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ABSTRACT )
-Gas dynamics is defined as the science of motion at great pressure
difterentials and high velocities, velocity being measured in terms
of the speed of sound. The book confines itself to specific phenomena
of gas dynamics, i.e., those which have nc analogies in the mechanics
of an incompressible liquid. Emphasi: is placed on careful definition
of the fundamentals of gas dynamics, fundamental laws, and methods of
solving simplest problems, rather than an the computational methods
of gas dynamics or methods of numerical intugration of complex two-
and three-dimensional flows, etc. Attention is devoted to problems
of flow around bodies moving at great speeds, motion of a gas in ducts
such as nozzles and pipes, ard compressibility of the moving medium.
The second main topic is shock wates considered under the theory of
shock waves, shock wave laws, and the problem of the destructive
effect of explosions and propagation of the explosion on the explosive
substance (capable of chemical reaction), The authcr intends the text
to also serve as an introduction to tne theory of explosions. =
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THEORY OF SHOCK WAVES AND INTRODUCTION TO GAS DYNAMICS
By
Ya, B. Zel'dovich
Infroduction

Gas dynamics is a component part of hydrodynamics, the science of fluids, liquids
and gases,

A particular feature of gas dynamics is the need to keep account of the compressi-
bility of the medium. Liquids may be considered incompressible under normal circum-
stances, whereas gases change their volume considerably aven under a slight variation
in pressure,

It is obvious that specific formulas and laws of gas dynamics have to be applied to
gases only insofar as we are Gealing with pressure changes of great magnitude,

In the case of small velocities, the motion of gas can be regarded in the same way
as the motion of a liquid, i.e., ignoring the change of volume and compressibility.

Depending; upon the condition, the order of magnitude of pressure differentials
arising in a flow changes from pu®/2 the value of dynamic impact according to Bernoulli's
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formula, to puc, where c is the speed of sound, u is the speed of motion and p is gas
density. Gas pressure is approximately equal to pc2,

If we juxtapose the expressions, we see that at subsonic velocities the pressure
differentials are small as compared with pressure proper and, consequently, we may
therefore, as a rule, ignore the compressibility of the medium,

Following is a definition of the scope of gas dynamics. Gas dynamics is the .
science of motion at great pressure differentials and high velocities, velocity being

! measured in terms of the speed of sound.
: In similarity theory we have the following ratio between motion and speed of sound:
u/c =Ba
‘ where Ba is known as the Barstow criterion.
Gas dynamics studies motion and Ba values close to unity., If Ba is considerably

smaller than 1, the general equation of gas dynamics becomes those of hydrodynamics of

an incompressible liquid.
It will be assumed in the following that laws of hydrodynamics of an incompresaible
liquid are known, and we shall therefore not dwell on the derivation of the corresponding

formulas.
To take account of compressibility means .hat one also has to take account of the

R R e 4

change in the state of the medium. In hydrodynamics the action of dissipative forces
(viscosity) leads to a release of heat in the liquid and to a change in its temperature, but
it does not lead to 2 change in volume: the cl;anges within the liquid have no inverse
effect on the nature of the flow and have little importance for the phenoniena investi-
gated in hydrodynamics.
In gas dynamics, instead, we skall continucusly deal with changes in the state oi
the medium in the flow proper. This aspect of gas dynamics requires that any and all .
phenomena be also investigated from a thermal dynamic point of view; thue, thermody-
namics is totally indispensable for the study of gas dynamics
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In the present book we shall deal only with specific phenomena of gas dynamics,
i.e., such that have no analogies in the mechanics of an incomyressible liquid. We
shall not dwell on those subjects in which gas dynamics and the consideration of com-
pressibility give only slight correction for the conventional formulas of hydrodynamics
of an incompressible liquid. The emphzsis in the present book will be on the careful
definition of the fundamentals of gas dynamics, of the fundamental laws, and of the methods
for solving the simplest problems, rather than on the computational methods of gas
dynamics, the methods of numerical integration of complex ;wo- and three-dimensional
flows, etc. We shall proceed here from the simple to the complex, rather than from
general problems to particular ones. Instead of writing first the equations of gas dy-
ramics in their most general form (taking into consideration all the factors), searching
for general solutions and then, by simplifying these solutions, going on to the particular
solution of simple cases, we shall sclve simple, elementery problenys that describe
certain aspects of some phenomena, and then, by means of these individual partial
solutions piece together the solution of more complex ;ohlems,

We can outline the follcwing, fundamental fields of application of gas dynamics,
The first, which today is the better known and more developed one, ccmprises problems
of flow around bodies moving at great speeds. This involves, first of all, the correc-
tions in ordinary formulas of resistance and lift for bodies moving »t subsonic speeds,
i.e,, corrections that are already applicable to contemporary aviation, A radical
change in flow around bodies occurs when we deal with velocities exceeding the speed
of sound. These speeds are involved in ballistics, i.e., the science of the motion of
migsiles and projectiles, and also in the study of rocket aircraft of the near future,

This application of gas dynamics to the problem of the motion of a body in a gas
at speeds of thc order of the speed of sound or exceeding it is dealt with in detail in
text books, hence we shall deal with it only marginally here.

The second, extremely important field is that of the motion of a gas in ducts, such
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as nozzles and pipes, Again, gas lynamics becomes indispenssbie if and when ths
velocity of the gas attains or exceeds the speed of sound. In thie field, the nature of
the flow, and the dependance of velocity and flow rate on pressure drop, are subject to
qualitative changes. This group of problems is of great significance for the theory of
turbines, jet engines and missiles.

A peculiar field of gas dynamics based on the consideration of the compressibility
of the moving medium is the teaching on sound — acoustics. The velociiy of the madium
and the amplitude of pressure changes under the effect of sound are very small, Never-
theless, consideration of compressibility becomes indispensable when studying the initial
stages of any motion, and when studying rapidly changing, especially periodical motion.

Shock waves are of particulzr interest from various points of view, and they will
be one of the main subjects of the present book. On the one hand, wherever the attempis
of integrating eqations without introducing discontinuities (i. e., shock waves) lead to
paradoxes which make it imposs’ble to solve these equations, the theory of shock waves
eliminates the paradoxes and makes it possibl : to design a regime of motion under any
conditions.

On the other hand, the shock waves themselves are a paradoxical phenomenon.
They are paradoxical in that, without introducing any assumptions regarding dissipative
forces (viscosity and thermal conductivity), from elementary considerations we can
derive shock wave laws which include the increase in entropv, i.e., laws which in-
clude the irreversibility of the processes occurring in shock waves.

From this point of view shock waves afford a considerable logica: and scientific
interest, irrespective of their application.

It is worth noting that ail basic relations and fundamentsl concepts have been
established from the study of the generzal equations of gas dynamics some 50 years ago,
at a time, that is, when there existed no experimental material, and long before shock
waves were investigated by researchers.

As Emile Jouguet once saidin & very poignant figure of speech, "the shock waves

4
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first é.ppearod\on the point of the pen of a theoretician,."

We cannot but marvel at the keen analysis and theoretizing power of the great minds *

of the past century, first of all of the German mathematician Bernhard Riemann, the
English physicist Riakineand the French artillerist Hugoniot; from different approaches
and independently of one another tuey have created the theory of shock waves which, to

this day, has not lost its significance.
Firally, the interest in shock waves has increased over recent years in connection

with the problem of the destructive effect of explosions and the propagation of the ex-
plosion on the exploeive substance (capable of chemical reaction). It is necessary to

know exactly the coadition of the substance compressed by the shock wave, the rate of
compression and s‘milar properties of the wave. The present book is an introduction

to the theory of explosions.

It is the author's pleasant duty to express his gratitude to Prof. N. N, Andreyev,
B, P. Konstantinov, L. D. Landau, M. A. Sadovskiy, O. M. Todes and Yu. B. Khariton
for going over his manuscript and giving valuable advice.

Literature: Popular introduction to hydrodynamics {22};* some general manuals

on gas dynamics [4, 23, 23, 27, 39, 106].

*
Figures in brackets correspond to the numbers of the bibliography.
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Chapter 1
Gas Dynamics Equations
We set up gas dynamics equations and neglect the effect of the force of gravity

¥ and also (see below) that of .viscosity and thermal conductivity. For the sake of sim-
3 plicity we shall write the equation for the one-dimensional case; gemeralization to
two and three-dimensional cases will then not be difficult.

We begin with the contimmity equation, i.e., the equation that expresses the law

bt DA

of conservation of matter.

We denote, as usual, by d/dt the substantial derivative in time, i.e., the deri-
vative taken for the given particle along its path, and by 3/st the local derivative ir
time which characterizes the change of the studied quantities at the given point in

P AL ot A S AR Ml $ 4 i e A 1 2 £

space, and write

L %= -— 9?2 ) (1-1)

LIRSS & R LRI A A
&&
I
X
3
®

or

R ) o

Both formulas are, of course, completely equivalent. To derive the first formula we
! observe the motion of the layer of matter that comprises a constaat amount of that
~ matter. The second formula is derived by observing the change in deunsity at the given
point in space,
‘The equation of motion does not differ from the equation of motion for incom-
. pressible fluids:
u : °lt"'°a"'9" —""35 @-3)
Finally, the third equation is substantially new; it represents a characteristic
feature of gas dynamics. This is the equation of the change of state.
In the hydromechanics of incompressible fluids we added the incompressibility
equation p = const to the first two equations. How do we find the relation Letween
density and pressure in a compressible fluid?
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Density, pressure and temperature of a fluid are connected by an equation known

as the equation of state. If we know the thermal capacity, we can comnect temperature
with energy. To determine the connection between density and pressure, we must set

up another equation — the equation of energy of a fluid in motion. In the absence of dissi-
pative forces (viscosity and thermal conductivity) we have

dE=—pdv; G=—p T =—p ‘,f) % a-4'
where v is specific volume, a quantityinverseto density p.
The energy of any element of matter under investigation can only change on
account of the work of compression that is being performed on it by the surrounding
volumes of the fluid (gas).

Bearing in mind the fundamental thermodynamics equation

2
dE=TdS—pds, @-5)

from the energy equation we readily obtain for the studicd case of the absence of
dissipative forces the natural conclusion
TdS==0; == =0, (i-6)
In other words, the state of maiter changes according to the adiabatic curve, it

&l&

changes with constant entropy.
As is known, for an ideal gas with constant thermal capacity, the adiabatic
equation is
p=Ae, a-7
where k = cp/cv, k = const. It can also be found without considering entropy, and it
was found that way in 1818 by Poisson who integrated Eq. (I-4), in which for an ideal
gas we substitute Clapeyron's law
E=¢,T= R I= =2 Y 2ol dE=3 g pdv + % “ vdp. -8)
Which are the conditions of applicability of the above equations? in which the effect
of viscosity and thermal conductivity was disregarded? It is chvious, in the first place,
that in ordor to apply these equations the Reynolds and Peclet numbers must he high.
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As is known from similarity theory and hydrodynamics of an incompressible {luid, the

PR A

3 Reynolds number characte.izes the relation of inertia and viscosity. The Peclet aumber
E’ : plays an analogous role in that it characterizes the relation of molar hezt transfer of a

5

flowing fluid and the heat flows transferred by molecular thermal conductivity.
Thue, a high Reynolds number means that one may disregard viscosity in gas
dynamics equations. A high Peclet number means that thermal conductivity may be
: ignored; it means thai ulong the flow line motion takes place virtually adiabatically,
; From the molecular-kinetic theory it follows that in gases the ratio of thermal con-
: duction to volume thermal < pacity (known as therinal diffusivity) is approximately equal to

\ TIIY, b AT T
DRSSO g QUi S S S AL A A S R

P-dif ety

the viscosity to density ratio (known as kinematic viscosity). For this reasonina

ol

gas flow the Reynolds rumber is quite close to the Peclet number, and both conditions

SAIURINA IR S

(namely, a high Reyrolds number and a high Peclet number) coircide.

Following Karman we can give a tfferent formulation to the condition of a high
Reynolds number. We use the molecular expression for the viscosity coefficient

n=m=-§- edl, -9

where ! is the length of the free path of the moleculss in the gas, c' is the velocity of
rmolecules, a quantity equal in magnitude to the speed of sound, and ¥ is kinematic
viscosity (cmz/ sec).

If we subatitute the axpression for viscosity into the Reynolds number formula,

we get
Re=9f~‘=g§=3%“3“‘:“ (-10)
: where d ir. the characteristic size, U is the chatacteristic velocity of the motion in-

vy

The relation between the speed of motion and the speed of sound is known as the

© i 1y

Barstow criterion

<==Ba. a-11)
In the field of yo= dynamics interesting us, where the speed of motion is of the
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same order of magnitude as the speed of sound Ba ~ 1, the Reynolds number turus out to
be of the same order of magnitude as the ratio of the dimensions of system d to the
length of the molecule path 1.

The condition stated above according to which Re> 1, and according to which it
is possible to ignore dissipation forces (viscosity and thermal conduction), leads to the
requirement that the dimensions of the system be considerably greater than the length
of the free path of raolecuies.

We see further, however, that the fulfiillment cf that condition, i.e., a system

of large size, does in reality not always easure small dissipation forces and the possibility

of studying adiabatic pre~esses only. We shall see in the following that in the presence
of shock waves in a flow there occur exceedingly large gradients of all the quantities
studied; the magitude of these gradients does no longer depend upon the dimension of
the system, and also does not drop as the dimensions of the system increase. In these
cases, we will have to consider the possibility of changing entropy no matter how large
the Reynolds number is.

Generally speaking, the possibility of an increase in entropy does, in principle, de-
pend upon the dissipation forces; all the observed large--size properties of the flow, how-
ever. and, specifically, the numerical value of entropy increase in a shock wave, do not
depend upon the magnitude of viscosity and thermal conductivity (ithey are self-modeling
with respect to thermal conductivity and viscosity); the laws of the change of state ina
shock wave can thus be derived without investigating the structure of its front from the
equations of conservation of matter, the amount of motion and energy, applied to the
states prior and after the passage of the wave,

In the case of high Reynoilds rumbers, we could expect a considerable effect of
turbulence. In matter of fact, however, studies of the simultaneous effect of turbu-
lence and extremely high (of the order of the speed of sound) velocities are very few.

To some extent, this lack appears to be due to the complexity of such a comparatively
9
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far-out field. On the other hand, in most typical problems of gas dynamics we are faced
wita short pipes and nozzles, short bodies to be flowed around; in a short pipe turbulence
has no time to develop, even if the Re number is high. Finally, in the hydrodynamics of
small velocities, with Ba < 1, the formation of eddies and turbulence is the only resistance
mechanism for Re >>1; their consideration is absolutely necessary for studying the forces
affecting a body movirg {5 & {imd, In the case of supersonic speeds there occurs what is
known as wave resistance and the possibility of irreversible dissipation of erergy in
steady-state shock waves; a resistance different from 0 may be found also without studying
turbulence. 4
Appendix
In order to determine the applicability of Eq. (I-1) - (i-6), Ist us take the general
form cf gas dynamic equations (see, for instance, {23, 27]).
The equation of motio: has the form:
| e S a-12)
where the quantities X, Y,Z are components of volumetric force applied to a unit of mass,
and the quantities T, ., Txy’ and so forth, are components of the teneor of stresses due
to the effect of viscosity. The effect of viscosity depends on the relative motion of neigh-
boring fluid particles. From the conditions of tensor symmetry, confining ourselves to
terms proportional to the first derivatives of velocity with respect to the coordinate,
taking the invariant sum of normal stresses on three mutually perpendicuiar platforms
to be equalled to the three-fold pressure, and isolating pressure from the stress tensor,
as this already has been done in formule (-12), we arrive at the following expression for
the stress tensor:
R AL -

r4
. du, du,
T:.—“.-'i(if‘*?; .

The equations of motion with respect to the two other coordinates are found from (I-12)
and (I-13) by a cyclic shifting of indices.

10
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The coefficients in (1-13) have been chosen such that =
T, +T,+T,=0. Al %

In the one-dimensional case "‘?;
5.

o oy e du, i

u, == u(x), u,-u,—-o, -;;-—:%—_—.0 B11 %

rap o

v ek tate

iy ox—28, 43 [ -14
@ = X—Zv3o(5) a-14)

if viscosity and thermal conduction are taken into consideration, additional terms
appear also in the equation of energy: :n the general case of three-dimensional motion

(A is thermal conduction)

J(8+u,’+n,2+u,’)
e de 2 =9(u:x"~u' Y"-ll,Z)'—
o+ T+ u, T+, 7;,1-%[::,(....)-.-.,.:-

[ 2R
3,07 2,0T 0,07
LE e T L v a-15)

——[ (o)

We remind the reader that T without indices is absolute temperature. By using the con-

tinuity equation, the equations of motion in the form (I-12) and the thermodynamic re-
lation dE = - pdv + TdS, we can transform (I-15) to the following form:

TJ‘—S‘——--'T al. T '8'1""—7' 0‘. T 0., T &—

&3 oy ?x =z ¥ 0, w oy
da 9, du dn 0 ar
T Tuag— T3t —Tu3} w YEtat (116
LN Y .
"‘a,“ rr Ll 1-16)

By substituting the expressions (I-13) of the components of the tensor of viscous stresses,
we reduce the expression for the work performed by viscosity, irreversibly trans-
forming itself iuto heat in (I-16), t:, a form which shows that this quantity is essentially
positive:

07'-—-—1){("‘-0- ) (a::-t-‘—"!) -1—(0‘: +""" -+

sl =5) -G (e

L ar 3,97,
ax‘ FrIndl ‘ wrata a-17
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In the case of ope~dimensional motion
T =31(3)+L2L. a-18)
We introduce the dimensionless varisbles: coordinates referred to the characteristic
dimension of system d, velocity referred to the characteristic velocity (mean velocity
or velocity in terms of a random but definite point of the system) U, and time referred
to the quantity d/U. Wa denote the dimenrionless variables with a prime:
X=xld; u'=uly ¢=tUd. I-19)
We refer entropy to thermal conductivity of the gas: 8' =8/ cp- If we switch to the
dimensionless variables, we find:

de) _Xd 1 3 .4__ d’n .
"?"“?T eUiid ua S Lax? mlx‘ ax)]"" ‘

gg;‘ew{[(h +eee @

{utr lir_l.ii.,_“.}‘
oU T VY Trad yor

(1-~20)
The external forces are comprised in the dimensionless equations as.terms multiplied
by acharacteristic dimension.. They can be disregarded if the motion occurs at a
high speed in terms of time but 1s not exceedingly long in terms of space; the study of the motions
of a compressible fluid inthe field of gravity i= the subject of d'/namic meteorology ani willinot
betoucued uponinthisbook. Thetermswhichdes:ribetheeffectof viscosity and thermal
conductivity according to the statement on page 9 (7)-(8) have the coefficients

337=%.' and '.70537:‘ o : @-21)
where Re and Pe are the Reynolds aumber and the Peclet number.

The assumption according to which the invariant sum of normal stresses on three
mutually perpendicular platforms is not different from threefold pressure contains
certain arbitrary elements. Of course, we can always determine pressure p precisely
in that fashion, namely, as one-third of the sum of three normal stresses, but in s.ctual
fact we are taking a further step and make a physical assumption according to which
greasure so determined for a given staie of matter (definable by its composition, density,

¢hergy, entropy and temperature) does not differ in magpitude from pressure
12
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Pot measured under static conditions in a motionless gas. However, with the require-
ment of invariantness of the physical lawe with respect to the transformation of coordinates
we can readily associate the more general assumption according to which the invariant
sum of stresses depends on the invariant consisting of derivatives from velocity components
with respect to the coordinates. Such an invariant is the expression for velocity diver-
gence

divu=‘:?+?!+i:-‘-'- .
Assuming that we can confine ourseives to the highest verm (as this has already been done
when setting up the expression for viscous stresses) we get

r=p, (¢, Eyidivu.. (1-22)
For a complete characteristic of the behavior of matter it is therefore necessary to
assign two independent viscosity coefficients 1) and §.
In its most general form compatible with the invariantness of the equations, the

expression for the tensor stresses is

du, du, du, da, da,  duy
To=r (v p+ o) —255 T=—nl3+3) g

where 1)' is the magnitude of dimensionality of viscosity which, as 7, must be determined
experimentally.

Assuming arbitrarily that n' = 7.2/3, we got (I-13). In the general case, without
making this assumption, we obtain from (I-23) and {-22)

~38=31"—21. (1-23a)

The molecular kinetic theory readily describes and computes the first viscosity
coefficient (1), which is equally essential in the presence or in the absence of com-
pressibility. The quantity : is introduced on accouat of a '"cut-off" stress in the flow,
in which uy =u, = 0, uy = a + by. This stress is due to an exchange in motion between
the layers which slide one on top of the other with a different velocity on account of the
chaotic transverse motion of molecules from one layer into the other. On the basis of
these considerations, considering the layers which are at a distance equalling the length

13
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of the free path 1, so that the average velocity (the velocity of mass motion u,) differs
by the quantity (8u,/8y) 1, calculating the number of molecules passing during a time
unit from one layer to the other, and the amount of motion carried with them, we readily
find [see (I-9)].
. Ty=n ‘T;'-~nc‘m%l~cc'l-:—:4; n~ocl, 1-24)

where n is the number of molecules in a volume unit, m is the mass of an individual
molecule, ¢' is the rate of molecule motion, :

Which is the significance of the second viscosity coefficient £? £ is a factor
for the quantity div u, which by the continuity equation is identically connected with the
rate of density change of a substance:

-—%--:—"--—-div u. A-25)

Thus, & describes the dependence of preszure upon the rate of change in density, i.e.,
it describes the fact that when the volume changes the static value of pressure is not
determined immediately. The case where the second viscosity coefficient ¢ is of the
same order of magnitude as 7} needs no particular explauation: such a case corresponds
to the determination of static pressure of the same order of magnitude as the time of
free path of molecules between two collisions, nc.

There are some cases, however, in which abnormally high values of § are
encountered.

In Chapter 2 we shall investigate in detail the exiremely important example of

the molecular mechanism of 2 similar haliavior of maiter: in the presence of internal

degrees of freedom which yield additional thermal conductivity and are excitable at
a comparatively slow rate, pressure at a given density and a given energy of the gas
depends upon the degree of excitation of the internal stages of freedom. In the case

PR T

of compression (increased energy) pressu. - is somewhat grester, in the case of rapid
expansion it is somewhat smaller than the static values (which corresponds to
equilibrium excitation). The effect of this phenomenon with slow processes can be

described by formula (I-22;; the more difficult it is to excite the internal degrees
14




of freedom, and the longer their time of relaxation, the more noticeable is the effect
under study at slower rates of change of state, and the larger will be the second viscosity
coefficient &.

However, in the case of fast processes conditions are attained according to which
the use of linear formulas (I-22, 23) is already inadmissible since the time for a change
in st.te becomes comparable to or even smzller than the time of relaxation of the internal
degrees of freedom, It is necessary to introduce ie energy of excitation of the inter:al
degrees of freedom in its explicit form and find its dependence on time by solving ‘he
differential equation of the kinetics of extablished equilibriun: without the simplifying
assumption (admissible only in the case of a slow rate of change in parameters) according
to which the deviation from equilibrium is proportional to the ratg of parameter variation.
These problems are investigated in Chapter II (acoustice) and Chapter XIII (shock waves

in a gas with delayed excitziion). Treatment of the second viscosity coefficient has been

performed by Leontovich and Mandel'shtam {16, 17].

15
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Chapter 2
Principles of Acoustics. The Speed of Sound

In the introduction as well as in the preceding Chapter we have several times ro-
ferred to a charzcteristic value of velocity, namely, the speed of sound. As we study
the propagation of small turbu'ences, we shall show how from the ejuations of gas dynamics
3 we obtain, at the limit, the eyuations of acoustics, and how in tl!e equatious of gas dyna-~
n mics is comprised the speed of sound.

™
b

A We transform the equations of gas dynamics given above taking the rate of motion u

T

S Nenn

and the change in density to be small. The rate of motion is taken to be small as com-

i

paced with the speed of sound, u/c << 1, and the changes in density and pressure are

4
IR

taken to be small as compared with the mean values of density and pressure, i’%f: ~ ".;.’.<1.

The fluctuations of temperature in the wave in the gas are of the same order,
Furthermore, in the equations of motion we ignore the terms of an order higher
than the first one in the expansion of the aquation of state of matter by powers of 42 or
Ap (they refer to the left out ones such as 4pp); we also disregard u2 as compared with
uc ( the ratio of eliminated terms to the remaining ones is equsl to u/c).
The values of the amplitude of pressure in a sound of a certain intensity, given below,
show irrefutably that these omissions are fully permissible in acoustics.
Density is written as follows:

Q=10 +8, (I-1)
where 0s,initial density, iz taken to be a constant quantity, and the chinge in density €,
cqnuctod with the propagation of sound or, generally, perturbations (turbulence) in the
gas, we take to be a small quantity.

The equation of conservation of matter can be rewritten in the following form:

d ds dn
- 5 +(0g-+ 8) 5= =0.
o Iz, ¢ P2 (1-2)

16
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If we disregard quantities of a higher order of smallness, i.e., the products of twe

small quantities, we get

.
— T e—— °—-. e
" iz (I-3)
If we disregard, in the same fashion, terms of a higher order of smallness in the

equation of motion, we get -

Y]

___»_ i ___ Ppa
Qe3¢ - 0x - 0 "

- o o (II-4)
By differentiating the equation of conservation of matter with respect to time, and
the equaiion of motion with respect to the coordinate, we obtain a final fundamental

acoustics equation:

ﬁ — a—p— a:. -
an [ axt (n_s)
We write
»_o
2 7 (1i-5a)
and see that this equution may have two groups of solutions: a firet group
s=s(x—cl); e=e(x—c& u=ulc—ci (1-6)
p=pix—cl),
and a second group
e=x3(x t-¢d); o==o0(x1-ct) u==uflc-i-ct); (II-62)

ﬁ=P(x -+ c‘)s

which differs from the first in that under the function sign there is x + ct, instead of

x - ct, everywhere. Weunderstandc to be everywkere the positive root of %‘;« s e=--}/ 2.

%
The first group of solutions in which all the quantities depend upon the combination

x - ct, represents turbulance whnich expands toward the right, i.e., in the direction of in~

creasing values of the coordinate ». In fact, if at an instant t1 there occurred a certain

17




state (¢,, P, w) at a point x,, then at the following instant t, this same state will occur at
that point Xy where the variable x ~ct (upon which depend all the quantities C;» 7, o; of the
solution under investigation) has the same value

Q—chy==x,—cty, (U-7)

n=x-+cl—4). (I-8)

The assigned state propagates in the direction of increasing x at a velocity ¢, q.e.d.
By substituting this type of sclution into the fundamental equations, we can readily
find for this wave from (II-3)32

_c"=—00¢’o (n—9)

where the prime denotes the differentiation of function (Ii-6) with respect to the variable
x - ct. If we assume at high values of x, i.e., way ahead in an uaperturbed (nonturbulent)
gas, u=0, € =90, and ¢=2e we find for a wave propagating to the right.

[ 4 <

¢=t——-=(9——9’) —

b b (-10)

The instant pressure value is also linearly connected with density and velocity:
P—PA=%(9“9¢)=90 uc. (II-11)

Let us point out specifically that pressure is proportional to the first degree of velocity in
sound; according to Bernoulli's theorem, in a steady flow we chould have a considerably

smaller change in pressure:

—_ e u?
P=P— "5 (L-12)

Thus we draw ertremely important conclusions from formulas (1-10) ard (I-11): Ina i
wave which propagates to the right, i.e., in the direction of increasing values of the co-
ordinate x, the mass rate of motion u is positive whore the substance is compressed, and

18
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is negative where the substance is diluted or rarefied and its density is less than normal.
Likewise, for the second wave in which all the quantities depend upon the combination
x + ct, that is, for ¢ wave propagating to the left, in the direction of decreasing x, we get

“-“—8—“‘—(9 0 o (-13)

In both cases the velocity of motion i3 directed towards the direction of wave pro-

pagation where the substance is comp*essed
If at an initial instant there is assigned an arbitary distribution of density and an

arbitrary distribution of velocity of motion in space

t=0 e=0e(x); s=e()=0(x)—ep u=u(x), (I-14)

then for the two waves looked for: the firsts, =e, (x —cf), u,=u; (x—ct) and the second

2, =& (x -+ ct), uy=u,(x-1-ct), we obtain two equations

&, (x) 48, (x) = 2{x) — 0 =2(x), (O-15)
A (x)-'-uz(x)-f%‘.’—‘l-—"“—"‘: u(x). - (11-16)

The second equation, (II-16}, is obtained by applying (II-10) to € and u,, and (II-13)

to € and u,. Then we immediately obtain
2, (x—-cl)=-!-e(x——cl)+ 5> u(x—ct)
(I-17)

u, (x— ct)—— e(x ct)+ -u(x —cth

&lx-+c)= -ic(x +ct)— 2 % u(x+ cf);

u, (x-+ cl)=-—%.e(x+ cf) + -;-—u(x-!- cl).

It is not difficult also to study the reflection of an arbitrary perturbation from a

motionless (stationary) wall. To find a solution for the propagating perturbatiou
e (x—et), u (x—ct), we addawave which seemingly arrives from the other side of the wall

and propagates in the inverse direction, that is, a counterwave ¢,(x s-cf), u,(x <+ ct).

19




The form of function 6 is determined from the c-ndition of impermeability of the

reflecting wall u = 0 for x = x_,, whence

Bt’

ill (.ru, ’) -1 u, (xcu !) = 0. (n.ls)

and if we apply (II-10) and (II-13) we find

& {xers ) =2, (xer, &), (II-19)

& (x, ) =s5,(x-+ct)=¢, (xa.[“"' L«_:_'_*_'])=

£, —~x 3
=6 | Xev, | §— = =& {x—eci)=
< 1 &

Xeg ™

e x) ’ : (11-29)

:'—‘.) (X.l—z

uy (%, 8) = —u, (x.l—- 2 “’: ')- (II-204)

Ag should have been expected, density and velocity in the refle:ted wave (index 2)
at the given point at the given instant of time depend upon the values of density and
velocity in the dropping wave atthis same point at an earlier instant of time, the interval
being equal to the time required for covering the distance from the given point to the re-
flecting surface and back at the speed of sound.

Figure 1 shows the transformation of the assigned instant into the initial instant of
an arbitrary distribution of density and velocity into two waves which move in opposing
directions, and the reflection of one of them by a stationary (motionless) wall; We select,
as an instant, an initial condition in which in a certain region there is an increased pressure,
but otherwise the substance is at rest everywhere.

The consecutive series of graphsay by, @, b, a3 8, .. corresponds to the instants

=0, t=£,.-- Graphs a represent the instant distribution of deasity (the abscissa axis

2==04), and graphs b show the distribution of velocity (abscissa axis u = 0).

The theory of the propagation of spherical waves in three-dimensional space is nearly

as simple as the one-dimensional theory, as given in equations (I-1)-(II-20). The coordinate

20




x will be replaced now by r, the radius, i.e., the distance measured from the symmetry

center of motion. We investigate only spherical-symmetric motions in which each quantity

(velocity, density and pressure) depends only on time and on the distancer from the sym-

metry center and is constant on the sphere of radius r, i.e., does not depend on the radius-

vector angle drawn from the symmetry center with the coordinate axes.
particles occurs only along the radii plotted from the symmetry center.
there is no need to use vectorial designations.
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Fig. 1. Propagation
and reflection of a
rectilinear pressure
pulse along one co-
ordinate in linear
acoustics.

The equation of conservation of matter takes the foz'm4
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P

21

The motion of gas

For this reason

(1-21)
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The equation of motion does not change:
o (I-22)

By means of simpile transformations we find

Ps__ 9 .
B=a5"

&

(I-23)
In this form the equation differs fromthe simple equation (II-5). We substitute

Y
=7 (I1-24)

Then. fo: function 7, we obtain after appropriate reductions the wave equation for

one~dimensional motion

= ﬁ
3?’ o’ (II-25)
the solutions for which are already kncwn
=, (r—c)-+-ny(r+-ct). (I1-26)

Thus, the general solution for the amplitude of change of density in a spherical
wave takes the following form:

= (’ C‘) 'h(” "‘0
(I-27)

By substituting expression (I-27) into Eq. (II-23), we can readily see that it
satisfies the equation for arbitrary functions ny N, The first highly important dif-
ference between spherical waves and plane waves (i.e., one-dimensional waves in which
all the quantities depend only on one coordinate x, (see above)) consists in that the wave
amplitude during propagation fromthe center drops in an inversely proportional fashion tc
the distance from the center, see (II-27); the amplitude of a wave converging toward the
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center increases according to the same law, A drop in amplitude as the wave moves away
from the center is perfectly natural; let us take a function n, such that it be different from
zero only within a given interval of the change of quantity r —cf, a<{r—ct<b. This means
that only the substance comprised in the spherical layer of constant thickness b —a, a-t-
ct <r<a-t-ct-+(b—a), is turbulent, involved in wave motion at any instant of time. Asr
increases with increasing time, the amount of substance involved in the motion increases
proportionally to the layer volume, i.e., proportionally to r2,

The sound energy of a volume unit is proportional to the square of the amplitude.
Thus, in the absence of absorption (the transformation of sound energy into thermal energy)

the law of matter conservation leads to condition €2r2 = const, €~ r'l

, i.e., to a decrease
in the amplitude in accordance with the law mentioned above.

The second difference between spherical waves and plane waves consists in that the
simple expression (II-27) is true for the amplitude of change in densit; and pressure, but
not for velocity. Pressure and density are related by Poisson's adiabatic equation; for small

amplitudes this yields

[/
p—p°=£(9—-()°)=kg 8=c’€,

which is exactly the same as in a plane wave. However, the simple proportionality of the
speed of motion and density or pressure does not take place in the case of spherical waves
(see Eq. (II-10)).

Let us substitute into ({I-22) the expression of density in a spherical wave moving

away from the center

g==1,(r—cd)r.

Then we find

—2 (= _me—e),

(I1-28)
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In the expression for velocity there appears an additional term which disrupts the
simple proportionality of (II-10) which takes place in the propagsation of plane waves. This
fact leads to significant consequences which were first noted by Stokes.

Let us investigate a wave of finite width, which moves in a specific direction, namely,
towards increasing coordinates; after the passage of the wave, the substance returns to its
initial values of density, and then rests.

In the case of a plane wave, the dependence cf density on the coordinate inside the wave
(inside the region of &xrbulence) is not subject to any restrictions; owing to the simple re-
lation (II-10), at the point where density returns to its initial value, velocity likewise be-

comes zero.

However, inthe spherical case, condition € = 0 is not sufficient: In order that velocity
beccme zero after the passage of the wave, it is necessary that 21so the second term in

(II-28) become zero

ezh—o; [n(Qdt=|redr=0.
(I-29)

The integral in (II-29) is taken with respect to the entire width of the wave, i.e.,
with respect to the entire region in which € # 0. In formula ([I-29) we <an see that in a
spherical wave with a finite width the change in density is bound to occur with changing
signs: the integral in (II-29) wili become zero only if in one of the portions of the integration
region € is positive and in the other it is negative. The same applies also to a change in
pressure in the wave owing to a linear relation between small changes in density and
pressure, .
How can we represgent in an elementary fashion the impossibility for a spherical
wave of finite width to have compressed matter over its entire amplitude, and the causes .
for it ? The additional amount of mal:ter5 comprised in the wave is equal to Ie r*dr.
Amplitude € drops as rl thus, the additional amount of matter in a wave, in which € >0
everywhere, must increase proportionally to r as the wave propagstes. It is the amount of
matter that increases as the wave of higher density propagates which causes a wave of lower

density to follow it .
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A closer examination reveals that on the borders of the wave, i.e., where both u and
€ are very small, the quantity { is even smaller so that the relation between u and € within ‘
the boundaries of the borders of the wave is the same as in a plane wave, Finally, it can be
shown that not only a change in density but also the speed of motion u must change its sign o
inside the wave: there can be no spherical wave of finite width over the entire extension
of which the substance would be moving in the direction of increasing radius, Inside the
wave, however, the point at which the sign changes is somewhat shifted toward the symmetry
center as compared with the point at which the sign of € changes (Fig. 2).

Fig. 2. Distribution of density
and velocity in 2 spherical wave.

All this is of the greatest importance for the theory of the propagation of waves caused
by an explosion, with which we shall deal in the last Chapter of this :onograph.

In order to characterize the absolute values of pressure and velocities with which
we have to deal in acoustics, let us give a few figures. Loudiess is measured on a
logarithmic scale ir decibels (after the name of the inventor of the telephone, Graham Bell).
An increase in loudness by n decibels (abbreviated db) means that the sound intensity increases
mn/lo times; this corresponds to an increase in the amplitude of pressure, density and velocity
by 10“/20 times. Zero corresponds to the sengitivity threshold of the ear of an average person.
The rustle of leaves, or whispering have a loudness of approximately 10 db, an orchestra
playing fortissimo approximately 80 db (the sound intensity is 10, 000, 000 times greater).
An extremely loud sound of 130 db produces in the air a change in density up to 0.4%, which

corresponds to a pressure amplitude p — py==0.4, - 1.4 p, == 0.56%, p, = 56...:1 of the water

[ L
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column. The amplitude of the speed of motion of air particles attains 0, 4% of the speed of
sound, i.e., 1.3 m/sec. The amplitude of particle displacement arnounts to x —x,=
% - 0.4%,=0.6%, n, i.e., 0.06%,0f the sound wavelength y, about 0, 633 cm for a sound
with a frequency of 500 Hertz. Radiation energy equals G.1 w/ cmz. Sound travels 330 m
during m 1 sec, so that the sound energy of a volume unit at a loudness of 130 db amounts
t0 0.17330+ 100 w - sec/em® - cm =3 - 10°% 3/cm® = 0.7 . 10® cal/em®,

We point out as a comparison that the thermal energy of air under normal conditions
amounts to 0.07 cal/ cma, that is, 10° times gresater,

Thus, not only whispering but also the fortissimo of an orchestra or the roar of a lion
represent a very small shift and change in the state of the air,

The sounds perceptible to the human ear have a frequency between 20 and 20, 000
Hertz (oscillations per second), i.e., a wave length from 15mto 1.5 cm,

The speed of sound is defined by formula (H-5a).

Sir Isaac Newton in 1687 was the first to compute the absolute value of the speed of
sound from the values of elasticity and density of air already known at the time, and showed
the independence of the speed of sound from its ampiitude and frequency. Taking the Boyle-

const

Mariotte law for the relation between pressire and density pv==const, p=— =<

const ¢ npu T==const, Newton found

=}/ (—j,’éo’-),=]/ 2—916f08t 59 . awon
Direct measurements soon showed, however, that the speed of sound in the air
is almost 20% higher than the value computed by Newton. It was Laplace who explained
this discrepancy in the following way: In a sound wave compression and rarefaction occar
adiabatically, according to Poisson's adiabatic curve., Heating duriug compression and
cooling during expansion enhance the changes in pressure in a sound wave, and increase its

velocity
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(11-31)

where k = cp/cv.
We bring here a table compiled by Richardsen in 1939 {80] in which are juxtaposed
the values of the speed of sound (in meters per second) in various media, measured ex-

perimentally and computed from the isothermic and adiabatic compressibility.

Table 1
Substance State T°K ¢ observed ¢ computed k
] (m/ sec) {m/sec)
abiabatic isothermic
Argon Gas 303.1 324.0 324.2 251.2 1.667
Nitrogen Gas 273.1 33/.3 336.7 284.5 1.400
Benzol Fluid 293.1 1324 1319 1095 1,450
Teluin Fluid 293.1 1328 1317 1138 1.340
CC1 4 Fluid 293.1 935 931 774 1.46
Water Fluid 277 1407.0 — — 1. 000*
Water Fluid 313 1530. 3 - — 1.026

" .
At 4°C, maxium density of ‘wvater,

The excellent agreement with Laplace's formula proves that the change of state ina
wave is strictly adiabatic. From the apeed of sound Laplace found the thermal conductivity
of air with constant pressure and with constant voiume. Meyer ascribed the difference be-
tween cp and ¢ v of the air to the work performed by the air when it expands with heating and
with constant pressure, Proceeding from these consideraticns and from quite imprecise
experimental data, Meyer approached for the first time the definition of the relationship
mechanical work and heat, the "mechanical heat equivalent”, the numerical basis of the
law of energy conservation, Only later, under Meyer's influence, Joule performed direct
experiments which confirmed the transformation of work into heat; he also found a more

accurate value for the equivaleat. Proceeding from the measurements of the speed of sound,
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Rankine computed the thermal conductiviiy of air in 1850, three years before the exact
measurements by Ren'o (Reignaud? ?).

Particular meption should be made of the considerable difference between isothermic
& adiabatic speeds of sound in a number of fluids. In this case the difference between
cp and c, is no longer comnected with the performanace of work; instead it is connected with
the increase of internzl energy, with the overcominy of the cohesion of the fluid molacules
with thermal expansion under constant prsssure, €

Today the method of measuring the speed of sound is completely different from the one
used at Laplace's times. His contemporaries measured with a chronograph (or a timing
device) the time during which sound travels a certain distance of several kilometers. At
+ha presext Ume, instead, one works with short waves of strictly determined frequency me
w is measured by an electric circuil. At a given frequency, we will find the speed of
sound by deiermining the wavelength y in the issted substance by the formuls ¢ = pw.

The wavelength is found by placing in front of the sound radiator & sound-reflecting
plate which is slowly moved away from the source by means of a micrometric screw.
Sound intensity reaches a maximum each time that the distance between the radiator and
the reflector is traveiled by an integral number of half-waves. Another maximum is
reached at the same time by the consumption of energy by the radiatcr, recorded by
electric devices,

Of great significance for physicists and chemists is the principle (thoroughly in-
vestigated in recent years) according to which the speed of sound depends on its frequency.
If sound propagates in a gas in which a part o. the degrees of freedom is excited at a
slower rate, so that the thermal capacity of the gas depends on the rate at which the tem-
perature changes, then we have to distinguish two critical regions. In the first region,
with low vibration frequencies and a comparatively slow change in temperature, complete
equilibrium has a chance to establish itaelf while a change in state occurs in the acoustic
wave, all the degrees of freedom are excited and thermal capacity attains maximum values,

In the second region, with a sufficiently rapid excitation, i.e., with a higher sound
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frequency, some internal degrees of freadom have ao time to becorze excited. The change
of state in the gas occurs as if its thermal capacity were smaller,

The expressicn for the speed of sound in a gas is

et T e e (I-31a)
We see from this equution that for maximum values of thermal capacity the adiabatic index
k has a minimum value, hence we obtain a mirimum value for the‘speed of sound.

Thus, delayed excitation of the internal degrees of freedom, or of any part of thermal
capacity, results in the dependence of the speed of sound on frequency, i.e., in dispersion
{50].

In the case of carbon dioxide with a linear molecule (the three atoms O, C, O, are
alined in equilibrium on a straignt line), thermal capacity at room temperature c, is
3.3 R. This thermai capacity is made up of progressive heat capacity 1.5 R, rotational
heat capacity R and oscillatory heat capacity 0. 8 R, R being the gas coustant (R = 1,985
cal/degrees x mole),

Kneser's [62] measuren‘ients have shown that with frequency changing in an interval
from 10* 1/sec (10 kH) to 108 1/sec (1000kH), the speed of sound changes from 260 m/sec
to 270 m/sec, or about 4% in accordance with the change of thermal capacity c, from 3.3 R
to 2.5 R, and the change of k from 1.3 to 1. 4. It follows from these measurements that
the time for establishing equilibrium in the excitation of oscillations of a CO2 molecule
is 10”° sec. Oscillation is usually excited by one of 600, 000 collisions, the oscillating
molecule releases its energy during one of 5¢, 000 collisions with otner molecules.7

Analogous phenomena will take place in a system in which .dditional thermal
capacity, excited comparatively slowly, is resporsible for some reversible chemical re-
actions,

As an example we cite niirogen dioxide which at room temperature is in equilibrium
with nitrogen tetroxide

2NO, N, O,.
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In this case, if compresasion time exceeds the time of the reversible reaction, we must
teke into account "'chemical heat capacity” which arises from cffset disrupted equilibrium
and the release or absorption of reaction heat witk chinging pressure and temperature.

