SR R10,R1C
 SR R11,R11
 LA R12,2
 LA R13,4
 SR R15,R15
KNYIN LA R8,0(R6,R15)
 TR XYSP+1(R8),HH5
 LH R7,XYS(R15)
 EX 0,HH5S(R7)
KNYSN CR R9,R12
 BC 8,SNX
 LR R9,R12
KNYSKY TR XYEP+1(R8),HE
 LH R7,XYE(R15)
 EX 0,HH5E(R7)
KNYEY CR R10,R12
 BC 8,SYX
 LR R10,R12
 BC 15,KNY1
KNYEN CR R11,R12
 BC 8,SNX
 LR R11,R12
KNT

*FUNCTION
*
*CISTINGUISHES AMONG 2-STROKE (1 VERT, 1 V-LIKE) K, N, AND Y BASED ON
*THE POSITIONS OF THE STARTING AND ENDING POINTS
*
*
*CALL
*
RCS KNTIA, ECHAR
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
* * *
*INPUT REGISTER. R6
 * *
*INTERNAL REGISTERS. R7, R8, R12, R13, R15
* *
* USING XR6,R6
EXO EQU 0
REGS
D6 CSECT
XR6 DS 0F
XYEP EQU X'40'
XYSP EQU X'4A'
CS 3F
CS 26H
XYE DS 10C
XYS DS 10C
DS 3F
DS 1H
CS 2C
CS 3H
CS 1C
CHAR DS 1C

KNY1T BOX
SR R15,R15
LA R13,2
SR R12,R12
KNY11 LA R8,0(R6,R15)
TR XYEP+1(R16,R8),FFE
LH R7,XYE(R15)
EX 0,FFFE(R7)
KNY1NY TR XYSP+1(R16,R8),FFS
LH R7,XYS(R15)
EX 0,FFFS(R7)
KNY1J CR R12,R13
BC 8,NKNY1
LR R12,R13
KNY12 BXLE R15,R13,KNY11
YKNY1 EQU *
MVI CHAR,C'Y'
BC 15,BEXIT5
KKNY1 EQU *
MVI CHAR,C'K'
BC 15,BEXIT5
NKNY1 EQU *
MVI CHAR,C'N'
BEXIT5 BEXIT EX0
FFE CS 0H
DC 8X'00'
*FUNCTION
*
*DISTINGUISHES AMONG 2-STROKE (ALL VERT) K, V, X, AND Y BASED ON THE
*POSITIONS OF THE STARTING AND ENDING POINTS
*
*CALL
* RCS KVXYTA, ECHAR
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7, R8, R12, R13, R15
*
*USING XR6, R6
EXO EQU 0
REGS
C6 DSECT
XR6 DS 0F
XYEP EQU X'40'
XYSP EQU X'4A'
CS 3F
DS 26H
XYE CS 10C
CS 10C
DS 3F
DS 1H
DS 2C
DS 3H
CS 1C
CHAR CS 1C
KVXYT BOX
SR R15, R15
LA R13, 2
SR R12, R12
KVXY1 LA R8, 0(R6, R15)
TR XYEP+1(1, R8), EEE
LH R7, XYE(R15)
EX 0, EEE(R7)
KXY TM XYSP+1(R8), X'C3'
BC 1, KKVXY
BC 12, KVXY2
KVXY3 CR R12, R13
BC 8, VKVXY
CR R15, R13
BC 8, XKVXY
LR R12, R13 SET J=1
KVXY2 BXLE R15, R13, KVXY1
XKVXY EQU *
MVI CHAR, C'X'
BC 15, BEXIT6
KKVXY EQU *
MVI CHAR, C'K'
BC 15, BEXIT6
VKVXY EQU *
MVI CHAR, C'V'
BC 15, BEXIT6
YKVXY EQU *
MVI CHAR, C'Y'
BEXIT6 BEXIT EX0
EEE DS 0H
DC X'O8'
*FUNCTION
*
*DISTINGUISHES BETWEEN 3-STROKE (2VERTS, 1 V-LIKE) OR 4-STROKE (ALL
*VERT) M AND W BASED ON THE POSITIONS OF THE ENDING POINTS
*
*
*CALL
*RCS MWTAECHAR
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*
*INPUT REGISTERS
*
*C(R6) = ADDRESS OF THE TOP OF CHAREC'S INTERNAL PARAMETER LIST
*(PASSED DOWN DIRECTLY FROM CHAREC, NOT SET SPECIFICALLY IN
*REC)
*C(R13) = NO. OF STRCKES - 1
*
*
*INTERNAL REGISTERS. R8, R9, R11, R12, R15
*
*USING XR6, R6
EX0 EQU 0
REGS
D6 DSECT
XR6 DS OF
XYEP EQU X'40'
DS 3F
DS 26H
XYE DS 10C
DS 10C
DS 3F
DS 1H
DS 2C
DS 3H
DS 1C
CHAR DS 1C
MWT BOX
SR R15,R15
SR R9,R9 J
SR R11,R11 K
LA R12,1
MW1IN SLL R15,1
LA R8,0(R6,R15)
TR XYEP+1(1,R8),GGE
LH R8,XYE(R15)
EX 0,GGE(R8)
MW11G LA R9,1(0,R9) J=J+1
BC 15,MW11
MW13G LA R11,1(0,R11)
MW11 SRL R15,1
BXLE R15,R12,MW1IN
CR R9,R12
BC 6,MWW
CR R11,R12 J=1
BC 6,MWW K NOT 1
MWM EQU *
MVI CHAR,C'M'
BC 15,BEXIT4
MWW EQU *
MVI CHAR,C'W'
BEXIT4 BEXIT EX0
GGE DS OH
DC BX'04'
CC X'08'
DC 2X'04'
CC X'00'
DC X'08'
CC X'04'
CC X'04'
CC X'00'
GGE DS OF
BC 15,MW11Q
BC 15,MW11
BC 15,MW13Q
END
PSTEST

FUNCTION

* DISTINGUISHES AMONG COMMA, APOSTROPHE, AND NORMAL SIZE CHARACTERS.
* NORMAL SIZE IF ITS HEIGHT IS GREATER THAN 3/8 OF THE NORMALLY EXPECTED
* CHARACTER HEIGHT (*CHAREC* SETS DYM = 3/2 NORM CHAR HEIGHT). COMMA IF
* TOP OF CHARACTER IS IN THE LOWER 5/8 OF A CHARACTER SPACE, OTHERWISE
* APOSTROPHE. IF COMMA, CHARACTER CENTER IS SHIFTED UPWARD BY
* (NORMAL CHARACTER HEIGHT/4) RASTERS.

*CALL

RCS PSTEST,ECHAR

*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED

*INPUT REGISTER. R6

*INTERNAL REGISTERS. R8, R9, R15

* USING XR6,R6

EXO EQU 0
REGS
C6 DSECT
XR6 DS OF
 DS 3F
 DS 17H
DYC DS 1H
 DS 2H
YTC DS 1H
 DS 5H
 DS 20C
WIDTH DS 1H
HEIGHT DS 1H
 DS 2F
 DS 1H
 DS 2C
 DS 3H
 DS 1C
CHAR DS 1C
 DS 54C
 DS 14H
DYM DS 1H
SYMT

*FUNCTION
*
*RECOGNIZES GEOMETRIC SYMBOLS BASED FIRSTLY ON THE NO. OF TIMES EACH
*16-DIRECTION (THE SAME AS THE DIRECTIONS IN THE INK TRACK) OCCURS,
*THEN ON NO. CF TIME-CORNERS, THE 4-DIRECTION SEQUENCE, SEPARATION BET-
*WEEN STARTING AND ENDING POINTS, AND ASPECT RATIO.
*
*
*CALL
* RCS SYMTA,ENOCHAR,ECHAR
*EXIT NOCHAR WHEN THE SYMBOL IS NOT ONE OF THE GEOMETRIC SYMBOLS
*EXIT CHAR WHEN A GEOMETRIC SYMBOL IS RECOGNIZED
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7-R13, R15
*
*
USING XR6, R6

EXO EQU 0
EX4 EQU 4

REGS

D6 DSECT
XR6 DS OF
 CS 2F
CCDE DS 1F
 DS 10H
N DS 1H
 DS 5H
DXC DS 1H
DYC DS 1H
 CS 8H
 CS 20C
 CS 3F
 CS 1H
 DS 2C
NCUSP DS 1H
 DS 2H
 DS 1C
CHAR DS 1C
 DS 6C
XSP DS 10C
YSF DS 10C
XEP DS 10C
YEP DS 10C
 CS 8C
 DS 21H
 CS 1F
 DS 6C
 CS 1H
 DS 1F
 DS 20C
D0 DS 1H
D1 DS 1H
D4 DS 2H
D7 DS 1H
D8 DS 1H
C9 DS 1H
 DS 2H
D12 DS 1H
 DS 2H
D15 DS 1H
CN DS 1H
NTCUSP DS 1H
SYMT BOX
 SR R8,R8
 LH R9,0N
 LA R15,5
 CR R8,R15
 LR R12,R9
 LH R13,0N
 LR R15,R13
 SRL R15,2
 SR R13,R15
*C(R12) = 0.2 (NO. OF DIRECTION OCCURANCES)
*C(R13) = 0.75 (NO. OF DIRECTION OCCURANCES)
*IS NO. OF HORIZ GTR 0.2 ON?
 LH R7,0R
 AH R7,0R
 CR R7,R12
 BC 2,BOXTRI YES
*NO, IS NO. OF HORIZ IN 1 DIRECTION GTR 1/8 ON?
 LH R8,0N
 SRL R8,3
*NEARLY RIGHT-DIRECTION
 LH R7,D0
 CR R7,R8
 BC 2,RIGHT
 LA R10,2
 SR R9,09
 LA R11,2
NEARR LH R7,D0(R9)
 CR R7,R8
 BC 2,RIGHT
 BXLE R9,R10,NEARR
 LA R11,18
 CR R9,R11
 BC 10,NOTSQ
*NEARLY LEFT-DIRECTION
 LA R9,14
 B NEARR
*NO
*IS NO. OF 4 MAIN DIRECTIONS LESS THAN 1/8 ON?
NOTSQ LH R7,0R
 AH R7,0R
 AH R7,0R
 AH R7,D12
NO, IS IT GTR 0.2 DN?
CR R7,R12
BC 2,ROUND YES
LA R10,256
BC 15,ROUND