At high frequencies, instead, equilibrium "freezes" and the system behaves as a mixture
of noninert-reacting gases if the converaion of NO2 into Nzo 4 cannot occur during an
oscillation peried. In 1920 Albert Einstein {50) was the first to develop the theory of
sound dispersion applicable to these systems.

Simultaneously with sound dispersion, i.e., the dependence of the speed of sound on
frequency, there also takes place an appreciable increase in sound absorption.

The mechanism of sound absorption caa in (his case be readily clarified by examining
how expansion and contruction take place in the plane p, v (Fig. 3). Two adiabatic curves,
BAB' and CAC', intersect at the initial point A. The ﬁrqt curve corresponds to rapid
changes of state with a frozén part of thermal capacity, and the serond one corresponds
to slow equilibrium processeg. If we rapidly burn the gas, it will change to state B, If we
hold, with constant volume, the time required to excite the entire heat capacity, we will
get to point C. In the case of rapid expansion, we will follow line CA', parallel to BA, and
only after exposure for & cufficient amount of time we will again get to the initial point.
Thus, the area ABCA' describes the work which, in such a cycle, has been irreversibly
expended and changed into heat. 8
Here we studied a simplifiad cycle consisting of rapid changes of state with protracted hold-

This work is proportional to the square of the amplitude,

ing in the interval. The change of state in 2 sinusoidal sound wave with delayed excitation
of the internal degrees of freedom is described by ellipses in the plane p, v. The center of
the ellipses is the point corresponding to the unperturbed state, Figure 4 shows three such
ellipses. Ellipse corresponds to low frequency and slow oscillations. Motion is close to
adiabatic curve CAC' {cfr. Fig. 3). The width of the ellipse, which denotes maximum
deviation from equilibrium, is proportional to the rate of change of state, i.e., itis
proportional to frequency w. Cousequently, also the area of the ellipse, as well as the

portion of energy irreversibly converted to heat during one oscillation, are proportional

-~
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Fig. 3. Cyclic process in a

gas with delayed excitation of

a part of therrazl capacity.

Area ABCA' determines
energy Josses.

Fig. 4. Change of state with gas
oscillations at delayed excitation
of part of thermal capacity.

Oscillations of different frequencies:
1 - low frequency; 2 - high frequency;
3 - average frequency, oscillation
period is of the same order of mag-
nitude as thermal capacity excitation
time. Ellipse area and losses per
one cycle are maximal for average
frequency,

w. Here the behavior of matter can be described by the second viscosity coeffieient

proportional to wz, since oscillation time and wavelength are proportional to 1/w.
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to w, hence sound absorption at a distance equal to wavelength g is also proportional to

{Chapter 1, Appendix). Sound absorption referred to a unit of time or a unit of length is
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In the second limiting case of extremely rapid oscillations we obtain ellipse 2; the
energy of the internal degrees of freadom manages to change only by a very small value,
and the entire ellipse is very close to adiabatic curve BAB'. The width of the ellipse is
proportional to the amplitude of the change of energy of the internal degrees of freedom, and
the amplitude, in turn, is proportional to the time during which this energy is accumulsted,

i.e., it is proportional to the oscillation period, and also to w'l. .

The highest values of energy absorption during one oscillation are obtained with such
ogcillations the period of which is close to the time required for establishing equilibrium,
i.e., when sound dispersion is greatest. In Fig. 4 this case is represented by ellipse 3,
the width of which is of the same order of magnitude as the distance between the adiabatic
curves BAB' and CAC' for maximum pressure amplitude. With slower oscillations the
change of state approaches equilibrium state, and the losses during the cycle drop like
w does. With faster oscillations, the system is nearly all the time far away from the
equilibrivm state, excitation of internal energy occurs irreversibly, but because of the
rate of the cycle it exceeds the cycle only slightly, and the losses per cycle are ~ wl,

In the second region (high frequencies), the losses referred to a unit of time tend
toward a constant value, If the thermal capacity of the internal degrees of freedom is of
the same order of magnitude as the entire thermal capacity, sound intensity fades to 1/e
during a time equivalent to the time required to excite the internal degrees of freedom r.

Maximum absorption and the behavior of matter at these high frequencies in the
second region, where m>—:—. cannot be described by the second viscosity coefficient;
they require, instead, practical concepts regarding the presence and properties of the
internal degrees of freedom. A vast literature regarding dispersion and absorption of
sound has become available over the recent years; in this beok we can only refer to the
thorough review by Richards [80). .

In a system which has no delayed excitzation of the internal degrees of freedom, the
fundamental reasons for sound absorption are viscosity and thermal conductivity of the

substance, The absorption factor on one wavelength (during one oscillation) is
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proportional to the frequency and inversely proportional to the wavelength . In the case
of gases it approaches 1 as an order of magnitude, when the length of the wave approaches
the length of the molecule path in the gas 1, so that we can write it as /4. This expression
can be obtained from the exact formulas developed by Stokes [90, 91] and Kirchhoff {61)] if we
substitute into them the molecular-kinetic expression for viscosity (I-9) and thermal
conductivity of a gas. That sounds with a wavelength smaller than the free path cannot
propagate is obvious,
The effect of thermal conductivity on the propagation of sou .d can be explained by
examining in the p, v plane the adiabatic and isothermal curves in the same way as we
have examined two adiabatic curves (with and without excitation of the internal degrees of
freedom). If compression occurs so rapidly that heat transfer has no chance to take place,
then the change of state occurs adiabatically; in the case of slow oscillations, we can expect
an isothermal change of state to take place; the transition will be accompanied by dispersion
(dependence of velocity on frequency) and sound absorption.
This applies to the case of heat transfer with the outside medium, for instance, when
sound propagates along a rod or in a gas enclosed in a small tube with heat-conducting walls.
If we are talking about heat transfer in a sinusoidal wave that propagates in an un-
limited medium, between sections where the matter is compressed and heated and such where
it is rarefied and coid, then we must bear in mind that the time of compression and expansion
(the period of oscillation) is associated identically with the length of the wave,

The levelling time of the simisoidal temperature distribution is proportional to the
square of the distance, the square of the wavelength, i.e., the square of compression,
Hence the apparently paradoxical conclusion according to which the signficance of heat
transfer is the greater, the faster compression occurs, since by accelerating compression
n times heat transfer is accelerated even more (u2 times) and becoraes considerably more
substantial than in the case of slow compression.

Transition to isothermal sound propagation cannct be cbserved in gases, since that

transition woild occur at wavelengths of the order of magnitude of the free path -- where
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the propagation of sound is impossible; in gases, moreover, viscosity always exercises a
much stronger effect than thermal conductivity.

According to Zener's most recent works {100}, the levelling of thermoelastic tem-
perature c fferences and the transition to isothermal propagation represent an extremely
important mechanism of sound absorption in metal with a very high electron thermal con-
ductivity. Since in a crystal the thermoelastic properties depend upon its orientation,
additional losses cceur in polycrystals,

It is interesting to note that in the case of the reflection by a solid wall of a sound
that propagates in a gas, the temperature and velocity gradients are considerably greater
than in a sinusoidal wave propagating in an unlimited space, the ratio is the greater, the
smaller are viscosity and thermal conductivity, since with decreasing % and A the depth
of penetration into the gas created by the turbulence wall also decreases. In expanding
these concepts, B. P. Konstantinov showed that the absorptior of a sound reflected once
by a <vall is of the order of V/jz (1 being the molecule path, and g is the lergth of the
sound wave), i.e., it is greater by several orders of magnitude than absorption on a
wavelength in the case of propagation in unlimited space [13].

Finally, let us mention the peculiar difficulties that arise in the theory of sound
when examining the second approximation without neglecting compression in the wave
as opposed to initial density, without neglecting mass velocity of matter motion as
oppoesed to the velocity of sound propagation.

In this case it appears that the wave crests, i.e., the spots where density is maximal,
propagate faster than the troughs, i.e., the spots where density is minimal (to the point of
rarefaction). This happens for two reasons. First, in a compressed gas the speed of
sound is greater because the gas temperature is higher. Second, the compressed gas has
also a mass motion moving in the same direction as sound propagation; the velocity of this
motion has to be added to the velocity of sound propagation. This difficulty, which is
implicitly contained in Poisson's studies [75], was first noticed by Stokes in his investigations

on sound propagation [92].
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We can readily see from Fig. 5 that tue propagatirg sinusoidal sound wave (a) will

have to continuously change i¢s ~hape.

Fig. 5. Deformation of a sinusoidal sound wave as a function
of propagation

a - sinusoidal wave; b - deformed wave, contains overtones;
¢ - acoutstics equations yielded a solution devoid of physical
significance, with three values for pressure of velocity at ane
point; in reality, however, c does not occur, shock waves are
formed, dissipation forces .nust be calculated.

The portions of pressure increase become shorter and steeper, while the portions
of pressure drop expand (b). 9 Acoustics formulss of the secoi:d approximation lead
eventually to an absurd wave form (c}, where at one and the same point we have three
different values for density and pressure.

Analysis of this difficulty led Riemann [81] and Rankine [78] to far-reaching con-
clusions (see Chapter 7 and ff. )
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Chapter 3

Gas Flow Through Nozzles

Let us now investigate the motion of gas in a duct with varying diameters, We will
confine ourselves to a one-dimensional study of the phenomenon;'we will therefore dis-
regard the velocity components directed perpendicularly to the duct's axis, and consider
all quantities (density, velocity and pressure) to be dependent only on the distance measured
along the duct, but equal in any normal cross section of the duct and independent of time.

We write for the entire flow the equation of conservation of matter, which, in the case
of steady flow interesting us, leads to the simple condition according to whicih the same amount
of matter must flow during a unit of time through any cross section of the duct.

We denote by F tbe cross section's area and write the equation of conservation of matter

in the form

ouF ==const, (O1-1)
In the same fashion we write the equation of energy conservation which expresses
the constant amount of energy flowing through a certain cross section, and the work
performed there by pressure, for any cross section
(5"‘%) euF -+ puF = CO;‘ISL (II-2)
The expression in parentheses is the energy of unit of mass, the entire first term
is the energy of a unit of mass miltiplied by the amount of matter flowing during a unit
of time through the entire cross section of the duct. The second term is the work per-
formed there by pressure during a unit of time.
With the aid of the first equation, wu transform the second equation to the following

form:
’ . o’
I 52- = t:onst.l0

(II1-3)
where I, known as enthalpy
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= E -1~ pv, (OI-4)

is one of the fundamental functions of thermodynamics. By dividing (IlI-2) by (II-1) we
get (Oi-3).

We can find the distribution of velocity and density along the pipe from the two
equations above, and from the adiabatic law for the change of state of matter in a flow,

To determine the constant in Eq. (III-3), we write its value for the inlet of the
pipe, i.e., for that spot where the cross section F is very large and where, accorc.ngly,
velocity u may be regarded as very low. All the quantities belonging to that cross section

will be denoted by the subscript 0:

Uy -0, }

I+ %=l (I1-5)

We add to this the cendition of adicbaticity of the flow, the absence of heat transfer to the

walls and losses from hydraulic resistance. This yields for the specific entropy of matter

S=const=2_,. (I1-6)

Now we write the thermodynamic expression

dl = TdS -+ vdp. (OI-7)
For constant eatropy
» [
l—l°=J v:!p'-—-:j‘-!& ’
” [ (III-8)

which together with (II-5) yields the velocity

? | 4
ut d,
—_— = en (l [t _E.
2 vdp ==
r'! rj: ¢ (HI-9)

If the change in pressure is small, we neglect the change in the integrand

u' pe-p g oy 0
y =g el ks Cy TP (II-10)
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Equation ([II-10) is then the Bernoulli law of the flow of an incompressible liquid.

If p is close to Py We can disregard the chenge in density and, as in the case of an
incompressible liquid, we find that the amount of gas Qu, that flows during a unit of time
through a unit cross section is proportional to the square root of the pressure difference,

However, in the case of large pressure differentials, and with small pressure in
the jet, the drop in density of the outflowing gas causes an increasing effect. Whereas the
velocity incresse is li'uited by the quantity

a=V2l, (m-11)

for I = 0, gas density may drop to values as close to zero as might be desired.

Then the product ou hecomes zero,

For a given Py the amount of matter ilowing through a unit area of the cross section
attains a maximum with a certain value of the péessure in the flow p less thau Py’ it then
drops again as p drops further.

We will show that maximum flow rate per unit area of croas section is attained
precisely when velocity equale the speed of sound in the outflowing gas.

We seek the maximum value of the product

ex=0V2(f,— ). (DI-12)
We take a logarithmic derivative with respect to pressure of expression (IiI-12) and

set it equal to zero (all derivatives for S = const):

A

1 do diide __ 0

edp H-D (il1-13)
do __ [dp\-} _ -
?:?:(7’5’) =¢c % dlldp=v=07"; 2{l,—N=u', (i1-14)
0 =
e w0 e=a {(II-13)
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In un ideal gas with constar! thermal capacity, the dependence of flow rate on
nressure can be readiily worked out analytically.

In this case the relation

I==¢c,T== ;’- RTu(c—;-f‘f’-%:‘g,;P" '-ﬂf.‘i % TR
fo= E_:tl. (TI-18)
holds. In an adiabatic flow
L s =t
erse(2)" 1--=l‘,(}-,”;) Yioa=kl=ct(B) " 1)

We introduce dimensionless variabies and refer the corresponding quantities to
their values at rest; the speed is referred to the speed of sound in the original gas. We
denote dimensionless density by r==g/p,, pressure by % =:p/p,, the speed of sound by
7=clegs velocity by ¥ == 4/Cw the rate of flow per 1 cm2 of cross section by y=—rp==<
=9 [0, Co-

Then we obtain the following equations:

- = 2 £-1
r=aty p=ay ?’=\/;::i(""");

(1-18)

Figure 6 shows the curves r, vy, @, ¥, as functions of ¥ for a diatomic gas (e.g.,

air) for which

If 7 changes from 1 to 0, r drops from 1 to 0, ¢ monotonically increases from 0 to
Y5=224; 7 drops from 1 to 0. The quantity ¥ reaches the maximum of 0. 58 for 7=0. 53;
¥ =0for 7= 0and 7=1, At the maximum point of § for w==0.53, y == p=0.90.

Using the example of air at room temperature and atmospheric pressure flowing

into space with lower pressure, we will show how to use the chart in Fig. 6 plotted from
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dimensionless quantities. For 17°C, Py = 1 atm alisolute, €@ of air 1.2 kg/ma, Co = 340
m/sec. We find the outflow conditibns for p = 0.7 atm absolute, 7= 0.7. On the chart we
find r = 0,785, whence ¢ = 0,785 x 1.2 = 0,93 kg/m"; ¢ = 0. 67, whence u = 0,67 X 340 =
227 m/sec; ¥ = 0.94; ¢ = 324 m/sec. The drop in the speed of sound during cutflow is

the result of cooling during adiabatic expansion. Finally, ¥ = 0,54, to which corresponds

a flow rate per second of 0.54 x 1.2 x 340 = 220 kg/m2 X sec,
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Fig. €. Deperdence of dimension-

less density (r), velocity (¢),

speed of sound (¥) and flow rate

(¥) on dimensionless pressure

(") in a diatomic gas with con-

stant thermal capacity, k=1.4

in the case of steady adizbatic
outflow.
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Maximum velocity of steady flow into a vacuum attains 340 /5 = 760 m/sec.
For maximum ¥ the velocity attains 36¢ m/sec, and the flow rate is 238 kg/'m2 x

‘The quantities relating to the state of the gas in which maximum flow rate per unit
of cross section is attained (maximum ¢u, maximum §) will be termed critical quantities

and will be denoted by the subscript kp.
Figure 7 shows the diagram of an experimental gas flow.

Fig. 7. Diagram of
an experimental gas
flow from a tapering
cap (nozzle).

The vessel on the left contains a gas under pressure Py and is provided with a
simple tapering cap (a nozzle). As the counterpressure 1 decreases in the vessel on the
right into which the gas flows, the amount of outflowing gas increases according to the
formula of Wentzel-St. -Venant (IJ1. 12, III-18). But if one were to follow that formula
for all conditions for which the pressure in the outlet cross section of the nozzel p is
taken to be equal to the pressure in the vessel on the right P, €2, beginning with a given
counterpressure, any further drop of tte latter should result in a decrease of the amount
of outflowing gas; specifically, for the flow into a vaccum one would reach the absurd con-
clusion that the rate of gas flow per second equals zero.

The fa:t that when the volume of outflowing substance reaches a maximum, the flow
speed is exactly equal to the speed of sound (see Eq. 1II-15), helps explain this paradox
and makes it possible to predict what will actually happen when P, is less than p critical

(.e., | smaller than 0, 53 Py for air). 1
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In fact, as soon as critical flow is attained, no signals can be transmitted back to the
outflowing gas through the layer of gas moving at the speed of sound. ﬂpnll less that
pkp, the pressure and velocity in the nozzle will no longer change, and it will stay equal to
oritical pressure and critical velocity.

The amount of outflowing substance, having reached a maximum, will no longer change
with smaller counterpressure valuus (dashed line in Fig, 6).

With a counterpressure p_ such that P2>> Pu>> P, there will be an outflow regime in
which the pressure p in the jet at the nozzle outlet is exactly equal to the pressure Py in
that medium into which the gas fiows. The values for velocity and flow rate can be taken
from Fig. 6 by substituting 7 = pn/po.

At an appreciable distance (several nozzle diameters), the outflowing jet maintains
a constant velocity along the axis, the gas particles move parallel to it at an identical

speed (Fig. 8); further on the jet gradually widens and slows downas it mixes with the
surrounding medium, 12

F—=~=-r~--

-

LHH]

Fig. 8. Jet flow at a counter-
pressure exceedirg critical
pressure. Subcritical (subsonic)
jet in free space. Pressure at

jet ovtlet equals the pressure

in surrounding medium. Sp9oed
gradually fades as jet widens due
to inflow of surrounding substance.

If the c .anterpressure in the medium inte which the gas jet flows, Py is smaller

than critical pressure Pyp the outflow conditions in the nozzle are independent of Py
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The pressure in the nozzle's outlet cross section is egual to P p and represents a certain

portion of pressure Py in the reservoir (slightly over one-half po), irrespective of the

] magnitude of P, In this case, however, the outflowing jet is not ir equilibrium with the

surrounding medium; the preseure difference pkp - P, determines the acceleration of

jet; together with velocity components directed along the axis of the nozzle, there are

. also radial velocity components which cause the expansion of the jet (Fig. 9). The energy
of the radial veiocity components cannot be exploited, hence the efficiency of the jet turns

out to be less than expected with an assigned pressure differential.
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Fig. 9. Outflow of a jet
from a nozzle in the pre-
sence of counterpressure
less than critical. Pres-
sure inside the iet at the
outlet cross section is
critical, but as the jet
leaves the nozzle the
pressure drops, the ve-
locity increases and

the jet expands.

The Swedish engineer Lav3113 was the first to achieve an experiment with a nozzle
in which the outflow velocity of the jet exceeded the speed of sound and the jet itself had
an assigned direction. In accordance with the formulas written above, when the outflow
speed exceeds the critical value corresponding to the speed of sound, the flow rate per area
unit Qu drops and, consuguently, in order to maintain the flow rate of substance, the cross

section of nozzle has to be increased (see Eq. (III-1)).
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Thus Laval designed a nozzle to which his name was given, and which is shown in
Fig. 10.

¥Fig, 10. Laval nozzle for obtaining directed
jets at supersonic speeds

We give now another numerical examgple for air flow. We have a nozzle with a flow
rate of 1 kg/sec at a speed of 527 m/sec. We remind ourselves of the determination of
dimensionless quantities and find with the aid of Eqs. (II-18) or the diagram ia Fig, 6 that
for

§== g- == 521340 =1.55
the required counterpressure i_‘ =a==0l1.

Thus, when atmospheric air flows in at Py = 1 atm abs, counterpresgure is 0.1 atm
abs. Then ¥ = 0.3, and the flow rate per area unit is

032,¢c,=0.3x1.2 kg/m3 x 340 m/sec = 124 lcg/m2 x sec,
Ax assigned general flow rate of 1 kg/sec requires a cross section of the nozzle outlet
of 1:124=0.008 =50 cx*, and a diameter of the circular opening of 101 mm. In the
critical, narrower cross section ¥ = 0. 58, the flow rate is 240 i:g/m2 x sec, the cross
sectional area is 42 cm®, and the diameter is 73 mm.

We assign a specific state to the gas in the vessel whence it flows out, and then
plot all the possible outflow conditions (Figs. 10 and 11) which differ by the magnitude of
the gas flow rate per second A. This can be done with the aid of curve ¥ from Fig. 6. For

each value of the abscissa x we find ir Fig. 10 the nozzl: : ross section F, corapute the
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Fig. 11, Various conditions of steady
adiabatic outflow in & Laval nozzle.

quantity § equai to AlFe,, and, finally, knowing ¥, we seek the corresponding values of
dimonsionless pressure, Since curve ¥ from Fig. 6 has a maximum, then at an arbitrarily
assigued value of ¥ we wiil have, as a rule, either two values of ¥, or none,

If we choose a small flow rate A such that A < F.?_ ¥ 00, we obtain a pair of curves,
for instunce, 1 and 8, or 2 and 7. The bottom curves 7 and 8 can be plotted only if a gas jet
already moving at suporsonic speed enters the nozzle on the left, which contradicts the
assigned steady-state condition for x = 0.

The top curves 1 and 2 are perfectly reasonable solutions which can actually be
obtained when counterpressure ranges in the interval Py = Py Qualitatively there is no
difference between this motion and the one in a Venturi tube; the wider part of the Laval
nozzle acts as a diffusor that restores a part of the kinetic head of the fluid. Attempts to
plot conditions with a flow rate greater than critical, A>F,, v,, ¢ ¢, lead to no solution
in the middle of the tube. The corresponding pairs of curves, 10 and 11, 9 and 12, do not
reflect any real motion of a fluid.

Finally, in the case of critical flow rate A==F,, ¥, 2¢ the segment of curve 3
issuing from the initial point Py X hits at the critical cross section the ramification
. point. With a counterpressure p =p e there will be curve 3-4 which is very close to the

subsonic conditions 1 and 2.

With a counterpressure P, = P5» We have line 3-5, and the Laval nozzle yields a

supersonic flow,
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A further decrease in pressure cannot change the motion in the nozzle. If 2. </7s
we have again line 3~5 in the nozzle and consequent expansion at the outlet,

We are unable to say, however, what happens if counterpressure ranges in the interval
between p 4 and Ps- To find the answer we have first to investigate the theory of shock
waves (see Chapter 18). One-dimensional theory no longer includes the design of a

nczzle that would give a strictly uniform flow. For this problem, see, e.g., Busemann's

paper [40].
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Chapter 4
Properties of Supersonic Jets

In the preceding chapter we dealt with the theory of the Laval nozzle which makes it
possible to obtain a steady parallel gas flow that moves at a supersonic spe¢ ,

Since the time Laval invented his nozzle, a considerable number of investigations
were conducted into the properties of supersonic flows, which, in many respects, differ
appreciably frcm gas flows that move at subsonic speeds.

According to a remark by Prandtl, the supersonic flow blindly runs into an obatacle.
This means that the turbulenve caused by an obstacle has no time to expand forward, has no
time %o warn the fluid particles that move toward the obstacle of what is going to happen
to them; thus, the nature of the flow around obstacles, the nature of the cm supersonic flows
is completely different from the customary picture of the motion of an incompressible fluid. 14

To explain the above, let us first conduct the following simple test: beginning at a
specific instant of tim:e, we shall at specific, identical intervals produce at a given point in
a flow acertain minor disturbance; in 2 gas at rest, this disturbance would generate spherical
waves which would propagate at a speed equal to that of sound; in a gas flow, to the pro-
pagation speed of the spherical waves there will be added the speedof the flow as a whole,
in other words, the spherical areas of turbulence are levelled by the flow; however, there
will arise two completely different situations depending on whether the flow moves at a
supersonic or subsonic speed.

In Fig. 12 (a and b) turbulence is produced at identical time intervals T at point ¢ of
each diagram. In Fig. 12b, during the time T the flow covers a distance ut = 2.5 cm; in
Fig. 12a, where the flow velocity is less, the distance uT = 1.5 cm. The speed of sound
c is in both cases identical «nd such that ¢T = 2 cm, 15 In a gas at rest we would have
obtained a number of concentric spheres Rl, Rz' R3; the radius of each subsequent sphere
is larger than the radiug of the preceding one by 2 cm. Figs. 12a and b show how these spherical
surfaces are levelled by the flow.
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Fig. 12. Propagatioa of turtulence from a source
in a flow moving at subsonic speed (1), and at super-
sonic speed (b).

In a flow moving at a subsonic speed, turbulence may move against the direction
of the flow and, thus, the whole flow will gradually become turbulant: turbulence in-
volves the entire area in which the fluid moves (Fig. 12a),

From Fig. 12b it can be seen that in a supersonic flow, turbulence envelops only a
portion of the space enclosed within the cone of revotution. The angle of this cone can he
readily found. As can be seen from the diagram, sin & (where @ is the central angle of the
cone) is equai to c/u. If the socurce of turbulence is ar chject olaced witain the gas flow
moving at subsonic velocity, we have the usual picture of a flow around the obstacle;
the velocity of the entire flow obviously difiers from the flow velaciny what wocld have
existed had there been no obstacle. The turbulence caused by the obatacle expands
gradually to the entire flow, and then fades out to become zero at a considerable distance
from the cbstacle. In a supersonic flow, the turbulence caused by the obstacle differs
from zero only within the cone with the central angle found above (for the motion in the
immediate vicinity of the flow around body, where turbulence cannot be crusidered
negligible, se¢ Chapter 17).

Thus we obtain a picture (characteristic for supersonic flows) of steady sound waves
moving from any obstacle placad into or turbulence occurring within a supersonic flow.
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These waves, known as Mach wuves (from the name of the famous Viennese physicist

who investigated them) make it possible to readily determine the velocity of a flow or,
conversely, to determine the velocity of a body in a stationary gas hy measuring the

angle formed by the wave with the direction of motion (known as the Mach angle). Speaking
generally, if the speed of sound of the gas investigated is unknown, then, in any event, the
observation of the Mach waves ard the measurement of the angle between then willi make

it possibie to find at least one relationship, namely, the ratio of the veiocity of the gas in-
vestigated to the spced of sound.

In these cases, however, where the state of the gas at a given point in the flow is
unknown, one usually knows its "'state at rest", i.e., the state in the vessel whence the
gas flows out and where the gas velocity is small or negligible, The Bernoulli equation
and the Mach angle equation are sufficient for determining two quantities, viz., sound

velocity and flow velocity

o= LA dar=2<,
o g TV gy L=
2 « (Iv-1) 16
whence
o 2Dt . 2 sin’x .
b T e T Y E av-2

Ry i P

With the aid of formulas (III-18) we find the pressure and the density of the gas in the
flow (assuming that entrory is constant, which is true ix: the absence of shock waves and in
the case of a short nozzle).

There is a remarkably deep analogy between the phenomena observed ir. gas dynamics
and the flow of a heavy, imcompressibie fluid in a duct open at the top {7, 22, 73}. This
analogy makes it easy to reproduce a "supersonic’ fluid flow with an open surface, to perform
sophisticated demonstrative tests and, in particular, demonstrate the steady propagation of
waves along the surface of a fluid in the case when the fluid moves at ""supersonic' speeds,

The above-mentioned analogy hetween a fluid with a free surface and a compressible

gas is based on a simple physical phenomenon, We examine a duct open at the too into which

49

ST




a liquid is povred. By changing the pressure of the liquid in the duct we can change the
liquid's level and thus change the amount of liquid per unit of duct bottom area, or per urit
of duct length. The process of pushing upward the liquid in the duct is analogous to the
process of compressing a gas contained in a pipe closed on all sides. Thus, for instance,
a duct with a reciangular cross-sectionis equivalent to a gas governed by the Buyle-
Mariette law, because in 2 duct with a rectangular cross-section the amount of liquid

per unit of duct bottom area, i.e., what may be called density (referred to a unit of
surface), is proportional to the pressure on the bottom. In the case of the motion of a
liquid with an open surface, the role of sound velocity in gas dynamics is played by tae
propagation on the surface of a liquid of gravitationai waves.

As in gas dyramics, it is possible under specific conditions to achieve a ""supursonic"
flow of liquid, i.e., a flow in which the speed of the liquid is greater than the propagation
speed of waves over its open surface. Such a flow can be observed if we direct a water
jet from a height of several tens of centimeters on a polished plane surface. Near the
impact point of the jet with the surface, within a circle with a diameter of several
centimeters, the layer (film) of the liquid is very thin; the liquid moves at a very high
speed. If at that point we place an object, for instance, a needle, we can observe the
characteristic picture of r*2ady surface waves proceeding from the needle under a
specific angle; these waves are very similar to the Mach waves in the case of a super-
sonic gas flow. Beyond this circle with a diameter of several centimeters, the thickness
of the liquid layer abruptly increases for several millimeters; this is accompanied by a drop
in the velocity of the liquid, and is in analogy with the shock wave phenomenon which x
will be discussed Leiow, In this second region, where the liquid layer is comparatively
thick while the velocity of the liquid is comparatively low (less than the propagaticn speed
of acillations over the liquid surface}, the properties of the flow are completely different.

The frequently used poetic simile of a wide river, lazily flowing along, and a moun-
tain brook, furiously swirling over rocks and stones, is much deeper and much more

significant than could be suspected. In fact, in these cases we are faced not only with a
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quantitative difference in the velocity of the flow. Because of the existence of a specific
characteristic velocity, the velocity of wave propagation on the interface between the
water and the air, the two flows (the wide river and the furious mountain brook) are
also qualitiatively different.

Measuring the temperature of a supersonic flow in a Laval nozzle has yielded very
interesting results. Unlike the computatiors from the formulas in the preceding chapter,
the gas temperature measured by a thermometer or a thex"mocmz{de placed into the flow
drops negligibly, and is found to be quite close to the temperature of the gas in the reservoir
from wkich it flows out. Thus, air flowing from a reservoir in which its temperature was
300°K, must have a temperature of 250°K in the critical cross-section, and a temperature of
167°K = ~106°C in the cross-section in which the flow speed is twice the speed of sound
(2c). However, the temperature at thie spot measured by a thermocouple is approximately
280°K. Such a result is, as a matter of fact, quite natural, because the temperature
measurement with a thermometer or a thermocouple does not give the difference between
thermal motion, i.e., the chaotic motion of the molecules, and mass motion of the gas,
i.e., the well-organized flow, It is therefore obvious that the temperature measured by a
thermometer or a thermocouple is, . in reality, a gauge for the total energy of the gas, a gauge
for the sum of the thermal and kinetic energy -of the gas, i, e., it is the gauge for a quantity
which virtually does not change in the flow. If we examine a plate placed into a flow normal
to its direction, then, in examining the flow line near the piate we can see that as we
approach the plate, the moving gas in experiencing a braking effect; with this, according to

Bernoulli's theorem, is connected ti:e inverse increase in pressure and, in the case of a
gas, the corresponding rise in temperature to values which pressure and temperature had

7 It is therefore

in the gaga at rest in the reservoir from which it flows through the nozzle. !
obvious that the plate placed in a normal position to the flow direction, acquires not the
real temperature of the moving gas, but the temperature of the slowed-down gas near the

plate, which coincides with the initial temperature of the gas before it staried to flow

(known as its temperature at rest).
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If we take a plate placed tangentially to the flow lines, then we find another reason
for the increase ir temperature in it; in the thin boundary layer near the plate where flow
velocity changes considerably over a short distance, there occurs the release of significant
amounts of heat due to internal {riction in the gas. From the molecular-kinetic gas theory
we can work out a ratio between the internal friction factor and the thermal conduction of
the gas. The relation between effective viscosity and effective thermal conduction in a
turbulent‘ flow also satisfies that equation, Owing to this ratio it becomes possible te
obtain in the general form relation between release and the removal of heat in a boundary
layer.

Pehlhausen's computations [74) show, in complete agreement with the experiment,
that a tangentially placed plate will also acquire a temperature in the gas which will be quite
close to its temperature at rest (see also {6, 31]). Some 85% to 100% of thekinetic
energy will be converted to thermal energy in the boundary layer of the gas near the plate.
Accordingly, the temperature of the plate oscillates betveen the temperature at rest and

0. 85 of that temperature plus 0. 15 of the real temperature of the gasl8

Trest > Tpare =>0.85Trest -1-0.15 Tgy, (IV-3)

To measure the real temperature ofa gas moving at sonic or near-sonic speeds,
we must resort to a method in which the thermometer moves with the gas at the same speed.
A practically convenient method is the one developed recently, which measures the temperature
by inverting the spectral lines. This method, however, is applicable only at compnaratively
high temperatures, in any event higher than 1000°C.

The problem of the temperature acquired by a surface around which flows a gas moving
at a high speed, is of great technicai significance since the performance and efficiency of
gas turbines are today determined by the maximum temperatures o which the blades can
resist. We can see that it is inadmissible to equate the temperature of the blades to that cof the

gas. The temperature of the blades will always be somewhat nigher because of the kinetic

energy of the moving gas.

52




T SRR

—— TR F

2L it it A

VY YT

ey ’E‘
——n
v

O b o

T TG v IR M « e e e YR T R AT s:';’,'f;:iﬁ?‘,;aj-g.‘f_‘d,‘_xﬁf&j;}:@nﬂ::v;m’,\( sou T ezt ab A B LR AR g et — =
.

- o vk S - e S

R R T R S e AR % It G Nt T P

-

Chapter 5

Gag Flow in a Long, Cylindricsl Pipe
We investigate the motion of a gas in a long, cylindrical pipe provided externally witbh

thermal insulation, Thermal insulation was introduced so that we could take the total
energy of the flow to be constant in all cross-sections. However, unlike what we did

when investigating the Laval nozzle, short nozzies and attachments here we shall no
longer ignore the friction of the gas against the walls, i.e., the resistance to the gas flow.
The joint effect of heat release, friction near the walls and heat transfer between the walls
and the gas will be that the temperature of the walls does not differ from the initial gas
temperature in the reservoir from which gas flows (see the preceding chapter), and, con-
sequently, there will be no aeed for thermal insulation in the particular case where the gas
temperature in the reservoir is room temperature.

If we intreduce hydraulic resistancs to gas flow, i.e., if we introduce an irreversible
process of iaternal friction, we can no longer take the entropy of the flow to te constant,
hence our results and methods will somewhat differ from the results and methods dealt
with in chapter 3.

We set up the equations for the mction urder study, assuming the cross-section of the
pipe to be constant, We take the complete gas {low through any cross-scction of the pipe

to be constant and obtain tize first equation:

pu==_2:{==const, (V-1)

Also constant is the complete energy flow (plus the work of pressure forces) referred

to a unit of pipe cross-section,

pu-t-ouE+- 3;’:- == const: (V-2)
But since the amount of substance flowing through is also constant, then by dividing the
second equation by the first one we obtain the constancy of the sum of enthalpy I

and the kinetic energy of a unit of mass in the flow:
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Here, as before, we denote by I0 the enthalpy of the gas before entering the pipe,
i.e., in the reservoir, where gas velocity is very low.

It is worth noting that from two equations, the equation of conservation of matter .ad
the equation of coneervation of energy, we can eliminate velocity and thus obtain a specific
relatior between the quantities characterizing the state of the gas, (pressure and volume);
this relation is such that it does not depend upon the mechanism and the magnitude of friction
{51, 89]). This can be represented graphically by curves in the plane p, v or by curves in the
plane 1, S, known as Fanno lines (Fig. 14).

Only the velocity of a point that represents the state of the substance moving along a

Fanne line will depend on the pipe resistance, i.e., on the magnitude of dissipztion forces.

aaae

TT G e s s JT T 0 T

Fig. 13. An clementary

cylinder cut from a long

pipe. The substance flows

in and out at the ends, where

pressure forces are active;

the lateral surface experiences

the effect of friction against
the pipe wall.

Let us take‘a portion of a long pipe Ax (Fig. 13) and clarify how over the entire
stretch of Ax gas velocity and pressure change on account of resistance. The total amount
of substance flowing through the pipe cross-section in a unit of time is guF=MF =const.

The amount of mation carried by the flow in a unit of time i8 Af/Fu—=gputF.

According to Newtou's second lew, the change in the amount of motion when covering

a distance Ax between two control planes 1 and 2 is equal to the momentum of pressure
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Fig. 14. Fanno lines in the
entropy — enthalpy (S, I) plane.
Along these lines the state of gas
flowing through a pipe with a
constant cross-section changes
without heat transfer, but in the
presence of resistancs, The lines
are found from the conditions of
substance flow conservation and
energy flow conservation in the

pipe.

force (friction) ®, acting on the lateral surface 3 of the cylinder cut by planes 1 and 2 from

tha pipe:

MF (0, — w)=(p, — p,) F-+-rddxb. (V-4)

We introduce the resistance factor in the usual way accepted by the hydrodynamics of
incompressible fluids, and write for a round cylindrical pipe of diameter d the force of re-

sistance P per unit of lateral surface

@ =—"Lou|ul[s. (V-9)

We find from Eq. (V-4), bymaking a transition to infinitesimals and to the unit of cross—
section, the equation for the amount of motion, which includes the pipes resistance. Unlike

the first two equations, we cannot write it immediately in its integral form. The differeuntial
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equation takes the following form

=4 oulul
—d

2 (V-6)

__d(ou2~-p)
dx

__d(Mu +-p)
dx

The form of the last term is somewhat different form the usual; this is due to the
fact that the sign of the force of resistance depends upon the sign of velocity. The force of
resistance is always directed against the direction of gas flow, and this fact is lost in the
usual writing g’—; = ou*2d, or ¢ = Lou?8.

In the I, S plane, the Fanno lines corresponding to various valnes of flow rate M(see
Egq. {V-1)), take the form shown in Fig. 14, For an ideal gas, enthalpy I coincides to an
accuracy of one factor with the temperature. The I — S diagram differs from the T — S
diagram only by its scale.

The quantity M is constant along each line and is a parameter that changes only from
one Fanno line to the other, and decreases from left to right since for a given temperature
density drops as entropy increases.

Let us now determine how a point representing the state of the gas moves along a
Fanne line under the effect of resistance as the gas moves in the pipe. With the aid of the
well-known thermodynamic expression for the enthalpy differential, we .write the equation

of conservationof energy in its differential form

d ut\ dl  edu__wdp = TdS . udu__
2;(’*‘7 St a T YT (V-7)

1 dp TdS ude _
=&t o v =0

We substitute the value of velocity determined by the law of congservation of matter

(V-1) and expressed by the quantity M constant along the entire pipe, and obtain for entropy

the following equation
dS 1 {dp  Mdu
T ==\ &l
dx ? (d d ) (V-8)
With the aid of Eq. (V-8) we finally find
TdS==-4:lujudx. -8)
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If the sign of dx coincides with the sign of flow velocity u, i.o., if, changing x, ;ve

follow the flow direction of the fluid, entropy increase is always positive since the product
of udx is also positive.

The motion of substance in the presence of friction is accompanied by the conversion
of mechanical energy into thermal energy; in a thermally irs11ated pipe, in the absence of
heat take-off, this process is accompanied by an increase in the entropy of the substance
flowing through the pipe.

The right-hand side of Eq. (V-9) is nothing but the work performed by the forces of
resistance on an element of length dx, referred to a unit of mass of the flowing fluid.

Above the entropy maximum, on the segment AB of the Fanno line (in the subsonic
region, as we shall see now), motion is accompanied by a pressure irop as in 22 incompressible
fluid, as can be seen from juxtaposing the slope of the Fanno line ....d line p = const in the
right-hand side of Fig. 14. Conversely, below points B, R, T, in the case of supersonic
flow, resistance causes an increase in pressure a'ing the flow; the force «i resistance and the
increase in pressure are overcome by the flow by means of the kinetic head, and by means of a
G.op in velocity due to increase in density and compression of the gas from increased pres-

sure.

Accordingly, in a2 subsonic flow, u increases in the flow direction while I drops. Ina
supersonic flow, u drops and I grows.

Let us show that at point B of maxiinum entropy the flow velocity is equal to the speed
of sound. -This can be readily skown in Fig. 14 if we plot through B a vertical tangent. We
notice that at peint B, where S = maximum for M = const (motion along the Fanno line), there
also takes place M = maximum fcr S = const (motion along the tangent). The latter condition
leads to an equality between flow rate and speed of sound, as was shown in Chapter 3 (Eqgs.
(OI-12 — MI-VY).

Incidentally, the proof can easily be given directly: near point B, it is obvious that

(gg)l‘uro -0 (:Ifg)i‘a==a - (‘:”l:)k- @t <. (V-10)
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From the countinuity equation (V-1) it follows that

d d dp
—:— -~ ~-09 =0, du=--u T3 (V-11)

In Eq. (V-T7), if we pass from differentiating with respect to coordinate x to differentiating
with respect to density @ we get at the point of tangency

13dp Ay da 1 1
R e e
w=c, (V-12)

q.e.d.

Now we can easily plot a physical diajram of gas flowing through long pipes. Figure
15 shows the flow rate M of gas during a unit of time as a function of pressure at the end
of the pipe p, with an assigned pre~sure Py in the reservoir from which the gas is flowing

out.

b v

Fig. 15. Dependence of flow rate

(M) on counterpressure (p) for pipes
of varying length with a given pressure
at the inlet (p Tke top curve is for
a short nozzig and the bottom curve
is for the longest pipe. The straight
line divides on the left the region of
critical outfiow at a velocity eqaal

to the spead of sound at the outlet;

if cocunterpressure is less than
critical, M does not depend on p.
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The various curves are referred to pipes of different lengths. The top curve re-
presents the case of a short nozzle as dealt with at the beginning of Chapter 3. The
longer the pipe, the smaller the amount of gas flowing through it (for a given pressure
difference). In all cases, a pressure drop below a certain critical value no longer
causes an increase in gas flow. However, this critical pressure itself is all the
smaller, the longer the pipe. For critical outflow at theoutlet of the pipe, in all cases
the velocity is equal to the speed of sound; the relation between the temperature of the gas
and its initial temperature in the reservoir, as well as the relationship between gas velocity
and sound velocity in the initial gas in the reservsir are also invariable, irrespective of
the length of the pipe. However, the density of the outflowing gas, which, for a given gas
temperature is proportional to the pressure, varies in accordance with the length of the
pipe. Thus, the critical points for various pipes on Fig. 3 can be connected by a straight
lines issuing from the origin of the coordinates. According to Stodola, for usual values of the
resistance f22tor of commercial pipes, the critical (maximum) M when changing from siort
nozzles to pipes of a length of 360 diameters drops by one-half, for pipes 1000 diameters
long it drops by one-third, and for pipes 5000 diameters long, it drops by one-sixth.

No matter how much we reduce pressure at the outlet from a cylindrical pipe, we wiil
never be able to achieve supersonic speeds in the pipe. In order to accomplish this, the
gas must enter the pipe already at a supersonic speed.

In the I-S diagram in Fig. 14, the inflow of the gas from the reservoir into the pipe
through a short connecting nozzle AB19 (Fig. 16a) is not described by a Fanne line but by an
adiabatic curve which slopes vertically firom point N (Fig. 14) and describes the initial state
of the substance. In a simple tapering nozzle, the state of the substance at the inlet to the
pipe is represented by any point on segment NB, for instance, F or Fl' The state of the
substance at the outlet from the pipe is determined by the assigned counter-pressure p; the

point representing it must be on the isobar EE,. The selection of the Fanne line along

1°
which we change from the adiabatic curve NB to the isobar, and that corresponding to the
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magnitude of the gas flow for given Py and p, depends on the length of the pipe, and
also depends ox the increase of entropy along the pipe. If we increase the length of the

pipe, we change from mode NFlE1 to mode NFE, and the {low decreases.

Fig. 16, Connection of the pipe
with a tapering nozzle (a) and with
a Laval nozzle (b). A supersonic
fiow inside the pipe can be obtained
only in the latier case.