IS NO. OF 4 MAIN DIRECTIONS AT LEAST
3/4 DN?
BOXTRI AH R7,D4
AH R7,D12
CR R7,R13
BC 10,BBOX YES

NO, IS NC. OF VERTS GTR 1/4 DN?
LH R9,DN
SRL R9,2
LH R7,D4
AH R7,D12
CR R7,R9
BC 2,BBOX

NO
IS NO. IN 1 HORIZONTAL DIRECTION
PLUS 2 OTHER DIRECTIONS AT LEAST 3/4 DN?
FIRST FIND HORIZ. DIRECTION
LH R7,DC
CR R7,R12
BC 10,RIGHT
LH R7,D8
CR R7,R12
BC 4,ROUND

R7 HAS NO. OF RIGHTS OR LEFTS
FIND DOWNWARD DIRECTION
RIGHT LA R9,20
LA R10,2
LA R11,3C
DOWN LH R8,DO(R9)
AH R8,DO-2(R9)
CR R8,R12
BC 10,DOWNX
BXLE R9,R1C,DOWN

NO SUC H DOWNWARD DIRECTION
BC 15,ROUND

R9 CON TAINS DOWNWARD DIRECTION CODE
R8 CON TAINS NO. OF DOWNWARDS
FIND UPWARD DIRECTION DIRECTION
DOWNX AR R7,R8
LA R15,24
CR R9,R15
BC 2,DGTR12
BC 4*DLSS12
*DOWNWA RD DIRECTION IS 12
*UP DIR ECTION MUST BE 3, 4, OR 5
LA R9, 6
LA R11, 10
BC 15, UP
*COWN D IR. IS 10 OR 11
**UP DI R. MUST BE 4, 5, OR 6
CLSS12 LA R9, 8
LA R11, 12
BC 15, UP
*COWN D IR. IS 13 OR 14
*UP DIR * MUST BE 2, 3, OR 4
DGTR12 LA R9, 4
LA R11, 8
*FIND UP DIRECTION
UP LH R8, DO(R9)
AH R8, DC*2(R9)
CR R8, R12
BC 10, UPX
BXLE R9, R10, UP
*NO SUC H UPWARD DIRECTION
BC 15, ROUNDD
*R7 CON TAINS NO. CF HORIZ. ? DOWNS
*R8 CON TAINS NO. OF UPWARDS
*IS TOT AL HORIZ. UPS, AND DOWNS
*GREATERN THAN 3/4 DN?
UPX AR R7, R8
CR R7, R13
BC 12, NOTISQ
*TRIANGLE, TRAPAZOID, OR ELLIPSE
*TRIANGLE IF HORIZ NOT GTR 0.375 DN
LH R7, 00
AH R7, 08
LR R15, R13
SRL R15, 1
CR R7, R15
BC 12, TRI
*CHECK TIME CORNERS FOR TRAP
CLI NTCUSP+1, X*02
BC 2, TRAPXX
B ELPSX
*SYMBOL NCT BOX OR TRIANGLE
*TEST FOR CIRCLE OR ELLIPSE
*CR TRAPAZOID
*4-ANGL E SEQUENCE MUST BE
*0-3-2-1 OR 2-3-0-1
ROUND CLI CODE, X*B1
BC 9, OKSYM
CLI CODE, X*39
BC 8, OKSYM
*3-2-1- C
CLI CODE,X'4E'
BC 8,CKSYM
*2-1-0- 3
CLI CODE,X'93'
BC 8,CKSYM
*1-0-3- 2
CLI CODE,X'4E'
BC 8,CKSYM
*3-0-1- 2
CLI CODE,X'C6'
BC 8,CKSYM
*0-1-2- 3
CLI CODE,X'18'
BC 8,CKSYM
*1-2-3- 0
CLI CODE,X'6C'
BC 8,CKSYM

*IS THIS A POTENTIAL PBOX?
LA R9,256
CR R9,R10
BC 8,PBOXX

*TEST FOR NARROW TRAPEZOID
*NO MORE THAN 4 ANGLES
*MOSTLY HORIZONTAL
*CLOSE ENDPOINTS
CLI N+1,X'C4'
BC 2,NOSYMX
LH R7,00
AH R7,D0
AH R7,D15
AH R7,D8
AH R7,D7
AH R7,D9
LH R9,0N
SRL R9,1
CR R7,R9
BC 4,NOSYMX
CLI NTCUSP+1,X'C2'
BC 12,XELPS
LA R10,128
BC 15,PBOXX

*DECIDE IF ELLIPSE
*ARE ENDPOINTS SEPARATED VERTICALLY
XELPS LH R7,0SP
SH R7,YEP
LPR R7,R7
SLL R7,1
CH R7,DYD
BC 4,ELPSX
NCSYMX BEXIT EXO
*DECIDE BETWEEN CIRCLE AND ELLIPSE
*AND TRAPEZOID

CLISYM CLI NTSCUP+1,X'02'
BC 2,TRAPXX
LH R7,DCY
SLL R7,1
CH R7,DXC
BC 2,CIRCX

ELPSX EQU *
MVI CHAR,X'76'
BC 15,BEXIT7

BCXX EQU *
MVI CHAR,X'73'
BC 15,BEXIT7

CIRCX EQU *
MVI CHAR,X'74'
BC 15,BEXIT7

TRIX EQU *
MVI CHAR,X'75'
BC 15,BEXIT7

TRAPXX EQU *
MVI CHAR,X'78'
BC 15,BEXIT7

*TEST FOR CLOSENESS OF ENPTS

PBOXX LH R7,XSP
SH R7,XEP
LPR R7,R7
SLL R7,1
CH R7,DXC
BC 2,NOSYMX
LH R7,YSP
SH R7,YEP
LPR R7,R7
SLL R7,1
CH R7,DCY
BC 2,NOSYMX
LA R9,128
CR R9,R10
BC 8,TRAPXX

XXPBOX EQU *
MVI CHAR,X'77'

BEXIT7 BEXIT EX4
END
TILDT

FUNCTION

RECOGNIZES TILDA BASED ON CHAR. HEIGHT, ASPECT RATIO, AND FIRST FOUR DIRECTIONS.

ALTHOUGH THIS ROUTINE ENCOPORATES ALL THE CODE FOR RECOGNITION, IT PRESENTLY ALWAYS TAKES THE NOT TILDA EXIT.

CALL
RCS TILDTA,ENOTTIL,ETIL

EXIT NOTTIL WHEN THE CHARACTER IS NOT A TILDA
EXIT TIL WHEN THE CHARACTER IS A TILDA

INPUT REGISTER. R6
INTERNAL REGISTER. R7

USING XR6,R6

EXO EQU 0
EX4 EQU 4
REGS
C6 DSECT
XR6 CS 0F
CS 2F
CCDE DS 1F
DS 17H
CYC DS 1H
DS 4H
ASPR DS 1H
DS 3H
DS 20C
DS 3F
DS 1H
DS 2C
DS 3H
P DS 1C
CHAR DS 1C
DS 54C
DS 14H
CYM DS 1H
TILCT BOX
LH R7,DYM
SRL R7,2 1/4 DYM
CH R7,DYC
BC 4,NOTIL
CYC LE SS THAN 1/4 CYM
CLI APR+1,X'02'
BC 2, NOTIL
CLI ASPR+1, X'01'
BC 4, NOTIL

* ASPEC T RATIO IS BETWEEN 1/2 AND 1/4

*TEST FOR ALLOWABLE SEQUENCES

*0-0-0- 0
CLI CODE, X'C0'
BC 8, TIL

*0-3-0- 0
CLI CODE, X'30'
BC 8, TIL

*0-3-0- 1
CLI CODE, X'31'
BC 8, TIL

*1-0-0- 0
CLI CODE, X'40'
BC 8, TIL

*1-0-1- 1
CLI CODE, X'45'
BC 8, TIL

*1-0-3- 0
CLI CODE, X'4C'
BC 8, TIL

*1-0-3- 1
CLI CODE, X'40'
BC 8, TIL

*1-3-0- 0
CLI CODE, X'70'
BC 8, TIL

*1-3-0- 1
CLI CODE, X'71'
BC 8, TIL

*1-3-1- 1
CLI CODE, X'75'
BC 8, TIL

NCTIL BEXIT EX0
*TEMPORARILY KILL TILDA
TIL BC 15, NOTIL
MVI P, X'02'

TILX EQU *
MVI CHAR, X'D0'
BEXIT EX4
END
TPXY

*FUNCTION
*
*DISTINGUISHES AMONG 2-STROKE (1 VERT, 1 HORIZ) T, X, Y, AND PLUS BASED
*CN THE POSITIONS OF STARTING AND ENDING POINTS
*
*
*CALL
*
RCS TPXYA, ECHAR
*EXIT CHAR WHEN A CHARACTER IS RECOGNIZED
*
*
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. R7-R9, R12, R13, R15
*
*
USING XR6, R6

EX0
EQU 0
REGS
C6 DSECT
XR6 DS 0F
DS 3F
DS 26H
XYE DS 10C
DS 10C
DS 3F
DS lH
DS 2C
DS 3H
P DS 1C
CHAR DS 1C
XYEP EQU X'40'
XYSP EQU X'4A'
TPXY BOX

*IS SECOND STROKE HORIZONTAL?
CLI P, X'02'
BC 8, YES
LA R9, 2(R6) VERT REF
B GO
YES
LA R9, 0(R6) VERT REF
GC EQU *
SR R15, R15
SR R12, R12
LA R13, 2
TPLUS1 LA R7, 0(R6, R15)
LH R8, XYEP(R7)
STH R8, XYE+4
TR XYE+5(1), TTE
LH R8, XYE+4
EX(R8)

TPLUS4
- TM XYSP+1(R7),X*CC*
- BC 8,T PLUS1 YS GTR 3/4 DELTA Y
- BC 1,T PLUS2 YS LESS 1/4 DELTA Y

START IN MIDDLE Y
- TM XYSP+1(R7),X*08*
- BC 1,T PLUS5
- TM XYEP+1(R7),X*CC*
- BC 9,T PLUS2
- BC 4,*TTPXY*

START IN LOWER MID Y

TPLUS5
- TM XYEP+1(R7),X*CC*
- BC 1,T PLUS2
- BC 12,*TTPXY*

START AT TCP

TPLS1
- TM XYEP+1(R7),X*CC*
- BC 8,*TTPXY*
- BC 4,T PLUS3

END AT BOTTOM
- TM XYEP+1(R7),X*03*
- BC 1,T PLUSX LEFT
- BC 8,*TTPXY* RIGHT
- BC 4,T PLUS2 MIDDLE

START AT TCP, **END IN** MIDDLE Y

START AT TCP, END IN MIDDLE Y

IS END IN RIGHT MID Y?