If counterpressure at the pipe outlat is less than critical, there will be a critical
outflow, the mode described by segments NFlElR or NFET (depending on the length of
the pipe), with the subsequent expansion of the gas, see Chapter 3, Fig. 9.

If at the pipe inlet we place a Laval nozzle (Fig. 16b), then at the inlet we will
achieve supersonic speed, we will achieve the state represented by a point on segment BD,
Fig. 14, for instance, L.

In obtaining a supersonic flow, there are in the Laval nozzle outflow conditions with
a fully established flow rate M (see Chapter 3); the pesition of point L ou the segment BD
can be readily determined by means of design data, viz., the cross-section of the nozzle
at its narrowest point ¢ 1 the cross-section of the pipe.

Then, along the pipe there occurs a motion from point L to the right fcllowing the
Fanno line. In ¢the case of superscnic flow, the outflow conditious ure independent of

counterpressure p.
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The supersonic flow conditions as shown in Fig. 16b require a sufficiently low
counterpressure, Howaver, in a long pine it is possible that the increase of entropy
along the line LQR will run into the cri-i»al psint R,

Thus, in the case of a long pipe with cousiderable counterprzssure, provided with
a Laval nozzle at the inlet, we will never achieve supersonic npeeds at the outlet of the
pipe irrespective of the magnitude of counterpressure. A close investigation of the out-
flow conditions shows that in the pipe or in the nozzle there occurs ‘what is known as a
"densification jump", i.e., a shock wave, the theory of which will be discussed below.
The description of the various flow conditions in the pipe in the presence of shock waves
is analogous to the Laval nozzle theory (see Chapter 19). Here we can refer only to
Rusemann's paper [41]). A detailed bibliography, complete through 1958, can be found

in Franki, Khristianovich apd Alekseyeva {27].
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Chapter 6

Motion that Depends on the Relation Between Coordinates and Time -

It was mentioned in the Introduction that in gas dynamics a fundamental constant
of a substance in motion is a certain velocity, the velocity of propagation of turbulence,
the soeed of sound, etc. If we neglect the dissipation processes, matter has neither
a characteristic length nor a characteristic time. From the molecular-kinetic gas theory
it follows that by irtrocucing diassipative forces, such as viscosity or thermal conduction,
in combination with the characteristic values for the speed of sound, one obtains for th;
characteristic values of length and time the length of the free path of molecules and the
time of the free path, i.e., exceedingly small (infintcsimal) values for length and time,
Whence it follows that if one is not interested in infinitely small processes occurring over
distances and during a time of the order of magnitude of the length and the time of the free
path of molecules; if, fu.rther on, we assign initial and boundary conditions for motion that
contain neither a characteristic length nor a characteristic time, then one will deal with a
special, extremely important class of motion. Since the equations of motion, and the initial
and boundary conditions contain only the characteristic values of velocity, but not of length
or time, the independent variables themselves -- the coordimte and the time -~ can appear
in the solution of the equations only in a combination of dimensional velocity x/t. In other
words, we expect solutions that will change but still remain self-similar (self-modelling).
With the increase of time counted from the instant motion begins, the character of motion
as such will not change, but there will be an increase in the scale and the size of the
region involved in the motion, which will be proportional to time. Accordingly, we expect
that all quantities depend only on one combination of variables x/t, so that from the study of
differential equations with partial derivatives for functions with two variables (coordinates
and timo) we can gvitch to ordinary differential equations in the case o motion along one
coordir %, 20

We write these equations; we denote §—=xjt and immediately set up the transformation

formulas for the new viariable:
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_ 1 d
=% rea=re-dg-
As is customary in hydrodynamics, ¢ is the notation for a local derivative with

respect to time, d/dt is a substantial (that is, for a given volume moving at a speed u)

derivative.

If a certain quantity f interesting us is a function of the new variable ¢, i.e.,

f=f=d=f(F)=r& (VI-2)

then we obtain the following formulas

f _1df, @ gdf df __a—%df
5%—":,4{: T:="’T§E' a-  t d (VI-3)

We transform with the aid of these formulas our fundamental equations (Chapter 1),

and obtain the equation of conservation of matier and the equation of motion in the following

form:
de oa do ._ du
doo ol R,
dt ] dx ¢ d3 (VI-4)
du dp .‘i‘..—_._‘l’..
g-;;—:—-;-;—)(u—-se F e d; (VI-5)

The quantities x and t can be completely eliminated from the equations, as should
have been expected.

The above equations can be satisfied following the assumption that all the quantities,
u, p, and ¢ are functions only of the combination £ = x/t, but not of x and t individually.

Let us now show an example of initial and boundary ccnditions which do not contain
the quantities x, t separately. We imagine an infinite plane which begins to move at an instant
t=0 at a steady velocity w, so that the plane coordinate x = wt, xn/t = w, where w<{0
(which means that the plane moves to the left). The gas under study is to the right of the

plane and expands as the plane moves (see Fig. 18).
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We are looking for a solution for our equations assuming that until the instant =0
the gas has been at rest and had identical constant values for density and pressure. After
the piston begins to move, when ¢>>0 we set the condition according to which the gas
particles adhering to the piston must move at the same speed as the piston does.

Regarding the space filled with gas in which there occurs the propagation of the
turbulence caused by the piston, we assume that it is unlimited toward x> 0; the initial
conditions involve no initial value for length, and the bounda:'y conditions are formulated
only on surface of the piston where they contain only an assigned piston velocity w.

At the end of this Chapter we shall investigate separately the problem regarding
the extent to which the solution that depends on x/t, which we are seeking, can be used
for problems involving a finite (limited) gas-filled space.

We juxtapose the equations for the conservation of matter and the conservation

of motion as written above, and obtain

d__d
«—O'ZF=7 (VI-6)
whence
—pe__d9p ) do
| [(u & de i &t =0. (VI-T)

The latter equation makes it possible to construct two forms of scelution: the first,
a completely trivial one, = const, corresponds to p, ¢, p,u = const. i.e., to the motion

of the gas as a whole; the second form requires that

- By 4 —J—E- =%
NS V e O (VI-8)

where ¢ is the speed of sound.

We select in the latter formula the signu - £ = - ¢; € = ¢ + u, which corresponds to
motion on the right of the piston, i.e., to turblence propagating towards the right.
The value of £, and consequently, all the values of p, 0, u, which depend on &

alone, are constaut on the lines {=c-+u, x=(c-t-u)¢, ou the so-called characteristic
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equations of gas dynamics. In the problem under study all the characteristics are
straight lines issuing from the origin of the coordinates x =0, t =0, i.e., from the
point at which turbulence was started (Fig. 17).

We use the relation u = £ = - ¢, in which c is fully determined by the state of tlie

substance, and transform the equations of motion (VI-4) and (VI-5) to

cdo==0du; o9cdu==dp. (VI-9)

Both equations are equivalent, since dp==c*do. The connection between u, p, p, is the
same as in an acoustic (weak) wave in Chapter 2, that propagates in a positive direction.
From here we can immediately find the connection between the velocity acquired by the

gas and its state

(VI-10)
For an ideal gas with a constant thermal capacity, we write cp/ c, = k and readily

compute the integrais

(VI-11)
_._.E
__Z%p [[e)* 5.
"—'(k—l)Oo (Oo)
The follewing sclution is remarkable: bearing in mind that
k1 de_i—1de
Ine= 3 In o -+ const, <=7 ¢ (VI-12)
. we get
= [t ___2 =2 (c—
. “—I ° —'k—ljdc—k-—l(c o (VI-13)

In order to find the distribution in space of the quantities interesting us, i.e., the

structure of the wave, we must use the algebraic relation which contains the spatial

coordinate §, u—f=-——c.
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In t.e case of a more complex relation beiween p and p, we differentiate the latter

relation with respect to §:

=

E
e
3
-
:":
.

da _de

—

A (VI-14

? cums

T

and, substituting u = u (p), ¢ = c(pj, we get an expression for dp/d§ (we might, just as

well, have immed.ately looked for an equation for another parameter, for instance, p or c).
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Fig. 17. Charac’eristics of
gas-dynamic equations: the
lines in the plane coordinate
(x) - time (t) are OA, OK, OL,
and OB. Along them are con-
served all the quaatities that
characterize the motion and the
state of a gas in the presently
investigated case of turbulence
caused by the movement of a
piston. The pistons' move-
ment is represented by line

1, and the motion of single
gas particles is represented
by the dashed lines.

In the present case of an ideal gas with a constant thermal capacity, the equations
are extremely simple.

2 e
We substitute into (VI-14) du=¢—jde, and find

kw1 okl (Vi-19)
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The velocity of motion and the speed of sound in the wave linearly connected with the
quantity £, which is the state propagation velocity.

With an assigned piston speed, the entire motion (Fig. 18) consists cf two trivial
regions: the unperturbed gas (I), and the gas that adheres to the piston and moves at a
velocity which is constant in the entire region (III), and a turbulence region {II), which
may be called a wave, in which all the quantities change their values in one trivial region
until they reach the values in another trivial region. In each trivial (I), (IiI) region
%:g-g _—.:%g::—:i:o, u—§#c. Conversely, in the turbulence wave u - £ = - ¢, and the
formulas (VI-8), (VI-14), and (VI-15) apply. We can readily design a mode for any piston
velocity in the case where that velocity is negative.

The distribution of velocity and pressure in space as shown in Fig. 18 corresponds to

the distribution in terms of variables t, x in Fig. 17.

»
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Fig. 18. Expansion wave: instant
distribution of pressurep and velocity
u as a function of coordinate x. As
time t increases from the instant the
piston begins to move, the entire dis-
tribution stretches proportionally
along the abscissa. The hatched
area on the left is the piston II.

All the values along the x-axis in Fig. 18 gradually grow in accordance with the

solution that depends on the ratio x/t. The wave proper is contained in the region AB(ID).

To the right of A we have the unperturbed gas in the state in which it was before the piston
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began to move (I). Between the piston and point B there is a region in which the gas mcves
with the same speed as the piston, the pressure and speed in the interval - B being constant
("trivial regior" III). Point A moves to the right at a speed o Point B moves to the right
at a speed ¢ + w, where w is the speed of the piston, that is equal to gas velocity at point
B; we remind the reader that @ <0, and c is the speed of sound in the gas. If the piston
moves at a very high speed, the quantity ¢ - w may become negative (in the case of an ideal
gas this will happen when |w]> ,‘;:'_ic,), and point B will appear on the left of the ordinate.

At points A and B the values for velocity and pressure aire continuous. Their derivatives,
however, appear to be discontinuous. Hence points A and B are sometimes known as points
(surface in a three-dimensional space) of weak discontinuity, or acceleration waves.

Figure 17 shows in the plane t, x the movement cf the piston and the lines along
whicii a constant value for pressure and velocity is maintained, which are known as the
characteristics of the problem; these lines include such which correspond to the displace~
ment of points A and B depending on time. Finally, the dashed lines show the trajectories of
single gas particles.

In the regime under study, in which all the quantities depend on the ratio x/t alone,
we proceeded from the assumption that the problem does not contain any dimensional
quantities of length or time. In particular, one of the main assumptions was the unlimited
stretching of the gas into the region x> 0.

The character of the solution found makes it possible to make this requirement less
strict. If we are interested in the movement of the gas during the first tg seconds following
the teginning of the piston's movement, turbulence (the extreme point A) will have had a
change to propagate only over a distance coto; for our solution to be acceptable, the second
wall, the one that confines the gas on the right, be at a distance greater than coto.

Thus, under any geometrical conditions, our solution is of interest for the description
of the initial condition of the motion of the gas. The relation between gas velocity and pressure,

and the rectilinearity of the characteristics are maintained even inthe more generai case
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involving any motion of the pision towards x <0 (to the left, if the gas is to the right of the
piston, see Chapter 14) at a nonuniform velocity; in the case of that movement, acceleration
has the same directior, d*x;/d*<0. This can be shown by a method of characteristics which
cannot be discussed here. Equation (VI-11) is true until as a result of reflection from another
wall or another tu-bulence the waves do not begin to prepagate in the opposite direction, for
which (see Formulas above, or Chapter 2) there appears another sign in expression

pedu === dp.

The value found by us for maximum gas velocity durirg its expansion is quite interesting.

For an ideal gas, from our formula — "=k_-2:71(°°}_ ¢) , we seethat the speed cannot exceed

2
— U, =51 pressure on the piston at a apeed less than critical is given by

For a diatomic gas (¢ jc,==1.4) maximum velocity is equal to five times the speed of
sound in the initially unperturbed gas. We can readily see that at such a speed of the piston,
pressure on it is precisely equal to zero; in other words, this describes the outflow of a gas
into a vacuum formerly sealed off by a partition that has been removed at a given instant

— 1
(Fig. 19). For air we find p=p, (1 —02 -;;'-‘ .

b, p-0

Fig. 19. Test diagram for
a turbulent inflow of gas into
a vacuum,

It is interesting to compare the trend of the velocity and state curves in a steady flow

(Chapter 3) with those in a rarefaction wave that expands with time. In both cases the
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expansion of each volumetric element occurs with constait entropy, so that the relation

between various quantities that characterize the state of the gas is identical:

-

1
T\ Y
S=const; —‘-=(—— =
' \Tp
-1 1
I'§ 2® F]
=(-’—’) =(£_) 9
\Po €0

Y for k== 7/5 :—.-= (-%)‘l‘z
(2=

As a variable that characterizes the state of the matter we conveniently choose the
quantity 7=cjc,. Velocity @ =1u/c, referred to the initial speed of sound is expressed in the

rarefaction wave (see VI-13) by the equation

2
?=k——-‘l (1—7); k“—=1.4, Q:S(l—‘?). (VI—].G)

in a steady flow (see Eqgs. (I[I-12 and III-18))

o=}/ 01— k=14,9=V50T—7)- (VE-17)
In Fig. 20, the last two equations for K = 1. 4 are shown in solid lines, In the case of smzall
changes of the speed of sound (for y close to 1), i.e., in the case of slight changes of
pressure, velocity in a steady flow is considerably higher than in an expansion wave. This
ratio is inverted if y is small and if pressure is small. The highest speed is obtained if
steady and turbulent flow are combined, as shown by the dashed line in Fig. 20. At the
point of tangency A the critical conditicns for steady flow are attained, and ¢ = v. If instead
of the experiment shown in Fig. 19, we take out the plug that seals the end of the evacuated
tube (Fig. 21), then at the inlet cross-section DD' there will very soon be a stationary flow
(seg.ent MA in Fig. 20), and the expansion wave (dashed line in Fig. 20) expands along

the tube. Thus, under the comditions as shown in Fig. 21, it is possible to attain an even
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higher speed of flow into the vacuum than in the experiment shown in Fig 19. In the case of

a diatomic gas, we get 5. 5c0 instead of 5c0.
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Fig. 20. Dependence of dimension-~
less velocity ¢ on dimensionless
speed of sound ¥ for diatomic gas,
k = 1.4; Egs. (VI-17) applicable to
steady flow; Eq. (VI-16) applicable
to inflow as per test in Fig. 19;

MA and dashed line, for inflow as
per test in Fig. 21,

p=latm. Qbs.&{ _

o
o

(
lp'_j

Fig. 21, Experiment of
turbulent inflow of gas into
a vacuum. A rounded inlet
permits to obtain a higher
speed than that in the exper-
iment show in Fig, 19,

Thus, Schardin's computations [84] referred to the experiments by Craz and Schardin

{44) must be corrected since he used a2 rounded inlet as shown in Fig. 21, whereas his
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computations leading to the boundary value Sc0 were derived from conditions as shown in
Fig. 19,

Earnshaw [49] in 1860 found for the first time the numerical value for maximum flow
velocity (5c0). Seventeen vears later it was independently found by Hugoniot in his well-
known memoirs on the propagation of turbulence in a fluid [56]. In this work ke points to
the significance of this computation for internal ballistics. The quantity 2c0(k - 1) represents
obviously the maximum valu: of the speed of a projectile expelled by gunpowder gases in the
case where the gunpowder burns up instantly and at the initial instant of the projectile's motion
the gases are at rest and the speed of sound in them equals o [85].

Yu. B. Kharitoii and this author performed detailed computations of the motion of a
projectile in a gun-barrel, computed the mass of the projectile that is required to obtain an
assigned speed with minimal length of the gun-barrel, taking account of the fact that gun-
powder combustion products are non-ideal.

It is interesting to note that maximum flow velocity in a steady flow in considerably less

-- it does not exceed

ll'"= Vz—iO:sz_-::l Co

which, in the case that k= 1.4, yields u__==c,V5=22¢,instead of 5c, in a turbulent flow.

0
There are erroneous attempts in the literature to identify the maximum velocity of a pro-
jectile with the quantity u'max’ which is considerably less than the actual value (Langweiler
(65}).

In the attempt to find from x/t the conditions that.describe the compression of gas by
a piston (w>>0), we run into a major difficuity. Our equation leads to a condition in which
three values at once for velocity and pressure correspond to a number of coordinate values.
In fact, as before, the equations yield % > 0; Formaily, following the same procedure as the
one when studying the expansion wave, we arrive at the distribution of pressure and velocity

shown in Fig. 22.
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Fig. 22. Distribution of pressure
and velocity having no physical
significance, obtained in solving
equations without dissipative forces
in the case of the compression of

a gas by a piston (see Fig. 18§).

It is obvious that such conditions cannot be realized physically.

inspired the theory of the shock wave which will be dealt with below.
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Chanter 7

Theory of Shock Waves, Introduction

In the preceding chapters we dealt with the cases where classic gas dynamics which
operates with the concept of a continuous pressure distribution and uses differential
equations to describe certain phenomena, but ignores viscosity and thermal conduction,
runs into certain difficulties. Lot us remind the reader of the natare of these difficulties. .
3 In the chapter on sound propagation we established that the sound wave is subject to

deformation as it propagates. The "wave crests", i.e., the places where the substance is
compressed and moves in the direction of wave propagation, run ahead. Conversely, the

"troughs", i.e., the expansion regions where the substance moves in a direction opposite to

the propagation of sound, fal{ behind the wave as a whole. Thus, the sound wave, as it is
deformed, lashes itself -~ a phenomenon similar to the one observed vhen sea waves run on

a shallow beach.

We have mentioned several times “hat the analogy between gas dynamics and phenomena
occurring in liquids with a free surface has a very deep and far-reaching significance. In
both cases there is a tendency towards a spontaneous increase in the gradients, toward a
spontanecus formaticn of discontinuities during compression.

In the theory of outflow from a Laval nozzle we established that it is impossible to
describe a number of intermediate regimes in a specific large region of counterpressure
velues by means of only the equations of continuous flow with constant entropy.

Finally, in the lastproblem investigated by us, namely, in the case of the motion of a gas
caused by the sudden movement of a piston, this limitation of classical gas dynamics became
particularly obvious. Thus we have seen that if the piston moves in the same direction of
the gas, w>0, and the differential equations of gas dynamics lead to absurd trivalent solutions,
that is, solutions according to which in one and the same spot there must simultaneously exist
three values for demsity, three values for temperature and three values for velocity.

All these cases indicate that there must be other forms of solution in gas dynamics which
are not directly derived from the equations of ideal gases (ideal here refers to the absence

of viscosity and thermal conduction).
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It can be expected that for the conditions sought for a large value of gradients will be
characteristic, so that in a given approximation they may be treated as the propagation of
the discontinuity surfaces of velocily, pressure and deasity -~ the so~called shock waves.
Before we go into the kistory of the problem of shock waves, we shall derive in an
A elementary form the equations of a shock wave, approximately in the same way as Hugoniot
. in bis well-known book *'On the Propagation of Discontinuities' [56]. We shall postulate the
uxistance of a discontinunity (explosion), and shall not investigate how it was achieved,
whether it is steady, and so on.
:
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Chapter 8

Hugonoit's Adiabatic Curve. Its Derivation From the Equations of Conservation

We investigate a shock wave that propagates in a gas. We are not interested here in the
precise structure of the shock wave front, We only assume that even if there is no discontinuity
in the strictest acceptation of that term (Fig. 23a), the changes in pressure, density, etc.,

do take place in a very narrow region (Fig. 23b).

L L L L L Ty

7
a . b

Fig. 23. The ideal (a) and
actual (b} structure of a shock
wave.

In our elementary derivation we shall confine ourselves to investigating the state of the
substance before and after the passage of a shock wave through it. We apply the conservation
equations to these states. We assume that the region proper of the wave A~B (Fig. 23b) does

not increase in time. The values of pressure, density and other quantities inside the

"discontinuity" itself, extended over the entire length of the segment AB, must drop out when
setting up the conservation equations because although the wave travels, the amounts of matter,
; of energy and of motion contained in the wave hetween plane A and plane B are small and their
change can be disregarded.
For the sake of simplicity we take a system of coordinates that travels along with the
shock wave. In other words, we shall investigate a wave at rest into which through plane
A there flows in matter in a state denoted by subscript i (on the left),.and from which on the

right there is an outflow of matter the parameters of which are denoted by subscript 2. We
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set up the conservation equations for the assigned control surfaces. We also assume that

the motion of the substance occurs normal to the wave's surface. 21
Velocity uy, that is, the velocity at which the substance flows into the stationary
shock wave, coincides obviously with the velocity at which the wave propagates with
respect to the noncompressed initial substance, which is frequently denoted Ly D. Velocity
. u, is the wave velocity with respect to the substance compressed in the wave. Finally, the
difference u, -u,, which is independent of the choice of a moving or stationary system of
coordinates, is equal to the change in gas velocity at the passage of the shock wave. In
particular, in the system in which the initial substance (index 1) is at rest, the velocity

after the passage of the wave

jel=ay—uz uy=D—|al. (VII-1a)

If we equate the amount of substance flowing in during a unit of time to the amount

of substance flowing out, we obtain the first conservation equation:

0; Uy == 03 U5, (VIII-1)

Then, for the volume enclosed between A and B we set up an expression according

to Newton's second law, and equate the change in the amount of motion during a unit of time

to the impulise of pressure momentum, The amount of substance Py u, flowing in during a
unit of time has a velocity uy, 79 that the amount of motion flowing in during a time is equal
to plulz. The difference between the amount of motion of cutflowing fluid pzuzz and the
amount of motion of inflowing fluid (i. e., the increase in momentum) must be equal to the

pressure momentum which, referred to a unit of surface, amounts to Py - Py- Thus we get

the second conservation equation

P40, 0 ==py + 0y uy" (VHI-2)
Finaily, -ve set up the equation of esergy conservation. In it we will have to consider

three pairs of quantities, viz., intrinsic energy cf the inflowing and outflowing substance,
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its Kinetic energy, and the work performed by pressure on the control surfaces A and B,
Thus, in its delinitive form, the amount of inflowing energy together with the work to-

gether with the work performed by pressure on surface A is

- u b 4
iy ‘Ex - 221' tpy=Qy (Ex "‘:x“l""";‘)z
— oty
= (Il +2 ) (VII-3a)
This expression must be equated to an identical equation with index 2, which will

give us the amount of energy carried away by the outflowing substance during a unit of
time, and the work performed by the gas against the pressure on the control surface B.
By cancelling the obtained equation by the quantity P14, = Poly, i.e., by referring all
the quantities not to a unit of shock wave surface and a unit of time, as we did before,
but tc a unit of mass of the substance flowing through, we obtain the third fundamental
equation in the following form

LN
o hrg=hey (VII-3)

Here we have again introduced enthalpy /==E-+pv=FE+- %. All the equations are
syrametrical with respect to the permutation of the subscripts 1 and 2. From the three

equations we can readily eliminate the two velocities u, and u, in order to obtain the relation

1
between pressure and density before and after the passage of the wave, which is known as
the Hugoniot adiabatic equation.

From the two first equations, without using the equation of energy couservation, we

find

=8, ga_@hAh. g _hp—p.
o e103—0y! 2 T g0 —0!
u‘l__u‘t__z(‘): -+ 00)(py —p3) .

0102 (VIII-4)

We substitute these expressions into the last equation and obtain the Hugoniot adiabatic

equation sought
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1
h—h= 5= (o +0) (p,—p

(VIII-5)
or

Ei— Ey= o (01— 0y +-p). (VII-6)

To obtain the relation between pressure and density after compression in the wave
in an explicity form, we muct express enthalpy or energy in terms of pressure and density.
For an ideal gas, the thermal capacity of which we take to be constant in the temperature

interval between T and T, interesting us,

- & & kg 22
I—C,T—-E'RT—-R-pv—-k—_—l—e-v

we obtain by means of simple transformations the relation between density and pressure for

a substance passing through a discontinuity, the Hugoniot adiabatic equation

G (k+Dpy+k—1)p_ py__(k+i)os—(k—1)o,
o (k—Dps+{k+Dp’ p (k+rDg—(k—1e2

(VHI-7)

The equations can be simplified if instead of density we introduce everywhere the

inverse quantity of specific volume

—h. —_— Py P2,
%;"':%i'; ut=uv? :: __:;v u} =10, ,;_‘,: ’
t,—uty =V(p,—p) (v, —w);
' ug=(v; +0,) (p, — p1); (VII-8)

L—f, =1 (0,4 v)(p,—p:):

E,—E,= —;— (vs— o) (P, -+ )i (VOI-9)

v _ (k—Dpy+k+1)p. pr__(k+1v —(k—1o,

v (k+Dp+(k—1)p,' p (k+1uvg-(k—1)n, (VIII-10)

A logically simpler derivation of Bugoniot's adiabatic equation (though physically

completely equivalent to the preceding one) is the one where we proceed directly from the
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problem of the motion of a piston in a gas, dealt with earlier. In this case we need not
operate with the concepts of energy flow and momentum flow, which may represent certain
advantages for the inexperienced reader,

Let us investigate a pipe with a l-cm2 cross-section, closed by a piston at the origin
of the coordinates, At the time instant t = 0 we begin to move the piston at a constant
velccity w. We shall seek a motion pattern, shown in Fig. 24, where the discontinuity of
all the quantities, density, velocity and pressure, propagates in front of the piston at a constant
velocity D. On the right, in front of the discontinuity, the substance is completely undisturbed,
and maintains its initial pressure Py its initial density Py and is also motionless. In the
interval between the piston and the discontinuity, the substance has some cther values of
density Py and pressure Po, constant over the entire interval between the piston and tae

discontinuity. It alsomovesat a velocity equal to the velocity of the piston u = w.

2%

J IROSSSION
K

Lot -

3/ . ?
Fig. 24. Distribution of pres-
sure in space during the passage

of a shock wave caused by the
compression of a gas by a piston.

We investigate the state that arises after a time t, The discontinuity moves away at
a distance Dt. The amount of substance compressed during that time is plDt. It has to be
equated to the amount of substance found in a gas compressed to density Py between the piston

that has moved the distance ut and the discontinuity
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This amount of substance has acquired a velocity equal to the velocity of the piston.
The total velocity acquired by the gas enclosed in the pipe during the time t is plDut. We
must now equate the increase in momentum to the pressure momentum, i.e., the product

of the force equal to the difference between the pressure produced by the piston and the

4
:
3
£
:
i:
'E
[t
3
k.

counterpressure of the unperturbed gas during the time the force is active

o,Dut={p,—p)t. (VII-12)

Finally, we equate the energy ircrease in the substance to the work performed by the
piston, i.e., the work performed by the external force that moves the piston during time t.
Numerically the force for a piston area of 1 cm2 is equal to Py, the path travelled by the
piston is ut, and the work performed is pzut.

Thus we obtain the last equation, the energy equation

. * 1]
o.Dt(Ez-*-ff"En)'“"Pz“" (VII-13)

It is obvious that these equations are completely identical with thosederived earlier,
from which they can be obtained by switching to a system of coordinates having a uniform
motion with respect to the system selected now. The discontinuity propagation velocity
D was denoted earlier by u;, 80 that now D = u,, and piston velocity u = U - U, The proof
that the last three equations (VII-11, VIII-12, and VIII-13) lead to the same expression for

Hugoniot's adiabatic curve (VHII-5, VIII-6), is left to the reader.
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Chapter 9
Properties of Hugoniot's Adiabatic Curve. Shock Waves in Air and Water,

Hugoniot's adiabatic equation derived above has a number of extreme!y interesting
properties. First of all we can readily see that with an unbourded increase of compression
pressure p,, the density of an ideal gas with constant thermal capacity will not increase ad

infinitum but will tend to a specific limit equal to 0, = %:} ¢;- For a diatomic gas with

unexcited osciliations inside the molecule e, = 5 cal/mole x degree; cp= 7 cal/mole x degree;
k = 1.4 and the liimit value of density does not exceed initial density {imes 6. For a monoatomic
gas the limit value for volume compression is 4.

Thus we see that in the case of strong compression, density increases rather slowly.
To this corresponds a slow decrease in volume and a correspondingly rapid increase of
factor pv which determires the gas temperature.

Numerical computations fuily corroborate the conclusion regarding the rapid increase
of gas temperature with increasing pressure in a shock wave.

Figures 25 and 26 show the curves plotted by Lgypunskiy which, depending on the
pressure ratio pz/pl, give us all the quantities interesting us -- density after compression,
all the velocities w, Uy, U - U, and sound velocity in the compressed gas, All velocities are
referred to sound velocity in the initial, unperturbed gas. The temperature of the compressed
gas can readily be found from the sonic velocity curve T2/ T 1= (02/ 01)2. The computations have
been performed assuming a constant thermal capacity c,= 5 cal/mole x degree, cp = 7 cal/mole
x degree, independent of temperature. Becker {38] gives us a table of the state of air com-
pressed by a shock wave.

Becker conducied his computations assuming that thermal capacity is linearly de-
perdent upon temperature. Mean thermal capacity in the interval from 273° to T is ex-
pressed by the formula

c'(ﬂ,_n-': 4.78 4=

+045-073 T, (IX-1)

82




g . N B i o b et e o

(4 7 2 k') 7] 2

Fig. 25. Dependence of wave
propagation velocity D, the
velocity of compressed sub-
stance u and wave velocity
with respect to compressed
substance D - 1, on pressure
amplitude in » shock wave in
a diatomic gas with constant
thermal capacity.

Check computations show that in the interval from room temperature to 3000°K this
simple formula coincides with an accuracy up to 3% with the modern exact value for the
thermai capacity of air calculated on the basis of spectroscopic data. In his table Becker,
as a comparison, gives the temperature that can be attained with adiabatic compression
(along Poisson's adiabatic curve with constant entropy) up to the same pressure,

It can ke seen from the Table that compression of the shock wave leads with an equal
pressure increase to a considerably higher compression temperature.

3 Direct calculations for an ideal gas with constant thermal capacity show that with

3 compression in the shock wave, i.e., when 0,203 P >p; v:<v; 4, >0 u,>0,
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the following relationships take place

w>e ©y<Leg 53, (IX-2)
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Fig. 26. Depcndence of density

P, and sound velocity c_ in a com-

pressed medium, on préssure,

under the same conditions as in
Fig. 25.

S SN

Inanexpansionwave, if it propagated in the form of a discontinuity, in an ideal gas

0, >0 u,>0; .,<0; p,<pj;the relationships would be inverted

s e NN L
-

u‘<c1; u’>c‘.’; S] <Sr (D("3)

In the case of absence of heat transfer to the outside, a drop in entropy is impossible,
hence it follows that a expansion wave cannot propagate in the form of a discontinuity (the

so-called Zemplen thecrem [99, 55 . Below, as we will go deeper into the theory of shock

"o |
NS e i e AR et
. .

waveg, we will show the mechanism of entropy increase in a compression wave and its con-

nection with inequalities which refer to wave velocity Uy, U, and sound velocity €,Co.

For an ideal gas with constant thermal capacity and a large shock wave amplitude

P22 Py, the formulas become considerably simpler, We have already noticed that density
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after compression has a specific relation (k + 1/k - 1) to density before compression. The ,

relaticns between quantities that characterize the state achieved after compression, approach

a specific limit for :—:i - o, (sic)

D:ﬂ:c’zk-PI:Q:\I-ﬁ-‘(k—l). {IX~4)
The limit formulas include initial density but not initial pressure or temperature, upon

which the final state does aot depend in the case of a large amplitude

o 'f:‘-i——_ "—;'_—174- _k-=lpyyy _k—1 p,
D”‘}/ 2ANTY T T R T EARy
(IX~5)
Table 2 (
] P2l 020y T, T §= const)‘l D ulccxa) u nd'ccxg)-
:f 1 1 273 213 330 0
3 2 1.63 336 330 452 175
3 284 482 426 698 452
Y 1 388 708 518 978 725
3 50 6.04 2260 79¢ | 2150 1795
100 7.66 3860 950 3020 259
500 113 12 200 1433 6570 5980
1000 14.3 1910) 1710 9210 8560
2000 188 29000 2070 12 900 12210
3000 223 36 700 2180 15750 15050
Figures below the line are unreliable.

3 CODE: a) Sec

The propagation of shock waves in fluids nas been scantily investigated, In his
monograph on shock waves, Becker cites data on shock wnves in alcohol and ether. He
performed his computations with the aid of Tamman's approximate equation of state,

Considering the importance of the study of shock waves in water with regard to under-
water explosions of mines and torpedoes, the evaluation of the fundamental parameters of

a shock wave as a function of pressure appears to be interesting.

s
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equations of state.
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We computed with the aid of the thermodynamic relations

energy to a state with energy to be determined, we find E.

g wave in water performed by Leypunskiy and this author [125].

)r= - (;"7__)’—_- o

dE:=c, dT —« Todp— pdo.

R ettt M A%

dE=— TdS —pdo== T(37) dT~+T(5),dp—pdv,
' .

does not depend on pressure. This, of course, facilitates computations.

Table 3
P iTLoCl o1 | e | P2 |T2°C o | e “ D |12
1] 40 Il.008 1530 11 40 1008} 1530 01530} 40
1 | 31.5[1.005) 1500 | 3000| 40 | 0914 1890 150 | 1820 | 31.2
1 | 225[/1.002}1470 | 6000| 40 1085912520 | 280 | 2070 | 24.2
1 1.8 1.000 ! 1410 {12000} 40 1079313200} 490 { 2410 | 11

86

T G PO S e T

The next Table gives the results of the computation of the propagation of a shock

Unlike Becker, we rsed in our calculations the tabular data for compressibility, the

expansion factor and the thermal capacity of the water, without resorting to the unreliable

<here was no need to use extrapolation. For the sake of ccaveniepce, the initial conditions
this temperature, according to Bridgeman, the coefficient of thermal expansion of water «

The energy equation (VII-6) comprises the energy of water at very high pressures.

By integrating the last equation with respect to the path leading from a state with a certain

AT v e SOLT A

Bridgeman's measurements reached extremely high pressures, hence in the computations

were so chosen that the final temperature of the water compressed in the wave bhe 40°C, At
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In the first four columns of Table 3 we find quantities which characterize the initial

state of the substance (prior to compression), and in the following four columns we find the
state of the substance after compression. Then follows the propagation velocity of the shock

wave in uncompressed water, D = u,, and the velocity acquired by water during compression,

1’

u=u, -u, (see notations in Chapter 8),

1

The last column of the Table contains the quantity that characterizes dissipation processes

and the damping of the shock wave in water. The quantity T'ls represents the initial tem-
perature which is necessary so that by means of isentropic compression from P; to p, one

can reach the state p,, T vy shown in the Table. The difference between T'ls and Ti’ re-

21
presents the increased temperature reached on account of the irreversibie processes in the
shock wave front. Imagine a shock compression with plto Po, followed by isentropic expansion
to pressure ;. After the passage of a shock wave of assigned pressure amplitude (p2, fifth
column in the Table) and of the expansion wave following :t, the water temperature will rise
from T1 to T'1 s

This increase in water temperature occurred on account of an irreversible consumption
of mechanical (kinetic and potential) energy of the shock wave and, consequently, is directly
ccnnected with the damping of the wave. The ratio -7—;-37'_1_-'7.? can be used as a standard for
this damping,

We can readily see that also in this practical case the general relations are satisfied;
wave propagation velocity is greater than sonic velocity in unperturbed water, D> ¢;; wave
propagation velocity with respect to compressed water is smaller than sound velocity in
compressed water, D—ue <c,.

Let us now look into some formal properties of Hugoniot's adiabatic curve.

Quite interesting and significant is the fact that the Hugoniot adiabatic equation cannot

written in the form

ez 0)=fps 02 (IX-6)
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In this respect Hugoniot's adiahatic curve appears to differ from such simple curves as the

isothermal or Poisson's adiabatic curve, The equation of the latter is

S=38(p, ¢)=const, (IX-7)

which, for inetance, for an ideal gas yields

: -8
S= < Inp—c,Inp-+const; op™"=const- e, (X-8)

To exhaust all the Poisson curves it suffices to go through the one-dimensional
series of value for entropy S. But to exhaust all of Hugoniot's adiabatic cnrves we must
plct an "infinity squared" of curves that correspond to every possibl: value of P, and Dl’

That Hugoniot's adiabatic equation cannot be represented in the form {(p, 0) = const
can be ceen from the fact that by compressing, for examp'le, a diatemic gas two times by
two shock waves, one of which propagates along the other, we can increase density up to
36-fold, wher=as in the case of a single compression density cannot be incieased more than
6-fold. Thus, dvuble or, generally speaking, multiple compression by shock waves leads to
a state that cannot be attained by single compression. However, in the case of isentropic
compvression, finai pressure fully determines the final density of the substance, no matter
how many stages were needed to reach the given final pressure, which follows from the
possibility of representing Poisson's adiabatic curve in the form (IX-6\.

In the p, p plane or in the p, v plane, Poission's adiabatic curve is a curve in which
all *he points are equivalent. None of the points is a singular point, With Hugoniot's
adiabatic curve, howeve~, this is not the case. The initial point £, Py (or V., pl) isa
singular point of Hugoniot's adiabatic curve. The nature of this singularity will be determined
in the next Chapter by studying the neighborhood of point P vy that describes the initial
state of the substance prior to compression.

We write Fugoniot's adiabatic equation

p=H& v e (IX-9)
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From the symmetry of the conservation equations irom which Hugoniot's adiskatic

equation was derived, it follows that if

then, converseiy,

(see Fig, 28),

py=H(e; p;, 1), (IX-10)
pi==H(ey; py 02) (IX-11)
{
H
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Chapter 10

The History of the Shock Wave Problem

The equation of the connection between pressure and density in a substance subjected
to the action of a shock wave, which was derived from elementary considerations and from
the study of the conservations laws, led to an unexpected result, namely, the increase in
entropy with compression of the ideal gas in a shock wave. Entropy increase f;)llows directly
from juxtaposing the initial and final state of the substance, which are associated with one
another by the conservation equations. We did not investigate the processes that occurred
between the control surfaces A and B (Fig. 23b) which led to entropy increase. Formally, as
already mentioned, only the conservation equations are symmetrical with respect to 01, Py
and Py Py. We could also satisfy the conservation equations by investigating the inverse
motion, viz,, a expansion wave in which expansion occurs within a small interval AB (which
we shall not investigate closer) in accordance with the Hugoniot equation. In actual fact,
however, such a motion is impossible since entropy would drop in it (this is the so-called
Zemplen theorem [99] mentioned earlier). This particulur feature of the result of Chapter 9
where, without considering dissipation processes, we came to a change in entropy, creates
specific difficulties in the understanding of the theory of shock waves which can be overcome
only if we observe the prccesses inside the region of the change of state proper (between the
control surfaces A and 8, (Fig. 23b). Thie has held up considerably the evolution of the
theory of shock waves,

It is remarkable that the first three most important works on the theory of shock waves
were produced at different time periods but, apparently, completely independently from one
another, We shall therefore investigate them not in their chronological order.

Riemann {81] set up for the first time two equations, one for the conservation of matter
and one for the conservation of momentum. As a third equation he took Poisson's equaiion,
i.e., he preassigns the conservation of entropy in a shock wave, similarly to the conservation
of entropy in non-shock waves in which the effect of dissipation forces, viscosity and thermal

conduction, is not considered. The relation betwe¢n pressure and density obtained by him is
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pretty close to the real one, and so is the general picture of motion which he discovered.
However, Riemann's equations do not fully satisfy the law of energy conservation, Hence we
have to regard them as erroneous,

It is interesting that in the 1925 edition of the well-known book ""Partial Differential
Equations in Mathematical Physics", compiled by Weber on the basis of Riemann's lectures
[97], even after the problem had been entirely clarified, he (Weber) expresses peculiar
doubts as to whether or not Riemann's equations may still hold when considering turbulence.

The conclusion by Hugoniot {56], with whose name Eq. (VIII-7) is usually associated, has
been dealt with in ﬁe preceding Chapter,

We shall now take a look at Rankine's book {78], which is most interesting from the
viewpoint of physical gas dynamics because the author has a deep undersianding of the
phenomena occurring in a shock wave,

Rankine examines a motion which could propagate ad infinitum without changing its
form, i.e., he studies a turbulence that propagates steadily in a gas. He establishes two
control planes (like we did when deriving Hugoniot's adiabatic curve) and sets up the law of
conservation of matter and the law of conservation of momentum. Rankine studies a substance
which has thermal conductivity but no viscosity. He formulates principles of self-modelling
which are of the utmost importance for shock waves. Specifically, he emphasizes that
numerically the coefficient of thermal conductivity of a substance may be infinitesimal, but
we may not neglect it in a shock wave because the width of a shock wave as well as the magni-
tude of the gradients arenot pre-assigned. The smaller the coefficient of thermal conductivity,
the greater we may expect the gradients to be in a shock wave, so that the product of the tem-
perature gradient times the coefficient of thermal conductivity (equal to the amount of heat
transferred by thermal conductivity in a unit of time) can remain finite as the coefficient itself
approaches zero. This makes us thoroughly understand when we can ignore dissipation forces,
in particular thermal conductivity, which is when the magnitude of the gradients is pre-
assigned by the equations of motion without thermal conductivity. It also makes us thoroughly

understand why we cannot ignore thermal conductivity when the magnitude of the gradient
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is not pre-assinged or predetermined. An example of the first case is a expansion wave for
which we have plotted a solution assuming the absence of thermal conductivity. We found
that the width of a expansion wave is of the same order as the distance covered by tur-
bulance. The width of a expansion wave increases linearly in time, and in order of magni-
tude is equal to

Ax= 2 ct.
»

If we take this to be the first approximation since in the plotting of the expansion wave
thermal conductivity and viscosity were not considered, and if we want té consgider in the
following approximation the effect of thermal conductivity and viscosity on the temperature
and velocity fields found in the first approximation, then we will see that all the gradients
will rapidly grow so small that thermal conductivity and viscosity will have virtually no
effect on the result, This, however, is not the case in a shock wave, Should we take as a
first approximation an infinitely steep discontinuity, obtained when thermal conductivity and
visconsity are equal to zero, then in the next approximation, introducing thermal conductivity
and viscosity, we obtain infinite heat flow and an infinitely great increase in entropy. In the
case of a shock wave where the equations of motion without thermal conductivity and viscosity
do not give any specific value for wave width, the gradients and the wave width connected with
them can only be obtained from the consideration of dissipative forces. The width turns out
to be precisely such that it gives the increase in entropy required by the conservation equations.
Conversely, if in a expansion wave with a finite width commensurable with the dimensions of
tue system we could disregard the effect of dissipative forces, then in a shock wave, in order
that dissipative forces could give a finite increase in entropy, it is necessary that we width
of the shock wave should ke very small as compared with the dimensions of the system.
Owing to this we can disregard dissipsative forces evervivhere except on the surface of shock
waves, These relations have been well explained by Rankire qualitatively for the particular
case when thie only dissipative factor is the thermal conductivity of the substance.

Rankine's furiner explanations suffer from excessive complexity. He does set up the

energy equation quite correctly, but in the general case of an arbitarv supstance he does nct
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express intrinsic energy in an explicit form as a function of pressure and density. Instead
he uses general thermodynamic formulas which include entrepy.

On the processes of heat transfer within the discontinuity, he imposes a condition,
ITJS =0, the physical significance of this condition is that in a shock wave there occurs
only an exchange of heat between neighboring layers, so that the amount of heat removed
from one layer is equal to the amount of heat received by the other one, which means that
there are no exterior heat sources.

It takes Rankine some effort to derive a system of equations equivalent to that in
Chapter 8 from the combination with the general thermodynamic formulas, and he then
writes the equations for an ideal gas. Thus, Hugoniot's adiabatic equation in its customary
form (Eq. (VIHI-10)), could be derived from the formulas contained in Rankine's work by
means of elementary algebraic t;-ansfor mations. Let us remind the reader, however, that
Rankine preceded Hugoniot's work by s.ome f{ifteen years.

Rayleigh summarized in 1910 tl.e evolution oi the history of shock waves [79]. He
particularly emphasizes the unfairness involved in the term "Hugoniot's adiabatic curve''.

Among the occasional papers j* (s interesting to note that as early as 1858 the
English priest Earnshaw {49] came quite close to creating a theory of shock waves. Like
Riemann he proceeded from the investigation of a compression wave of finite width in which
(see Chapter 2) the wave crest overtakes the region of low pressure thus resulting in a
discontinuity. However, the Reverend Earnsbaw all of a sudden makes the surprising
inference that nature does not suffer discontinuities or jumps. He makes some obscure
statements on reflections, and implies that nature will somehow manage {o prevent the
formation of a shock wave or of a discontinuity. Thisisaneducational example of the
bad influence exerted by an erroneous philosphy on scientific research.

In a latter time, already after the discoveries of Riemann, Rankine and Hugoniot, the
French scientist Pierre Duhem (one of the leaders of the "energetics" movement fashionable
at the beginning of the twentieth century) denied the existence of shock waves on the assumption

th~t in equations of gas dynamics involving viscosity and thermal conductivity there can be no
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strict discontinuity {46, 47]. Emile Jouguet, a pupil of Duhem, followed Rankine and pointed

out that dissipation forces result in an exceedingly smzll width, If one disregards it,

then one can speak of a discontinuity or & shock wave. Not only did Jouguet clarify

Duhem's error, but he greatly contributed to an advance in the theory of shock waves and
detonation waves [58, 59, 60]. Yet, to this day French authors, probably on account of
Duhem's remarks, frequently speak of ""quasi-waves', with a view on the finite width of
the front.

Essentially we are dealing here with the general problem of the value and significance
of approximate methods or approximate solutions in physics (see the remarkable paper by
V. A, Foch {29]). Thisinvolvesalso the question as to when as approximate realization of
some formulas or relations justifies the creaticn of new qualitative concepts.

Rankine also touches upon the problem of expansion waves, cad refers to an oral
commaunication by Thomson according to which an expansion wave must be mechanically
unsteady. in point of fact, however, Rankine already implies the impossibility of a expansion
wave (and not its unsteadiness or instability). In fact, if we study the processes of thermal
conductivity inside the wave then, besides the conservation equation written by Rankine,
IT«IS =0, whick states that in a process of thermal conductivity the amcunt of heat received
by one layer ‘s equal to the amount of heat released by other layers, we must take account,
at least qualitatively, of the elementary fact according to which in the process of thermal
conductivity heat always passes from a hotter body to a cooler one. Hence, of course, we
get that in a shock wave entropy can only increase. Thus, were we to type to plot a
expansion wave by inverting in a shock wave all the velocities, then inside the shock
wave front, inside the "discontinuity" we would also run into the necessity of inverting the
heat flow and achieve a transfer of heat from cooler gas layers to hotter ones -~ which is
impossible.- We cannot but regret that these elementary considerations are sometimes
ignored even in tze contemporary literature (see Chapter i of Vlasov's book [3], which is

otherwise quite valuable).
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Chapter 11

Graphical Methods of Shock Wave Theory. Waves Near a Critical Point

A very convenient aid for a simple investigation of shock wave theory is the re-
presentation of processes and states on a diagram in which specific volume v is shown
on the abscissa and pressure p is shown on the ordinate. We have already mentioned that an
assigned initial point (point A, Py ¥y in Fig. 27) correspords to one specific Hugoniot
curve. Figure 27 shawn how to find on a diagram the propagation velocity of a shock
wave, We use a tormula which gave us the shock wave velocity as a {unction of pressure

and specific volumes before and after compression

Dd— “x'="x’ Pr—py,

1 XI-1)
For the given initial state of the substance Pp ¥y the factor preceding the fraction
vf is a constant quan:ity, and the propagation velocities of shock waves corresponding tc

various compression stages, various final states, etc., depend on the ratic P, - pl/v2 =V
i.e., on thetangentofthe dip angle of the corresponding straight lines connecting the initial
point PV with the points representing the state of the substance after compression Py, V.
Thus, it is obvious from the diagram, that point C where pressure is greater than at point

B, corresponds to a shock wave that propagates at a greater velocity because the angle of
inclination of the straight line AC is greater than that of the straight line AB. It is quite
important that Eq. (Xi-1) was derived by us only from the first two equations, the equation
of conservation of matter and the equation of conservation of momentum, independently of the
equation of energy conservation, Hence it will hold true in all cases where the equation of
momentum conservation is not disrupted, i. e., when there is no interference from

external forces cf the kind of gas frictivn against walls, In all these cases and in particular
also in the presence of a chemical reaction or in the presence of external heat sources or

energy sources, which change only the energy equation but not the momentum equation, the

relation between density and pressure in the initial and final state, and the propagation
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velocity remair s in force. In particular Eq. (XI-1) refers also to the speed of propagation

of a detonation in explosive gas mixture (8, 59, 60].

4 . e - - o & — e & e e

Fig. 27. Shock wave propagation
velocity is determined by the slope
of the chord, for example, AC, AB,
AE, Sovnd velocity is determined
by the slope of the tangent.

CODE: a) Sound.

Special interest should be placed on the fact that Eq. (XI-1) is obtained from compiling
the equations of the conservation of matter and momentum only for the initial and final
state of the gas in the wave. Use of the straight lines AC or AB for computing the velocity
does not mean that it has been assumed that the intermediate states (see Fig. 23b) are re-
presented by points on these lines,

Should we be interested in the intermediate state through which passes the compression
inside a thin shock wave front, or inside the front of a detonation wave, or any olher wave
that propagates steadily in a gas, then, along with the external forces which may violate the
law of momentum conservation, we must also consider the possible effects of internal forces
of gas viscosity which are omitted in the juxtaposition of the initial and final states. If for
any reason we can disregard the effect of viscosity or the effect of internal friction, Eq.

(XI-1) can be applied to all those intermediate states through which the substance
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passes on its way from its initial state to its final state, This is precisely the situation in
a detonation wave where the wave width depends on the velocity of the chemical reaction
and, gene::zlly speaking, is quite considerable, so that the effect of viscosity is small, A
detailed discussion of the problem and a complete bibliography can be found in [8, 103).

In Fig. 27 we can also readily find the graphic representation of sound velecity.

Sound propagation is obtained as an exireme case of the propagation of very weak shock waves.
Thus, sound propagation velocity on the diagram in rig. 27 is given by the extreme

inclination of the secant, when the second point representing the final state of the substance,
approaches the first point to an infinitely small distance, i.e., it will be given by the
inclination of the tangent to Hugoniot's adiabatic curve at the point representing the initial
state of the substance under investigation.

We juxtapose Eq. (XI-1) for Py = Py and the expression fer sound velocity ¢?= — u’gs ! o
and conclude that at the initial point Hugoniot's adiabatic curve touches the line of constant
entropy (Poisson's adizbatic curve).

We can see that for an ideal gas with constant thermal capacity, for which Hugoniot's
adiabatic curve has the form shewn in Fig. 27, the shock wave prapagation velocity is
greater than sound velocity in the initial gas D=u, > ¢;. By increasing ad infinitum the
shock wave pressure we can, in the limit, obiain an arbitrarily great shock wave propagation
velocity. Conversely, for a expansion wave in which the final state E in Fi;. 27 lies below
the initial state, the propagation velocity would be smaller than sound velocity. If at the
final state of the compressed gas in a shock wave, for instance, at point B we plot Poisson's
adiabatic curve or Fugoniot's adiabatic curve touching the latter at this point, we can like-
wise determine the relation between shock wave velocity and sound velocity in a compressed

gas. For wave propagation velocity with respect to compressed gas we have

Pr— P2
= —ur = B2 oo

an expression which is completely symmetrical with the expression for wave velocity- ‘with
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respect to the initial gas. In Fig. 28 we haveplotted through B Hugoniot's adiabatic curve
H‘B’ for which state B has been taken as the initial one, According to the symmetry of

equations, if B ison H Al then H,, pasges through point A (see Egs. (IX-10, 11)).23 At

B
point B, curve HB touches Poisson's adiabatic curve, From the position of lines HB and
straight line BA in Fig. 28 it follows that ¢;> u;== D—u, and sound velocity in a gas com~

pressed by the wave exceeds the wave velocity with respect to the compressed gas.

A

2 14

Fig. 28. The relation be-
tween wave propagation
velocity with respect to
initial state A and sound
velocity ir state A is given
by the relation of the incli-
nation of the chord AB and
the tangent to curve Hy at
point A, The relation of
wave velocity with respect
to the compressed substance
in state B and sound velocity
in state B is given by the
relation of the inclination
of AB and the tangent to
curve HB at point B. A
direct comparison of
velocities with respect to
the various states is inad-
migssgible since the coeffi-
cient introduced in the
transition from inclination
to velocity depends upcn
specific volume v
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In the pv diagram we cap analyze the problem of eniropy increase in a shock wave,
We correlate the expression for the change in intrinsic gas energy in a shock wave with

the general thermodynamic expression for energy diZferential. In a shockwave

AE==EF,—E, ==

_ £1 ;.’! (v‘ — "l)‘ (XI'-3)24.
But in the general form di = T dS - p dv. Along Poisson's adiabatic curve (the isentropic
line) we would have with a change in volume within the same limits
{dS=0
X o 4
Ef~E=4E=— | pdv. XI-4)
L]

We correlate the expression for the change of energy along Poisson's adiabatic curve (P)
with the expression for the change of energy for shock compression along Hugoniot's
adiabatic curve (H) and obtain the equation for the quantity A3 of entropy change for shock

comgpression

TAS=87P2 (g, —0)— [ pdo.
L

(XI-5)
Integrals (XI-4) and (XI-5) are taken along Poisson's adiabatic curve.

We investigate the relation between two terms of the last formula in Fig. 29.

V4

E)

)
»
a

Fig. 29. Entropy increase wita
compression in a shock wave AB
depends ¢n the sign and the size

of area AFBCPA, AHP is Hugouiot's
adiabatic curve, and APC is Poissonfs
adiabztic curve,
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! in this Figure, APC is Poisson's adiabatic curve (the isentropic line), AHB is

X Hugoniot's adiabatic curve, the change in entropy durirg compression by the shock wave

: is Sp—Ss=Ss—Se¢ and, according to Eq. (XI-5), it depends upon the difference between
the area of the trapeziuini AFBNM and the area limited by Poisson's adiabatic curve APCNM.

The product of absolute temperature25 times entropy increase is equal to the difference

between these areas, i.e., the area of APCBF,

We divide this area into two parts by the straight line AC. The first part is a segment
the extreme points of which A and C are enclosed by segment APC of Poisson's adiabatic
i curve chord AC. The second part i» the triangle ABC,

We write the equation in the following form, and denote by F the area of the Figures

A AR e

TAS=F,pr,. arc-+Fg. asc. (XI-6)

The area of the trinagle is easy to find. If segment BC is the base of the triangle,

)
then its height is vy = Vo The length of BC in the p, v plane is _(‘i:%)' 4S, and the area of

the trinagle is
1 /3
5 (ﬁ.—)’ (v, — v} 4S.

By substituting this into the initial equation, we find

- - i ! 3 )
TAS ==Segm.-+ 5 !:;g)‘ (W, — 1'2) AS, (XI-7)
Segm.
AS= ==
T—o' (XI-8)

where a = -—; ( g—g). (v; — v,)

In the case of slight volume changes, virtually 748 st egm.* and the correction

for the triangle area is small. If 45 ~ (v,— v,)*. then the triangle area ~ 4S5(v;—v,) ~

~ (v, — v.)**! is of higher infinitesimal order as compared with AS and, consequently, also
of a higher infinitesimal order as compiared with the area of the segment.
It follows that the sign of the change of entropy is fully determined by the sign of the

segment area, i.e., by the reciprocal position of Poisson's adiabatic curve and its
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secant, which, in turn, depends on the convexity or concavity of Poisson's adiabatic curve,
that is, on the sign of the second derivative (%':;’;),- If a approaches T, then AS approaches
infinity, which actually takes place in an ideal gas with v, —» i—:—-}-o,, when on Hugoniot's
adiabatic curve p approaches infinity. T < & corresponds to negative pressure and
similar conditions which in the given case are devoid of any physical significan:e,

For weak waves we can now easily find the extreme laws of entropy chang? in a shock
wave. We expand all the expressions in a power series v= v - vy and leave everywhere only
the senior term which gives us a final result different from zero.

Poisson's adiabatic equation is

P=p+ (-:%)S. yAv+ (—;— %:g)s. . (o). (XI-9)

The second subscript shows that the values of the derivatives are taken at state 1
(point A, Fig. 29).
We write dv;=v;— v, = O, find26 pressure p'2 at point C (Fig. 29), omit the sub-
script of the derivatives and get
P/=p+ %5‘ ©-+ %‘ g:‘:‘ o', (XI-10)
We write the expression for entropy change, disregarding the area of triangle ABC
in Eqs. (Xi-5, XI-6, and XI-7)

[ ]
FAS—=LLEPY (v 1&g
Ta5=830- (— o) [ pddv=— 5 (5),0*=

1 dtp
7w (—v) (XI-11)

—

By correlating Hugoniot's adiabatic equation in the form

I.‘_l‘.__.("i';-‘vl)(p:__’,l) (XI_lz)

with the expression DI = T dS + v dp, we can interchange p and v in all the preceding

LY
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congiderations, Thus we get27

A 1 S, 1 I\
TAS= 13 38 (pr—p)) = 12 5t ("— 7‘,‘) (ps —A\)- (XI-13)

In a weak chock wave, entropy change is proportional to the cube of the amplitude.

At the initial point Hugoniot's adiabatic curve touches Poisson's adiabatic curve. At that
point these curves have a mutual tangent and a mutual curvature center (second order
tangency). Tangency is accompanied by intersection (see continuation of curves for v >,
in Fig. 29).

Jouguet [58] obtained these results for the first time without resorting to the simpler,
geometric treatment. Since Jouguet's more complete work was published before Zemplen's
communication {99] (in the second note in the 142nd voiume, Zemplen remarks that he should
have quoted Jouguet) the generally accepted custom of calling the proof of the impossibility
of discontinuous expansion waves the ""Zemplen theorem" is totally incorrect and unfair,

In studying Eq. (XI-11) we establish that for an ideal g»s Poisson's adiabatic curve is
everywhere convex28 toward the abscissa. This leads us to the conclusion that entropy
increases in a compression shock wave. Conversely, in a sharp expansion wave to which
the conservation equations were applicable, entropy would drop, ehence we immediately
see that in an ideal gas the propagation of a expansion wave with a thin front, similar to
a compression shock wave, is impossible.

For weak waves, Fig. 29 makes it possible in a completely general form, that is,
for an arbitrary equation of state of the substance, to conclude that there is a relation
between shock wave propagation velocity and sound velocity in the substance before and
after compression. For compression to propagate in a gas in the form of a shock wave
with an extremely steep front, it is necessary that Poisson's adiabatic curve by convex
downward, i.e., have the form shown in Fig. 29. In this case, however, it is geometrically
obvious that the inclination of the tangent toward the adiabatic curve at point A must be
smaller than the inclination of the secant AB. Conversely, the slope of the tangent at

point B, which represents the final state, or the slope of the tangent at point C (which is
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extremely close to B) is greater than the slope of the secant. 29 Thus, we obtain the
elementary conclusion of the relation found for the first time by Jouguet, according to

which compression propagates in the form of a shock wave if scund velocity before
compression is smaller than the propagation velocity of the shock wave found from the
conservation laws, and sound velocity in the substance after compression is greater than

. shock wave velocity with respect to the compressed substance. 30 in the case of Poisson's
adiabatic curve, which has an inveried concavity (Fig. 30, section AB), compression in the
shock wave would be accompanied by a drop in entropy since the area bounded by Poisson's
adiabatic curve is greater than the area bounded by the secant, the verticals and the
abscissa. Jn a substance in which Poisson's adiabatic curves have an inverted sign of
concavity, the compression waves will notbe stronger. For instance, a compression caused
in any portion of the substance by the movement of a piston propagates in the form of a wave
that gradually expands like the expansion waves in an ideal gas discussed earlier. Conversely,
in such a substance anexpansion wave propagates with an extremely steep front, the steepness
of which does not decrease in time and is determined by the small values of thermai con-
ductivity and viscosity. This corresponds to an inverse relation ratio of between shock
wave velocity and to sound velocity. In factinanexpansion wave in which the original state
is represented by point A, and the final state by point B (Fig. 30), the propagation velocity
AB with respect to the substance at state A is determined by the slope of the straight line
AB and exceeds sound velocity at state A. This canbe seenfromthe nature of the intersection
of the adiabatic curve and the secant at point A, where the tangent to Poisson's adiabatic
curve has a flatter slope that straight line AB. Conversely, at point B, that describes the
state of the substance after the passage of a steep expansion wave the speed of sound exceeds
the speed of propagation of the final disturbance.

: Are there such substances in nature in which, at least in some portion of the p, v

At T e A i\ Vgt

plane, Poisson's adiabatic curves have a convexity directed upward? We may expect to
find such a state near the critical point of a fluid, which is a gas. In fact, long before that

critical point, the isothermal curves have aninfiection (at the very critical pcint, the inflectionof
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an isothermal curve becomes horizontal); for a substance with a sufficiently high molecular
heat, in which the isothermal and adiabatic curves differ but slightly, we can expect

that outside the region of biphase systems, in a state in which the substance is steadily in
one phase, the adiabatic curve will also have an inverted sign of the second derivative. The
relation between the structure of a compression wave and anexpansionwave will become
inverted as compared with the relation between a sharply outlined compression shock wave

and a blurred expansion wave in conventional gases far away from the critical point.

<y
[y
<3
=Y
=
G
<

Fig. 30. Poisson's adiabatic
curve with an anomalous con-
vexity directed upward. In
that section, expansion shock
waves are possible.

In Fig. 21, in the plane p, v, for the case c, = 40 cal/degree mole, we have
plotted line II that divides the region with (—g:—‘,i)'< 0, the adiabatic curve passing through
this region, and line I that divides the hatched area of biphase systems (the latter does not
depend on the quantity cv). Computations have been performed with the aid of F. Ye. Yudin
(Combustion Laboratory IKhF.)

In the Van der Vaals equation, thermal capacity with constant volume depends only
nn temperature in the entire region of monophase systems; the energy of a homogeneous

substance given by the Van der Vaals equation, can be written in the form of a sum
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of two terms
E=E(T)+-Efv)=|c,dT— 5

This considerably facilitates computations since the entropy of a Van der Vaals gas
can also be represented in the form of the sum of the temperature furiction and the specific
volume function. It would be very interesting to study experimentally the shock waves and
expansion vaves in a gas with great thermal capacity in the region where we may expect the
existence of the aforementioned anomalies.

For this purpose one can take a high-molecular organic crmpound that does not de~

compose at critical temperatures.
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Fig. 31. Adiabatic curves with anomalous
convexity in a Van der Vaals gas with thermal
capacity g = 40. The hatched area re-

prosents the biphase systems; curve II limits
this area a(s’f anomalous convexities, Below
curyve ll(-.—f_l) <0,
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CODE: a) Adiabatic curve, b) biphase fluids and vapor.

5 The estzblichmentina generalform of a relation between sound velocity in a substance
; before and after the passage of shock wave, and the change of entropy in a shock wave is

i quite satisfying since it is obvious (see Thomson's remark quoted in Rankine's paper [78])

that the relation between shock wave velocity and sound velocity determines the mechanical
steadiness of the wave. It is essential that the shock wave propagate at a velocity exceeding
sonic velocity inthe gas subjected to its effect, in order that the disturbance caused by the
shock wave does not precede it at a velocity equal to that of sound. It is also essential

that the shock wave propagate with respect to compressed gas at a velocity less than sonic

I

velocity iu the compressed gas, hecause only in this case can we imagine a causative relation

TETT

between the motion of a piston producing a shock wave and the propagation of the shock wave

since the disturbance is transferred from the piston o the shock wave front across a layer
of compressed gas. The same criteria ¢ <2, ¢;> 4, will be encountered when studying
the onset of shock waves, It is very significant that these perceptible eriteria of the me-
chanical steadiness of a shock wave can be strictly associated with the sign of entropy
change in a shock wave, In general terms this determines the possibility or impossibility
of the propagation of a shock wave that satisfies the laws of the conservation of matter, the
congservation of momentura and energy.

The relation between the sign of A S and the inequalities regarding sound velocities
will be violated cnly in the case where in the pressure change interval under study there
occur both signs of ¢* p[du*, so that Poisson's adiabatic curve has more than two poiuts of

intersection with the straight line. Study of the complex conditions under which there

occur simulatnecusly discontinuities and dissipated waves adjoiring thera exceeds the scope of

e -

the prusent monograph.

e R

106

7YT—
‘

v—-,_
[}

TRy




A AL I A S S 2P 3 L R

s - - P

Chapter 12

Structure of Shock Wave Front

We shall now investigate the thin layer of a shock wave inside which there occurs the
transition from one state to another, i.e., the layer between control surfaces A and B in
Fig. 23b. We have not yet discussed the processes taking place inside that layer because
its thickness, determined by dissipation forces, is extremely small and the results of the
processes occurring there can be determined from the conservation equations without a
thorough study of the processes proper,

Here, however, we are specifically interested in the processes occurring inside the
layer, and alsothe thickness of that layer. We shall study separately two extreme cases:
Case 1, of extremely small viscosity, and case 2, of very small thermal c.aductivity.
The mathematically (but not physically) more complex case of a simultaneous effect of
viscosity and thermal conductivity will not be investigated. For it we will give only the
final expression for the thickness of the transition layer.

The first case is remarkable in that Eq. (XI-1)

D=y} 2P,
vy —0

which combines the change of density, the change of pressure and wave propagation velocity,

turns out to be applicable not only for the final state attained during compression, but also
to all the intermediate states within the layer.

As a matter of fact, this equation is the congequence of the first two conservation
equations, namely, the conservation of matter and momentum.

The equation of conservation of matter in a simple form (VIII-1)

is always satisfied for the propagationof a plane wave, When the wave travels in a pipe, the

cross-section of the pipe must be constant. Moreover, the pipe walls must not absorb or
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eliminate matter, To satisfy the momentum equation for the initial and final state in the
simple form (VII-2)

p -+ put==const

the substance must not be affected by external forces. During propagation in the pipe, we
must disregard friction against the pipe walls. Finally, in studying the intermediate states
intexzesting us here, Eq. (VII-2) can only be satisfied if the forces of internal friction
(viscosity) are small.

In a shock wave travelling through a medium in which there only occur processes
considered by the energy equation, for instance, energy release from a chemicsl reaction
(detonationwave, see [8, 59, 60]) or thermal conductivity, Eq. (XI-1) can be applied to all
intermediate states. Taking the propagation cf a shock wave as a whole, the speed at
which each intermediate state moves with respect to the initial state is identical. In Eq.
{(XI-1), the quantity D must be considered constant. Thus, this equation leads to a linear

relationship between pressure and volume

o—a—— -'_2—.—9—0
P=Prr g o™ (XI-1)

In the p, v plane (Fig. 32) the state changes along the straight line that connects
the points describing the initial (A) and the final (B) states of the substance.

If we know the relation between pressure and density that is valid for the entire shock
wave front, we can find its width by means of elementary integration.

It can be shown that along straight line AB entropy attains maximum somewhere in the
middle (point M, Fig. 32) between the initial and the final states of the substance,

As a matter of fact, at point A the speed of the wave with respect {o the substance
is greater than sound velocity, and at point B the speed of the wave is less than sonic speed.
At some point M wave velocity equals sound velocity, At this point the straight line AB

touches Poisson's adiabatic curve, and, consequently, entropy is maximal, 31
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Fig. 32, A and B are the initial and the
final stale of the gas compressed by a
shock wave. The solid lines are
Poisson's adiabatic curves, i.e.,lines
of constant entropy that increases from

S A to SB and SM. In the absence of

viscosity, but in the presence of ther-
mal conductivity, the state changes
along straight line AB on which entropy
attains maximum at point M, In the
absence of thermal conductivity, but
in the presence of viscosity, the state
changes 2long the dashed curve AB, on
which entropy monotonically increases
from A to B. Hugoniot's adiabatic
curve is not plotted here (it also runs
through A and B but does not coincide
with the dashed line).
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if we assume that there is no viscosity,
entropy changes only on account of thermal con-
ductivity. Under steady-state conditions, ina
system of coordinates in which the shock wave
itself is at rest, we can readily change from
the substantial derivative with respect to time
to the derivative with respect to the coordinate.
In this case the sign of the partial derivative is
superfluous since the process under study is
stationary in the system selected, and does
not depend on time, Finally,

&7

5 _ . d . d¥ _, &7
oTe =g A r =2 g (XI-2)

where A is thermal conductivity of the sub-

stance, The temperature, at least in a weak

shock wave, changes monotonically along straight line AB.

The solution sought, the distribution of temperature and entropy as functions of the

coordinate, takes the form shown in Fig. 33. The point at which entropy attains maximum

values coiucides exactly with the inflection point of the dependence of temperature on the

coordinate.

\‘ ‘—&——ﬁx—-—‘—i 3

Fig. 33. Internal structure of a
shock wave of small amplitude ‘n
the presence of thermal conductivity,
but without viscosity, Notationsare
the same as in Fig. 32,
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From the preceding chspter we can readily find the order of magnitude (considering the
change in volume during compression a quantity of {irst order of smallness) 4p, AT
first order, proportionalto 4w; S, —S,~Sy—S,;, second order, proportional to
(49)r S;— S, —third order, proportional to 'IAv)a. It is easy to evaluate the width of
the shock wave front by integrating (XII~2} up to point M

< Tu(S,—5)= A(g)’:—. FiE (XI-3)
For our evaluations it follows thal

Ax~2:§1‘§-3f ~ 1(714«5'”255' (XTi-3a)
For the determination of & x, in accordance with the last formulas, see Fig. 32. We
establizk the order of magnitude of the coefficient from
dx = i,

R Bo (XI-4
where R, the gas constant, is in cal/degree x gram, v and c are selected to give the
iength,

Figure 23 is a concrete representation of Rankine's ideas [78].

It is interesting to note that in the case of very strong compression, there arises a
rather peculiar fundamental difficulty, which consists in that on line AB between points A
and B maximum temperature is attained only if pressure in the shock wave PB exceeds
1.5 P, {(with cp/ c, = 7/5 for a diatomic gas). Maximum temperature is reached at
higher pressures than maximum entropy.

In the presenve of maximum temperature it turns out {0 be impossible to plot a
continuous distribution of temperature and entropy in space that could satisfy the funda-
mental equation (XE-1).

Rayleigh {79] has shown that because of this difficulty it becomes necessary to con-

sider also viscosity. Howsver, the eifect of molec-ilar viscosity changes not only the
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energy eguation, but also the equation of motion (our Eq. (VHi-2)}. Thus, in this case the
line of the system in the p, v plane deviates from line AB. Becker [3§8] made the same
considerations at a later date, but withour mentioning Rayleigh (referring, however, to a
private communication by Prandtl, see also {76]).

In the second extreme case, in the absence of thermal conductivity and the effect of
viscosity alone, entropy in the wave changes only on account of the conversion into heat

of work performed against viscosity (see Eq. (I-18)).

o7 5 ~n(3) (XII-5)
According to this last equation, entropy under the effect of viscocity increases
monotonicaily. The change in state on the p, v diagram is shown by a curve enclosed be-
tween Poisson's adiabatic curves which pass through the initial and final points (dashed

line in Fig. 32). We introduce again the concept of effective width

o Adx {XII-6)

d§ S S-S,
& =Dp=D—%5—

(XI-7)
From Eq. (XII-5) we readily find (we 1dentify D and c by their order of magnitude)

P .
Ar =g (XL-8)
and note that uy —u, =D - do/v,
Deviatizn from straight line AB occurs because of viscosity momentun:. The equation

of steady moticn for one coordinate is
A

da dp d (2 _du
U= ——5-— {3 1
Jx dx  dx (3 dr) (X1-9)
We integrate and fing3”
2 _d
pri-outv g G =piA g ul=pyt Gy, (XD-10)
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but from the continuity equation we find

u ___ L oda__ 4o dv
ug::-;::M--const, ==Mo (XI-11)
2 .
p+Moa- 3 ))M-gi'- = p, -+ My, = py-1- Muv,= const, (XH--12)

without the term —§-») M % , the equation yieids the straight line AB.
»
If in accordance with Fig, 32 (-0;‘,’-) s> 0, then the dashed line enclosed between adiabatic

curve S= 8 A and S = SB’ runs entirely below the straight line, so that in the wave

pt-Mo<Zp,+Mv,. (XL-13)
In this case from the equati— we find yM % <0, vin the wave decreases, and compression
occurs. Anexpansionwave would require negative viscosity. By investigating the structure
of the wave front under the effect of viscosity we came to the same conclusions regarding
the possibility of compression or expansion waves with the sign (—g;— ,? Which we reached
earlier by following another method.

In the case of complete absence of thermal conductivity, a decrease in the viscosity
factor leads only to a decrease in the front width, so that there is an increase in derivative
du/dx, " 5% remains constani, and the line iu the p, v plane does not change.

With thermal conductivity the decrease in front width and the increase in the derivatives
with respect to x with decreasing viscosity will be limited. With a sufficiently small 7, the
entire term 1 du/dx will be small, and we approach the satisfaction p + Mv = conat, i.e.,
the equation of straight line AB (see, incidentally, our earlier remarks concerning strong
shock waves in which on a segment of straight lin. AB maximum temperature occurs. In
this case in a specific porticn of the wave front it is viscosity, no matter how small it may
be, that determines the magntude of the derivatives).

‘To evaluate the order of magnitude of frcat width, we use the molecular-kinetic

expression for the coefficient of thermal conductivity and the viscosity factor. In both
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extreme cases we readily find

oy — (XII-14)

Ax~lf;~lz’;~l

where ! is the length of the free path of the molecules in the gas, 33

For air at atmospheric pressure, taking the Pandtl number (the ratio of kinematic
viscosity to thermal diffusivity) to be equal to 1, Taylor [93, 24 with the aid of diffusion
coefficient B gives the following expression for the width of the shock wave front

ay—uy” (XI-15)

For air at atmospher.c pressure B= 0,18 cm2/ sec,

s 1 '
fr= o= 41075 £ (Ax—cw, u—enfsec, 4,—am) (XT-16)
All the estimates unanimously indicate that in shock waves in which Av=v and 4p~p
the width of the front is of the order of the length of the free path, Under such conditions,
detailed computations of the structure and the application of the differential equations of

hydrodynamics become meaningiess,
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Chapter 13
Propagation of Shock Waves in a Gas with Delayed Excitation of

Internal Degree oi Freedom

In Chapter 2 we investigated the propagation of sound in a gas with deluyed excitation
of the internal degree of freedom, i.e., in a gas in which thermal capacity, with extremely
rapid changes in state, is convicderably less than with slow changes in state or with slow
changes in temperature. This dependence of thermal capacity on the rate cf the change
of state, this delayed excitation of thermal capacity may be due either to a difficuit transfer
of energy to the internal degree of freeden, or to 4 reversible chemical reaction. In thermo-
cynamics, additional thermal capacity due to a reversible chemical reaction whose
equilibrium shifts with changes in ‘emperature or pressure, is equivalent to a delayed
excitation of the internal degrees of freedom. Conversely, the case of & reversible
chemiczal reaction has nothing whatsoever in common with the irreversibie flow of a
chemical reaction in a shock wave, i.e., with the phenomenon of detonation, which will not
be discussed here.

As mentioned in Chapter 2, the delayed excitation of a portion of thermal capacity
leads to two fundamental peculiarities of the acoustic behavior of a substance. First, it
leads to sound dispersion, i.e., to the dependence of sourd velocity on frequency. High~
frequency sound propagates as if thermal capacity were small., In low-frequency sound with
a long wavelength, the state changes very slowly. Thermal capacity has time to be fuily
excited and, consequently, sound velocity ix decreased. Simultaneously with sound dis-
persion, there may occur an exceedingly powerful sound absorption. As one researcher

oncs said, in a specific frequency range the gas develops an "opacity" to sound. There

occurs absorption due to the fact that the intrinsic energy of the gas does not change in
phase with its pressure or specific volume, i.e., it changes ali the time in a state which
i is far from being in equilibrium, it changes irreversibly. The delayed excitation of a
portion of thermal capacity is one of the possible mechansims of dissipation (dispersion)

of energy.
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We investigate the propagation of a shock wave in a gas with a delayed excitation of
a portion of therm:l capacity. In the p, v plane (Fig. 34), we can trace through a given
point A(povo) which descrities the inifial state of the substance prior to compression, two
Poisson adiabatic curves, i.e., two insentropic curves, one of which occurs with an
extremely rapid compression (dashed line, w= o), and the other, steeper one, occurs
with slow compression and full excitation of the entire equilibrium thermal capacity of the
subetance (dashed line, w = 0). If we are interested in the propagaticn of shock waves
over long distances (we shall see later what is the natural scale of this preblem and with
respect to what distance may be considered great), the control plane on which we fix the
gaate of the gas subjected to compression, can always be set at a sufficient distance from
the spot where compression began, so that there wiil always exiet a region in which all
internal degree of freedom and the entire intrinsic thermal capacity are fully excited. As
E we place the control plane, Fig, 23b, in that spot, we obtain from the conservation equation
a Hugoniot adiabatic curve with full excitation of the internal degrees of freedom (solid line

AMC, = 0). Consequently, this curve at point A touches at point A the flat Poisson

T

; curve which corresponds to low frequency, and only farther, at considerable compression
A values, moveg away from it and runs steeper,

It can be 2een from Fig. 34 there can be different cases depending on pressure from
compression in a shock wave. A weak shock 1 (in which the final state after compression,
after compiete excitation of all the internal degree of freedom, is described by point M on
Hugoniot's adiabatic curve, « = 0) must propagate with a velocity that is less than sound
velocity 2t high frequencies. Which will be the structure of such a shock wave,

if in the comparatively weak shock wave 1 under study there occurred in some section
of the front an extremely rapid and abrupt change in state, then to this change we couid
also apply the conservation laws. However, in the case of a rapid change of state, the
excitation of external degrees of freedom has no time to occur. Such a chaunge of state may

be called "2 shock wave without excitation".
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A Hugoniot adiabatic curve plotted without consideration of the internal degrees of

freedom, i.e., for an extremely rapid compression, must lie higher than the corresponding

Poisson's adiabatic curve (the solid line AB, w = o in Fig. 34). The propagation velocity

of this "shock wave without excitation' is obviously greater than sound velocity at a high

frequency, and, consequently, it exceeds all the more low-frequency sound velocity, and

even exceeds the velocity of sufficiently weak shock waves with excitation,

[

Fig. 34. Propagation of a shock wave in
a gas with delayed excitation of a part

of thermal capacity, Hugoniot's adiabatic
curve (solid line) and Poisson's adiabatic
curves (dashed line) are plotied on the
basis of two assumptions, the absence
of excitation (w = ) of a portio of
thermal capacity, and total excitation.
The chord of Hugoniot's adiabatic

curye (» = 0 intersects or does not
intersect the adiabatic curve & = a de~
pending on amplitude.

Thus, in the mode sought for, in order
that it be stationary (if it is stationary), if all
the parts of the front move at the same velocity
with respect to the gas and conserve the distance
with respect to one another at a constant front
structure, there can be no abrupt pressure increase
or abrupt changes in volume in a weak wave. We
may say that from a slowly propagating distur-
bance, a slowly meving shock wave, there will
continuously emanate high-frequency sound waves
the velocity of which will exceed the velocity
of the shock wave owing to sound dispersion. These
waves, however, dampen vary quickly. indeed they
dampen exponentially ahead or the shock wave. The
accumulation of an infipite >mount of damping
sound waves forme g "washed-out" front ¢f a weak

chock wave, We can find the exact structure of

the front by ignoring in this case the offect of viscosity and thermal conductivity, The state

of the substance changes along straight line AM, The rate of this change depends on the

excitation rate of the internal degrees of freedom. It is qualitativciy obvicus (and it can be
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corroborated by fuirly simple computations) that the effective front width of such a shock
wave which propagates at a velocity less than the velocity of high-frequency sound, depends
on the axcitation rate of the internal degrees of freedom, In order of magnitude, the front
width is equal to the product of sound velocity times the excitation rate of thermal capacity
(see Fig. 35a). This width may exceed many times the width of the front obtained from the
effect of viscosity and thermal conductivity. Thus, in the case of carbon dioxide, total
thermal capacity with slow excitztion amounts tc 3.3. cal/mole x degree, of which 2,5
cal/mol x dagree represents the thermal capacity of rotational and progressive molecule
motion, excited instantly, virtually with every collision between molecules. The remaining
0. 8 cal/mole x degree is oscillatory thermal capacity excited, as an average, once every
600,000 collisons [62]. At high frequencies, sound velocity 2xceeds by 4% sonic velocity at
low frequencies. In carbon dioxide, a shock wave caused by the motion of a piston at a
velocity of approximately 13/sec, in which a compression by 5% is attained (pressure
increases by 7%), propagates in the gas at a velocity which is still 1% less than high-frequency
sound velocity. By computing from Prandtl's {76], Rayleigh's [79], Taylor's {92} and
Becker's [38] formulas (Chapter 12) the width of such a shock wave in air, where it depends
on thermal conductivity and viscosity, we get at stmospheric pressure 8 x 10'3 mm, and
0.4 mm at a preasure 15 mm Hg. In carbon dioxide these values would be even smaller.
However, the width of a shock wave in carbon dioxide, where it depends on delayed excitation,
amounts according to a rough compatation to 12 mm at atmospheric pressure. At a pressure
of 150 mm Hg, the width reaches 60 mm. Such a sharp change in the width of the shock wave
can be noticed when studying the froant structure by means of Topler photegraphy when com-
paring photographs in gases, such as air, in which there are no such effects, and photo-
graphs in carbon dioxide.

In the case of a strong shock wave {2 in Fig. 34) we must expect more complex modes
(see Fig, 35b). Discontinuity AB, the width of which is determined by vicosity and thermai

conductivity, and is thorefore extremely small, propagates without a noticeabie excitation

of the internal degrees of freedom, point B lies on the corresponding Hugoniot adisbatic

-
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Fig. 35a. Structure of a shock wave of

small amplitude (AM) in a gas with de- Fig. 35b. Structure of shock wave of great
layed excitation (see Fig, 34). T is amplitude (AC) in a gas with delayed excitation
excitation time, (see Fig, 34).

curve (sign w = ). The excitotion behind the discontinuity is accompanied by a smooth

(in length of the order D T) increase in pressure and compression up to point C. Figures
35a and 35b show the distribution of pressure in the shock wave front which may be expected
in these twc cases. The distributions of temperature, density and velocity, not shown here,
are quite similar. The photographic study of the form of a shock wave must, we feel,
become an expedient direct method of investigating delayed excitation of internal degree of
freedom,

The increase in the front width becomes a natural phenomenon if we remind ourselves
of the fact that delayed excitation yields a large second viscosity factor (Chapter 1). However,
substitution cf actual concepts by the formal introduciicn of the secnrnd viscugitv factor is
possible only in a limited exient and, in particular, does not permit the finding of the more
complex mode in Fig. 35b {see Chapter 2, «2-1)h). Detatled computatior.s can he found
in a paper by this author to be published in Zhurn. eksper. teov. fiziki (Journal of

Experimental and Theoretical Physics).
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Chapter 14

Formation of Shock Waves

We discussed the theory of shock waves proceeding from the motion resulting from
the compression of a gas by a piston that at a specific instant (t = 0) begins to move to a
constant velocity. We arrived at a mode at which the shock wave is formed as soon as the
piston begins to move, and propagates with constant intensity, With a finite piston mass,
such a motion would require that an inertia of infinite magnitude be overcome at the initial
instant with an instantaneous change in piston velocity.

Let us study the motion of a gas caused by the gradual accleration of a piston compressing
the gas, which is at rest when motion begins. We can easily plot this motion by substituting
continuous acceleration by a large number of minimal velocity jumps, i.e., by substituting
the smooth curve in the x - ¢ plane by a broken line consisting of chords of that curve. 34

We thoroughly investigate the first stages of this motion. The piston begins to move,
and it moves during a time t1 at a small constant velocity Wy

During that time a shock wave of constant intensity propagates in the gas. The velocity
of the substance affected by the shock wave is constant and equals the velocity of the piston

w,. Inother words, the piston is at rest with respect to the gas immediately adhering to

1°
it. The same is repeated until the next velocity jump to W, takes place, and a second shock
wave, characterized by the velocity jump W, -~ Wy travels in the gas adjoining the piston
and comprezsad by the first shock wave, etc.

Figure 36 shows velocity distribution in space after three such jumps. The distribution
curves for pressure and density at the same instant have an analogous shape.

A fundamental significance is acquired now by the properties of shock waves, shown
in their general outlines by Jouguet ({58, 60}, see also Duhem (48]). The propagation

velocity of wave 1 with respect to the gas compressed in it in segment 2-1 is smaller than

sound velocity at state I,

119




Vet mtk BN 50

&

2
3
1

!

- e v o
R S i A e s A AR AN

e i

R Tl Fovado e s oo,

¢ Conversely, the velocity of wave 2 with re-
o .3 spect to state I, which for this wave is the initial
Uy 4 4 velocity, must be greater than sonic velocity at
Wy | [
Wy N state I and, according to Jouguet, all the more
&

exceeds the velocity of wave 1.

Fig. 36. Propagation of a series of
subsequent momenta. In time, point

3 catches point 2, and both points
catch poinf 1. The ordinatepghows gas  another, tend to accumulate and combine into

velocity.

Hence we see that the waves catch one

a powerful shock wave, Hugz-.iot attributes to
this phenomenon the stability of shock waves [56]. Hadamard [54] and Becker [38] compute the
moment and place at which accumulation begins as a function of the acceleration of the piston.

In the x, t plane, accvmulation corresponds to the intersection of characteristics
(Jines represerting the motion of individual shock waves) ahead of the piston.

n the case of exhaustion (piston movement away from the gas) the characteristics
spread in a fan-like fashion without intersecting, and the solution found (see Chapter 6)
remains correct for an unlimited amount of time. By decreasing the individual velocity
jumps and by increasing their number we come to a continuous, smooth curve of piston
motion and to a continuous distribution of der ~ity, pressure, and velocity in the gas ahead
of the piston, instead of steps.

In the case of compression, however, such a solution will be correct only until the

characteristics intersect, i.e., until such time when one wave catches the preceding one.

As the magnitude of the velocity jump W T Wiel decreases and the time interval be-
tween two consecutive velocity jumps also decreases preportionally, the time and the place
at which two waves join (the intersection point in the x - t plane) approach a fully determined
limit. Let us find that limit. The propagation velocity of a very weak waves does not differ
from sound velocity. In a gas in motion, to sound velocity there is added the motion of the

gas proper which ie equal to the speed of the piston, so that the propagation velocity of a weak

wave in spaceis equaltoc +w, Duringatime Atthewave coversa distance (c+w) At.
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If during that time the speed of the piston has changed by Aw, and the compression

caused by the change in piston speed changed sound velocity by Ac, the propagation velocity

has increased by Aw + Ac. This is the velocity at which one wave catches the other (the

difference between their velocities), so that the waves will meet after a time £= A:+ =4t

“+ dw

By using the laws of change of state in weak waves applied tc acoustics (we could

obtain them also by an ultimate transition from the shock wave equations), we can readily

compute the latter quantity

__ e+D S oew éf
¢=Zewdw "N =" do
Aw

After transition to limit we obtain

4t 1 ___
—— T ——— . =
dw dw dt &

where g is the acceleration of the piston,

dc de __de d‘:’.