TPLUS3
- TM XYEP+1(R7),X*03*
- BC 5,T PLUS2

YES
- TM XYEP+1(R7),X*80*
- BC 1,*TTPXY*
- CR R12,R13
- BC 8,*TTPXY*
- BC 6,T PLUS2

TPLUSX
- LR R12,R13

TPLUS2
- BXLE R15,R13,TPLUS1
- CR R12,R13
- BC 8,*TTPXY*

TTPXY EQU *

IS VERT START IN UPPER LEFT
- CLI XYSP+1(R9),X*CO*
- BC 8,*TTPXY*
- MVI CHAR,C*T*
- BC 15,*BEXIT3*

PTPXY EQU *

IS VERT START IN UPPER LEFT
- CLI XYSP+1(R9),X*CO*
- BC 8,*TTPXY*
- MVI CHAR,X*CE*
- BC 15,*BEXIT3*

XTPXY EQU *
- MVI CHAR,C*X*
YTPXY EQU *
MVI CHAR, C'Y'
BEXIT3 BEXIT EX0
TTE CS 0H
DC X'00'
DC 2X'O4'
DC X'0B'
DC X'10'
DC 2X'O4'
DC X'0B'
DC X'10'
DC X'C4'
DC 3X'O4'

VTTE CS 0F
BC 15,TTPXY
BC 15,YTPXY
BC 15,PTPXY
BC 15,XTPXY
BC 15,TPLLS4
END

*FUNCTION *
*DETERMINES THE SET OF STROKE TYPES WHEN THE MOST RECENT STROKE IS A
*VERTICAL. BASED ON 'P' AND THE NO. OF STROKES *
* *
*CALL *
* RCS VERTSTA,EV1,EV2,EV1H1,EVINOT
*EXIT V1 WHEN THERE IS ONLY ONE VERTICAL STROKE (THE MOST RECENT)
*EXIT V2 WHEN THERE ARE 2 VERTICAL STROKES
*EXIT V1H1 WHEN THERE IS 1 VERT STROKE AND 1 HORIZ STROKE
*EXIT V1N0T WHEN THERE IS 1 VERT STROKE AND THE PREVIOUS SUBCHARACTER
* IS NEITHER VERT OR HORIZ
* *
*INPUT REGISTER. R6
*
*INTERNAL REGISTERS. NONE
USING XR6, R6

EX0 EQU 0
EX12 EQU 12
EX4 EQU 4
EX8 EQU 8

REGS

C6 DSECT
XR6 CS OF
 CS 3F
 CS 11H
SN CS 1H
 CS 14H
 CS 20C
 CS 3F
 CS 1H
 CS 2C
 CS 3H
P CS 1C

VERTST BOX
 CLI P, X'02'
 BC 8, EQ2
 BC 2, GTR2

LSS2 CLI P, X'01'
 BC 8, EQ1

LSS1 CLI SN+1, X'01'
 BC 2, GTR2 SN>1
 MVI P, X'01'
 BEXIT EX0

EQ1 MVI P, X'00'
 BEXIT EX4

EQ2 MVI P, X'00'
 BEXIT EX8

GTR2 MVI P, X'01'
 BEXIT EX12

END
APPENDIX

THE OS/360 OPERATING SYSTEM--2250 DISPLAY RECOGNITION PROGRAM

In order to modify the GRAIL recognition program for operation under OS/360 and in conjunction with a 2250 display, only CHAREC and the macros need be changed:

The following changes must be made for the program to operate under OS/360:

1) Either the GRAIL macros (see MACROS below) must be modified so that they do not require the SVC (supervisor call) command, or the GRAIL SVC's must be built into OS/360. The GRAIL SVC's are used to initiate and terminate processes, synchronize parallel processes, go to the wait state, etc., and may be replaced by the equivalent code. The macros must be added to the macro library.

2) CHAREC must be modified to await the asynchronous event of either a pendown or the expiration of the real-time interval timer. This is done by first issuing a STIMER OS/360 macro and then a WAIT OS/360 macro for the Tablet pen. If the timer expires, the ECB (Event Control Block) for the WAIT is posted with a special code and control is returned to the system. When control is returned from the WAIT, the special code is checked to see if it was posted by the timer; if not, the timer is cancelled and the pendown is processed.

The following changes must be made for the program to operate in conjunction with a 2250 display:

1) CHAREC must be modified to do its inking on the 2250. This involves formatting the x,y coordinates and writing them into the 2250 buffer. The method of erasing the ink track must similarly be modified
2) The character codes (see CRT Display Character Codes below) must be converted to EBCDIC (Extended Binary-Coded-Decimal Interchange Code). This may be done either in CHAREC prior to outputting a code, or externally to the recognition program.