Do dw o d dw

In acoustics we found that
e s .
PPN

Since gas velocity u is equal to piston velocity w, we obtain

de dy __ 0 de_ dlac
s do dv -

t
i

dw

do__°
c

Foranideal gas we readily find

(XIV-1)

(XIV-2)

(XIV-3)

(XIV-4)

(XIV-5)

(XIV-6)

In the case of 5. arbitrary equation of state we transform the denominator in Eq.

(XIV-1) in the following fashion

de o de 1 ” e .)
— f—- TR B —1 ~C —- )
dw 1 ¢ do - 20¢* (20 ¢ do eoe
1 d ne 1 d odp
20c¢” dy T 20c¢? do ~ do
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* We switch to a more convenient variable, the specific voluine v==—:;-; -‘%=9’% sy and find
3 . '

: - dc v [ip

z 1= (-07-’-—)3 (XIV-8)

3 R

8 and within the limit whenw -0

= ® 1

: = SR § (XiV-9)

4

Thus, the possibility of one wave to catch the preceding one, and the possibility of

3
bl A e

a shock wave being formed are connected with the sign of (v #'/.%),, the role of which in
thermodynamic theory has already been noted in Chapter 11.

A comprehensive study cf all the aspects of motion in the case of arbitrarily
: assigned piston motion runs into great difficulties {54, 38]. There arise shock waves
; of a finite but variable amplitude, and after their passage the entropy of the gas changes.
( | Only very recently Kibel, Frankl and Khristianovich succeeded in developing effective

graphical computation methods which, however, are much too complicated for our course

: (see [11]). Analytical methods have hitherto been found only for the motion prior to the

P formation of a discontinuity [37].

1t is obviously much easfer to find such a motion of the piston whereby all the

% characteristics ntersect at one point, i.e., all the waves catch one another simul-

' taneously and at one single spot.

» Let us assign the place and time of the formation ¢f a shock wave (the conjunction

) of all the weak waves), which are interconnected by the condition Xy = cotb, found from
the study of the first weak wave that propagates in an unperturbed and stil! motionless
gas. We transpose the origin of the coordinates in the x, t plane to that point (and we
get new coordinates x*, t') and find that the state of the gas is constant along the
straight lines (characteristica) which go through the origin of the new system of coordi-

nates. In other words, the state of the gzs depends only on the ratio x'/t'. 35 In

particular, gas velocity and piston velocity equal to it also depend only on x'/t'.

Thus, the differential equation of piston motion is homogeneous
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and can be readily integrated (see Smirnov, Course of Higher Mathematics Vol. 2,

p. 80).

The form of function f can be found by noting that the zlope of the characteristic

is
Z=rt-ce XIV-11)

The relation between u and c in the case of the change of the gas caused by waves
propagating in one direction (see Chapter 6) in the absense of shock waves (with constari
entropy) “an occasionally be found in its exgllcit form [ideal gas u=: ;:3, (- -f; This
relation can always be found for a given adiabatic equation p = p (pS = const) in a parametric
form [u=u (p), ¢ = c (p)}, see Eqs. (VI-10).

We transform it to

u=-f{ . (XIV-12)
where f is precisely the function f of Eq. (XIV-10).

Thus, for an ideal gas in the case that k = cp/c:v = 1.4 there takes place

2 5
ur = jle—cl=>5(c—c)r=(c-1-u—cj, (XIV-13)
dx,’ S (x) -
%'(7-_—_6-(1;.,. -—co)- (XIV-14)
We introduce the dimensionless parameter y
v . d s,‘ dn
o=y e ly; Gmlgitay. (XIV-15)
Accordingto Eq. (XIV-14), we get
dy . 5 -
c'g t"aj‘{ -~ coy ==J--6~ (.'Ico — cﬂ" (XI'J-IG)
The variables split up as follows
d 1 S
—J%:: “—3—y--— -6~C (XIV-17)
The initial conditions are
t/=—t; Yo, =—xy=—ct,=c,t; y,~=1- (XIV-18)
The solution has the following form
8 \-s
- (="‘f. ('%"" -'i-) ?

x/=coyt=—1t,cy8 (':—"":‘)—‘ ="Xa!(%+%)". (XIV-19)
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We revert to the system of coordinates inwhich at an initial instant the piston
was at the origin of the coordinates, and obtain the following equation for piston motion
in its parametric form

L=5 [1 -y (-%—y ”"%‘)-j’ (XIV-20)
=1, [1—« (—-;—y—i--%—)'.]- (XIv-21)

In its explicit form the quatlon is quite clumsy.

The curve of Eqs. (XIV-20) - (XIV-23) is plotted precisely in Fig. 37. The piston
velocities are marked at various pointa. The dashed line represents the first charac-
tersitic.

The amplitude of the discontinuity ia density, velocity and pressure at the inter-
section point deperds on the instant at which the motion of the piston deviates from the

law just established. 36

x #—-—1 —|

/
4

X3

’

e ]

U 5

Fig. 37. Piston motion (solid line)
for which all the characteristics
intersect simultaneously at one point
A in the upper right-hand angle of
the drawing. Piston velocity is

" marked at individuai points. e, 18

sound velocity in the gas before com-
pression.

A final discontinuity occurs at the intersection point the moment all the waves join.

(ne can readily see, however, that this discontinuity cannot propagate further as one
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whole without ary change, since in a discontinuity propagating without change (a shock
wave) there exist other relztions between density, pressure and velscity. Thus, until
the occurrence of the discontinuity the gradients everywhere were small, the effect of
dissipative forces could be disregarded, entropy did not change, and the relation be-
tween pressure and density satisfied Poiseon's adiabatic equation. In a shiock wave,
Hugoniot's equation is satisfied, and entropy increases.

The motion that arises when the discontinity occurs will be investigated in
Chapter 16. In the next chapter, Chapter 15, we give some experimental data on the

occurrence of shock waves.
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Chapter 15
Shock Waves in the Case of Oscillations of Large Amplitude

Around 18€0 it was noticed that strong electric sparks from a Leyden jar formed
strange lines on a smoked plate. The electric origin of these lines was suspected.
Mach et al. [66, 67, 68, 69, 82]showed in a series of ingenious experiments that these
lines are the trace of a collision of waves which propagate from individual sparks and
are reflected at the borders of the plate. By placing at the plate two spark inteivails of
different lengths connected in series, Mach noted that the point where the waves meet
is always closer to the weak spark. Thus he showed the dependence of the propagation
velocity of strong disturbances cn their amplitude. By using the shadow method for
observing the propagation of waves, stroboscopy and instant photography with light from
an individual spark, Mach showed the supersonic propag‘ation velacity and the sharpness
of the distrubance front. He also noted that a disturbance that propagates in (three-
dimensionaly space fades out much quicker than a disturbance forced to propagate in
one dimension only, such as in a narrow tube.

Vieille around 1900 performed experiments aimed at indicating shock waves that
arise in a pipe when a partition dividing gases of different pressure was ruptured [96].
Vautier investigated the propagation of the momentum caused by a shot from a pistol
[123]. Im the first case, the relation between pressure (wave amplitude) and its propa-
gation velocity that follows from Hugoniot's equations, was proved with sufficient
accuracy. In the second case, the waves were relatively weak, ard aad at their origin
a "washed-out" front without a discontinuity. However, over a stretch ¢i severai kilom-
eters (Vautier used = recently bailt but not yet operating water supply line) one could
note a gradual, characteristic increase in steepness, and the formation of a discontinuity

in the wave front.
We shall now briefly dwell upon the last tests {87, 70] which w2re conducted with
particular care. Gas vibrations were stutlied in an inlet and exhaust pipe of an internal

combustion engine [87]} according to the following characteristics A pipe 12 m iong with an
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inner diameter of 7 cm was aitached to the cviinder of a smali pision engine having ihe
same diametier (7 cm) and.a piston travel of 6.8 cm. At {fve different points inside the
pipe devices ineasuring gas pressure and velocity were placed. Pressure was measured
with a piezo-~electric crystal, and velocity was measured with a 2 x 3 mm disk attached
to the axis of the pipe.

The disk moves along the plbe axis with the motion of the gas, and turns a rod.
The rotation of the rod is recorded through a2 small window with the aid of a mirror
attached to the rod. Particular attention was paidto the high proper frequency (low
inertness) of the mzasuring instruments, and the satisfactory damping of proper
vibrations. |

An electric motor imparted the piston a harmonic alternating motion. The ampli-
tude of the oscillaticns was small at frequency values far away from resonance values.
The change in pressure and velocity in each cross section of the pipe also occurred
according tc harmonic law, in complete accordance with the conventional concepts of
acoustics.

In the case of resonance, however, the type of motion changed abruptly. Figures
38a and 38b show schematically the recordings of the devices in the case of excitation
of the fundamental tore of the pipe. Piston oscillation frequency is 14.4 hertz (14.4
oscillations per second). The amplitude of gas motion is extremely wide, as should
have been expected. At a frequency of 14. 4 hertz, piston velocity does not exceed 7
14.4 h, where h is piston travel, i.e., 3.14 x 14.4 x 6.8 cm/sec = 3.1 m/sec. In the
case of resonance, gas velocity attains 25 m/sec, that is, about 10 times more. Of
particular interest to us is the chape of the curves for the change of velccity and pressure,
which e7idences the occurrence of shock waves of considerable amplitude in the case of
harmonic excitation by a comparatively silow moving piston. (

The theory of shock waves permits us to reach approximate though extremely im-
portant conclusions regarding the amplitude of waves with rescnance under Schmidt's

test conditions. Energy dissipation irom friction and heat transier from thre: gas near the
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: Fig. 38a. Diagram of test {on the extreme

: : left, the pipe) aud record of changes in pres-

; : sure (left) and gas velocity (right) in 7 cross

sections of the pipe depending on time with

oscillation excitation by piston motion with a

fundamental proper frequency of the pipe of
14. 4 hertz.

CODZE: atm; b) hertz; ¢) m/sec.

lateral walls of the pipe (Kirchhoff [61}), in the case of reflection from the end of the
pip2 and the piston (Konstantinov [13]) all these causes for sound absorption, common
for acoustics, are very small under conditions of experiments of this type. The amount
of energy dissipated during a unit of time grows proportionally with the square of the
amplitude (i. ., proportionally with oscillation energy) and at great amplitudes, when
discontinuities occur, it may even become secondary as compared with other mechanisms
of energy dissipation.
We established in Chapter 11 that in & shock wave there occurs an increase in R

L e b

entrapy proportional to the third power of the amplitude of pressure, density or velocity
in the wave. Under steady-state conditions, this increase in entropy must be compen-

sated by an automatically occurring transfer of heat from the gas into the pipe walis.
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The entrcpy increase describes the irreversible transformation of mechanical

energy into thermal energy; it describes the damping of waves negligible in the case

of small amplitudes, and the rapidly increasing (by the cube rather than by the aquare

as in linear acoustics) absorption.

We introduce the effective value of pressure

amplitude Ap, denote frequency by w, the pipe length by I, piston travel by h, piston

velocity by w, piston area equal to the pipe's cross section by F and we find, approxi-

mately, the work performed by the piston during a unit of time

In the case of resonance. 87

mately equals hw,

A=- IFprc

A=MphoF,

.%5:) b) wggf

. {

d‘ R  —
{::? e— %‘:j\‘“‘
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Fig. 38b. Instantaneousdistributions
of preasure and velocity lengthwise in
tho pipe at various instaats of time (pro-
cessing of the recordings in Fig. 38a).

CODE: a) atm; b) m/sec.
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We find energy absorption by setting up the expression
A,=DoFT 4S8, XV-3)
where DoF is the amount of substance subjected to shock compression during a unit of
time; D, shock wave propagation rate, is substituted approximately by sound velocity
c; AS is increase of specific (per gram) entropy; T is absolute temperature; TAS i3
wozk per gram of substance irreversibly transformed into heat.
According t» Eq. (XI-13),

For airk = 1.4;

Ay=co FT 45== % co Fo(4p)jp* =% "’;;”. &xv-4)

o

We equate the work performed by the piston to energy absorption and obtain
(A p ) lﬂhw

In the case under study of excitation of the pipe's fundamental tone, piston oscillation
frequencv in resonance is connected with pipe length w= c/2! (the length is of the half-wave
equal to pipe length). By substitution we iind the simple formula

A h
=Y (KV-5)

In Schmidt's experiment, h=6.8 cmand ! = 12 m, we find

]/5 096’.—0 17; Ap ~ 0.17atm abs.

which isina reasonable relation with the chserved order of magnitude (Figs. 38a and 38b) if
we take into account the approximate nature of the computation and the existeace of
other types of absorption, Let us note that for overiones, alongside the chang= in

the relation between wand I, we must also consider the presence at every instant of

several discontinuity surfaces (shock waves), which increases El‘
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Chapter 16 % ;
Propagation of an Arbitrary Discortinuity E '
3 3
In Chapter 14 we have come very clese to considering the problem of the subse- 2
quent fate of a discontinuity that arises z: iLie junction spot of several weak shock waves, i
- a discontinuity that is not governed by Hugoniot's equation. We generalize that problem K z

' and formulate the probiem of the behavior of an arbitrary discontinuity as follows.
At an initial instant of time t = 0 there is given a plane (located at the origin of

the coordinate x = 0) in which all the quantities p, v, T, u, which characterize the

PR

state and the motion of the gas, are subject to a jump, On both sides of the discon-

tinuity plane, all these quantities are constant. The greater the distance at which all of
these quantities can still be considered constant, the longer (in terms of duration) will
the solution to which we come be correct.

Since the conditions of the problem do not contain either a characteristic length
or a characteristic time, analysis of Chapter 6 shows that one must seek a motion that
depends only on the relationship x/t. In Chapter 6 this motion was found analytically
for the propagation of ar expansion wave in a gas. For a compression wave the analytic
F solution led to an absurd conclusion, namely, to the necessity of realizing at one and
the same point in space simultanecusly three different values for pressure and volume,
Precisely this absurdity became the starting point for the development of shock wave
theory. The knowledge of shock wa™e theory enables us to solve hoth particular problems
for piston motion that begins a$ the time instant t = 0, which leads either to an expansion
wave cor to a shock wave. Now we can also solve the general problem of the propagation
of arbitrary discontinuities. We sill set up the solution from expansion waves and com-
pression waves studied e;lrlier.

Let us fiist note a specific difficulty. The expansion wave propagates in a gas at
a velocity equalling that of sound, wherezs the compression wave, as we have seen,

propagates at a velocity exceeding that of sound. However, with respect to the already
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compressed gas, the compressed shock wave propagates at a velocity less than that of
sound. Thus, we have only two waves. One wave, either the expansion or the compresaion
wave, propagates in one direction, for instance, to the left of the plane in which occurred
the discontinuity at an initial instant of time, and the other wave propagates in the opposite
direction, namely, to the right. We cannot direct more than one wave in one direction.
In fact, if, for instance, a shock wave propagates to the right, then the exparsion
wave and, all the more, the shock wave that travels in the gas subject to compression
in the same direction, areboundtc catchup with the original shock wave. But since both
waves must proceed from one point x = 0 simultaneously at the instant t = 0, when the
discontinuity occurred (in other words, the entire phenomenon must depend only on the
coordinate x/t, and in this case it is inconceivable that one wave catch up with the other),
then there can be no more than one wave travelling in one direction, However, a wave
that propagates in a gas the state of which is assigned (it may be either a shock wave or
an expansion wave) can be fully determined by one parameter. Thus, for example, if
we determine the density ratio before and after the passage of a shock wave, the density
will determine the pressure of the shcck wave (according to Hugoniot's adiabatic curve),
the propagation speed of the shock wave, entropy and all the other quantities of the substance
subjected to compression. Arnd in order that it be precisely a shock wave with which we
deal, it is necessary that the density of the substance exceed its initial density since
we are dealing with gases far away from the critical point. Conversely, if we establish
that the density of the substance after the passage of the wa've be less than its density
prior to the passage of the wave, then on the basis of thermodynamic considerations we
can immediately conclude that we are dealing here not with a shock wave but with a
constantly expanding expansion wave. For an expansion wave the change in density again
fully determines the change in pressure in the wave, the gas entropy in the wave does
not change, while the velocity of the wave is equal at any point to sound velocity,

Thus, at first sight it would appear that we have only two parameters by which

can be selected the change in density in two waves that propagate in two different
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directions. We need, however, also a third parameter in order to describe the propa-
gation of an arbitrary discontinuity. On one side of the discontinuity, for example, on
the right, we were assigned three quantities, namely, pressure, density and velocity
in an unperturbed gas. For each wave we have one parameter. There are two waves,
which gives us two parameters. We must, however, get to the arbitrarily assigned
three quantities which characterize the state of the gas on the left (for instance, pres-
sure, density and velocity on the other side of the discontinuity). Thus we necessarily
conclude that there must exist another discontinuity, or another wave. However, that
discontinuity or wave must have a peculiar property, namely, the discontinuity in
question must not propagate at sonic velocity with respect to the gas. We can imagine
such a discontinuity only if pressure and velocity on both sides of the discontinuity are
identical, Only in this case there will be no sound waves proceeding from the discon-
tinuity towards both sides. The fact that velocity and pressure are equal, a fact which
guarantees the mechanical equilibrium in the discontinuity of a special kind, does not
interfere with the fact that on both sides of that discontinuity temperature, density and
gas entropy are different. With the aid of such a third discentinuity (a discontinuity of
a special kind) it becomes possible to satisfy all the equations, i,e., it becomes
possible to find a full solution to the problem of the further fate of an arbitrary discon-
tinuity assigned at an initial instant of time.

Let us first of all assign specific values to the pressure and specific volume of the
substance,

In the p, v diagram of Fig. 39, let point A represent the state of the gas left of
the discontinuity (pressure pa), and »oint B be the state of the gas right of the arbitrary
discontinuity (pressure pt;) at the initial instant t = 0. We now follow all the motions
which result for different values of velocity with reapect to the motion of the substance
right and left of the discontinuity plane assigned at the initial instant. Through each
point A and B we plot upwards Hugoniot's adiabatic curve along which compression in
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Fig. 39. Propagaticn of an
arbitrary discontinuity. Thke
initial states on both sides oi
the discontinuity are described
by points A and B. Hugoniot's
adiabatic curves H A and HB

are plotted above A and B,
Poisson's adiabatic curves P

and PB are plotted below. A
the shock wave proceeds, and downward we plot Poisson's adiabatic curve along which the
state of the substance changes with cxpansion in the expansion wave.

With a change in relative velocity, there is z change in pressure p in waves pro-
pagating in the first and the second gas, the pressure being equal on both sides of the
discontinuity of a special kind. However, instead of assigning a relative velocity and
finding pressure p, it is more expedient to proceed in a different way, and, establishing
various values of p, plot a corresponding regime and determine which should be the relative
motion of the gases at the initial instant in the states represented by points A and B in
order that %k: 23signed pressure p can be attained.

We select pressure L which exceeds both pressure p a and Py (Fig. 40a). Im this
case expansion waves will ‘travel right and left of the arbitrary discontinuity. The
substances in states a, and bO border on one ancther. They are divided by the dis-
continuity of a special kind in which pressure on both sides is equal to Py and the

velocities of the substance must be equal to one ancther. But since the substance in
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Fig. 40. Characteristic cases of the propagation of an arbi-
trary discontinuity with assigned pressure and density on
both sides of the discontinuity, but different relative veloci-
ties ties.

a—collision of two gas masses; there arise two shock waves;
b—gas masses moving at different velocities; in the high-
pvressure gas there arises an expansion wave which pushes the
shock wave in the low-pressure gas; c—scattering of two gas
masses; there occur two expansion waves; d—scattering of
two gas masses at a velocity exceeding the sum of cutflow
velocities; there occur two expansion waves, with vacuum in
in the center.

The arrows showing gas velocities are given in the system of
coordinates in which rest the gases occurring in the waves in
the center of the diagrams (ao, bO’ a,, bl’ 2, b2)°

state a, moves to the left with respect to the initial substance A, ard substance bO’ as
in the shock wave, moves to the right of its initial substance B, i.e., in the direction
of the propagation of the shock wave BbO’ then, in order that the velocities in states

a, and b0 be esyual to one another, it is necessary that at the initial state, at the instant
t = 0, substances A and B move toward each other ¢sli, 3*ng at high speed. We will
obtain shock waves propagating on both sides of the discontinuity in the case of a
collision of two masses of substance moving towards ore another at high speed. The
smaller the velocity at which substances A and B collide, the smaller must be pressure
Py in the shock wavea. Finally, at a sufficiently small collision velocity we go over to

another regime (Fig. 40b). In this regime, pressure P, is greater than P, but smaller
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then pressure Py Along substance A a shock wave moves and along substance B an

expansion wave moves. Such a regime can be realized, in particular, also if at the

initial instant t = 0 the velocities of substance A and substance B are equal to one

another, so that at the initial instant we have only a pressure discontinuity, It ia

obvious that in this case, between substances A and B, there arises an area with a pressure

intermediate between P, and Py In this case the substance moves from the higher pres- .
sure B toward the lower pressure A, The shock wave travels in the substance in which

pressure is lower. Conversely, the expansion wave travels in the substance in which

Tt

the pressure is higher. This case is examined in detail below.

Let us now return to Fig. 39 and continue the analysis of the various cases that

may occur., Selecting Py smaller than p s and Py, we obtain expansion waves which
travel on both gides of the initial discontinuity (Fig. 40c). Such a regime will be g
realized if at the initial instant the substance in state A and the substance in state B move :
in different directions from the discontinuity at a sufficient speed. Finslly, if

and whenthe relative velocity at which the substance in state A and the substance in

state B move away from each other at the initial instant exceeds 5(02 + cg), 38 where

cg and cg denote sound velocity in state A and in state B, i.e., if the relative velocity
of substance A and substance B exceeds the sum of maximum outflow velocities of sub-
stance A and substance B, then between substance A and substance B a vacuum will be
formed (Fig. 404).

In a paper by Shchelkin and this author [9], and in an earlier paper by Shardin [84],
detailed numerical computations are given that refer to the case of initial pressure dis-
continuity without velocity discontinuity (the case in Fig. 40b). It is interesting that if
the compressed substance is hydrogen, m which sound velocity is greater than
in the second substance of low pressure(e. g., air), the shock wave is considerably
mere powerful than if the compressed sabstance also were air. Let us take a numerical
example from {9]. Figures 4ia and b show the distribution of pressure and temperature
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Fig. 41a. Propagation of a dis- :

continuity that arises when air

at rest compressed to 100 atmo-

spheres absolute andairat rest at

1 atmosphere absolute touch one

another, At the initial instant

temperature everywhere is 20°C,

The diagram shows the pressure

curves (above) and temperature 3
curves (below).

]

in the case of a sudden rupture of the screen that divides the gas compressed to 100
atmospheres and the gas under atmospheric pressure. The compressed gas in Loth
cases is placed on the left. The abscisas shows :he relation between the cocdinate
and time x/cot, where <y is sound velocity in the air at initial temperature independent
of pressure. The screen was placed at x = 0.

In Fig. 41a (where air is on both sides) we see that on the left at a distance greater
than unity the compressed-air is still unperturbed. Between x/t = -C, and x/t = 0.9 o
there is an expansion wave which at its last points borders on air expanding to a pres-
sure of about six atmospheres. The discontinuity of a special kind is at rest with respect
to the air on both sides of the discontinuity, but in our system of coordinates it moves

together with the air surrounding it ata velocity 1.7 times that of sound in the initial
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Fig. 41b. Compression of air by hydrogen with
aninitial pressure of 100 atmospheres absolute.

CODE: a) Hydrogen; b) Air,

.stage (i.e., at about 580 m/sec). To the right of the discontinuity of a special kind
there is air under shock compression from atmospheric pressure up to a pressure of
about 6 atmospheres. In the expansion wave the air temperature drops from 20°C (at
100 atmospheres) to ~140°C (at 6 atmospheres) in accordance with Poisson’s adiabatic
equation. To the right of the shock wave, gas compression from 1 to 6 atmospheres is
accompanied by a temperature increase from 20°C to 300°C, which appreciably exceeds
the temperature increase according to Poisson's adiabatic equation {226°C). The com-~
preesion shock wave from 1 to 6 atmospheres propagates at a velocity equal to 2.3

times the speed of sound. Only for x greater than 2. 3 c_t, on the right there is unper-

0
turbed air at atmospheric pressure.

Figure 41b shows a similar case where tae compressed gas is hydrogen.
Because of higher sound velocity, hydrogen is capable of giving & considerably higher
outflow velocity for a given pressure differential. Hence hydrogen compresses air

considerably more, although hydrogen itself expands much less. Pressure in the
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expansion wave in hydrogen and in the shock wave propagating in the air amounts to

about 25 atmospheres. Accordingly, the shock wave reackes considerably higher
39

00

high, 1175°C. One may assume that such a high temperature during the outflow of hydrogen

velocities, approximately 4.6 ¢ The temperature in the shock wave is extremely
into air may, under certain conditions, lead to the ignition of hydrogen. If the outflow of
hydrogen into air occurs in a closed container, the subsequent repeated reflection of
shock waves may lead to a further increase in temperature.

Which of the cases shown in Figs. 40a, b, ¢, and d will occur if the discontinuity
at the initial instant is formed by the application of a iarge number of small compression
shock waves which simultanzously join at one and the same instant in a point in space ?
Physically this case can be achieved by pushing into a gas a piston at a variable velocity.
In Chapter 13 we found such a curve for the piston motion at which all the waves joined
simultaneously, At that instant, on the right of the spot where the waves joined, we have
unperturbed gae. On the left we have a gas subjected to repeated compression by weak
shock waves,

We have noted several times, however, that the subsequent compression by two
shock waves is not equivalent tc a one-time shock compression. In particular, entropy
increase in each wave, if the waves are sufficiently small, is proprotional to (Ap)s. By
choosing a sufficiently large number of sufficiently weak shock waves we can achieve
compression to any assigned pressuce with any small entropy increase, since if we
subdivide the entire assigned pressure change between n waves, then pressure increase
in each wave is proportional to 1/n, entropy increase in each wave is proportional to
1/n3, and total entropyv increase in n waves is proportional to l/nz. Thus, in the case
of an accumulation of a large number of weak compression waves we will have a nearly
adiabatic change of state.

At the instant of accumulation of individual waves as shown in Fig. 36 (Chapter 13),
on the right of the accumulation spot we have an unperturbed gas in the initial state A,

and on the left we have a gas in state B which was virtually subje.cted to adiabatic
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compression.40 It is obvious that point B does not lie on Hugoniot's adiabatic curve H "
Accordingly, the discontinuity cannot propagate further as one whole. We must apply
to its propagation the general theory of propagation of arbitrary discontinuities, It can
be shown that the velocity acquired by a gas during consecutive compreesion by a
large number of shock waves is smaller than the velocity which the gas would acquire
were it compressed to the same pressure by one shock wave, Heace it follows that
during propagation of a discontinuity that cccurred from the accumulation of many
weak shock waves, we will have the case in Fig. 40b. Pressure P will be lower than
the pressure produced by the piston (pressure pB). An =:ransion wave will travel in
the compressed gas in the direction toward the piston, and to the right into the unper-
turbed gas wili travel the compression shock wave created by the discontinuity. Figure
41c shows the distribution of pressure and temperature obtained after  time t following
the conjunction of waves formed by the compression of air by a piston the velocity of
whick gradually reached 4. 44 ¢y = 1500 m/sec, so that pressure at the piston Pg
attained 50 p A» i.e., 50 atmospheres absolute. Pressure in the compression shock
wave will be less than pressure Pp reached earlier at the piston. However, because of
entropy increase, this lower pressure corresponds to a higher temperature. Tempera-
ture discontinuity in a xclatively unperturbed gas is shown in the diagram only for this
case (dashed line, Fig. 41c). Let us note that in this figure the coordinate and time are
calculated repsectively from the place and the instant of accumulation, i.e., from the
occurrence of the discontinuity. In the system of coordinates in which A is motionless,
the expansion wave moves to the right; however, it moves to the left with respect to the
gas in state B which moves at a great speed, and with respect to the piston, not shown
in Fig. 41c.

The case examined above is of considerable interest for the theory of detonations,
because the result obtained explains how a flame acting on a gas like a pistcn can, by
graduzsi c~rapression, produce a shock wave at a great distance from the piston (or the

flame). By graudally compreseing the gas to a comparatively low temperature (630°C,
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Fig. 41c), we can achieve an 2brupt increase in temperature (1450°C, Fig. 41c) at a
considerable distance at the instant of accumuiation, or achieve a "remote ignition"
of the gas. Apparently the mechanisin of the oc¢currence of a detonation in gases must

be imagined precisely in this way in a number of cases.

A
P — -
n ! ] ti.i 8)
7 _fij; 9
sk S
7
1/

Fig. 41c. Propagation of a discontinuity that
occurred after the collision of compression

waves in Fig. 36. The pressure in the arising
shock wave is lower (the expansion wave moves
toward the compression waves), but the tem-
perature in the shock wave is considerably

higher than the maximum temperature reached

by the accumulation of small compression waves.

The solid line is the distribution of pressure, the
dashed line represents the distribution of temperature.

CODE: a) p/atm abs.

Having determined the character of the motions obtained during the propagation
of an achitrary discontinuity, we can verify the initial assumption according to which
motion depends only on the relation x/t.

In Chapter 6, in the case of an expansion wave, this solution depended on the
ab3ence of dimensicnal values of time or length in the initial and boundary condit:ons
of the problem, and aiso on the fact that dissipative forces were ignored. The latter
is necessary, since in the combination with sound velocity, from vizcosity or thermal
conduction we can plot the characteristic length and the characteristic time, for

- In an expansion wave, dissipative forces were neglected be-

%
ple o, and
example o, Ty

cause the equations of gas dynamics led us to a "wahsed-out" wave of great width

141

I WO

W s A SN g Sy T

P dve

T A et

o

e a

ST e AL Al L b Y 2 e e,

et St eedare war  aeabr bR he s o e v




LSRG R i R acaky 7 b e O,
et e wtanald

i e s vt 4 m s ackle s by’

(increasing linearly with time), with exceedingly small values of the velocity gradient
and the temperature gradien:,

Is it possible to neglect Jissipative forces in the case of a shock wave in which a
consideratle entropy increase occurs? A positive answer to that question is associated
with the fact that the numerical value of entropy increases in a sheck wave (due, in the
last analysis, to the effect of viscosity and thermal conductivity) is fully determined
by the conservation equations and does not depend on the magnitude of thermal con-
ductivity and viscosity. Tye latter determine only the final width of the shock wave
front. But the dimensional value for 'ength (the width of the shock wave front) thus obtained
is extremely small. I is of the order of the length of the path of a molecule in the case
of a strong shock wave.

Also small is the width of the discontinuity of a special kind. The equilization of
temperature on both sides of this discontinuity, and the mutual penetration of gases by
diffusion lead, after a time t, to a width of the order of = vzt ~ VB, where # is
thermal diffusivity; B is the diffusion ccefficient. We use the molecular-kinetic
expressions » and B, and find £ ~ \/cf, where ! is the molecule path length, and c is
sound velocity. But the distance x covered by shock waves or expansion waves during
a time t, is of the order of ct, so that £~ VIx.

Thus, the relationship of the dimensions of the area in which dissipative forces
are subetantial to the dimension of the entire area covered by motion, is equal to 7 /x
for a shock wave, and ,/-ﬁ- for the discontinuity of a special kind, Bcth quartities are
extremely small in any large-size motion in which x is absolutely greater than I,

Very interesting is the histo.y of the investigation of the propagation of an arbi-
trary discontinuity, which reflects the different viewpoints of the investigators of
various countries characteristic of the study of the theory of shock waves., The above
theory had been expounded by Hugonict as he was formulating the theory of shock
waves [56]. Hugoniot's theory of the propagation of an arbitrary discontinuity was well
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known to other French authors. It is mentioned by Crussard {45], and it is also found
in Hadamard's book [54] on the propagation of waves. As a matter of fact, Hadamard's
exposition is somewhat distorted by the absence of a clear explanation as to when one
should use Hugoniot's adiabatic curve, and when one should resort to Poisson's adiabatic
curve (entropy increase in compression shock waves, and the impossibility from a
thermodynamical viewpoint of the existence of expansion shock waves were proved later
by Jouguet and Zemplen), and also by his attempt to arrive at closed formulas, However,
the theory of propagation of an arbitrary discontinuity appears to be unknown tc German
anthors. Thus, Weber {97] discusses conly the case of a collision of two shock waves of
equal amplitude, i.e., precisely the case when both initial states A and B of our drawing
identically coincide and, consequently, all the Hugoniot adiabatic curves plotted from
tliem also coincide. In this particular case, as can be seen from the symmetry, the
discontinuity of a special kind becomes zero. On boik sides of it rot only pressure and
velocity are identical, but also temperature, entropy and density are equal to one
another. In the 1925 edition of his book, Weber writes that "... it is not yet known what
will happen in the general case of a collision of t#¥0 aiGitrary shock waves,"

The problem of the accumulation of shock waves was formulated by Bzcker in his
well-known book ""On the theory of detonation ard shock waves" [38]. In 1920 he correctly
predicted the fundamental qualitative result of the accumulation of shock waves, namely,
the temjerature increase at the instant they coincide. Then he writes: '""No one knows
yet what will happen when the steepness of the rise will become infinite after a certain

time." The solution of this problem is given above. It must be mentioned thai in his

paper Becker mentions Hugoniot's memoir as well as Hadamard's book. A precise and very

general investigation into all the cases of the propagation of an arbitrary discontinuity

that may be encountered, is given by Kotchine {64].
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Chapter 17
Supersonic Flow Around a Bedy

Above, in Chapter 4, we clarified some properties of a flow around a body at super-
sonic speeds, inherent in flows at a great distance from a body. First of all we established
a fact, according to which the turbulence caused by the presence of a body in a supors-nic
flow, invol-es not the entire flow but only a cone with an axis parallel t» the direction of
the flow, and the angle of sperture the sine of which is equal to the ratio of scund velocity
to flow velocity (this is known as the Mach angle). However, these statementa referred
only to flows at a great distance from the body. In particular, only at a great distance
from a body, where we can regard turbulence to be small, we may state that the turbulence
propagation rate will be equal to sound velocity. Close to the body itself, where the
turbulence caused by the presence of the body car no longer be regarded as small, this
turbulence can steadily spread with respect to the fiow in the form of a shock wave at a
velocity in excess of that of sound, in an unperturbed gas. The knowledge of shork wave
theory makes it possible for us to establish certain properties of flow around a body by
a supersonic flow, which refer to the immediate neighborhood of the body flowed around
and, which, consequently have a certain importance for the probiem of the resistance
of a body moving at supersonic speed, which is a problem of paramount importance in
modern ballistics.

In the following we will study separately two cases. The first case is the flow
around a body with a blunt profile. We can readily imagine the general character of the
fiow (Fig. 42).

As we have clready mentioned, at a great distance from the body, perturbation (or
turbulence) is small. The solid line shows the position of the stationary sheck wave, the
dashed lines represent the flow lines. At a great distance from tke body, where the
shock wave amplitude is small, its velocity does not differ from sound velocity, and the
dip angle of the solid line is equal to the Mach angle, There is no doubt, however, that

at some point (and this point can readily be found for any symmetrical profile), the shock
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Fig. 42. Diagram of super-
scnic flow around a body with
i a blunt profile.
wave surface must run normal to the direction of flow (Fig. 42, point a,). At that

point, gas velocity with respect to the shcck wave is maximum, the amplitude of pres-

sure change in the shock wave is greatest and can be readily computed if we know the

flow velecity (or, conversely, the velocity of our projectile, or any other body under in-

vestigation with respect to the motiorless gas). In the case of compression in the shock
wave, gas velocity changes from supersonic to subsonic. Thus, in the immediate vi-
cinity of the body, near its blunt front part, we deal with a subsonic flow. Any further
slowing-down of the gas on the segment from the shock wave to the body surface, a;-a,
(Fig. 42), takes place adiabatically, and pressure increase can be computed with the
aid of Bernoulli's theorem.

Rayleigh {79] pointed out a very substantial fact, according to which such a con-
secutive compression first of the shock wave and then the adiabatic compression in the
resulting subsonic flow leads, in the case of high velocities, to a considerably lower
pressure than a pﬁre‘.y adiabatic (isentropic) compression from supersonic velocity to
a state of rest achievad at ghe point where the flow lines branch off in the front part of
the blunt profile being flowed around. The fact that pressure in the case of total slow-
down will be lower in the presence of a shock wave can he readily proved thermodynami-
cally. Both in the presence and in the absence of a shock wave, along a flow line, the
law of energy conservation holds, i.e., Beraculli's theorem holds it its integral form
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I +u2/2 = const, which fully determines the enthalpy of the gas at the point where it
will be "'stopped dead', known as enthaply at rest Io =1+ u2/2. If compression occurs
adiabatically, then condition S = const is added. The value of enthalpy I and entropy S

fully determine the state of the substance. If a shock wave cccurs, then entropy is no

lenger conserved.

Computation of the exact value of pressure and the computation of the state of the

substance ensuing from deceleration in the case where this occurs partially in the

23
0

Py

shock wave, is far more complex. We can state, however, that entropy in the shock

wave increases, and that an entropy increase for a given enthalpy always means a

EEAMLIS IR AT TS L S
-’tﬁvﬁ;iwm?»‘;\"n%:v

drop in presr:mre.41 Thus, the presence of a shock wave ahead of the body moving at

i IRl &
- ey

a supersonic velocity leads to a decrease in pressure in the front part of the body's
blunt profile, lcads to a decrease in the resistance to the body's motion, and thus re-
moves (as shown by Rayleigh) the considerable disagreement between experimental data
on the resistance of projectiles and the magnitude of resistance as computed by formulas
based on adiabatic (isentropic) compression. This is of considerable importance also

when measuring supersonic velocities by means cf a Pitot tube. In this case it is also

AT B e S A A i

necessary to take into account the occurrence of a shock wave in front of the outlet of

C ¥,

; the tube.

F P VN
t

L Let us imagine a reservoir filler! with a compressed gas that flows out with super-
E sonic velocity, and a body placed into the supersonic flow (Fig. 43). In the reservior
the gas is at rest, in the nozzle it gains momentum and, approaching point a, on the
] surface of the body flowed around, itis again slowed down. The comparison between the
E state of the gas in the reservior and at point a, is quite instructive. If the change in
% the state of the gas during deceleration follows the same law as in the case of acceleratior,
, then at point a,, the gas should returnto the same state in which it was in the reservior,
“ axd gas preasure and temperature at point a, should not differ from pressure and
' temperature in the reservoir. This is 8o in the case of subsonic flow, but in the case
of supersonic flow, acceleration and expansion in the nozzle occur isentropically,
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whereas deceleration and compression of the gas in the shock wave are accompanied by an
increase in entropy. We apply the law of energy conservation to the motion of an
element of the gas volume and obtain Eq. (IlI-5), Chapter 3,
1+ '-';— == const. (II-5)
This equation holds true, and the value of the constant is maintained, also in the
case of shock compression of the gas, i.e., when the flow line intevsects the shock
wave surface during steady moi:ion.42 In the reservoir and a point a,, velocity u = 0,
hence Eq. (III-5) leads to the conclusion that enthalpy in the gas at the branching point
and in the reservoir is the same. Enthalpy in gases depends only on temperature.
Hence, in the experiment shown in Fig. 43, the gas in the reservoir cools off during
outflow and is heated again during deceleration to reach the same temperature it had in the
reservoir (a3 this has been the case in a subsonic flow). However, the irreversible
increase in entropy at the deceleration stage leads to the fact that density and pressure in

the gas at point a, are lower than in the reservoir, and, unlike in subsonic flows, pres-

sure is not fully restored. This fact is of

to the motion of bodies flying at supersonic

speeds, and it has been thoroughly investigated

Fig. 43. by Rayleigh (Table 4).
Table 4

=, weer ) 330 650 990 1320

ujcq i 2 3 4
"Pla;), awz b) 1.85 575 | 1232 | 216

T(a), °C 86 | 250 550 950
P (S=cons?} 1.89 784 36,6 159.2
P(ay) 1.00 15 103 16.5

CODE: a) m/sec; b) atm abs.
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considerable importance for the resistance of air
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The first line of the table gives the velocity of the body (for motion in the air}, the
second line gives the ratio of body vélocity to sound velocity, the third line gives the
pressure developed during motion at point a,, the fourth line gives gus temperature at
that point (po = 1 atmosphere absolute, To
could be developed in the case of isentropic deceleration of the gas or, in other words, the

= 20°), the fifth line gives the pressure that

pressure that should have been developed in the reservoir in order to achieve the assigned

outflow velocity of the gas. Finally, the last lire in the table gives the pressure at point

a, of Fig. 42, after compression in the shock wave, bv¢ prior todecelerationinthe subsonic flow,
It is interesting to note that if a body with a blunt profile is flowed around by a gas

at subsonic velocity, near the body's surface there may occur an area of supersonic

velocity. Thus, if a round cylinder is in a cross flow, supersonic velocity on the side is

obtained beginning from the Barstow number Ba-0.45 {Taylor [25]).

In the case of supersonic flow around a body with a sharp extremity, the subsonic
gas jets forming after compression 1= the shock wave will easily flow around the sharp
‘edge, and the stationary shock wave wil! be closer to the sharp edge than in the case of
flow around a blunt profile. In the case of a sufficiently small angle of aperture of the
sharp edge we may expect the occurrence of the phenomenon shown in Fig. 44a, in which
the shock vave touches the sharp edge. If this is the case, then by changing the scale {for
example, if we switch to a projectile, the linear dimensions of which are greater by a
specific factor than the bullet shown in Fig. 44a) we hardly change, if at all, the condi-
tions at the very vertex., If we take the boundary case of an infinitely iarge body, we see
that to find the motion near its vertex we have not, in this case, either a characteristic
length or a characteristic time, and the entire mction may depend only upon the angle
between the radius vector piotted at agiven point from the vertex of the cone and the axis
of the cone. We seek a solution in which all the quantities depend on this angle alone, -
i.e., are constant along each cone surface having a common axis and a common vertex,
the cone being flowe. around belonging to this very family of cones.
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The stationary shock wave near the vertex also acquires the form of one of these
cones the vertex of which coincides with the vertex of the body, and the angle of aperture
depends on the angle of aperture of the conicai vertex of the body. In which case can this
result, which refers initially to the neighborhood of the edge of an infinitely large cone, be
applied to a real projectile in which the conical head is connected (in the simplified case
shown in Fig. 44a) with the cylindrical pertion and the bottom of the projectiie?

If the cone flowed around is sufficiently tapered and the flow moves at a safficiently
high velocity, one may expect that also after compression in the shock wave the gas velocity
with reapect to the surface of the cone will exceed sonic velocity. In this case, if gas
velocity in the region GFABCD (Fig. 44a) exceeds sonic velocity, the change in the nature
of the motion that occurs at points D, C and further (due o the fact thoy at these points the
surface of the projectile noticeably differs from the continuation of the conical surface AB)
will not affect the motion near AB, and will not move against the direction of flow. Thus,
one can appl}: the partial solution for an infinitely large cone that depends only on one angle
- and is not too difficult to be computed, to plotiing the motion cn the entire conical section
near the vertex of the projectile, on condition that this vertex be sufficiently tapered so
that velocity after compression in the shock wave still exceeds sonic velocity.

On the shock wave surface we have a refraction of the flow lines. In the case of
a so-called strong discontinuity, i.e., in a shock wave, only the normal velocity com-
ponent undergoes a sudden change, while the velocity components tangential to the shock
wave surface remain unchanged. From this follows the refraction of the flow line in the
shock wave shownin Figs. 44a, b. The essential angle of the cone formed by the shock
wave surface is calculated from the condition according to which after refraction in the
shock wave and the subsequent bending, according to the equations of motion, the flow
lines near the surface of the projectile must be parallel to the generatrices of the cone
flowed around.

We shall not dwell on the details of the design, and we refer to motion and to the

design diagram not so much because of the numerical results, which are far from the
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Fig. 44a.

Fig. 44b.

CODE: ' a) Shock wave; b) expansion wave; c) plate;
d) expansion wave; 3) shock wave; f) flow line; g)
sliding surface. .
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area of appiication interesiing us, but rather as an exampie of ifiove mathem
stmplifications which are specific precisely for supersouic flow and are closely related

with the application of similarity theory [42]. At the present time Frankl' has developed
methods for computing the distribution of pressure on the surface of pointed bodies of
revolution also in tiose cases where they differ from a cone [26, 27].

Another, even simpler case is that of the supersonic flow about a thin plate
slightly inclined in the direction of the flow (Fig. 44b).

At the front edge two waves are formed, a shock wave below the plate, in which
the flow lines are suddenly refracted and following the wave move parallel to the plate,
and an expansion wave above the plate, in which there gradually occurs the same bending
of the flow lines.

Near the front edge the state also depends only on the ratio y/x (if the origin of the
coordinates is placed at that point), as in the problem on the motion of a piston
at a constant velocity the motion only depended on x/t.

The phenomena a: the rear edge are similar to the propagation of an arbitrary
discontinuity, since at that point two ficws join, the pressures of which are different.
Behind the rear edge there arise a shock wave, an expansion wave and a discontinuity
of special kind (dashed line) on which now there occure the discontinuity also of the

tangential velocity component (eddy surface) . However, with sufficient flow velocity
and a slight inclination of the plate the flow along the plate countinues to move at super-
sonic velocity, and the phenomena at the rear edge have nnt an adverse effect on the pro-
perties of the flow near the surface of the plate. Pressure on the upper surface of the
plate is less, while pressure on the bottom surface is greater than pressure in an unper-
turbed flow. This results: in the appearance of a force that acts in 2 normal direction to the
the plate surface in the direction upward and Lock. To calculate drag and lift it
suffices to calculate the waves which touch the front edge.

It is characteristic that in gas dynamics of supersonic flow d'Alambert's paradox

(the absence of resistance ir a nonturbulent flow around a body by an ideal fluid) does not
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take place. There arises what we term as wave resistance, associated with the presence
of steady waves which carry away the work performed by a moving body against resistance
forces.

At the same time, at high velocities the irreversible heating of the substance sub-
jected to shock compressicn becomes quite significant, and it remains in the form of a
"trace" after the passage of the body.

The flow around a wing is thus designed from the solution of the problem of the flow
around an angle formed by the wing and the ilow line hitting the front edge. The fiow around
an angle was studied by Prandil (77] and Meyer [71]. Graphic methods for the solution of
equations that determine the parameters of oblique shock waves can be found in the
general manuals {27, 23, 35, 39].

By compressing a gas that flows around a body which moves at supersonic velocity

one can achieve a rapid heating of the gas to extremely high temperatures. Leypunskiy and

this author tested an aluminum bullet flying at a velocity of 3, 300 m/sec which crossed an

area of mercury vapor where it provoked an increase in temperature up to several tens of

Aoy i

thousands of degrees (computation, assuming constant thermal capacity, yields 45, 000
H degrees). An extremely strong thermal luminescence of mercury vapor on the bullet's
path was also observed {125].
By shooting bullets through gases and gas mixtures subject to chemical reactions we
can study the velocity of reaction at a temperature up to 4, 000° and a reaction time of

-5
approximately 10 gec [104].
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Chapter 18

Theory of Jet Propulsion

Modern military technology is interested in jet-propelled missiles. By corplicat-
ing the design >f the missile and reducing the efficiency of gunpowder as compared with
conventional artillery systems one attains the substitution of the heavy gunbarrel by a
light guiding rod. One also eliminates receil. According to a course by Serebryakov {112],
published before World War II, these properties of jet-propelled missiles may turn out to
be useful for military operations in the mountains or for landing operations. They may also
be useful for installing missiles on airplanes, motor cars, small ships, etc.

The diagram of a jet-propelled missile
(Fig. 45) is taken from M fua [111]. The
gunpowder is contained in a chamber, and the

combustion products escape under high pres-

sure (Rua gives calculations for pressures
Fig. 45. up to 500 atmosphe=es) from a Laval nozzle.
CODE: 2) Gunpowder. Computation of jet propulsion under these
conditions is based on the gas dynamic theory
of outflow (Chapter 3). However, in order to better acquaint ourselves with the problem
and the particular features of superscnic outflow, we being with studying the simpler
case of an incompressible fluid.

Let us imagine an apparatus (Fig. 46) consisting of a chamber with a simple,
tapering nozzle. Pressure in the chamber is denoted by p, pressure in the ambient
medium (atmosphere) is denoted by Py and the area of the nozzle outlet is denoted by F.

Both theory and experiments show that in a short nozzle with a smooth outline,
outflow velocity satisfies very precisely Bernoulli's law and the jet fills the entire cross
section. Thus

%:*'~i".==l’; G= Iu, (XVIII- 1)
where G is the weight rate of the fluid.
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Pressure in the outlet cross section
of the jet does not differ from Py We

surround the apparatus with a control surface.

. The momentum acquired by the fluid during

Fig. 4€. a time t is equal to the product of the out-
flowed amount of fluid times velocity.

According to Newton's second law, the acquired mementum is equal to the momentum
acting on the fluid. According to Newton's third law, the force acting from the side of
the apparatus on the fluid is identical with the reaction force R experienced by the
apparatus.

We assume that the direction of the force towards the left is positive (Fig. 46),
and the direction of velocity to the right is positive, and obtain the equation for the

momentum I

I=Rt=Gtu=IFgutu, (XVII-2)
R=Fpu’ (XvII-3)

We substitute the velocity expression derived from Bernoulli's law and find
R=2F (p—py). (XVII-4)

The result is remarkable in that from this formula there have been eliminated
the quantities characterizing the properties of the fluid. The jet power is proportional
vo the difference in the pressure that causes outflow,

Now we approach the computation of R from another angle, and determine the
resultant of pressure forces on the inner and outer surfaces of the apparatus. Let us
assume that the nozzle is closed by a plug . Pressure p is acting on the inner surface
of the apparatus and on the surface of / ‘e plug, while pressure Py is acting on the outer
surface. The resuitant force for a sealed apparatus (i.e., the apparatus, the nczzle,
and the plug teken as a whole) is equal to zero. The force acting on plug R3 is R3 =
=-Ffp - p))- It is obvious that the resultant force acting on the entire surface of the

apparatus, but without the plug, is Rl = F(p - p,) since R, + R1 = 0. However, the

3
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expressionfor Rgivenaboveistwiceaslarge. This paradoxis due to the fact that by
removing the plug from the nozzle, force R that acts on the apparatus increases two-
fold as compared with force Rl at the instant when the plug has already been removed
from the apparatus but is still inside the nozzle., As the plug is remcved the fluid begins
to flow out. The fluid acquires momentum gradually in the tapering nozzle. According
to Bernoulli's law, the motion ofthe fluid is accompaniedby a drou in pressw.re. The drop

- in the pressure on the surface portions abutting with the opening (AB, CD) giv¢s resul-

tant R2’ which is equal to Rl' so that

R=R,=-I, ==,
We shall not go here into determining R2. The resuit R2= Rl’ R= 2R, holds for

any smooth nozzle profile that ensures a rate coefficient equal to 1.

In evaluating the quality of the performance of the jet-propelled apparatus, it
would be pointless to use the energy efficiency, i.e., the ratio of the work performed

by jet power to the thermai energy of the burnt fuel or gunpowder. As a matter cf fact,

e sy

jet power depends on the design of the apparatus and the nozzle, and on the regime of

F the processes that take place in the apparatus, wherecas the work performed by that

force depends on the velocity of the apparatus as a whole. Hence the energy efficiency
also depends on the velocity of the apparatus. With an assigned constant degree of per-
fection of all the internal processes, efficiencywill change with the change in the velocity
F‘ of the apparatus so that energy efficiency in this case is not a standard for determining
the perfection of the apparatus.

An extremely important index for the quality of performance of the jet-powered
device is momentum Il, known as unit momentum, i.e., the jet momentum developed
: by the outflow of a unit of mass. Unit momentum is equal te the ratio of force to rate
_ =g =N=k (KVII-5)
ﬁ - From the above formulas we get for an incompressible fluid

? L=u=VIp—p)k. (XVIIL-6)
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Unit momentum is equal to outflow velocity when measuring all the quantities by
the absolute (physical) CGS system. In an actual system the dimension of I1 is kg of
f:rce x sec/kg of mass or, numerically, I= u/g, where g is gravity acceleration

For an incnmpressible fluid, cutflow velocity and unit momentum are proportional
te the square ronot of the difference in pressures in the chamber and in the surrounding
medium, To achieve optimum effect it is desirable to incrense outflow velocity by in-
creaging the pressure differential. In the case of outflow of gas-like gunpowder com-
bustion products under increased pressure, we run into the effect of incompressikility,
into the need of using an expanding Laval nozzle and into phencmena of critical and
supersonic outflow,

A Laval nozzle is characierized by two cross sections, namely, a minimal one
(critical) F) and an outlet one F, > F, . In the following we denote Fa/Fk =9, In
the critical cross section we attain critical pressure which represents a specific por-
tion of the pressure in the chamber (about 55%). Pressure P, attained in the outlet
cross section Fa’ depends on 8. Below we investigate an ideal gas having constant

thermal capacity. in this cuse
B 17, (1) ®VI-7)
The outflow velocity attained at the outlet of the no:. :le, according to the
St. -Venant-Wenttzel formula, depends on pressure, As we did it in Chapter 3 (see

Fig. 6), we refer cutflow velocity to sound velocity at the initial state

a=g¢==g(L)=g{). (XVI-g)
If the nozzle is so chosen that it agrees with pressure p, which exists in the
ckamber, then pressure in the jet in the outlet cross section P, does not differ from
atmospheric pressure Py
Pa=py; 0=0 (’%’) (XVI-9)
In this case, the jet as it leaves the nozzle is in a mechanical equilibrium with
the surrounding medium, and the velocity of the jet as it leaves the nozzle dees not

change (“a =uy, for the notstion of u, see below).
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We surround the apparatus with a control surface (see Fig. 46}, Pressure on the
control surface is equal to atmospheric pressure everywhere, including those spots
where the surface intersects with the outlet cress section of the jet since, as stipulated,
P, =Py In this case the resultant of the pressure on the control surface is equal to zero. :

- Jet power is equal to the product of the rate times the velocity at the outlet cross section

of the nozzle
R=0Gu, XVHI-10) '
Unit momentum is equal to outlet velocity, exactly as in the case of ovifiow of an incom-

pressible fluid. The differences from an incompressible fluid amount to the following:

1) a more complex dependence of outflow velocity on pressure, and 2) the fact that to
L, achieve the regime under investigation, for which P, =B, we must have a specific
widening of the Laval nozzle that depends on the ratio pl/'p. In an incompressible fluid /
the equality p, = p, waz obtained automatically, at the outtlow from any nozzle, including

the simplest tapering nozzle which gives the smallest losses from friction and turbulence.
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Fig. 47a.
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The results from computations by the St.-Venant-Wenttzel formula for an ideal
gas with an adiabatic index of 1.25 are given graphically in Figs. 47a and 47b. The
value K = 1. 25 was obtained by L.A. Frank-Kamenetskiy for the combustion products
of smokeless gunpowder. On the ordinate (Figs. 47a and 47b) are wmnarked the valnes

for?r =;:~. and on the abscissa we find the values for the ratio pl/p. The corresponding

values for 6 and p/p1 are also marked on the abscissa.
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Fig. 47b.

With assigned P, (atmospheric pressure) and pressure p in the chamber we set up
the ratio pl/p, find on the upper scale the corresponding abscissa value, and on the

bottom scale we find 8. Cutflow velocity and unit momentum are read on the heavy
line #. Thus

l=u,=u,= 9c, XVi-11)
According to internal ballistics it is customary to characterize the state of gun-

powder combustion products by gunpowder power Ji =-§ . We neglect the deviations
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from the laws of an ideal gas and find

eo==\Ff, XVII-12)
so that
b=u,==gVif. (XVII-13)

We go over to technical units and write

kg.
N l‘"—- g. sec
g

f— kg [ kg
a2 ! a3

and, substituting k = 1,25, g = 981 cm/sec?, we find
L, =0113¢ Vf. (XVII-14)
Thus, for smokeless gunpowder with f = 1, 000, 00C kg/dmz,'kg/dm3 at a pressure

in the chamber p = 109 kg/c:m2 and atmospheric p, = 1 kg/cmz, we find
43

§==22, 1,=0.113- 2.2- 1000 = 250 '1‘5-:;95- '

The value of ¢ is read on the diagram in Fig. 47b in which the region pl/p most
interesting from a practical pnint of view, ranging from 0to 9. 05 (p from 20 kg/cm2 up), is
magnified.

By substituting the expression of fiow rate for critical outflow we express jet
power by the criticai cross section and pressure in the chamber (the subscript k refers

to the quantities in the critical cross section)

= = = @, o2, 8 M,
R-——Gua-—F*()luklla—av.ODa; 002 Co co.._
Qe Uy U
=Fp-2222, (XVII-15)
R=const ¢ - F, p==0.74 F,p. (XVII-16)

The numerical coefﬁcient is found for the adiabatic exponent 1. 25, for which
Figs. 47a and 47b have been plotted. As in the case of an incompressible fluid, the last
expression does not contain gas density, gas temperature and similar quantities. In
the French literature the dimensionless ratio R/ ka is termed "'coefficient de propulsion"

{propulsion coefficient) (Serebryakov, Greten, Oppokov [112]).
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In the example given
(9==22, R=0.74-22- F,p=1.63F,p)
this coefficient reaches 1.63. In the case of outflow of an incompressible fluid referred
to the pressure differential p - ;s the coefficient was equsl to 2.

What is the nature of the motion and how to compute jet power in the case where
the widening of the nozzle ¢ does nct correspond to the presgure ratio? The gas jet
flows out at supersoric velocity into the surrounding medium at a pressure in the jet
in the outlet cross section P, that differs from atmospheric pressure py- At the point
of contact, on the edge of the outlet cross section, the flow becomes perturbed. It
widens, accompanied by an increase in velocity in the case of p, >p;, Or it is com~
pressed, accompanied by a decrease in velocity in the case of P,<P;- The progressive
motion of the gas in the jet is addea to the propagation of pertubations from the edgr: of
the cross section to the axis of the jes. Owing to this, the surface on which individual
flow lines are subject to disturbance, acquires the shape of a cone that leans on the
outlet cross section and extends in the direction of the jet (sec Fig. 49 below).

In the outlet cross section proper, the flow is unperturbed, pressure is equal to p, every-
where and outfiow velocity is u, everywhere. The state of the fiow in the outlet cross
section depends on the state of the gas in the chamber and the widening of nozzle @,
according %o the formmulas. The state of the flow, and, in particular, the quantities P,
and u,, are completely independent of atmospheric pressure P;- This is obvious from
the fact that the perturbation caused by the difference between P, and P, does not
propagate into the outlet cross section.

Again we surround the apparatus by a

control surface which passes through the

2 * 7

. A

w}{""’”’_ i~ outlet cross section (surface 2, Fig. 48).
lll '
-{}\‘_* gi . Everywhere except at the outlet cross section

t - — -
- | i

. of the nozzle Fa pressure is equal to Py tut

Fig. 48. in Fa pressure is equal to p x The resultant
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pressure force is equal to Fa(pa - p,). In calculating jet power we must add this

I
quantity
R=Gu,+F,(p,—p,). (XVIII-17)
We substitute
G=F,o,u,, (XVII-18)
and trausform
R-.- Glu,+- ¥ =)= Cu, (XVII-19)

We introduce the quantity uy which we define as follews:

b= =y - Bl (XVI-20)

This quantity represents the mean value of axial velocity of the jet where the
pressure in the jet has become equal to atmospheric pressure. This can be proved
by setting up the momentum equation for the control surface 1, Fig. 48, which is
entered by the jet at pressure pa and velocity u, and which the jet leaves at a pressure
P, and the velocity uy sought.

It follows from this equation that unit momentum for P.7 P: is precisely de-
termined by velocity u, and not by outflow velocity u.

It can be shown in a general form that for a given initial state of the gas in the
chamber and a given Py, Uy reaches a maximum when P, = P;- In other words, the most
expedient case is precisely the one examined by us earlier which involves a complete

widening of the nozzle until pressure reaches atmospheric pressure.

To prove this we set up the derivative of Eq. (XVII-20)

o dpa ata  (0aUaR  dp, (XVII-21)

du 1 (XVII-22)
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For P.=Pn ;:—::-0; We can readily show, be determining the sign of

a —_— -2 !ga Uz
dpg? L=P| - (Q, ua) dp, <¢

that here we are precisely dealing with a maximum of u,;.

This result is perfectly natural. By examining the pressure on the conical surface
of the widening portion of the Laval nozzle, we satisfy ourselves that when p,>P: the
lengthening of the cone (together with an increase of Fa and a decrease of p a) yields
an additional term that increases jet power. When p, <p; the lengthening of the
cone yields a term that reduces jet power, We remind the reader of the remark ‘n
Chapter 3. In all cases the jet, sooner or later after its outflow, acquires a pressure
P However, in the case of P,7 P a portion of the pressure differential is expended
for radial velocity components which do not create jet power.

From a practical point of view, a careful adjustment and control of the nozzle,
especially in processes involving varying pressure in the chamber, for the purpose of
continuously upholding P, = p;,are extremely complex. Of practicalinterest is the study
of the performance of a jet-powered apparatuswith an assigned constant nozzie, i.e., an
assigned © with variable pressures p and P;-

Equations (XVII-13) and (XVII-15), set up earlier, will keep their validity if,
instead of velocity at the outflow of the jet u 0 W substitute the effective velocity
u,, given by Eq. (XVII-20). Instead of dimensionless velocity ¢=ulec, one should use

9.=~ufc, The quantity @, is a function with two variables © and I, where II, = p,/P

9,=9,(0, I1,). (XVIE-23)
Function ¢p1 is closely connectad with function ¢. ¥From the foregoing we can
establish the following prbperties of @y
1) If © is constant, function @, is linearly dependent on Ill; .
2 O-= e(nl). i.e., in the case of a widened nozzle, corresponding to the ratio

of atmospheric pressure to pressure in the chamber, ¢ 1 = ¢ by definition.
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3) If 040(1T), 9,(0,11) < 9 (11).

From this it follows that in the plane as shown in Figs. 47, a, b (see above) the
dependence of gol on nl is given, for an assigned constant ©, by a straight line that
touches the curve at that value of l'll which corresponds to the given ©,

Figure 47 a, b shows a number of lines ¢, (0 =const, /T) for ® =1, 2, 4, and 10,
In order to find, for example, @, (2; 0.05), we look for © = 2 on the bottom scale of
©, below the abscissa. The © - scale has been plotted in accordance with the Laval
nozzle theory, so that every © is placed under the corresponding n; 17, (6=2)=0.115.
On the curve ¢ we find the corresponding point N and plot the tangent MRNQ (the tangent
is labelled © = 2).

This tangent represents the function ®, 2, 0 For I

Y- Y
R, @, (2; 005)=1.84. It is interesting to compare this value with the value of ¢ for an

= 0. 05 we find the point

optimal widening of the nozzle for the given 7;:6, (0.05) = 3.5; ¢(0.05)=151. The optimal
nozzle yields a gain of 3.7%. Conversely, if one takes a nozzle without diffuser, © = 1,
one would obtain with /7, =0.05, ¢, {1;0.05)==1.63 (point S), a quantity that would be 15% less
than optimal. As we see from the foregoing, the jet momentum is proportionai to the
quantities of 9, ((Eqs. XVII-13), (XVII-16)).

For the sake of convenience the diagrams give glso the scales for 1/ nl = p/pl.
This quantity represents pressure in the chamber in the case in whick p; = 1 atmosphere
absolute,

Let us now take a closer look at the outflow from the nozzle with ».7-p;.

If p.> Pnthe conical expansion wave (Fig. 49, lines a and b) at the edge of the
nozzle is similér to the expansion wave at the edge of a thin plate placed into a super-
sonic flow (see Fig. 4413, top left or bottom right portion). The surface a, on which
pressure begin= ¢S drop, propagates at sonic velocity e along the gas that moves 2.ca
velocity u. Hence the generatrix of cone a forms with the flow direction the Mach angie,
sina= —:—:- Sound velocity and the direction of flow after expansion are such that the
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subsequent characteristics form a more elongated external ccne (b, Fig. 49). Pressure
drop and change in velocity occur in the layer between surfaces a and b,

¥ p,<py the gas flowing out from the
nozzle is subjected to corapression by a shock
wave which also has the shape of a2 cone, Since
the velocity of the shock wave is greater than

sound velocity and depends on its amplitude,

the Mach angle of the wave is the greater and the
cone the lower, the higher is pressure P;-
Finally, for some P; the wave velncity 1.8 comparable to outflow velocity D = . In the
outlet cross section of the nozzle a plane shock wave is formed. At an even higher
pressure p, at the outlet, the shock wave "hides" inside the diffuser of the Lavel nozzle.
In the shock wave, the supersonic flow changes into a subsonic flow. Pressureina
subsonic flow in the wide part of the nozzle increases as the gas moves, since velocity
decreases and, in the terminology of hydraulic engineers, the kinetic head changes into
pressure. Beg}mmg with that value of p; at which the shock wave moves inside the nozzle
and changes the distribution of pressure on the surface of the nozzle, the equations and
nomograms derived above for determining jet power are no longer valid. 44
Figure 50 shows experimental pressure distribution curves on the axis of a Laval
nozzle through which water vapor is blown at varying counter-pressure at the nozzle
outlet. .
The curves have been taken from the turbine designer Stodoli, who also investigated
and treated the abrupt increase in pressure as a Riemann-Hugoniot-Rankine shock
wave, ‘
By combining the laws of adiabatic flow (Chapter 3) with the concept of a shock

wave inside or at the outlet of a nozzle, it became possible for us to determine the
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outflow regime for any pressure at the nozzle outlet between P, and Ps (Fig. 11,

Chapter 3).
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Fig. 50.
CODE: a) Absolute pressure in the

center of the jet; b) distance along
the nozzle axis, in mm.
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Chapter 19
Reflection of a Shock Wave

Let us imagine a solid placed in a space in which a shock wave propagates, At the
instant when the wave front reaches the solid, motion changes in comparison with the
motion involved in the propagation of a shock wave in free space. Let us clarify the
peculiar features of that motion, which determine the forces acting upon the solid.

Belyayev {2] at the Institute of Chemical Physics studied experimentally the conditions

that arise when shock waves are reflected or collide. He evaluated the pressure increase

¢
1
:
.
1
1

LR e ot

from the reflected of a wave by comparing the buckling of two lead membranes, one of

which was placed tangentiaily and the other normally to the direction of the wave caused in

N

the air by the detonation of a TNT charge. In Fig. 51a the membrane disrupts only slightly

KOSz L

the conditions of propagation of a shock wave, and the magnitude of pressurep can be measured

by its buckling. Conversely, it is obviousthat the force acting onthe membrane placed normally

to the wave direction (Fig. 51b) depends also onthe velocity ofthe gases in the shock wave. Becker

O X XA .a..!‘ <.=1.. ;‘.!S "

(38} following Riidenberg [83], kept thie fact in mind and introduced the sum F=p + ¢ u2 as the

characteristic of the wave moméntum.

4

Y a) b)
Hangalbreyye Mewboona = 2eped

g a) —@%/l‘; . EZ

A Mesbpana 3 WA apid [[ ~—
L......”.....J
Fig. 51a. Fig. 51b.
} CODE: 2) Membrane; b) direction of CODE: a) Membrane; L) charge.

wave; c¢) charge,

Riidenberg takes pressure to be 2F in the case of a normal impact against an obstacle,
Howe\}er, the introduction of 2F is, strictly speaking, not justified. Viasov [3] correctly

notes that this quantity differs by 50% from the true value of pressure.
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Let us investigate the conditions at the instant when in the test shown in Fig. 51b
the shock wave reaches the membrane. By chonging the reading system, we may say

that at this instant the membrane begins to move at a velocity u with respect to the gas

compressed in the shock wave. This motion of the membrane produces a second shock
wave which propagates toward the first shock wave in the gas compressed by the first

wave.
The first effect of the shock wave on the surface of the obstacle, which is perpen-

dicular to the direction of the wave, is determined precisely by pressure p, in the counter~
wave which stops gas motion near the obstacle.

Izmaylov (we quote from Belyayev's paper [2]45 whence we have aiso taken Figs.
51-53) devised a general formula for pressure Py at an arbitrary amplitude of pressure

p in a incident (first) shock wave and an initial atmospheric pressure P,

o Bk—=1p—(k—1)p,
Pr=P ek + Tip (X1X-1)
and fork=1.4
8p—
P=p (X1X-2)

In the case of a small amplitude we get an acoustic result

—pPo=2{p—p,) (XIX-3)

In the case of a very large amplitude , p=>p.. we reach the limit value

3k~
pre=T gy with k=14, p,=8p. (XIX-4)
Belyayevpoints out that the conditions in a case of collision of two identical shock

waves (ree Fig. 52) do not differ from those under which a shock wave is reflected by 2

wall,
Within the precision iimits of the test, Beleyayev's experiments corroboratei Eq.

(¥IX-2) for both reflection and collision., Tiie results of the tests are compared to
Eq. (XIX-2) in Fig. 53.
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4 i
2 :
In the case of reflection of the shock 26— /;_ .
wave by the membrane, during the first in- U~ -;/0- -
5 . :
stant there appears a reflected wave that I
A - b): = fore
moves away from the membrzane. In theab- -___o._g m} %xsv;E'c)
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wave must lead to its veakening, and
Fig. 53. Dependence of pressure during
during a time of the order of d/c, where reflection and pairwise collison of shock
waves oa the amplitude of the shock wave
d is the diameter of the membrane, we (Measurements by A. F. Belyayev).

must get a transition to a steady flow CODE: a) P; atmuospheres absclute; b) Py =

1 atmosphere absoluie; c) reflection; d) col-
lision.

around the obstacle at a velocity u. We
have to poiat out a very significant fact,
namely, that the velocity of the gas com-
pressed by a powerful shock wave exceeds sound velocity in the compressed gas. Thus,
in *he case of a steady air flow around a body caused by a powerful shock wave we will
obtuin a transition similar to the one described earlier in Chapter 17, with a stationary
shock wave in front of the obstacle (Fig. 54}. However, the amplitude of the staticaary
shock wave is less than the initial value of the amplitude of the reflected wave, since in

the stationary wave D_ = u, whereas in the reflected wave v =W Stcady pressure

1
on the membrane surface in the limit case of an extremely powerful wave in 2 diatomic
gac is

p.— 524 p, XIX~5)

instead of the initial value equai ic 7= 8p of Eq. (XIX-4).
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If the incident shock wave is weak, then, as before, at the instant of incidence there

is formed a reflected wave, In the case of small amplitude, Eq. (XIX-3) yields

Pi=py-+-2(p—p)=p -1 puc, (XIX-6)
but after that the reflected wave rapidly weakeuns and fades into infinity. Steady

pressure is computed by Bernoulli's formula

Pz=p-*~"~‘2‘3- (XIX-7)
Computations show that if k = 1.4, to attain sonic velocity in a shock wave p must
equal 4.5 Py
With plp, < 4.5, u <e¢ a spherical wave is formed (Fig. 55) which separates from the
obstacle. The amplitude of the shock wave can be determined by means of flash photo-

graphy (Fig. 55). We shall not dwel! here on the details of the computation.

‘ ]

Fig. 54. Front of an acoustic wave ABC, Fig. 55. Spherical front of an acoustic wave
that arises in a compressed gas during  generated in a compressed gas by a weak shock
the passage of an extremely powerful wave MN past an obstacie A. The amplitude
shock wave MN past a small ot stacle. of wave MN is not sufficient to attain super-
In the shock wave MN supersonic velocity sonic velocity (see Fig. 12).

of the compressed substance is achieved.

Segmeut AB is the cross section of a

Mach cone {(see Fig. 12b).

4

In the pressure interval in the wave from
5 Py to 10 - 15 Py the measurement of the dip
angle of Mach waves on 2 flash photograph (see Fig. 34) may serve for a precise determi-
nation of the instant rarameters of an incident shock wave.
Let us note, finally, that supersonic velocity of a compressed gas does by no means

contradict the general theory which requires that D <c + u. I powerful shock waves,
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beginning with p/po = 4.5 upward, perturbation is not transinitted against the direction of flow
of the gas, but any perturbation in the back is transmitted to the wave front,
Duhem {48] made it a point to note that in a shock wave in which density increases
more than 2/(k - 1) times (which corresponds to a pressure increase p > 4 (F-,flf‘l‘ﬂo.
i.e., p>1525p, for k = 1. 4), the propagation velocity of the shock wave with respect
to tLe unperturbed gas is greater than sound velocity in the compressed gas, D> e.

However, so far as we know, during a passage through D = ¢, there arise no special

features in the behavior of the wave.

e

170

RIS 2 A s Wt
, '




N N A U oo e 3 P, WA AT S, WS A T M s O PR

Chapter 20
The Effect of Explosives. Introduction

One of the most important areas of application for the theory of shock waves are
explosives, explosions and their effects.

An explosion is a quick chemical reaction during which the explosive is entirely
or partially converted into a gas of more or less high temperature.

Deperding on the composition and the state of the substance, on the conditions
under which the explosion iakes place and on the conditions that cause the explosion,
the chemical reaction takes place in different wnys at varying velocities.

Only an extremely fast chemical reaction leads io extremely wide differences in
pressure and propagation of shock waves, which represents a particular feature of the
explosion.46 For this reason we are particularly interested in the problem concerning
the speed of the chemical reaction.

Any practically applicable explosive is chemically inert at room temperature, The
chemical reaction, the explosion, occurs only after ignition (priming) of the explosive.

As a rule, the explosiveis ignited at one spot only, The complex processes
under investigation result in the fact that the chemical reaction in one layer provokes
a chemical reaction in the neighboring layer, and so on. As a result we have the pro-
pagation of the chemical reaction at a specific linear velocity (the dimension of that
velocity is length x time'l) in the space covered by the explosive, 47

Thera arise two problems : one concerning the conditions and propagation rate of
the reaction, and the other the distribution of pressure and other quantities in space at
the instant the reaction is completed. The theoretical investigation of these problems
exceeds the srope of the present monograph. Experience shows that in high explosives
produced by modern technology, the propagation rate of the reaction reaches several
thousands of meters per second and exceeds sound velocity in these substances. For

this reasomn, in the case of central ignition, the outer portions of a high-explosive charge
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have no time to move from their places until the explosion is over. Mean density of

explosion gases is equal to initial deusity of high explosives. Mean temperature of

explosion products ranges from 1500 to 4000°K, depending on the type of high explosive.
According to Clapeyron's law, mean density 1. 3, mean temperature 3000°K and

mean molecular weight of the explosion product 25 should correspond to a pressure

.. 13-3000-22400 _

In actual fact (because the gas is not ideal), however, mean pressure is several
times higher. Moreover, reaction propagation results in an irregular distribution of
pressure in the volume taken up by the explosion product. A part of the explosion pro-
duct is in motion. The !rregularity and the motion of the explosion product can be under-
stood if one considers that different particles of the explosive react at different times.
Taking this into consideration, maximum pressure in an explosion product attains
100, 000 to 409, 000 atmospheres.

As the reaction is compiected, the explosion products, the state which is described
above, are surrounded by an unperturbed atmosphere. The expznsion of the explosion
products is accompanied by the formation of a powerful shock wave.

During expansion, the explosicn products cocl off close to room temperature. They
cever a volume which, as an average, exceeds 1000 times the volume of the explosive.

Objects placed at a distance up to 10 radii of the charge are subject not only to the
effect of the shock wave propagating in the air, but also to the effect of the expanding
explosion products. 18

Near the charge, while expansion is negligible and teruperature and density of the
explosion products are therefore great, a considerable thermal effect on the surface of
the obstacle is quite characteristic.

Frequently explosion products contain carbon monoxide and hydrogen, especially in

the case of explosives with a negative oxygenbalance: the combination of carton monoxide and

172




SREDE o) M SRS e SRR s TP

R A —— -

W e

hydrogen of the explosion products with the oxygen from the air is not only possible,
but probable. In the case of TNT, combustion temperature of the explosion products
(carbon monoxide and hydrogen of the explosion products) in air oxygen attains 220% of
explosion heat (the heat generated by the conversion of the explosive into explosion
products). 49

At the present time it is not uuderstood how and when there occurs a reaction of
CO and Hz contained in the explosion products with air oxygen, and to which extent the
energy from the reaction is used as the mechanical energy oi the explosion. 50

As they expand, the explosion preducts act as a piston and push the air in front
of them. A good (close to 1) efficiency in utilization of chemical explosion energy during
the first stage of the process, corresponds to the considerable expansion of explosion
products.

The propagation of the shock wave due to the irreversible nature of compression
in the wave is accompanied by the dissipation of mechanical energy and its conversion
into thermal energy. For this reason, it also accounts for the fact that as the wave
propagates its surface and the amount of substance involved in the motion increase, and
the wave's amplitude drops with distance.

Finally the wave reaches the obstacle. On the one hand, the wave is reflected and
moves arounc the obastacle. This is a phenomenon that occurs in air and determines the
force acting upon the obstacle. On the other hand, this causes the displacement and de-
formation of the obstacle, i.e., it causes those processes which, in the final analysis,
determine the toppling or destruction of the obstacle.

We are facing bere two typical cases. In the first case the action is determined
by peak pressure; if peak pressure is not sufficient to destroy the obstacle, the subsequent
effect of weaker pressure will not change anything. This occurs when maximum force and
deformation are attained very rapidly in the system to be destrcyed, during a time less
than the time during which pressure drops. An an example we can take the destruction

of a solid steel plate by a charge placed on its surface.
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- Destruction depends on maximum prossure, i.e., on the type of explosive and the
distance {gap) between the charge and the surface. 51

In the second case {which occurs more frequently), the shock wave action time is
short as compared with destruction time. For example, we take the toppling of a brick
wall 1, 5 meters high and 0. 25 m wide (Fig. 56). To achieve this one must impart a
velocity of about 0.5 m/sec to the wall‘s gravity center. At such a velocity it will take
about 0. 25 sec for the gravity center to reach the highest point (which corresponds to the

position of the wall shown by the dashed line).

I,' N It is obvious that the action time of the
/’ /:? shock wave is considerably less than 0. 25 sec.
— // // In fact the wave covers about 100 m during
(/\ ,/l C.25 sec. Consequently, during the shock
Y wave action time the displacement of the wall
Fig. 56, is negligible, the wall only gathers velocity

and with that velocity motion continues by
inertia until the final action of the wave. The acquired velocity does not depend on the
magnitude of peak pressure, but on the area of the pressure-time curve, i.e., on the
pressure momentum, which determines whether or not the wall be toppled.
| If an elastic structure, e.g., one consisting of long metallic rods, is to be destroyad,
then, compared with destruction time (the time of deformatiorn required for destruction), the
1 action time of the wave will also be small as will the shifts and displacements occurring
during that time. The maximum deformations dangerous for the structure arise later?
after a time equal to one-fourth of the period of ibe system's proper oscillation. Shock
wave pressure at that time no longer acts on the system, and deformation occurs by inertia
on account of the velocity gathered from the beginning.
Later on, when investigating the propagation of shock waves from the detonation of

explosives, we will have to study the change of both parameters that characterize a shock
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wave, namely, maximum pressure and general momentum. The ratio of the momentum
to maximum pressure characterizes the actual action time of shock wave pressure.

Of great importance is the interaction between wave and cbject when measuring
pressure and momentum, or the effectof a shock wave on an object. We have seen
above (Chapter 19), that due to reflection, pressure on a surface placed normally to
the wave front exceeds several times that exerted on a surface placed tangentially to
it. Furthermore, the force momentum depends on how the air compressed
in the wave flows around the object. Hence the relationship between the pressure

mementum of the wave52

and the force momentum experienced by the object also depends
on the ratio of the action time of shock wave pressure to the time the wave flows around

the object.
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Chapter 21

Simalation of an Explosion and of the Propagation of Blast Waves

The complexity of analytic computation of even the simplest symmetric and
schematic problems requires the establishment of a method of simulating explosions
and their effect on a small scale, and the determination of laws governing the application
on a large scale of the results obtained on a small scale. In other words, it becomes
necessary to establish laws of similarity.

In Chapters 6 and 16 we have seen that gas dynamics equations contain only a
specific characteristic velucity (sound velocity) but do not contain either length [distance] or time,
In Chapter 15 we showed that in the propagation of shock waves the introduction of dissipa~
tive quantities does not introduce a characteristic length. Hence there is the possibility of
setting anarbitrary scale inthe case of simulation. Similarity will be ensured if all the
dimensions are changed in accordance with the rules of geometric similarity.

If we investigate the problem of the propagation of explosion pressure, for reasons
of similarity, it is also necessary that the properties of ihe explosion products be in a
certain relationship with the corresponding quantities characterizing the properties of
air. This refers to sound velocity, the density the pressure of explosion products and of the
air,

Since the properties of air under atmospheric pressure are known and constant,
similarity will be maintained if we maintain the properties of the explosion products.

In order to maintain the properties of the explesion products it is necessary to
fulfill two conditions, the first of which is the conservation cf the properties of the
explosive.

This is a very simpl'e condition. During simulation one must use the same
explosive with the same charge density as if it were the case of an actual explosion.

This condition is necessary but not sufficient. It is also .ecessary that this similarity
not be violated during the explosion process, i.e,, during the process of the chemical

reaction,
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It cannot be expected that the similarity will be maintained in full. A chemical
reaction is characterized by a specitic rate, i.e., by a specific time required for its
completion, However, it has been mentioned many times that gas dynamic phenomena
have a charactersitic propagation velocity in cm/sec. For this reason, as we change
the geometric scale of the test, all the times change proportionally. For instance, if a
model is one-tenth the size of the actual charge, then the time for the passage of the shock
wave from the charge to the obstacle is one-tenth that of the actual one. As we change
the scale, there occurs a change in the ratio betwecn the reaction time and other times
which depend on the motion of the gas. This, generally speaking violates similarity.

It has been known for a long time thzcxt blast velocity measured for explosives
of small-diameter shells, turns out to be reduced with respect to normal values measured
in large-diameter shells. Blast velocity depends on the size (as this is required by
similarity), only beginning with a specific, sufficiently large diameter.

A striking expression of the violation of similarity is encountered in an investi-
gation performed by Yu.B. Khariton et al. [116], who studied the phenomenon of a
critical diameter (for the blast): charges of liquid nitroglycerin enclosed in pipes of a

large diameter detonate (with due priming), but in very narrow pipes detonation "dies off"

-and therefore does not propagate,

1t is obvious that as we measure shock waves of charges with varying diameters,
even if all the other conditions (of geometric similarity} are kept, we will get completely
different results if the critical diameter of the pipe is exceeded.

As the blast prcpagates, new layers of the explosive are involved by the layers
transformed earlier into explosion products by the chemical reaction. At the present
time, the part played by various factors (the effect of high pressure on the reaction rate,
heating from compression, heating of the explosive from contact and mixing with explo-
sion products, etc.) is not quite understood. All we know is that the layer involved in
the reaction is subjected to the effects of high pressure. Explosives contained in a
fragile glass tube or any other thin shell tend to fly apart in all directions under high

pressure,
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According to Yu. B, Khariton, the damping of the Llast of an explosive having a

small diameter is due precisely to the fact that the scattering time of the charge be-

comes less than the chemical reaction time. The explosive is scattered, and pressure

D S e

drops before the actual reaction has a chance to take place. With a larger diameter,

[

scattering time of the charge increases, too. If it exceeds the chemical reaction time,

o g
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a nondamp.d blast becomes possible.
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The existence of a critical diameter violates the similarity of the explosion of
charges of various sizes. On the other hand, it gives us a criterion by which to Jde-
termine the conditions in the region in which the similarity is to occur.

To obtain simii~rity it is necesgary that the reaction rate be low as compared
! with other characteristic times. From Yu.B. Khariton's critical diameter theory we
can conclude that the explosion of two charges of the same shape but different size will

be similar to one another if all the dimengions of the smaller charge (and, therefore,

the dimensions of the larger charge) exceed several times the critical diametes.

ke LNl AU I G U W)

It must be attempted to obtain a complete blast both in the larger and smaller
charges. Similarity is violated where completeness of the reactionincreases with an
increasing charge. But the completeness of a reaction cannot exceed 100%, hence we
can assume that starting with a certain sufficiently large dimension similarity will be
maintained.

Suppose that similarity is maintained. How do we project the data gathered from
a model on events taking place in nature? All geometric dimensions are reduced to scale.
1 We select as a characteristic dimension a charge with a radius R. Similarity points,

E i.e., those where all phenomenra evolve in a similar fashion, will be points the distance
f of which, from the center of the charge, are in the same relation to the radii of the

: " charges, that is, points at which are equal the ratios x/R, y/R, x/R or (in the case of

spherical symmetry) r/R, where r is the distance of the point from the center of

symmetry.
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Pressure in similar systems is identical since atmospheric pressure of the air
is identical, and maximur: pressure of the explosion products is identical, which follows
from the identity of explosion product density and explosion temperature, As already
mentioned, the time in similar syetems is proprotional to their dimensions. Hence,
if we compare the curves of the dependence of pressure on time, we will find that they

are transtormed
l _".. , I 4 l r
g==idan, p==7 (s 10} XXI-1)

In order to deal with a dimensionless function, we write the above formula as follows

T

’ 1)
p=po-f("Er %} (XXI-2)
where P is characteristic pressure (for instance, atmospheric pressure), o is
characteristic velocity (for instance, sound velocity in the air),
We are interested above all in two quantities, maximum pressure and total pres-

sure momenfum. We find for these quantities
Pusy =p, (“}%)1
i=[o—padi=[p[1 (%) 1] 4 (%)= 0cXE-3)

=, % (%)

Maximum pressure at similar points is identical, and pressure momentum at
similax points is proportional to the scale of R. Completely analogous formulas also
hold for the motion of gases. At gimilar points maximum gas velocity is identical, the
curves of velocity change with time are similar, and the displacement of particles is
proprotional to the scale of R.

Pressure on the surtace of the obstacle differs from pressure in the shock wave
and depends on reflectdon and the flow around the obstacle by the wave, If the obstacles
are similar, these phenomena will also be gimilar., Maximum pressure on the surface
of the obstacle differs from maximum pressure in the shock wave by a factor that depends

on the amplitude of the wave (see Chapter 19), that is, on p/po. Thus, maximum pressure
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of a reflected wave depends only on the ratio of the lengths of r/R. A formula like the
one for pressure momeatum refers in exactly the same way to the momentum acting on
a unit of surface of the obstacle, so ihat the momentum per unit area on similar sur-
faces is proportioral ‘o the dimension of the charge.

It is the task of experimental and theoretical investigation to determine pressure
as a function of two variables of £ (tcO/R, r/R). This is an exiremely complex problem,

hence it is expedient to determine first of all two functions of dimensionless distance

7,%, whicl. cL.aracterize maximum pressure and total momentum, We try to deterpri=e
them in a freely propagating wave, and we also seek these functions in the presence ¥
a specific, standarc type of reflection and flowing around. Thus, Sadovekiy used

instruments built intc a aigh, solid wall. In this case, obviously, we are dealing with

the reflection of a shock wave without flow around the obstacle.

3

jf For a substance with a specific density, the radius simply depends on the

3 weight of the charge. The investiyators give their data in the form of a dependence of

é pressure and momentum on the distance r and the mass of the charge m. Since m ~

E% R3, gimilarity theory leads to the following dependences

h Po. — f(s_’: ); i=Vm-h (5_:_) (XXI-4)>3

: Ym Viu

ke Finally, in a moderately wide pressure change interval, it is natural to seek the

§ definition of the quantities to be determined as power functions of the weight ¢f the charge

ggf and the distance

é Powe =const - 1 mY i=const - m".

E

] The similarity jnws connect the exponents. From Eq. (XXI-4) it follows that
a+35=0; c-+-3d=1 (XX1-5)

The formulas given in the literature for maximum pressure in a shock wave satisfy the

requirements of similarity theory. For iustance, for great distances, the formula
(XX1-6)

P ol u o AR Ry Y
.