CRT DISPLAY CHARACTER CODES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cl</td>
<td>A</td>
<td>81</td>
</tr>
<tr>
<td>B</td>
<td>C2</td>
<td>B</td>
<td>82</td>
</tr>
<tr>
<td>C</td>
<td>C3</td>
<td>C</td>
<td>83</td>
</tr>
<tr>
<td>D</td>
<td>C4</td>
<td>D</td>
<td>84</td>
</tr>
<tr>
<td>E</td>
<td>C5</td>
<td>E</td>
<td>85</td>
</tr>
<tr>
<td>F</td>
<td>C6</td>
<td>F</td>
<td>86</td>
</tr>
<tr>
<td>G</td>
<td>C7</td>
<td>G</td>
<td>87</td>
</tr>
<tr>
<td>H</td>
<td>C8</td>
<td>H</td>
<td>88</td>
</tr>
<tr>
<td>I</td>
<td>C9</td>
<td>I</td>
<td>89</td>
</tr>
<tr>
<td>J</td>
<td>D1</td>
<td>J</td>
<td>91</td>
</tr>
<tr>
<td>K</td>
<td>D2</td>
<td>K</td>
<td>92</td>
</tr>
<tr>
<td>L</td>
<td>D3</td>
<td>L</td>
<td>93</td>
</tr>
<tr>
<td>M</td>
<td>D4</td>
<td>M</td>
<td>94</td>
</tr>
<tr>
<td>N</td>
<td>D5</td>
<td>N</td>
<td>95</td>
</tr>
<tr>
<td>O</td>
<td>D6</td>
<td>O</td>
<td>96</td>
</tr>
<tr>
<td>P</td>
<td>D7</td>
<td>P</td>
<td>97</td>
</tr>
<tr>
<td>Q</td>
<td>D8</td>
<td>Q</td>
<td>98</td>
</tr>
<tr>
<td>R</td>
<td>D9</td>
<td>R</td>
<td>99</td>
</tr>
<tr>
<td>S</td>
<td>E2</td>
<td>S</td>
<td>92</td>
</tr>
<tr>
<td>T</td>
<td>E3</td>
<td>T</td>
<td>93</td>
</tr>
<tr>
<td>U</td>
<td>E4</td>
<td>U</td>
<td>94</td>
</tr>
<tr>
<td>V</td>
<td>E5</td>
<td>V</td>
<td>95</td>
</tr>
<tr>
<td>W</td>
<td>E6</td>
<td>W</td>
<td>96</td>
</tr>
<tr>
<td>X</td>
<td>E7</td>
<td>X</td>
<td>97</td>
</tr>
<tr>
<td>Y</td>
<td>E8</td>
<td>Y</td>
<td>98</td>
</tr>
<tr>
<td>Z</td>
<td>E9</td>
<td>Z</td>
<td>99</td>
</tr>
</tbody>
</table>

Numbers

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Hex</th>
<th>Number Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>F2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>F3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>F4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>F5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>F6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>F7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>F8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>F9</td>
<td>9</td>
</tr>
</tbody>
</table>

Special Hex Symbol Code

<table>
<thead>
<tr>
<th>Special</th>
<th>Symbol Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erasure</td>
<td>72</td>
</tr>
<tr>
<td>Cannot Interpret</td>
<td>☑</td>
</tr>
</tbody>
</table>
REGISTER ASSIGNMENT

Registers are referred to as RO, R1, ..., R15, rather than as 0, 1, ..., 15. The equivalence is made by the macro REGS (see MACROS below).

R1 through R5 have special system assignments:

R1 is the contextual base-register.
R2 is the read-only code base-register.
R3 is the data base-register for data defined within a given context.
R4 is an address argument register, and is used in process calls.
R5 is used in macro and process calls, and as the address argument register for SS instructions with two formal parameters.

R6 has a special assignment in REC and the RCS's--it is locally loaded by REC to reference DSECT type label descriptions of CHAREC's data.

PROCESSES

CHAR

CHAR is an interface process between a Tablet input device and the recognition program on one side, and an application program on the other. It allows its parent process (the application program) to interact with the Tablet by providing a convenient level of control. In addition to providing CHAREC outputs (see CHAREC outputs below), CHAR provides the raw Tablet data to the user. CHAR is a read-only reentrant process that uses two other read-only processes--CHAREC (see p. 20), a reentrant process, and TABLET, a serially re-usable process (i.e., each use must wait for the hardware device to be free), which communicates with the Tablet.
CHAR allows the following user controls:

- Permit/inhibit inking (stylus tracking) by CHAREC.
- Permit/inhibit character recognition.
- Permit/inhibit halting CHAREC.
- Permit/inhibit providing raw data to either CHAREC, or the user.
- Specify ink vector length.

CHAR has the following parallel task exits:

- Match (coincidence of the virtual tablet stylus and displayed data) detected—similar to a light pen strike.
- Keyboard character detected (for optional keyboard device).
- Penup detected.
- Raw data buffer filled.
- Character recognized.
- Character not recognized.

CHAR has the following terminal exits:

- Normal termination exit.
- Error exit (channel multiplex or device error).

CLOCK

Function. This process acts as a real-time clock that is turned off (takes the terminal turned-off exit) by CHAREC as a result of a pendown, or sets an alarm (takes the expired parallel task exit) if the 360 real-time clock runs longer than a prespecified time before a pendown occurs.

Call.

INST ACLK, CLKA, FWAITBX, ITIME, EEXP, ETOFF
ACLK is a linkage between CHAREC's context and CLOCK's context.
CLKA is a link to CLOCK.
WAITBX is CHAREC's PSG.
TIME is the time at which CLOCK takes the expired exit.
Exit EXP is the expired (parallel) exit.
Exit TOFF is the turned-off (terminal) exit.