3, —
m
Puus=—const * - 4 Dye
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is adopted, However, when processing experimental data, one for the momentum,

frequently rerorts to the formula
i=const-2_. XXI-7)

; which contradicts Eq. (XXI-5). Such a deviation may depend on the nonobservance of
similarity conditions when measuring the momentum, especially in the case of powerful
charges and great distances. Vlasov [3} ard Savich [113] give formulas for the momentum
which are completely correct from the viewpoint of similarity theory.
. It was noted above that one of the similarity conditions is the constancy of explosive
density. Sacovskiyv established experimentaily that with 3/ n::: >1 (m, kg) the parameters
of a shock wave depend only on the weight of the charge bat not on its density, in which
cage Eq. (XXI-4) rather than (XXI-2) holds. These experiments compared the effect of
the explosion of pressed TNT and powder TNT of varving density (from 1.6 to 0. 3), where
decrease in pressure and momenium did not exceed 2 to 3%.

On the other hand, a low-density charge explcded ir normal atmosphere can be
regarded as being similar to 2 high-density charge exploded in air under high pressure. 54

Under this assumption, Sadovskiy's results permit us to predict, with the aid of
similarity theory, the dependence of the quantities characterizing the wave on the density

of air. We give here, without their derivation, the final formulas in which air density is

expressed by its pressure P, and temperature T

0
3 3 — s
2 / rvyp, ) PP wene x ol O B AL )
p.,-_-:po[ L Jyi=Vmpg® 1y h T _
VmT, YTy (XXI-8)

3 or, for power functions, the raaltionship between the exponents of distance r, chavrge
. mass m, and atmospheric pressure Py and temperature TO’ which we do not regard as
constant here,
Pn=-const - =¥ m®py1=8 T¥ i= const 1=3¢ m?p 1= T"
Exaclty the same relationship between exponents can be obtained assuming that

P, - P depends on the parameters according to the exponential law, At a great distance,
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the damping of pressure change amplitude and momentum is inversely proportional to the
distance. Let us take here this limit law as a result of the experiment. In that case we
get

Pu == po +conste st ptls Tyl i == const - r=d mihp M T,

It would be interesting to study experimentally the problem of the effect of atmospieric
conditions on the propagation of shock waves. A change in the temperature from +40 te -40°C
changes Té/ 8 by 10%, Tﬁl 3 by 22%.

Although spherical propagation of shock waves is much more important, cylindric
and one-dimensional propagation are also of some interest., Cylindric propagation
occurs when a long charge explodes, and the shock wave is radiated at a disiarce from
the charge which is less than the length of the charge. One-dimensional propagation occurs
~hen a shock wave propagates in a pipe. The extremal laws derived above for spherical
propagation can be readily changed for the latter two cases. Thus, in the one-dimensional

case

”x.\\:=l’u,(':""x) i - paay f{rju),

where m, is the mass of explosive per unit of cross section.

Motion at a short (or small as compared with the dimensions of the charge) distance
from the surface of the charge can also be regarded as one-dimensional motion. In this
case, however, particular care must be used on account of the dependence of the distri-
bution of the pressure and motion of explosion products on the character of blast wave
propagation, which is spherical with central priming of the charge, or plane with
simultaneous oriming along a plane paraliel to the surface of the charge ({8], 2nd paper).

Simulation is particularly valuable when studving the propagation of waves under
difficult or complex geometric conditions, for instance when studying various methods
for protecting ventilation ducts from blast waves, the difraction lawas of a shock wave
at the obstacle, and sc on [117]. It is obvious that in these cases it is essential to
maintain similarity both in the position of the surfaces reflecting the shock waves and in

the position of the measruing instruments. The resulta f measurements depend not
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only on the distance of the instrument from the charge, but also on its position with

respect to the obstacles, etc.
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Chapter 22

Simulation and Similarity of Destructions Caused by Shock Waves

Destruction occurs when the stress in a material raaches limit values, Similarity
will therefore be achieved if we use the same material in the model as in the actual
case, and, of course, if the raodel is geometrically similar to the actual object.

By using the same material we will be sure to have a similarity in the propagation
of the shock wave, in its transition rom one medium to the other, and so on. We have
seen that the cl.aracteristic pressure amplitude is constant, In similar explosions the
pressures are identical ot similar poiats,

The regions in which the siresses caused by the sxplosion exceed the permissibie
values and bring about the destructior of the material will also be similar.

Destruction requires that a specific deformation be reached, i.e., that certain
particles of the body be shifted with respect to othezr particles, Inertial forces and
elasticity prevent deformation and destruction from occurring instantly, Could it be
that the existence of a specific deformation time will lead to a violation of similarity?

But we can easily see that cimilarity will be maintained. It is precisely the irertia
of the substance, which depends on density, and its elasticity that determine the speed of
sound in the substance. It can be formally shown by means of analysis that from density
and elasticity we can plot deformation time only on the basis of the dimensions of the
body, and this will be the time required by the wave to pass through the body. Tho time
will turn out to be proportional to the size of the body. If we change the scale, defor-
mation time changes following the same law as the one governing tae shock wave action
time, and the relationship between the times will remain constant. This ensures
similarity of the phenomena.

Similarity is also applicable to the more complex type of destruction, in which
the shock wave momentum is decisive (see Chapter 20) rather than peak nressure.

Let us take an elastic beam, the oscillation period of which exceeds shock wave

action time,
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By reducing the dimensions of the charge, the beam and the distance between them by
a factor of n, the oscillation period of the beam will decrease by a factor of n, and the
frequency will increase by a factor of n, This can readily be verified with the aid of
elasticity theory for any specidic practical method of securing the beam,

The mass has decreased by a factor of n3, at a similar point the shock wave
g momentum per unit of suriace has decreased by a factor of n on account of a decrease
3 of the shock wave width and a decrease in shock wave action time at a constant peak
pressure, and the surface receiving the pressure has decreased by a factor of n2. Thus
linear velocity reached by the beam as a result of tke effect of pressure momentum will
be independent of the size of the beam, The amplitude of the oscillations will be of the
order of the product of velocity x period, i.e., it will be proportional to the size cof the
beam. Hence we see that the relative deformation and density of elastic energy proportional
to the square of initial velocity are identical in the model and in actuality. The result will
also be identical, namely, the presence or the absence of destruction. Xet us note that
similarity will no. be violated by friction which depends on velocity and on the load in the case
when the load is also assigned in the fundamental shock wave action, since velocity and pres-
sure are the same in similar systems,

A less trivial case is the one frequently encountered in structural mechanics. It
is the case in which the stability of the structure and tte effort required for its destruction
depend on the structure's weight, The simplest instance of this kind is the sardy area
without cohesion. Another instance is a stack of bricks, the solidity of which depends on
the weighi oi the bricke and on the friction produced by the pressure of one brick on the
other. Khariton emphasizes that such a type of stabiltiy very frequently determines the
resistance of a structure to destruction. The stack of bricks represents one extreme
example in which the weight determines interral cohesion. A solid stes! box, which
is easier to topple as a whole than to destory, is another extreme example in Wwhich

the explosion works agaiust the force of gravity.
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Here the impossibility of a strict similarity is obvious. The theory now includes
acceleration of gravity g expressed in terms of lengtix/timez. Together withthe characteristic
velocities oi the explosion process, e.g., Coe the presence of g permits the plotting of
the length, e.g., 092/ g and time c/g.  The absence of similarity is obvious: if we
compare two charges of different size buried in the sand at an appropriate depth, we can
see that the pressure of the soil at the level of the charge is proportional to the depth,
and to the size of the charge. Likewise, minimum pressure required for the toppling
of a wall in the second example is also proportional to the size. However, atmospheric
pressure and blast pressure do not depend on the size.

Thus, with a change in size there is also a change in the ratio of soil pressure or
the pressure required for the beginning of destruction to blast pressure, and similarity
is therefore viclated.

An excellent simuiation method was proposed by Pokrovskiy {109]. To obtain
similarity as we change the scale of the experiment, we must also change the length
proportionally. Pokrovskiy obtains this by cuanging acceleration, and replacing gravity
with centrifugal force. The model is exploded on a centrifuge and the dimensions are
reduced with respect to nature at the same ratio of centripetal acceleration to acceleration
of gravity. We can readily verify that soil pressure at similar depths will be similar.

Pokrovskiy made extensive use of his method for the purpose of modeling large-
scale explosions for excavation, and alse for the purpose of studying the effect of various
solls and different positions of the charge on the result of explosions., The linear modeling
scale in his experiments reached 29, i.e., all the dimensions of the model were reduced
by a factor of 2% as compared with the dimensione of the real object. The weight of the
charge, which characterized the cost of the experiment, was reduced by a tactor of
25, 960,

Zel'dovichk and Khariton proposad an approximate method for simulating the work

of explosiver against the forces of gravity. It ie based on the fact that the new criterion
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» on which depends the absence of similarity in the case of a change in scale, iliffers

appreciably from unity. Thus, if we write this criterion as a ratio of characteristic
length c02/ g to the size of the charge R, then for a charge weighing 1 kg we get coz/ gR =
2x 105. The ratio of static soil pressure to blast pressure yields, ai a crater depth of

4 _ 1075, Thus, the c¢-‘terion in the most

several meters, a quanity of the order of 10~
varied formulations turns out to be sharply different from unity. This means that we
are dealing here with the case in which not all the quantities are of the same order. It
is obvious that we find curselves in the domain of extreme or critical laws, in a domain,
that is, in which we may expect self-simulation in the same way as self-simulation
arises in hydrodynamics at very high or very lov. Reynolds Numbers.

We now have to find the physical nature of this self-simulation,

Let us give a closer lock to the toppling of a wall (see Fig. 56). At the beginning
of the preceding chapter we brought it up as an instance for a process which lasts con-
siderably longer than the action of the shock wave (in this case the time ratio yields
another criterion which sharply differs from unity), i.e., a process in which the
decisive role is played by the general wave momentum. We divided the process into
two stages: 1) the action of the wave on the object which determines its momentum, and
2) themotion of the object by inertia, which overcomes the force of gravity, anc we
readily find the conditions for similarity.

In fact, the object's momentum K, equal tothe force momentum, (for a geometrically
similar change of the system, in which the dimensions of the chiect and the distance be-

tween the object and the charge change proportionally to the dimension of charge R) is

proportioaal to

K- Fi~le.Bop_2p. {(KXII-1)

) €
where F is the ares on which the wave acts, i is the pressure momentum per unit of

surface. The momentum of the object sufficient for its toppling will be determined as
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follows, The object's kinetic energy is equated to the work required for lifting the

gravity center of the object to a height proportional to the size of the object,

E~% ~Mgr. (XXII-2)
Into K of Eq. (XXII-1) we substitute the expression of the object's mass M by the char-
acteristic dimension R and the object's density ¢, and get
M~ R :::- (-5:,)5 ~oRgR; ;:: o' gR = ilem (XX1I-3)
The sign idem adopted in similarity theory signifies that similarity will take place
if the term on the left remains constant. For all explosions in the air under normal

conditions ¢, = const, Py = const, the criterion is simplified and p*gR==idem.

0

This criterion also cincludes exact simulation -~ the change in accleration g is
inversely proportional to the size R (centrifugal simulation). But on the basis of the
approximations made earlier we obtained a criterion which also admits another solution:
the change in density is inversely proportionzal to the root of its dimensions. This method
was proposed by Khariton and this author {105]. This method allows for a sufficiently
wide chauge in the scale. By substituting a material with density 2 (ctone) with a
material with density 11 (lead) it becomes possible tc reduce R by a factor of 30, which
corresponds to the reduction of the charge by a factor of 27,000, i.e., it is possible
to simulate the explosicn of 1 ton of explosive by the explusior of 49 7 of the same sab-
stance.

In Khariton's many experiments, the edgewise standing bricks turned out to be con-
venient indices for the distance at which the momentum of a shock wave drops to a specific
value,

It is obvious that centrifugal simulation is necessary in more complex cases in which,
along with a rigid structure, the soil also plays a role. The approximate simulation by

changing density, as proposed by Khariton and this author, is considerably narrower in

scope and the advantage of this method is only the simplicity of experimentation.
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Chapter 23

Phenomena Occurring in the Immediate Vicinity of the Charge

Similarity theory makes it possible tc reduce the relation between the quantities
that characterize the effect of an explosion and the charge mass and the distance to two
dimensionless functions with one dimensionless variable. By determining the form of
these functions we will geta clear idea of the explosion phenomenon and the ensuing
propagation of the shock wave. Here we are not going to study the explosion proper,
i.e., the propagation of the blast wave along the explosive accomapnied by a chemi~al
reaction which transforms the explosive into an explosion product or products, Our
investigation will begin when the blast wave reaches the surface of the charge. We
assume that the wall of the charge is very thin and hence ignore its effect. At a given
instant of time the following will be abutting: on the one hand the unpecturbed air or the
material to be destroyed, and on the other hand the explosion products which have just
been formed as a result of chemical reaction.

Computations relating to degeneration theory show that these explosion products
move in the direction of the propagation of the blast wave. Their density is higher than
mean density of explosion products so that pressure is twice as high as mean pressure,
If the explosive is bordering ona the obstacle, then at the instant when the blast wave
reaches the boundary, the moving explosion products collide with the obstacle and
are abruptly inhibited or stopped. At the pressures with which we are dealing, any
mwaterial is plastic, The velocity acquired by the material of the obstacle under the
effect of the explosive products is bounded not so much by the strength of the material
as by its inertia, i.e., density and compressibility (the latter determines the velocity
at which the disturbance gropagates and, hence, the amount of :iaterial involved in the
motion per unit of time).

When explosion products hit steel or iron (density 7.8, whereas the explosion

products density does not exceed 2. 5) we can say that the motion of the explosion

189

S TR P U o -

2 ik




products is virtually stopped. At this instant a shock wave begins to move from the
boundary into the charge, which stops and compresses the explousion products. Qualitatively
this phenomenon is analogous to the reflection of a shock wave (Chapter 19). Quantitatively
there is a certain difference, and computations show that the pressure of the explosion
products increases approximately twice when the shock wave hits an cbstacle.

If the explosive is of low density, and if the explosion products can be corsidered
and ideal gas, then in the shock wave front the velocity of the explosion products amounts
to about 45% of detonation velocity, density in the wave frort attains 180% of the initial
one, and the temperature rises 10% as compared to mean teinperature. Pressure there-

fore increases by a factor of 2 as ccmpared with mean pressure D or the pressure which

:s developed by a slow adiabiatic reaction of an explosive with constant volume. Ixmaylov

showed *hat this pressure is almost tripled (and thus reaches 5-6 p ) when the explosion

;
3
3
3
.
3
:

products are slowed dovn by anabsolutely hard (rigid) obstacle placed in the path of the blast
wave. However, the explosion of commerical explosives deviates considerably from

ideal conditions. The ratio of explosion product veiocity to blast velocity decreases.

T

The ratio of explosion product density in the wave front to the mean density of explosion

products also decreases. But, at the same time, the compressibility of explosion pro-

ducts also decreases. An identical change in density causes a change in pressure greater
i -

i." than in an ideal gas; sound velocity also increases; hence the impact against the obstacle
becomes harder. The pressure ratio, of mean p, maximum p det in a detonation wave, the

pressure of reflection of a shock wave by a rigid obstacle Prefl found for an ideal gas,

changes somewhat in dease explosion products with considerable deviations from ideal
conditions,

Table 5 shows the fundamental constants for some characteristic explosion products.
These are explosion heat G kcal/kg, the volume taken up by the explosion products under
normal conditions (0°C, 1 atmosphere}, VO liter/kg; explosion product temperature in the

blast wave front Ti d°K, detonation velocity at low density Di dm/ sec, and explosion

LS b gt Gt A 3 Ay o it —a 28 W
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product velocity in the wave front L) dm/ sec computed according to detonation theory
without taking into account any deviation from ideal conditions, initial density of ax-
plosives ¥ g/ em® or kg/liter, and detonation velocity D m/sec measured at this

density. The difference between D and Di d characterizes the deviation of the state of

the explosion preducts from ideal conditions. In the following columns we have computed
the density of explosion products ¢ and explosion product velocity in the direction of the

propagation of the wave u. P de is the pressure of expiosion products in the detonation

t
wave computed considering the deviation fromideal conditions and compression of explosion
products inthe wave. The colunmn Prefl shows the pressure developed by an abrupt declaration of

explosion products, whereastheir velocity and state are determined in the preceding columns,

Table 5
Q Vo Tl‘ Du,l u, ! 2
gl b

Teorwa ™ .8 . . .py.| 1085 | 685 3630 1930 | 890 150
Hrzrponenravpurpur .'. 1 1530 768 5000 | 2400 ; 1090 | 1.0
HurporasgepuaC) . . .| 1517 1 716 5200 | 2360 | 1080} 1.60
Asxz caugady o . . .26+ 270! 2800 | 1250 570 { 4.0

3252 2307 }_

D ! |

0 u p“'e)! Po,'n

Teoraad). . . . . e 8900 | 210 | 1700 190000 432000 ]
HarponeurasprzgurD) .| 7000 | 212 2000 © 250000 | 55003 |

Hazooraungepra @ . . .| 7900 2.12 2000 ! 250000 ' 560 600
Asuz csmigad) o . . .| 5890 6.30 1500 imooo i9owo
: i

1Computed for lead in vapor form.
2Computed for liquid lead.

CODE: a) TNT, b) nitropentaerythritol; c) nitroglycerine;
d) lead azide; e) det; f) refl; gj id.

Computations based on detonation theory (considering ideal expiosion products),

were performed by Dautriche {119], Schmidt [124], and Vlasov [3]. The computations

were based on the assumption that we can apply the equation of state to explosion products
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with constant b, or a vilaue of b that depends on specific volume v (Schmidt). Landau
showed that in reality this equation of state is nor applicable to the density attained in

explosion products. Molecules cannot be considered incompressible. In the fire* approxi-

mation explosion product pressure depends on the density of explosion products (pro-
portional to the cube of the density), but does not depend on temperature. Landau‘s and
Stanyukovich's computations {107}, performed in 1944, show that the measured detonation
rate corresponds to a smaller specific velume and a higher pressure as compared with
earlier computations. Khariton noted that the equation of state adopted by Landau re-
quires an appreciable amount of blast energy to perform the compression of explosion

products, and the temperature of explosion products (with a high initial density of the

explosive) is considerably lower than the one given in the table under Tid‘

Tke scructure of a detonation wave is characterized by the fact that at the instant
it is formed the explosion products have maximum density, velccity and pressurs.
Behind the wave front there follows a more or less rapid deceleration and expansion of .
explosion products {8, 108]. All the values for pressure given here are referred to the
wave crest. Immediately after the collision between the wave and the obstacle, i.e.,
after a tremendous pressure p refl has been developed, pre.sure begins to drop quite
rapidly. Below, when we study the pressure momentum of ax explosive, we shall see
how the time during which pressure drops is determined. In order to magnitude this
time is equal to R x 10'6 sec, if R is the effective radius of the charge expressed in
centimeters. For a charge of 1 kg this time is of the order of 5 x 10’6 sec,

To compute the time we juxtapose the force momentum and maximum pressure.
Let us imagine a charge of 1 kg TNT in the form of a cylinder 10 em in diameter and
& cm high. The area of the cylinder base is 80 cmz. Assuming maximum pressure
developed at the reflection of the wave to be 430, 000 atmospheres, we get the maximum

force that acts oa the obstacle on which the charge is placed, namely, 3.5 x 107 kg.
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The momentum v:lue of 199 kg x sec/kg found experimentally (Kudryavtsev's experi-

ments, quoted here from Sadovskiy) corresponds to the affzactive action tima of the force

6
8

compuied above, namely, 3 x 10~ sec. For sound velocity in explosicn products of tlie

order of 5 x 105 cm/sec (we find this value from the measured detonation rute) ihe time
during which an expansion wave covers a distance of 5 cm amounts of 10 x 10"6 sec.

It is obvious that in reality pressure dropsgradually and attains atmospheric values
during a considerably longer time. The quantities 3 x 1()-6 or 10 x 1()'6 sec are

only effective values, i..,, they are the time during which pressure drops several
times.

What happens when the detonation wave reaches the free charge surface which
borders on the air? When the explosive is exhausted, the incandescent explosion pro-
ducts (in motion and under high pressure) are in contact with the unperturbed air. The
surfice of the charge becomes the surface of pressure discontinuity, and of the dis-
continuity of velocity and gas tmeperature (Fig. 57). Thus, we are dealing here with
the problem discussed in Chapter 16. The expanded and accelerated explosion products
speed forward in the direction in which tae blast wave propagated, pushiug the air in
front of them and compressing it (Fig. 58). The motion of the houndary of the expanded
2xplosion products and of the compressed air is determined from the condition of pressure
equality on beth sides of this boundary. The only new element as compared with Chapter
16 is the fact. that on the -discontinuity surface there also occurs a change in chemical
composition (explosion predrets — air). As the discontinutifr propagates, the surface
of the change of composition coincides identically with the surface of the discontinuity of
specizl kind on which there occurs the change in temperature and entropy without changes
in pressure and velocity. All the results of Chapter 16 remain valid.

Emile Jouguet [120] applied the theory of propagation of an arbitrary discoatinuity
to the computation of a shock wave arising on the surface of a detonating explosive. He

performed his computations in connection with the experiments carried out by Perrota and
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Fig. 57, Fig. §8.
CODE: a) Explosion products; b) air. CODE: a) Explosion products; b) air. S

Gawthrop {122]. Thesame problem was studied later by Landau and Stanyukovich ]108].
The results agree with the experimental data, in particuiar in the problem con-
cerning the effect of the composition of the atmosphere surrounding the charge on the
expansion rate, The velocity obtained by the shock wave in the air and the velocity of
the interface between explosion products and the air are very high and may exceed the
detonaticn rate of the explosive with which they are not directly counected. In corres-
pondence with the high velocity of the explosion products that compress the air, there
occurs in the shock wave a pressure wkich is high compared with atmospheric pressare,
but which amounts to a micor portion of the initial pressure of the explosion products.
If the air is enclosed as a thin layer between the explosive charge and the obstacle,
then the shock wave, once it reaches the surface of the obstacle, will be reflected and
will ch~nge its direction. When the reflected wave wiil reach the interface between the
explosion products and the air, there will be a peartial passage through the explosion
products, and so on. The layer of air between the explosive and the ocbstacle delays the
increase in pressure acting on the wall and, hence, delays the instant when maximum
pressure is attained. If the explosion products were able to exert continuous pressure,
the presence of the layer of air would rot change the final pressure exerted on the wall,
as a soft pad does not reduce the pressure of a load on the base. In reality, the structure
of a detonation wave determiues a rapid pressure drop whick depends on the levelling of the
presaure and the expansion of explosion products in a direction opposite to the direction
of detonation propagation (i.e., toward the center of the charge). The delay in the trans-

mission of explosion product pressure to the obstacle (due to the presence of the air gap)
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results in that during that delay the cxplosion product pressure drops and maximum
pressure acting on the obstacle also decreases. The extremely sharp dependence of the
disruptive force of an explosion on the distance between the charge and the armor plate is
well-known,

The instructions of the engineering corps for demolition work (Voyerizdat NKO

{Naticnal Commisariat of Defense], 1541) gives the following rule. To penetrate a steel
sheet, the weight of the charge must be given in terms of 25 grams of normal explosive
per 1 cm? of the cross section to be penetrated. The cross section is computed as the
product of the length of the line along which penetration o.curs, and the thickness of the
sheet.

In the case of an air gap betweea armor plate and charge, or if the armor plate
consists of steel sheets with air gaps in between, the "Instructions' require that the air
gap be added to the calculaied thickness of the sheet.

Thus, according to the rule (which, of course, is approximate) oae must conclude
that a charge which, for example, can penetrate a 5 cm thick steel sheet if tightly
attached to it, will penetrate an armor plate only 3 cm thick if it is placed at a distance
of 2 cm from it.

The pattern will be different if at some distance from the charge there is a body
the dimensions of which are small as compared with the distance from the charge. Such
a body will first be subjected to the effect of an air shock wave. Soon after the reflection
of the shock wave by the surface of the body, the shock wave travels further around the
bodv. After this the force acting on the body bucomes the drag of the body ina
flow of air compressed by the shock wave, and depends on the density and air velc-ity
and the resistivity factor gf the body. Then the interface between the explusion product
reaches the body, and further on the body is flowed around by the expanded explosion
products rather than by air. On the interface the expiosion product pressure does not

differ from air pressure. How does the force change that acts upon the bedy? To
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answer this question we must compare the deusity of explosion products and that of air.

The expansion of explosion products occurs isentropicaliy and is accompanied by
a temperature drop in the explosion products. The compression of air by the shock wave
following Hugoniot's adiabatic curve causes an increase in temperature.

A rough, approximate computation performed for TNT (for the initial data see
table) detonated jn the air yields the following results, The velocity of expanded explusion
products, equaltothe velocity of compressed air, is 4700 m/sec; the pressure of expanded
explosion products and of compressed air is 256 atmospheres. The temperature of ex-
plosion products drops to 1100°K (830°C), the density of explosion products is 0.1 g/ cm3;
in the air the shock wave propagates at a velocity of 5250 m/sec, air temperature reaches
7600°K ard density is 0. 012 g/ cma, The absolute value of wave veiocity agrees sufficiently
well with the data of Perrota and Gawthrop, who recorded a wave velocity of 4600 m/sec
in air, and 5560 m/sec in hydrogen in the case of a weaker explosive (density 1. 32,
detonation rate 4600 m/sec). 35

Let us note that as a result of the expansion of explosion products there cccurs a
temperature inversion: the temrperature of compressed air turns out to be considerably
higher than that of the explosioz products in contact with it, There is no contradiction
with the principles of thermodynamics here. We have only isentrcpic processes (expansion)
and these are accompanied by entropy increase (compression in the shock wave). The first
prinicple alsc is not violated: the amount of air compressed in a unit of time is con-
siderably smaller than the amount of expanding explosion products,

The moiecular weight of air aad the explosion products in the c.se of explosior of
organic substances only differ slightly from one another. With equal pressure, the density
ratio is inverse to the temperature ratio. 36 The density of expanded explosion products
is considerably greater than the density of compressed a2ir. The force acting on the body
grows approximately proportiorally to the density at the i :stant whes == explosion pro-

ducts expand and reach the body. At the same time (and this seems surprising) the thermal
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effect on the body's surface also increases. The temperatur.: of explesion products is-
lower thaa the teinperature of compressed air, but in the case of supersonic flow one
must take into account both the thermal and the kinetic energy of the moving gas (see
Chapter 4, "temperature at rest").

The velocity of explosion products and of the air are identical, and the conversioa
of kinetic energy into thermal energy increases the temperature by an identical quantity.
Thus, the difference in the "temperature at rest" of the air and of explosion products is
relatively smaller than the difference in the true temperatures of the air and of explosion
products. In the example given above, where the true temperatures of air (7600°) and of
explosion products (1100°) are in a 7 : 1 ratio, the temperature at rest of air (24000°) and
of explogion products (17000°) are ina 1.4 : 1 ratio. 57 ‘The intensity of the thermal effect
depends not only on the temperature of the gas surrounding the bedy, Lut also on other
factors which determine the intensity of tl.e heat flow, an the case under st.dy, the heat
flow and the thermal effect increase on account of an explosion product density increased
eight-fold as compared with the density of air.

Experiments confirming the above were performed by Michel-Levy and Muraour {121}
in 1934-1936. They studied the problem of the nature of the luminescence of the explosion
of lead azide crystals. Photographs show that this luminescence is particularly intense
where the shock waves collide. The intensity of luminescence and its spectrum depend
essentially on the atmosphere surrounding the crystals. The most intense luminzscence
occurs in-argon, aad the Inast intensive one in butane, in accordance with the thermal
capacity of the substances, With a given gas composition (argon), increased pressure
reduces the intensity of luminescenceinaccordance with the change inshock wave amplitude.
An exquistie experiment ig. the one in which a metal (barium) was introduced into the ex-
plosive and the gas. Whep a barium compound was added to an azide charge, barium lines

could not he detected in the luminescence spectrum. In other experiments, barium was

introduced into the gasecus phase by burning prior to the experiment a sr:all amount of a

197

s

o s ahe e

Rl S W) ‘.“:"J“.‘:z.’q:aén:"ﬂ“‘ih ke Lo ,JE " ”\!i s e -
.
5, [N

e Y Ca————d O Y e o5

re

e



R

pyratechnic compound which yields a finely divided, slowly settling smoke that contains

barium oxide and carbonate. Iu the latter case, after explosion, the lumirescance

spactrum abunded with barium lines. Together with excited barium atoms, the spectrum -

reveals the existence of excited barium ions, and thus reminds us of a spark spectrum
rather than an arc spectrum, Michel-Levy's and Muraour's tests show that at blast in
the atmosgphere surrounding the explosive there arise shock waves of a wide amplitude
which heat the gas to tremendous temperatures, exceeding many times the temperature

of explosion products. These temperatures are particularly high owing to the low thermal
capacity of argon. All the facts observed agree with this,

In a theoretical paper, Jouguet {120] compares the propagation of shock waves from
an explosion in gases of different molecular weight (hydrogen, air, and carbon dioxida).
The velocity of waves caused in various me .1a is in good agreement with test data.
Jouguet does not perform a direct computation of absolute values, and thus avoids tue
problem of detonation theory of explosives and ihe state of explosion products of high
density. Instead, Jouguet uses the velocity of a shock wave in tae air to characterize
the state of explosion products, and from there computes the velocity of waves in other
media.

Vlasov [3] goes many steps further. He overcomes great difficulties which depend
on the fact that he is dealing with non-ideal media, and computes the parameters of a
shock wave in air and its velocity. His results are in gond agreement with tests data
(nitromannite: Vlasov computed 6100 m/sec, and Byurlo observed 6430 m/sec). 58 To
characterize the state of explosion products Vlasov uses the measured detonation rate.

We must also mention here the extremely interesting and exhaustive computaticas
performed by A. A, Grib on the surface of explosives, contained in his dissertsiion [102]
(Leningrad Mining Institute, 1940). The problem is solved under the assumption of a
distribution of pressure and motion which correspond to an instant chemical reaction of

the eatire expiosive, condensed cr gaseous.
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Finally, let us dwell on the second possii..iity of interpreting the explosive momerntum.
According to computations mentioned above, a charge weighing m kg placed on a surface,
develops at blast at a force momentum I = 100 m kg/sec. According t> Chapter 18, such
a momentum corresponds to 8 mean value of the velocity component of explosion products,
a norma!l surface ﬁn =100 g = 1000 m/sec.

The force momentum turns out to be cne~half to one-third of the force momentum
developed by an ordered outflow of explosion products from a Laval nozzle of a jet engine
in which all the explosicn products move in one direction, We can readily see that at
the explosion of an open charge the explosion products expand uniformly in all directions
of the hemisphere. We denote mean velocity inthe radial directionby u., andt‘indur = 2u -~
2000 m/sec. Half the momentum is lost as a result of the expansion of explosion pro-

ducts not only in the direction normal to the wall but also in other directions.
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Chapter 24

L.aws Governing the Propagation of a Shock Wave at a

Great Distance fcom the Charge

In the preceding chapter we studied the phenomena that occur in the immediate
vi.cinit& of the charge. For the quantitative estimates we proceeded from the idea that
detonation theory determines the state cf explosion products in the blast wave front
independently of the shape of the charge, the position of the primer and similar factors.
All these factors are very important for the pressure distribution. Owing to the fact,
however, that detonation rate is exactly equal to the rate of disturbance pronagation
along the explosion products, these factors do not effect the detonation rate and the state
in the wave front.

However, after the first contact between explosion products and the air (or the
material to be destroyad) the motion will be affected by pressure distribution in the
deeper layers of the explosion products, To determine the motion at this stage requires
extremely laborious and complex computations, all the less attractive since the result is
different for each case.

Only at the next stage can we expect that at a sufficient distance from the charge
the dependence on the actual geometry of the explosion wiil subside and a specific form
of the shock wave will appear which depends only on the total amount of explesive but
not on specific features of the given charge such as the position of the primer or the
presence of a shell, or the shape of the charge, which are extremely important at a
close distance, The condition imperative for the fcrmation of such a steady wave form
lies in the fact that motion involves a certain amount of air that must exceed the amount
of explosive by at least several times.,

When energy is transferred from the explosion products to the nearest layer of air,
and from that layer to the next one, and so on, the wave becomes independent of the

peculiar features specific for each single charge. We may expect the existence of two
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limit regions in accordance with the simplifications to which the laws of shock wave
theory are subjected in two limit cases; 1) powerful shock waves, P> p, and 2) weak
shock waves p—p.<pu which qualitiatively approack the characteristics of sound
(see Chapter 3).

I» the first case, according to Landau, there will be a transit'on to litit if we
neglect Py with respect to p. We may obviously disregard in this cave the initial tem-
perature and energy of air with respect to its temperature and energy after compression
by the shock wave. In such an approximation the distribution of pressure and temperature
changes in time but remains similar to itself,

The critical laws of fmwerful shock waves provide for a constant relationship be-
tween kinetic and thermal energy of the compressed substance. Total energy of all the
substance involved in the motion is also constant during the motion time. In the case
of the above simplifications, the involvment of new layers of air is not accompanied by
any appreciable increase in total energy which is read from the absolute temperature

Zero,

Mean encrgy density drops inversely proportionally to the volume covered by the
wave, i.e., inversely proportionally to the third power of the path travelled by the wave,
In the case of similar distribution, the local values of energy density drop in the same

fashion. According to the laws of an ideal gas with constant thermal capacity, pressure

depends only on energy density €, but not on the density of substance ¢

P=8T — g RT==(k-1)u e, T=(k—1)s, (XXIV-1)
where R is the gas constant, lower R is the charge radius, r is the distance from the

charge center,
Thus, in the extreme case mentioned above, Landau arrives at the following simple

formulas

G=0CM,, g0 Az o QW i,
e Megeresle g™ Lo aoxiveg)

p =
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where p and T are mean pressure and temperature, Q is explosion heat of the explosive,
M1 is charge mass, M is the mass of air involved in the motion, €. is initial air density.
In reality, however, there is hardly a region in which this extreme law is strictly applied.

For it to the applied, the follwoing two conditions must be satisfied at the same time

M T .
il 3L
-1 I (XX1IV-3)
According to the formulas mentioned above
M T Texpl
M1, (XXIV-4)

However, for explosion products and air at room temperature the ratio Te xpl/ T 0 does

not exceed 10-15. The entire interval from .;:n 0 expl %:—-2 is covered while the
141

shock wave radius changes by 2 to 2.5 times.

In reality, however, for a small r we must take into account the effect of the
initial distribution of pressure aud density in explosion products. The ratio M/ M1 (the
mass of the air involved in the motion to the mass of explosion products) reaches unity
at a value ;5/-;-:{& 0.6 —é%gr i.e., at a distance equal to 11 charge radii. This same
quantity gives the distance of the direct effect of explosion products on the obstacle.
However, already at :E/L?‘—:i:-: 1.5, at a distance equal to 27 charge radii, the amount of
Leat introduced by the air involved in the motion bzcomes equal to the explosion energy
iall figures are given for typical explosives).

Mean pressure at this instant is twice that computed by the limit formula according

to which the drop of p is inversely proportional to r3.

The descrepancy increases further
on, Vlasov [3] feels that there is a good agreement between experimental data and the

formula for pressure on the obstacle normal to the direction of wave propagation

. -2 0.57
P =250000 (1) =120 82 (1, 1, 28),
; o

(XXIV-5)

which be applies to the entire interval from r/R = 1 (pressure on the body in contact
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with the explosive) to r/R = 100. The theoretical conclusion of this formula is not
convincing. It is impossible to descirbe with one single formula all the various different
processes which depend on different facters (non-ideal condition of explosioa products
with r/R close to 1, effect of explosion products with r/R up to 10, a powerful shock
wave with r/R from 10 to 100, etc.). It must be noted that in the interval between com-
puted values for r/R = 1 and systematic measurements beginning withc ,'\ 5. 15there is
only one experimental point,

Thus, if we take Vlasov's formula to be empirical, then we cannot consider it
verified in the entire interval for which it is recommended. We must admit, however,
that in the interval in which measurements are made, their agreement with Vlasov's
formula is satisfactory, whence the formula's practical applicability.

Let us now study the second extreme case, the propagation of a blast wave at a
considerable distance from the charge, where its amplitude is small. At limit the
propagation laws must, obviously, coincide with acoustic laws with which we already
familiarized ourselves at the beginning of this monograph (Chapter 3). The acoustic
laws provide for the propagation of a wave with an amplitude constant in the linear case
and dropping, as 1/r, in the spherical case, but without change in the wave width and
form. Consequently, acoustic laws cannot be uged to determine the form and the width
of a wave even in the first approximation. Hence in the following we will have to pay
particular attention of the deviations from acoustic laws, which decrease as the amplitude
dreps, and to experimental data regarding the amplitude and form of blast waves.

Figure 59 shows the curves of pressure change with time at different distances from
the explosive charge, taken from the paper by Bernal' {101]. We note that the unperturbed
air is subjected initially to a sharp compression which is followed by a pressure drop that
passes through a minimum and returns to atmospheric values. Obviously, the instant
distrioution of pressure in space reminds us of the curves of pressure change with time,

2 to 3 milliseconds corresponding to a wave width of about 1 m.
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Thus, the front of a blast wave represents a shock wave which is followed by a

rarefaction (expansion) wave, To predict the law cf blast wave change, we have to

remember the kinematic and thermodynamic relationships between a shock wave and

a continuous expansion wave.
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CODE: a) Pressure, feet/square inches;

b) milliseconds; c) pressure, kg/cm?Z;

d) 10 feetfrom charge (3. 0 m); e} 20 feet

from charge (6.1 m); f} 30 feet from

charge (8. 15 m); g) 40 feet from charge

(12.2 mj; hy 56 feet from charge
(15.25m).

In a continuous wave in which reighboring
states differ infinitesimally, each propagates in
_space ata velocity equal to the sum of sound
velocity and substance velocity,

The velocity of shock wave propagation
is less than the sums of motion velocity and
sound velocity in the substance compressed by
the wave within the region covered by motion.
Pressu‘re drop inside the regions through which
the wave has passed is transmitted to the shock
wave surface and weakens the wave. Hence the
amplitude of a shock wave drops faster than
drops the amplitude of a weak sound wave.

Another peculiar feature of the shock
wave propagation investigated here consists
in the fact that entropy changes with shock
compression. As a consequence, after the
passage of the wave the air does not return
to a state eqivalent cr identical to its initial

state (prior to the disturbance).

In an acoustic wave, the energy of wave motion is fully transmitted from the layers

involved earlier in the disturbance, to the layers which are involved in the motion as the

204

P o v v



- g T -

P

wave propagates. In the case of a shock wave, a part of the energy of wave mation gets
siuck forever in those layers through which the wave has passed, where it 1s irreversibly
consumed for their heating, This circumstance causes a gradual decrease in the energy
of wave motion in the case of a shock wave, and it alsc causes a drop in shock wave
amplitude under conditions in which the amplitude of an acoustic wave is constant or
increases the drop in the amplitude of a shock wave as compared with that of an acoustic
wave under conditions in which the amplitude of an acoustic wave drops.

Finally, the need for the expansion of a wave of finite amplitude can be seen immediately.

Let us call a "wave" as before the entire region covered by the disturbance in which
velocity ~nd excess pressure (as compared with atmospheric) are different from zero. The
front edge (with respect to the direction) of the wave represents a shock wave that com-
presses the air. The velocity of this wave is greater than sound velocity in unperturbed
air. The back edge of the wave represents either 2 continuous wave (as in Fig. 59} or a
shock wave which returns the gas to its iritial state. % The velocity of the back edge
is equal to or smaller than sound velocity in air in its initial state. Consequently, the
front edge of the wave moves faster, whi :h leads in time to an increase in the distance
between the front a.id the back edge of the wave, i.e., to an increase in the width of the
wave.

In Chapter 11 we have proven in detail and in general the reciprocal connection
of the three peculiar features: the fact that shock wave velocity is greater than sound
velocity at the initial state; the fact that shock wave velocity is less than sound velocity
in a compressed gas; the fact that the passage of a shock wave is accompanied by an
increase in entropy, i.e., by an irreversible conversicn of energy into heat.

In view of the fact that these three characteristics are very closely connected,
it is natural that the use of any one amcong them to determine the law of the change in

amplitude and width of 2 wave as it propagates must lead to identical results.
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interaction of the gas with the lateral walls of the pipe.
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it, in which gas pressure drops.

Fig. 60.
We write the equation of propagation of state a

xe=st (et

According to the laws of acoustics

we write ;"f ==, and find

_ , . k1
Xg == Xgy -4- ¢pf -+ 7% gl

206

[

.
e Yk b st %

Before studying spherical propagation which interests us because of its association
with the theory of explosives, we shall look into the simpler case of linear propagation.
Linear (one-dimensional) motion occurs when a gas moves through a straigiut pipe

wih a constant cross section. In siudying this case we ignore the lossas due to the

Crussard {118] established for the first time in 1918 the limit law of such a motion,
According to Crussard, we study a triangular wave shown in Fig, 60. As time goes
- by the distance between each pair of pointsa, b, which correspond to different pressures,
N increases so that propagation speed (equal o the sum of gas velocity and sound velocity)
g increases aspressure increases. As a whole, the wave represents a totality of shock

wave U in which there occurs a rapid compression, and an expansion wave UP following

(XXIV-6)

(XXIV-7)

(XXIV-8)
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If at the initial instant there was a linear distribution of pressure depending on the

coordinate, then it also remains linear later. 60
¢=0, x> x40, = = -l(x-—-x Y x < xpg 1= 0;
=Y, 00 T /s 00 7% ==Ly (}(XIV_Q)
— ) X8 | k-1
x(, 8) = xp () + egt +- ~gg S0l = xgp-@IAi-eyt ot -—j--'-- eyl (XXIV-10)
o r sl
“—a LG eyt
% v . (XXiV-11)

Given an initial linear distribution, Eq. (XXIV-9), at the instant t = 0, we obtain
at an arbitrary instant t also a linear pressure distribution, Eq. (XXIV-11).

The velocity of shock wave D, the amplitude of which we drnote by 7*, is equal
to the arithmetic mean of < and prepagation velocity ¢ + u of the state obtained after

compression but prior to pressure m*.

g4 . . .
l):___f.".t. 3; ‘- ‘.,).:-:_cu [, 2.—"‘.——_—-_— ¢, (] .‘.!' 4‘[;1. 7_’).
— (XXIV-12)

We write the expression for the change in the amplitude in the shock wave as it

propagates

. ® .
g,z. _ 0i¢ . f/),!

dt e T (XXIV-1%)
The expression differs from zero on account of the fact that D differs from ¢ +u.

Using the expression 7(x, t), Eq. (XX1V-11), we {ind

{ l_!_'l:_ k-1 (A )mrv_ 4
{ di = T wn k1 ( 14)
Ton ot

Ihn*=-— '%-ln (" - L—;}—l— cu() -#= const,
2 (XXIV-15)
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where A is an intergration constant and depends on the initial conditions.

If we know the relation between 1, x and t, we find the wave width Ax, i.e., the
distance from the point at which at a given instant 7 = 0, to the point at which shock

wave pressure ¥ is attained

b=l = x @) = A a5 T
= R (XXIV-17)

Thus Crussard could establish that in the one-dimensional case the amplitude of the shock
wave drops with respect to ite propagation, as 1’7, and the wave width increases pro-
portionally with vi; 61 Crussard's original paper, written in 1912 - 1913, also contains
an analysis which shows that this law applies to the case of small amplitude, that is

an extreme law for a long propagation time.

In 1938, Shmushkevich [115] derived the same law in the following way. Assuming
that the distribution of pressure in the wave remains cimilar with respect to propagation,
(at least within the limit, with large t, after the wave has covered a long path), Shmushkevich
writes the equation of the rate of wave width change Ax and compares it with the equation

of wave momentum constancy

L QU SN 03 S
rra 0= TR et (XXIV-18)
Ax -0 U=z Av e 2° < const = const, (XXIV-19)

In setting up the second equation (the momentum equation) we use the linear relation
between velocity and pressure known from acoustics, and also use the assumption according
to which the distribution remains similar to itself, so that 3 =-const-x«*. The two equations

mentioned above can be readily solved

dde LAl oaeopl ),
di T TR et TP A (XXIV-20)
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where B, Bl’ B2 and B3 are constants.