MACROS

BEXIT

*FUNCTION
*
*RETURN FROM A REMOTE CODE SEQUENCE
*
*
**MACRO DEFINITION
*

MACRO
LABEL BEXIT &EXIT
LABEL L R2,4(R1)
EX C,&EXIT.(R5)
MEND

BOX

*FUNCTION
*
*INITIATES A REMOTE CODE SEQUENCE
*
*
**MACRO DEFINITION
*

MACRO
LABEL BCX
LABEL CSECT
USING *,R2
MEND
*
CLEAR

FUNCTION

*PARALLEL PROCESS SYNCHRONIZER. NULLIFIES THE ADVENT OF 'WATE' AND/CR

SET

MACRO DEFINITION

MACRO

&LABEL CLEAR &CNTX=I, &PSG=0
AIF (*&CNTX* EQ 'I').A

&LABEL L R5, &PSG
TM 0(R5), X'01'
BC 8, **6
SVC CRW
 NI 0(R5), X'7E'
 MEXIT
 ANCP

A

&LABEL LA R5, &PSG
TM 0(R5), X'01'
BC 8, **6
SVC CRW
 NI 0(R5), X'7E'
 MEND

EPLOG (Epilogue)

FUNCTION

TERMINATES A PROCESS

MACRO DEFINITION

MACRO

&LABEL EPLCG &EXIT, &STATE, &PSW, &ENTER
&LABEL LA R5, &EXIT
AIF ('&STATE' EQ 'S').B
SVC RETURN
MEXIT
* B
ANCP
LA R6,&PSW
LA R7,&ENTER
SVC RETSUP
MEND

INST (Instance)

*FUNCTION
*
* GENERATES THE CALLING SEQUENCE FOR A RE-ENTRANT PROCESS
*
*
* MACRO DEFINITION
*
MACRO
&LABEL INST &CNTX,&LOCN,&A1,&A2,&A3,&A4,&A5,&A6,&A7,&A8,&A9,&A10X&
&A11,&A12,&A13,&A14,&A15,&A16,&A17,&A18,&A19,&A20,&A21,&X&
&A22,&A23,&A24,&A25,&A26,&A27,&A28,&A29,&A30,&A31,&A32,&X&
&A33,&A34,&A35,&A36,&A37,&A38,&A39,&A40,&A41,&A42,&A43,&AX&
&44,&A45,&A46
LCLA &A11,&A12,&A13,&A14
LCLC &CG1,&CG2,&CG3
&LABEL LA R4,&CNTX
LA R5,&LOCN
SVC FORMAL
&CG3 SETC *
&AL1 SETA 2
&AL2 SETA 6
&AL3 SETA 1
&A ANCP
&AL1 SETA &A11+1
&AL2 SETA &A12+1
&CG1 SETC *SYSLIST(&A11)*(1,1)
&CG2 SETC *SYSLIST(&A11).&CG3*(2,8)
AIF (*&CG1* NE 'E').E
&AL3 SETA 0
AIF (&A1 GT 3).G
.F ANCP
&AL4 SETA &A11-3
&AL4 SETA &A14*4
PARL (Parallel)

*FUNCTION
*
*INITIATES A PARALLEL PROCESS. THIS PROCESS FIRST TAKES THE HIGH
*PRIORITY EXIT. WHEN THE HIGH PRIORITY TASK IS COMPLETED OR SUSPENDED,
*THIS PROCESS TAKES THE LOW PRIORITY EXIT.
*
* * *
*MACRO DEFINITION
*
&MACRO
&LABEL PARL \&CNTX=I,&LOW=0,&HIGH=0,&STATE=O,&PSW=0
AIF ('&CNTX' EQ 'F').A
&LABEL SVC PARIN
B &LOW
B &HIGH
MEXIT
.A
&LABEL SVC PARLEL
B &LOW

LH R5,10(R2)
BCT R5,**4
SLL R5,2
L R5,0(R5,R1)
AIF ('&STATE' NE 'O').B
L R1,0(R1)
LM R2,R3,4(R1)
EX 0,&HIGH.(R5)
MEXIT
.B
LA R5,&HIGH.(R5)
ST R5,&PSW+4
LA R5,&PSW
L R1,0(R1)
LM R2,R3,4(R1)
LPSW C(R5)
MEND

PAWS (Pause)

*FUNCTION
*
*TERMINATES A FLOW OF CONTROL. RESULTS IN INITIATING THE NEXT TASK ON
*THE SUPERVISOR TASK LIST, WHICH, IF THE ONLY TASK, WILL BE THE WAIT
*STATE WITH TRAPS ENABLED.
*
*
*MACRO DEFINITION
*
&LABEL MACRO
&LABEL PAWS
&LABEL SVC PAUSE
MEND
*
*
PROCS (Process)

FUNCTION
SETS UP THE PROCESS ENTRY POINT, ITS IDENTIFICATION NUMBER, AND ITS STORAGE REQUIREMENTS
*

MACRO DEFINITION
*
MACRO
&LABEL PRCCS &CLEAR=3,&CNTX=3,&AUTO=0,&ID=80000000,&PRCLG=0
&LABEL CSECT
USING *+R2
LM R2,R3,4(R4)
B &PRCLG
CC H'&CLEAR'
DC H'&CNTX'
DC H'&AUTO'
DC X'&ID'
MEND

PROLG (Prologue)

FUNCTION
INITIATES A PROCESS--PRECONDITIONS CERTAIN VALUES
*

MACRO DEFINITION
*
MACRO
&LABEL PROLG &AUTO=YES,&STATE=0,&PSG=0,&LINK=0
AIF ('&AUTO' EQ 'C') A
&LABEL CS OH
LR R1,R4
AIF ('&STATE' EQ '0') B
LA R4,&PSG
LA R5,&LINK
RCS (Remote Code Sequence)

*FUNCTION
*
*GENERATES THE CALLING SEQUENCE FOR A REMOTE CODE SEQUENCE--A PROCESS
*WITH ONLY REGISTER I/O WHICH OPERATES IN THE ENVIRONMENT OF THE PARENT
*(CALLING) CONTEXT
*
*
*MACRO DEFINITION
*
MACRO

&NAME RCS &LABEL,&A6,&A7,&A8,&A9,&A10,&A11,&A12,&A13,&A14,&A15X
&ANP,&E1,&E2,&E3,&E4,&E5,&E6,&E7,&E8,&E9,&E10,&E11,&E12
&AL1 &AL2 &AL3 &CG1 &CG2 &CG3
&NAME DS OH
&AL1 SETA 1
&AL3 SETA 0
&CG3 SETC *
*D ANCP
&AL1 SETA &AL1+1
&AL2 SETA &AL1+4
&AL3 SETA &AL3+1
AIF ('&ESYSLIST(&AL1)' EQ ' ').A
&CG1 SETC '&ESYSLIST(&AL1)'(1,1)
&CG2 SETC '&ESYSLIST(&AL1).&CG3'(2,8)
AIF ('&CG1' EQ 'E').C
AIF ('&CG1' EQ 'I').B
L R&AL2,&CG2
AGCB *D
&D LA R&AL2,&CG2
AGCB *D
&A AIF (&AL3 EQ 15).C
AGOB *D
*FUNCTION
*
*GENERATES THE CODE R0 EQU 0, R1 EQU 1, ... , R15 EQU 15
*THE SYMBOLIC FORM IS USED BY THE OTHER MACROS
*
*MACRO DEFINITION
*
MACRO *
&NAME REGS
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
MEND
SET

*FUNCTION

*PARALLEL PROCESS SYNCHRONIZER—DENOTES AN EVENT HAS OCCURRED
*RESULTS IN SUPERVISOR STACKING A 'WAIT'ED TASK ON THE SUPERVISOR TASK
*LIST IF IN THE WAIT STATE

*MACRO DEFINITION

*MACRO
&LABEL SET &CNTX=I,&PSG=0
AIF (*GCNTX* EQ 'I') .B
&LABEL L R5,&PSG
AGC .A
.B ANCP
&LABEL LA R5,&PSG
.A TM 0(R5),X*01'
BO GS&SYSNDX
O1 0(R5),X*80'
B GS&SYSNDX+2
GS&SYSNDX SVC STACK
MEND

SVCS

*FUNCTION

*DEFINES PARAMETERS FOR MACROS

*MACRO DEFINITION

*MACRO
&NAME SVCS
STACK EQU 5
WAIT EQU 6
CCUPID EQU 7
FORMAL EQU 8
AUTO EQU 9
CRW EQU 20
RETURN EQU 15
PARIN EQU 21
PARLEL EQU 16
PAUSE EQU 17
MEND
*FUNCTION
*PERFORMS SEQUENCES OF TESTS ON ENCODED 1-BYTE FEATURES
*
*MACRO DEFINITION
*
MACRO

LCLA \&AL1, \&AL2
LCLC \&CG1, \&CG2, \&CG3, \&CG4, \&CG5
AIF ('&LABEL' EQ '').0

&LABEL EQU *
.C ANOP
&AL1 SETA 0
.A ANOP
&AL1 SETA &AL1+1
AIF ('&SYSLIST(&AL1)' NE '').8
MEXIT .B ANOP
&CG1 SETC '&SYSLIST(&AL1)'(1,1)
AIF ('&CG1 GT 'Z').C
&CG2 SETC '&AL1='
&CG3 SETC '
&CG4 SETC '&SYSLIST(&AL1)'(2,2)
AIF ('&CG4 EQ 'EX').E
DC &CG2&CG4&CG3
&AL1 SETA &AL1+2
&CG2 SETC 'X***'
&CG3 SETC '****
&CG4 SETC '&SYSLIST(&AL1)'(1,2)
DC &CG2&CG4&CG3
&AL1 SETA &AL1-1
&CG2 SETC '&AL1='
WATE (Wait)

*FUNCTION
*
*WAITS FOR AN EVENT TO OCCUR, THEN FLOW OF CONTROL CONTINUES.
*IF AN EVENT HAS ALREADY OCCURRED (SEE 'SET'), THEN THE FLOW OF
*CONTROL CONTINUES UNINTERRUPTED
*
*
*MACRO DEFINITION
*

MACRO

&LABEL WATE &CNTX=I,&PSG=O
AIF (*&CNTX* EQ 'F')*.A
&LABEL LA R5,&PSG
AGC *.B
.A
&LABEL L R5,&PSG
.B
TM C(R5),X*80*
BZ GSYSNDX
NI C(R5),X*7F*
B GSYSNDX+2

GW&SYSNDX SVC WAIT''

MEND
REFERENCES