Both Crussard and Shmushkevich assume that after the passage of the wave the
substance returns to ite initial state, with initial sound velocity C, and initial pressure
p=-po, 7:-(. We disregard here the effects that depend on entropy change, whick are
proportionzl to the cube of the amplitude. This is permissible because we deal with
equations that contain greater terms.

Instead of the change in wave width (Shmushkevich's investigations), we could also

study the change of its free energy which depeuds on the conversion of energy into heat,

i.e,., on the increase in entropy proportional to '3,

d_d . N
7 = g (const e 2%« Av)-= —const + 2*3 (XXIV-22)
const « 1 - Bv =z ¢onzd, (XXIvV-19)
whence we get
da*
s Bats, (XXIV-23)

Integration of Eq. (XXIV-23) gives a result which is identical with Eq. (XXIV-21).

Thus, by using the various properties of a shock wave (the fact that velocity
D <c-+u(Crussard), the fact that D> ¢, (Shmushkevich), and the increase of entropy in
the wave) weobtainan identical extreme law. This result depends on the inner connection
between the properties of the wave mentioned above (see Chapter 11).

The experimental study of one-dimensional propagation of a shock wave was per-
formed by Vieille [86], and later by Vautier {123}, whose experiments are briefly de~
scribed in Chapter 15,

Considerably more complex is the problem of limit laws of the propagation of
spherical waves (over great distances). This problem is particularly interesting for

studying the theory of brisance of explosives.
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We shali begin the study of spherical shock waves by going back to the anzlogy of
spherical acoustic waves.

The fundamental property of the latter is the decrease inamplitude which is inversely
proprotional to the distance from the symmetry pressure. Thig decrease is not connected
with a decrease in the total reserve of acoustic energy. The decrease in amplitude de-
pends op the fact that as a spherical wave propagates, the amount of substance involved
in its motion increases proportionally to the volume of the spherical layer.

The second property of spherical waves consists in that a compression wave is
necessarily followed by a rarefaction (expansion) wave. if at the initial instant the center
was surrounded by a compressed substance (Fig. 6la), its expansion causes a com-
pression wave which is followed by a rarefaction wave (Fig. 61b, ABC and CDE). We
also have two regions where pressure increases (AB and DE) and one region where

pressure drops (BCD).

.4
c N ./_‘.fj‘]
i £ l/’
Y/}
Fig. 61,
The dependence of propagation rate on amplitude causes a decrease in distances .

AR and DE, and an increase in distance BD. Landau [128) notes that at limit, after a
sufiiciert amount time has elapsed {and after a sufficiently iong path has been covered)
the w= ve takes on a form that is shown in the bottom part of Fig. 61c with two shock

waves AB and DE.
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From the instant the shock wave has been formed, further propagation is accompanied
by dissipation of acoustic energy, and by its conversion into thermal energy. The amplitude

of maximum pressure drops faster than before, faster than according to the 1/r law,

{ us now find the quantitative rules, conserving the acoustic formula in Chapter 3

plr—ct)

=

(XXIV-24)

-

as a zero approximation, In the next approximation, instead of o We substitute pro-

pagation rate ¢ + u which corresponds to a given state. We determine the change in

distance between a pair of points, e.g., m and n, to which correspond specific values

of U m and W, as the wave propagates

. Eat u, -1 p,
AN (YD P CRNERT) R (l-u "k lr )""o (1-¢ S __')__

ot
o kel o —p top XXIV-25
=0 9k ; ' (X); i &5, ( 0)
TR NS B R A A (XXIV-26)
R . A 1
b .e 1
Oy =000 08 __l_sz (.“m - l'u) 1. fro N (XXIV..27)62
We study the segment AB, and ideniify m = A, n = B, since r,>2: Segment AB
grows smalier with the mction of the wave. At a distance r such that
r Tino 2
In = =z ceeve oy
ry pp—pg bl (XX1V-28)

the length of segment TAB becomes zero, i.e,, a shock wave is formed. This glso

applies to DE.
Conversely, the length of segment BCD, on which pressur: drops, increases as the

wave propagates, so thai the derivative /or decreases astandr increase,

1

W_ptaen oV
T T ke L :
at T (XXIV-29)
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where

__fop ) ka-}
=(r), —=~mn

Let us now study the law ynveraing the change in shock wave amplitude. The
quantity p* in the shock wave front drops because the shock wave propagation velocity
is smaller than the state propagation velocity wi*h constant value of 4. Inapalogy with the

one-dimensional case we find

£ ] b3
%-_—.;-—(c “4-u --D):]l:-s
det kel ot 1
‘0:’{——- . a-:i-"!-—l- Inr
2k (XX1V-30)
This equation can be readily integrated
Pz const ,
/—:k 417 i
l a 21: - Lr
at= “t PO, ..<f°""t
’ tV“ ‘-'-'k..'-l— Ins -
2 (XXIV-31)

As we compare this result withone-dimensional propagation, we find a curious
formal analogy: the dependence of 7 on x in the one-dimensional case has the same
form as the dependence of = 7r on In r in the spherical case,

Computations for the spherical case lead to the foll.wing conclusions:

1. The additional drop in amplitude, specific for shock waves, turns out to be
very small at great distances, as (la.)™"s, as compared with the acoustic drop (r'l).

2. The limt form of the wave to which it tends when r~ «,becomes determined
when In r becomes sufficiently great. This requirement is much more stringent than
the one according to which r must be large. A high value of In r can be attained for such
large r for which the absolute value of the wave amplitude becomes so small that its
propagation loses interest altogether. New factors may be involved in the case of long

propagation time,
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‘The applicatior of limit laws requires therefore great care. More than in any other

case one has to resort to experimental data despite their incompleteness.

Figure 59 showez the curves of the change of pressure with time measured at
varying distances from the explosion site, These curves are taken from the paper of
the well-known English physicist Bernal, "The Physics of Air Raids", published in 1941
{101]. At the right-hand side of this figure we also give the metric measurements, The
transition from curves m(t) for r = const to the instant propagation of pressure in space
7 (r) for t = const is quite complex since the propagation velocity and the amplitude are
not constant.

To give an approximate idea of the thickness of the layer involved at each single
instant by the distubance, in addition to the time scale we also give the cot scale, whicn
is the product of time by sound velocity N in unperturbed air.

What can we learn from Fig, 59? Tests confirm the existence of an expansion
wave which follows the compression wave. At great distances the preduct of mean
amplitude times expansion wave width approaches an identical value of the compression
wava. The force momentum acting over a wid= time interval (0. 015 - 0. 020 sec, as
can be seen from the drawing) represents the difference in the effect of the compression
wave and that of the expansion wave running in an opposite direction. This is why the
force momentum drops faster than the wave amplitude.

In the theoretical portion, following Landau, we estzblished that the limit form

of the wave is distinguished by two pressure discontinuities, one in front an: one in the

back (see Fig. 60c). Bern2l's curves do not show the formation of a pressure discontinuity

in the back. By the shape of the last part of the expansion wave we shall precalculate the
the distance at which this discontinuity has to take place.
We choose a curve with a well-expressed expansion wave recorded at a distance of

20 feet from the charge (second from the top, Fig. 59).
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For ry= 6 m minimum pressure amounts to LA -0, 04, and the distance oX
the minimum pressure m from poiut n at which pressure is resiored amounts tc about

r =3 m,

mad
bp=—004.6=—0.24, n,=0.

k-1
o= oot U, — g )0 s =3 — 30241 L. V-3,

Assuming that rns 0, we find the distance r at which the discontirutiy is formed:

r 3

! K_OT.-%":M‘S; r=rg-e"s =12.10% u.

The wave will take on its extrerme shape at a distance of 12,000 km, it is obvious
that in this case all the statements referring to extreme shape have no realistic
importance. The calculation leads us to conclude that in the case of spherical pro-
pagation, the formation of a shock wave on account of the dependence of propagation
velocity on amplitude occurs very slowly. The front shock wave, in which pressure
increases with a jump up to maximum values, is not formed in this fashion. Rather,
it is formed at the instant when the detonation of the charge is terminated and there
occurs a contact of the explosion products. with the surrounding air. At this instant
{at a distance from the center equal to the charge radius, about 6 cm for the charge to
which Fig. 59 refers) its amplitude attains enormous values (see Chapter 23). With
further propagation the amplitude drops, but the increase in pressure maintains the
character of a shock wave.

There existe an extensive literature on the subject of pressure amplitude in a
shock wave following an explosion. Older data, however, must be used with great cir-
cumspection since for a correct measurement of a rapidly changing pressure sufficiently
inertialess devices are required,

In most cases the surface of the device receiving the pressure was placed in a

direction facing the propagation of the wave. When the wave reached the surface, it was
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reflected by it. Peak pressure increases two~-fold in the case of weak waves, and evem =~
more in the ¢ase of great amplitudes (cee Chapter 19). After processing the data of

many authcrs, Viasov derived the dependence

S -

e VM‘__ R
Pa=po+24Y" = p - 445, (XXIV-33)

where P is the pressure devéloped at the reflection of the blast wave,

p_ is atmospheric pressvre,

0
r is the distance from the explosion cenier, expressed in meters,
R is the effective charge radius (in m),

7‘ M 1s the weight of the charge (in kg); this formula holds true for explosives of the
TNT types: ocurer explosives, varying considerably in their power, require the
intrcduction or corrections.

Vlasov limits the applicability of his formula by the condition r >85R, r>4.4 f’ﬁ {
(the dependence is stronger than Eq. (XXIV-33) in the case of smaller distances). For

the entire interval investigated by him, Sadovskiy gives the following expression for

maximum pressure

S S -—
VA VT M
po=po+12Y— — 2 ¥ 1477 - (XXIV-34)

Thus, at great distances Sadovskiy's formulal63 gives pressure amplitude which is
five times greater than the one vielded by Vlasov's formula: the coefficient for the
highest term is 12 instead of 2.4. To clarify the real value of the amplitude we refer
first of all to Bernal's data (Tabie 6).

The first four columns show the data from Bernal's experiments. According to
maximum pressure Py measured by him (read from the diagrams), pressure p m is
computed according to the formula of shock wave reflection, Eq. (XIX-2). We see from
the table that beginning with p, —p; < 0.13, virtually p,, ~ po=2(p, —pP.) Great distances

do confirm Vlasov's formula.
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Fop .ang) U.-.acan(k:::.a: cinh
2
r gyl "‘; T iy wmmmemnes S A
vii Yf), PiPo ‘ Pn"l"“l'c Pe—1.
10 3.05 18 ‘ 6.9 — | €7
720 6.10 [ 0.9 0.45 1.c .
30 D) (35 L] [\ ETEES R
40 1 Q¢ ; G « - €Y
0 ) A | C.16 0uth 0.0

CODE: a) Feet; b) kg; c¢) Bernal; d) Vlasov;
e) Sadovskiy.

Could it be that the high pressures recorded by Sadovskiy are of very short duration,
hence they have not been recorded by other authiors using other methods? The best way
to verify this is to set up a compariscn with the propagation velocity of a shock wave that

depends on amplitude (Table 7).

Table 7
— a) Cropocin rosuu
r[;.'/l." ) poc bl —
‘,Ce.tonclnn’x c) Bepisany (;)z.cxﬁ[;gl\cur
43 452 470 et
8.6 414 354 hYP)
129 330 354 © 3547

CODE: a) Wave velocity; b) Sadovskiy; c) Bernal;
Experiment [113).

If we assign a specific value to the dependence of pressure on distance, we can
find the values for velocity at any point. Computation of mean velocity requires a more
cumplex procedure. In the table these values are compared with experimental data of -
French researchers taken from Savich [113], which determine the velocity of the wave.

This comparison 1s also unfavorable for Eq. (XXIV-34).
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Let us finally note that the assumption of a sharp pressure peak contradicts ¢he
theoretical concepts. Such a peak should be subjected to an exceedingly rapid weakening
and expansion. From Bernal's curves we can fird determine the rate of pressure change
after shock compression and hence the law of amplitude change of the shock wave proper.

If for distances of 10 - 40 ~ 200 m (for a charge of 1 kg) we approximsate the real
law governing amplitude drop by the power function s-=coust:r~", then the value of
exponent V within these limits drops from 1.4 to 1,25, At great distances the simple
formula ¢ ==cou-t.r " gives a satisfactory approximation to the truve law,

We noted in Chapter 21 that the duration of the effect of blast wave pressure is
proporiional to the linear dimensions (e.g., the radius) of the charge. The magnitude
of the time involved will be obtained by setting up the ratio of the charge radius to
sound velocity R/co.

Bernal's data show that the action time of a compression wave T amounts to from
0.03 to 0. 05 sec, whereas R/co for his charge amounts to 0.06/330 = 0.0002". Thus,
the dimensionless ratio ¢ 2 varies from 15 to 25 and thus differs noticeably from
unity. The long duraticn and, consequently, the considerable expanse of the blast wave
are quite natural. Wave widtk and duration of effect are maintained during propagation
of a weak acoustic wave. We would have x:i—zl in the case where the initial disturbance
could be regarded as weak, i.e., if the change in pressure in the region taken by the ex-
plosive were smalli.

In reality, however, during the first stages of propagation the pressure amplitude is
huge, hence the acoustic approximation is completely inapplicable. It can be regarded as
approximately correct only from the instant when mean pressure in the region coversd by
the disturbance drops to 1 atmosphere. For conventional zxplosives the volume of this
region reaches 10 m3 per 1kg, to which corresponds a radiusR'=1.3, 1:}1.7 (m, kg). The
radius R? of the regivn in which mean pressure equals 1 atmosphere (2 atmospheres absolute)
i 22 times greater than the charge radius. In accordance with our ideas the magnitude of

T: g— is actually of the order of unity.
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Because of the great width and long duration of the wave, the momentum of the

pressure acting on the body's surface normal to the wave depends to a great extent on
the coraitions of wave reflection and of the flow around the hody of the air set in motion
by the wa>e. Apparently this is why there are so many contradictions in the scientific
and experimenta!l literature on this subject.

Bernal's curves make it possible to find (even though with poor accuracy) the

efficiency of the conversion of explosive energy into blast wave energy. Blast wave
energy ccnsists of the kinetic energy of air motion and potential energy (equal to the
work performed by the change in air pressure). It is obvious that both compression and
expansion of air under atmospheric pressure require an output of energy and increases
the system's potential energy.

Total energy of a unit of volume is approximately equal to 25 (Ap/ p)2 kcal/ m3.
Calculations for a distribution Ziat corresponds to Bernal's curves yields an efficiency
of about 30 -~ 40%. The energy of the compression wave and that of the expansion wave
are at an approximate ratio of 3 : 1.

Thus, the energy of an explosive is converted into blast wave energy and is trans-
ferred over a distance exceeding hundred and thousand-fold the size of the charge, with
an efficiency of the same order as the one for the conversion of gurpowder energy into
motion energy of the projectile in the gun or combustion energy of the fuel into mechanical

energy in the engine.

REFERENCES

1. Alekseyeva, R.N. See Frankl' [27].

2. Belyayev, A.F. Otrazheniye i stolknoveniye udarnykh voln (Reflection and Collision
of Shock Waves). Collection of articles on the theory of explosives, Oborongiz, 1940.

3. Vlasov, O.Ye. Vzryvnyye volny (Blast Waves), Voyen. inzh. akad., Moscow, 1937.
4. Gazovaya d'namixa (Gas Dynamics). Collection of articles, GONTI, 1939.

5. Dyurend, V.F. Aerodinamika (Aerodynamics). GIZOboronprom, 1939.

218




10.

11.

12.

13.

14.

15.

16.

117.

18.

19.

20.
21.

22.

23.

Zhukovskiy, V.S. Izmereniye temperatury gazovogo potoka pri bol'shikh #korostyakh
(Measurement of the Temperature of a High-Velocity Gas Flow). Zhurn. cekhn, fiziki,
8, 1938, 1938,

. Zhukovskiy, N.Ye. O dvizhenii vody v otkrytom kanale i o dvizhenii gazov v trubakh

(The Motion of Water in an Open Duct and the Motion of Gases in Pipes). Trudy
'T8AGI, No. 1, 1925,

Zel'dovich, Ya.B. K teorii rasprostraneniya detonatsii v gazakh, (On the Theory of
the Propagation of Detonations in Gases). Zhurn, eksper. teor. fiziki, 10, 550, 1940:
12, 389, 1912,

Zel'dovich, Ya.B., and Shchelkin, K.I. Primeneniye teorii rasprostraneniya proizvol'-
nogo azryva (Application of the Theory of Propagation of an Arbitrary Discontinuity).
Zhurn, eksper. teor, fiziki, 10, 569, 1940.

Kibel', I.A. Statsionarnaya temperatura plastinki v sverkhzvukovom potoke (Steady-
State Temperature of a Plate in a Supersonic Fiow). Doklady Akad. nuuk, SSSR, 25,

275, 1938.

Kibel’, I.A., and Franki' F.1I. O pryamolineynykh dvizheniyakh gaza (On Rectilinear
Motion of a Gas). Bulletin TsAGI, No. 52.

Kibel', I.LA. See Roze, N.V. [23]. Chapter 2, "Teoreticheskiye osnovy gazovoy
dinamiki" (Theoretical Foundations of Gas Dynamics).

Konstantinov, B.P. Pogloshcheniye zvuka pri otrazhenii (Sound Absorption During
Reflection). Zhurn. tekhn. fiziki, 9, 226, 1939.

Kochin, N.Ye. See Roze, N.V, [23].

Landau, L.D., and Lifshits Ye.M. Statisticheskaya fizika (Statistical Physics).
ONTI, 1938.

Leontovich, M. Zamechaniya k teorii pogloshcheniya zvuka v gazakh (Remarks on
the Theory of Sound Absorption in Gases). Zhurn. eksper. geor. fiziki, 6, 561, 1836.

Leontovich, M., and Mandel'shtam L.I. K teorii pogloshcheniya zvuka v zhidkostyakh
(O vtorom koeffitsiyente vyazkosti). (On the Theory of Sound Absorption in Liquids
(On the Second Viscosity Factor)., Zhurn. eksp. tepr. fiziki, 7, 438, 1937.

Lifshits, Ye. See Landau, L.D. [15].

Makkoll (McCall ?), see Teylor Dzh. 1. (Taylor J.I. ?){24].

Mandel'shtam, L.I. See Leontovich, M. [17].

Peshl', T., Eval'd, P., and Prandtl', L. Fizika uprugikh i zhidkikh tel (The
Physics of Eiastic and Liquid Bodies). GTTI, 1933.

Prandtl’, L. see Pesh'l, T. {21], Chapters 4, 5, 6 (Hydrostatics, Hydraulics,
Aerodynamics).

Roze, N.V., Kibel', I.A. and Kochin, N.Ye. Teoreticheskaye gidromekhanika
(Theoretical Hydromechanics), Part U, ONTI, 1937.

219




24.

25.
26.

21,

28.
29.

30.

31.

32.

33.

35.
36.
317.
38.
39.
40,
41.
42.
43.
44,
45.

46.

O AT Ry B AT TN M TN AR e T TR R RS ISR

LE e ]

Teylor Dzh. 1., arnd Makkoll (Taylor J.1I. and McCall ?). See Dyurend [5], Vol. III,
Chapter on "Mechanics of a Compressible Fluid".

Teylor Dzh.1. (Taylor, J.I. ?).See [4], page 29.

Frankl', F.I. Sverkhzvukovyye teckeniya osavoy simmetrii (Hypersonic Flows with
Axial Symmetry). Izv, Arill., akad., No. 6, p. 91, 1934,

Frankl', F.I., Khristianovich S.A., and Alekesesyeva, R.N. Osnovy gazovoy
dinamiki (Fundamentals of Gas Dynamics). Textbook, Detailed bibliography. Trudy
TsAGI, No. 364, Moscow, 1939.

Frankl', F.I. See Kibel', I.A. [11].

Fok, V.A. Printsipial'noye znacheniye pribiizhennykh metodov v fizike (The
Fundamental Significance of Approximate Methods in Physics). Uspekhi fizich.
nauk, 36, 107¢, 1936.

Khristianovich, S.A. See Frankl', F.I. [27].

Shirokov, M. F., Vliyaniye teploty treniya na protsessy peredachi tcpla pri bol'shikh
skorostyakh potoka (The Effect of Friction Heat on Heat Transfer for High-Velccity
Flows). Izv. Vses. Teplotekhn. inst. No. 9, pp. 26 - 30, 1935.

Shchelkin, K.1I. See Zel'dovich, Ya.B. [9].

Eval'd, P. See Peshl', T. [21].

Eykhenval'd, A. Akusticheskiye volny bol'shoy amplitudy. (Acoustic Waves of Large
Amplitudes). Uspekhi fizich. nauk, 14, 552, 1934.

Ackeret J. Handb. der Physik, Bd. VI, 192%.

Airy. Philos. Magaz., (3), 34, 401, 1849,

Bechert K. Ann. der Physik, (5) 37, 89, 1940; 38, 1, 1940; 39, 169, 1941.
Becker R. ZS. f. Physik, 8, 326, 1920,

Busemann A. Handb. der Experimentalphysik, Bd. IV, T, 1, 1934.
Busemann A. ZS. V.D.I., 84, 857, 1940.

Busemann A, ZS. Angew. Math., Mech., 8, 419, 1928.

Busemann A. ZS. Angew. Math., Mech., 2, 496, 1929.

Cagniard. Ann. de Physique, 13, 239, 1940,

Cranz C. u. Schardin H. ZS. {. Physik, 56, 170, 1929,

Crussard L. Bull. de la Soc. de 1'Industrie Minerale de St. Etienne, 6, 25-71, 1907.

Duhem P. Cours d'Hydrodynamique. 1930.

220




T T

47.

48.
49,
50.
51,
52.
53.

55.
56.
57,
58.
59.
60.
61.
62,
63.
64.
€5.
66.
67.
68.
69.
70.
71,
72.

73.

Dukem P. Comptes Rendus, 141, 811, 1905; 142, 324, 377, 431, 612, 750,
1906; 144, 179, 1907.

Duhem P, ZS. Physikal, Chemie, 69, 169, 1909.

Earnshaw Reverend Samuel. Philos. Trans., 150, 133, 1858.

FEinstein A. Sitzungsber. Berliner Akad. der Wissens<h,, p. 380, 1920,
Fanno. Techn. Hoclischule, 1904.

Fay K.D. Journ. Acoust. Society Americs, 3, 223, 1931.

Ghiron E.F. Alta Frequenza, 4, 530, 1930.

. Hadamard J. Lecons sur la propagation des ondes. Paris, 1908.

Hadamard J. Comptes Rendus, 141, 712, 1905,

Hugoniot H. Journ. ecole Polytechn., 57, 1887; 58, 1889.
Jenkins R, T, see Thuras A, L. [94].

Jouguet E. Comptes Rendus; 138, 786 and 1685, 1904.

Jouguet E. Journ de Mathem., 6, 5, 1904.

Jouguet E. Mecanique des Explosifs. Paris, 1917.

Kirchhoff. Poggendorf's Annalen, 134, 177, 1868.

Kreser H.O. Ann. der Physik, 11, 761 and 777, 1921.

Kbgler see Mach E, [58] .

Kotchine N. Rendiconti del Circolo Mat. di Palermo, 50, 1926.
Langweiler. ZS. techn. Phyeik, 19, 416, 1938.

Mach E. u, Woszka. Sitzber. Wiener. Akad., 72, 1875.

Mach E, u. Scmmer. ibid, 75,101, 1877.

Mach E,, Tumlirz u. Ktgler. ibid. 77, 1878.

Mach E. jbid. 77, 819, 1878.

Mayer-Schuchardt C. Forschungsheft V.D.I., No. 376, 13, 1936.
Meyer Th. Forschungsheft V.D.1., No. 62, 1908,

O. 'Neil H.T. see Thuras A.L. [94].

Preiswerk E. Mitteil. Inst. Aerodynam., No. 7, Ziirich, 1938.

221

i




AR A s WE g T R R T TR pat oy e dai o IV W TH KW HIATEIS B ATTIIETY DT e, W T e r s me s R - v

S
i
!

v

S ey
e e

74. Pohlhausen. ZS. Angew. Math. Mech., 1, 115, 1921,

Doty it

75. Poisson. Journ. Ecole Polytechn., 7, 319, 1820.

76, Prandtl L.ZS. f. d. gesamte Turbinenwesen, 1906.

LGP SN Jhitd

77. Prandtl L. Physik. Zeitschr., 8, 23, 1907.
78. Rankine. Philos. Trans., 160, 277, 1870.
E 79. Rayleigh. Proc. Roy. Soc. 4, 247, 1910,

80. Richards W.T. Rev of Modern Physics, 1i, 40, 1939.

81. Riemann B, Abhandl. d. Gesellsch. d. Wissensch. in Gttingen. Math. -Phys. Klasse,
8, 43, 1860.

82. Rosicky. Sitzungsber. Wiener Akad., 73, 1876.

83. Rlidenberg. Artill. Monatshefte, 1916,

84. Schardin, Physikal. Zeitschrift, 34, 50, 1933.

§5. Schardin. Deutsche Jigerzeitung, 1933.

86. Schardin see Cranz C. [44].

87. Schmidt E.ZS. V.D.I., 73, 671, 1935 and Schriften der Deutschen Akademie der
Laftfahrtforschung, No. 9, 1939 (Paper submitted at the Conference in May 1939,
published in the collection "Physical and Chemical Processes during Combustion
in an Engine").

88. Sommer see Mach E. {67].

89. Stodola. Dampf- u. Gastrubinen, 1925.

90. Stokes G.G. Transact. Cambridge Philosoph. Soc., 8, 297, 1845.

91. Stokes G.G. Philosoph. Magaz. (4), 1, 305, 1851.

92. Stokes G.G. Philosoph. Magaz. (3), 33, 319, 1848,

93. Taylor G.1. Proc. Roy. Soc., 84, 371, 1910.

94. Thuras A.L., Jenkins R.T. a O'Neil H.T. Journ. Acoust. Scc. America, 6,
173, 1935.

95. Tumlirz see Mach E. (68].

96. Vieille. Mem. des poudres et salpetres, 10, 177, 1899/1900.

97. Weber H. Riemann-Weber, Die partiellen Differentizl-Gleichungen der Mathematischen
Physik, Ed. II, 1919 and 1925.

98 . Woszka-see Mach E. [66].

222




99. Zemplen, Comptes Rendus, 141, 712, 1905; 142, 142, 1906,

1006,

101,

102,

103.

104.

105.

106.

107,

108.

109.

110,

111,

112,

113.

114,

Zener, Phys. Rev., 53, 90, 1938 and 56, 343, 1939.

Bernal'. Fizika vozdushn. naletov, (The Physics of Air-raids). Uspekhi
fizicheskikh nauk, 26, 169, 1944,

Grib, A.A. O rasprostranenii ploskoy udarnoy volny pri obyknovennom vzryve
u tverdoy stenki (On the Propagation of a Plane Shock Wave in the Case of a Con-
venticnal Explosion near a Sclid Wall), Prikladnaya matematika i mekhanika

8, 169, 1944,

Zel'dovich, Ya.B. Teoriya goreniya i detonatsii gazov. (Theory of Combustion
and Detonation of Gases). Leningrad, Academy of Sciences Press, 1944,

Zel'dovich, Ya.B., and Ieypunskiy, O.I. Issledovaniye khimicheskikh reaktsiy
v udarnykh volnakh (The Study of Chemical Reactions in Shock Waves). Acta
Physicochimica USSR. 18, 167, 1943. Dostizheniye rekordnykh temperatur v
udarnoy volne (Attamment of Record Temperatures in a Shock Wave). Journal
of Physics (USSR) 7, No. 5, 1943.

Zel'dovich, Ya,B., and Khariton, Yu.B. Nauchno-issledovatel'skiye raboty
khimicheskikh institutov Akademii Nauk za 1941 - 1943 gg. (Scientific Research
Work of the Chemical Institutes of the Academy of Sciences from 1941 to 1943).
Akademicheskoye Izdatel'stvo (Academic Press), in press.

Landau, L.D.. and Lifshits, Ye.M. Mekhanika sploshnykh sred (The Mechanics
of Continua). o« TTI, 1944.

Landau, L.D., and Stanyukovich K.P. Ob izuchenii detonatsii kondensirovannykh
vzryvchatykh veshchestv (Study of the Dewonation of Condensed Explosives).
Doklady USSR Academy of Sciences, 46, 399, 1945.

Landau, L.D., and Stanyukovich, ¥..P. Opredeleniye skorosti istecheniya produktov
detonatsii kondensirovannykh vzryvchatykh veshchestv (Determination of the Outflow
Velocity of Detonation Products of Condensed Explosives). Doklady USSR Academy of
Sciences, 47, 273, 1945.

Pokrovskiy, G.I. Issledovaniye udara i vzryva v deformiruyemykh sredakh (Study
of Shocks and Explosions in Deformable Media). Published by VIA, 1937.

Pokrovskiy, G.I. Napravlennoye deystviye vzryva (Directional Explosion Effect).
Voyenizdat, 1942,

Rua, M. O poleznom deystvii i usloviyakh primeneniya raketnykh apparatov (On
the Efficiency and Application of Rocket Devices). ONTI, 1936.

Serebryakov, M. Ye., Greteni and Oppokov. Vnutremnaya ballistika (Internal
Ballistics). Oborongiz, 1939.

Savich. Dinamika vzryvaykh vol (The Dynamics of Blast Waves). Published by
VIA, Moscow, 1941,

Esklangon. Akustika orudiy i snaryadov (The Acoustics of Guns and Projectiles).
Leningrad, VTA RKKA, 1929,

223

ey




e gy, Ao et e

AT

Aol it arh B

R I S

115,

116.

117.
118.
119.
120.
121.
122,
123.
124,

125 .

126.

127.

128.

¢
-3

Shmushkevich. Predel'nyy zakon oslableniya plcskoy udarnoy volny (The Extremal
Law of Weakening Plane Shock Waves). Zhurnal tekhnicheskoy fiziki 8, 2138, 1938.

Khariton, Yu.B. and Rozing, V. O kriticheskom diametre pri detonatsii (The
Critical Diameter during Detonation). Doklady USSR Academy of Sciences 26,
360, 1940.

Bolle, Zs, techn. Phys. 7, 126, 1926.

Crussard. Compt Rend. 156, 447, 611, 1913,

Dautriche, Compt. Rend. 154 1221, 1912.

Jouguet. Compt. Rend. 202, 1225, 1320, 1936.

Michel-Levy et Murauor, Compt, Rend. 198, 825, 1499, 1760, 2091, 1934.
Perrota, Gawthrop. Journ. Frankl. Inst. 208, 643, 1928,

Vautier. Compt Rend. 179, 256, 1924.

Schmidt. A. Zs. Ges. Schiess. u. Sprw. 30, 1935 and 31, 1936.

Zel'dovich, Ya.B. and f.eypunskiy, O.1I. Zhurn. Eksp. Teor. Fiziki, 13, 183,
1943.

Wallmann Ann, d. Physik 21, 676, 1934.

Sadovskiy, M.A. Trudy of the Seismic Institute of the Academy of Sciences, 116,
1945.

Landau, L.D. Prik. Mat. Mekh., 9, 286, 1945,

FOOTNOTES

1'I’his equation refers to a specific combination of molecules of a fluid (Lag.ange
representation). According to Euler's representation for a specific volume
fixed in space, the energy equation has a more complex form.

2'I‘his equation is applied by us to a substance the state of which is fully determined
by a specific volume v and specific entropy S. It is not applicable, for instance,
to a system which is not in chemical equilibrium, in which during motion there
occurs an irreversible chemical reacticn.

3'l"lw: general gas dynamics eque ‘ons that take account of viscosity and thermal
conduction are given in the Ap.endix at the end of the present Chapter. The
reader can skip this Appendix without impairing his understanding of what follows,
if he takes for granted the statement regarding the zpplicability of Egs. (I-1) -
{I-$).

p. 18. 3 We use the transformatiors

L fe—a)=1i S fe—c)=—of
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p.

P.

. 21,

. 24,

. 28.

29.

30,

4'l’he flow of a substance through a spherical surface with radius r is 4ﬂr2u.

The difference in the flows of substance that have crossed spheres with radii
r and r + dr, is the amoun!. of substance that remains in a spherical layer with
a volume equal to4 7 r2 dr, and it changes the density of the substance
enclosed in that layer.

Over and above the amount contained in a given volume with a nonturhulent

density value.
)

- .
6'1"he relation (a%) "‘—"( of,) in its general form can be derived from the

fundamental hydrodynamic relations for any system, and not only Jor an ideal
gas in which cp aad ¢, depend only on T (see Landau and Lifshits {15, p. 48,

problem]. The du‘ect measurement cf \ au) orc, is extremely d::ficult in the
case of liquids. For the computation one uses the thermodynamic relation

Cp—CG=" T(oa;")’/’(ap)r

(ibid., problem No. 11), whence

3)’) °r (g%)r’ .
) G
Tinally, the quantity ( ) can be expressed by means of isothermic com-

pressibility and the coefficient of thermal expansion—a relation common to any
three quantities connected by one equation—by the equation of state p = p(v, T)

in the given case
(7). 05), (3=

{(Max Planck, Thermodynamics, Chap. 1), so that

(7)=- ()6,

The connection between the derivatives with respect to density in (II-30, II-31)
and the derivatives with respect to volume is elementary

.

1 9 p
0=7; m=—ulig-

v do

7Later measurements by Wallmann {126]} yielded a second, smaller number of

collisione.

8To return precisely to point A, this heat should be marked on BC or A'A.

However, the heat sampled during the cycle and, accordingly, the shift of the
initial point in the case of absence of heat sampling, are of 2 smaller order of
magnitude than shifts AB, AA', AC and BC in Fig. 3. We have disregarded
them in the text and in Fig. 3.
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. 35.

41,

42.

. 43.

. 47.

47.

. 49.

52.

59.

62.

. 1.

. 98,

. 100.

9The beginning of the process—the change of the form of wave b—is taken as a
change in the spectral @mposition of sound, as the appearance of overtones
(which can be proved by expanding curve b in a Fourier series) and the change
in tone when sound propagates over great distances (see Thuras, Jenkins &
O'Neil [94, 52, 58] and also a similar paper by Eykhenval'd [34]).

1C‘See Landau and Lifshits [15], pp. 41-42, Chap. {3 "Steady Flow".

‘uThe history of the problem is brilliantly expounded i»: Stodola's manual [89].

9
1"'I‘he process of mixing and slowing down a jet was investigited by G.N.
Abramovich (TsAGI) and S.N. Syrkin and Lyakhovskiy (TsKTi).

13‘1‘0 obtain a satisfactory thermal efficiency in his steam turbine, Laval had to
operate with a very wide pressure differential pgy -~ pp, that exceeded the
critical one. In order to use it without losses, the switch to supersonic speed
became necessary.

14We can see from the formulas of Chapter 2 that in an incompressible liguid

69 - b—3 3 . 2 '3
P =0, gy =*» €=, the gpeed of sound is infinite, motions remains

"subsonic" for any speed.

15Figure 12 had been done at a reduced scale.

1C‘To write Eq. (IV-1) we use (III-5) and (II-16).

17We will see in Chapter 17 th2.t in the presence of a shock wave pressure is not
entirely restored; the temperature, however, is completely restored up to

the magnitude of ""temperature at rest" in the case of deceleration.

18We investigate heat transfer of the plate only with the gas. ileat transfer into
the plate or radiation from the plate's surface reduce surface temperature
(see Kibel's [10]).

1
“Srhe letters AB in Fig. 16a, b are totally unrelated to points A and B in Fig. 14.

20'I‘he velocity tangential to surfaces A and B must be maintained in terms of
magnitude and direction when the substance passes through the wave.
Consequently, a tangential motion can be totally excluded from the investiga-
tion by a corresponding choice of a uniformly moving system of coordinates.

22'I‘he constant addend that appears in I if the thermal capacity below T1 differs

from the thermal capacity in the interval from T, to T j contained in the
formulas, can be eliminated by choosing corresp%ndingly the energy reading
point. In any event, the constantaddent disappears from equations of the form

(VII-5) and (VIII-6).

23!1 " and HB are the accepted abbreviations for Hugoniot's adiabatic curves, for
which the subscripts A and B denote the initial point.

24

Eq. (X-3) can be derived from Eq. (VII-6) if from density we switch to
specific voiume.
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p. 100.

p. 101.

p. 102.

p. 102.

p. 103.

p. 103.

p. 108.

p- 111,

p. 113.

25

T in Eq. (XI-5) is enclosed between Tc and TR' To prove this we pass

from state A tc B (Fig. 29) by isentropic compression (AC) and subsequent
heating of the compressed gas in a constant volume (CB)

26We note that v_ is smaller than v, so that « <0,

2 1
27It may be useful fo point out another time that the calculation of the area of
the trapezium limited by straight line AFB (Fig. 29) is based on the expres-
sion of Hr.goniot's adiabatic curve which follows from the conservation laws
applied to the state before and after the passage of the wave. This calcula-
tion is not connected in any way with the problem of the shape of the line
along which in actual fact the state in the wave changes (see Chapter 12).

28An incredibily rapid increase in thermal capacity is required for the

. 9 cel s .
absolute guantity 2) =—rL to drop with increasing temperature on account
dv /& v

of adrop ink = cp/cv.

29'[‘he change in the quantity (%%) ¢+ on which depends sound velocity when

changing from A to C or from A to B, is of the first order in Vi Vo The
change in ( gﬁ—) R when passing from C {o B is of the third order.

30

D, ¢y and ¢ with small amplitude differ by a quantity proportioral to the

2
amplitude. Velocity u is also proportional to the amplitude. With an
accurzcy up to quantities proportional to the square of the amplitude, shock
wave velocity is equal to the arithmetic mean of sound velocity at initial
state c1 and disturbance propagation velocity in the direction of the wave in
a compressed, moving gas ¢ 2 +u

_cta
D= —a

311n Fig. 32, Poissun's adiabatic curves passing through points A, B, and M

are denoted by F,, P_ and P,,.
A’ "B M

321!1 states A and B, obviously du/dx = 0. When integrating it must be borne

in mind that ¢z =const according to the equation of conservation of matter.

"3[n all computations referred to ahove we took an ideal gas for which (at

least in order of magnitude) there take place the following estimates

(—a&) ~.—-—..e_‘ —a’_'.Q—.__P‘.‘
/s o Gt T et

In the general case we can readily establish that, all other conditions being

equul, the width of the front is inversely proportional to (g%f?) s ydepending

on the role played by this quantity in shock wave theory.

27
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. 119,

. 123.

. 125,

. 130,

. 137.

. 140.

. 141,

. 147,

. 148.

. 160.

. 165

. 168.

34We confine ourselves here to referring to Kan'yar who investigated motion
with a small amplitude. Unlike other authors, he studied from the begi
those equations of motion that contain terms expressing viscosity so that his
czlculations cover not only the formation of shock waves, but also tke steady-
state structure of the wave front. There is little physical interest in such a
study since the effect of viscosity prior to the formation of a shock wave is
negligible, 2nd the steady-state structure is found easier by direct methods
which proceed from the assumption of a stationary wave.

35All computations are referred to the state prior to the occurrence of the
shock wave t < tb' i.e., t'<0. Motion occurs in the region x < X where
x' < 0.

36For t—t, Eqs. XIV-20) - (XIV-21) lead to X, =X, which corresponds to
infinite compression (a finite amount of substance from segment 0 - x, is

compressed into an interval between x, and X, that approaches zero), infinite
pressure and velocity.

37Far away from resonance, Ap and w change with an apnreciable phase shift,
hence Eq. (XV-2) would be incorrect (too high).

38For a diatomic gas with ¢ /cv = 1.4. In the general case, one will need for

this a velocity in excess of 2<% , 2%, where K, and K are the adiabatic
K 4 —1 8 — A
exponents of gases A and B.

39c0 is souxd velocity in the air. Sound velocity in hydirogen is equal to 400.

40A and B are not shown in Fig. 36, but they are uscd Yeiow in Fig. 41c. See
also Figs. 39 and 40h.

41JI= vdp -+ TdS; for I-=const, Z_PS= - -vz'

42Eq. (III-5) is true only for that system of coordinates in which the body and the

shock wave rest. In the system of coordinates in which the unperturbed gas
rests while the body moves, as the body comes closer the gas particles are
subject to compression (gas enthalpy increases) and start moving. They also
acquire a kinetic energy so that the sum I + u2/2 increases. Eq. (1-5)
carnot be applied in this system of coordinates.

43111 a jet~propelled missile the gunpowder burns under constant pressure, and
develops a temperature that is lower than during combustion in a sealed con-
tainer. Hence (ke power of gunpowder {, contained in Eqs. (XVII-17) -
(XVIII-14) must be reduced with respect to thermal capacity, i.e., by
K =1.25 times as compared with the power of the same gunpowder measured
in 4 gealed container.

44According to a remark by Landau, the abrupt increase in pressure in a shock

wave causes simultaneously the separation of the boundary layer.

45Belyayev defended his thsis in 1835. Similar calculations were performed
independently by Vlascv [3]. .
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p. 172. 4°Here we do not investigate the case when the reacting substance is enclosed
in a hermetically sealed shell. Under such conditions, even a slow chemical
reac.ion accompanied by liberation of gas, develops a very high pressure
contaired by the solid vessel. The rupture of a high-pressure vessel
recalls an explosicn in many ways, but the details of this process which
depend on the properties of the material of the container, and on its
design, do nct iaterest us.

p. 172. 47This velociry iz differcnt from the rate of the chemical react.on of a specific
) particle of the svbstance characterized by reaction time. As in the case of

the propagation of the reaction, we must distinguisn between reaction time
of the entire charge {which, in the simplest case of constan: velocity, is
proportional to the size of the charge) and reaction time of individual
particles of substances; reactien time of individual particles obviously
represents only a portion of the former, since in an explosion the various
particlies do not react simultancously, and in the afore-mentioned simplest
case do not depend on the size of the charge.

p. 173. 48111 the case of a nonsymmetric propagation of the detonation, the distance
covered by the explosion products and the power of the explosion is greater
in some directions (mainly in the direction of detonaticn wave propagation)
and smaller in others. Here we will not touch upon the extremely interest-
ing and important problem regarding cumulative charges characterized by
an extremely powerful concentration of energy in an assigned direction.
This problem is studied by specialized literature {110}.

p- 174, 49The heat of TNT combustion in a calorimetric bomb with excess oxygen
amounts to 3592 kcal/kg (with formation of water); combustion with forma-
tic- of watsr vapor yields about 3480 kecal/kg. The heat of a TNT explosion
with 2 hizh-density charge, according to Schmidt, equals 1085 kcal/kg. ‘Ve
find the heat of explosion products combusticn by subtracting the explosion
heat (3480 - 1085 = 2395) from TNT combustion heat.

p. 174. 5()The phenomenon of the barrel flame is well known. After the projectile has
left the barrel, the gunpowder combustion products flow out and mix with
the surrounding air. If they contain a sufficient amount of combustible and
if the temperature is sufficiently high, the mixture burns up {explodes) with
an ‘ntense flare.

In connection with the location of guns by the sound ranging method,

Esclaengon [114], followed by other authors, investigated the sound of a

gunshot and discovered the existence of two separate sound waves: one
produced by the expansion of the gunpowder combustion products, and

another one produced by the barrel flames. At a great distance from the guns,
the latter is more intense than the former and has a long wave length.

p. 175. 51However, in this case it has to borne in mind that the magnitude of destruction,
if it occurs, depends on the size of the charge (which determines the length
of the action exerted by pressure). The independence of the presence or the
absence of destructicn from the duration of the effect exerted by pressure, as
can be seen from what was said abovc, takes place even with a specific
minimal reaction time, i.e., with a specific minimal charge.
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p. 176.

p. 181.

p. 182.

p. 197,
p. 197.

p. 198.

B. 199.

p. 206.

p. 208.

52

59

The wave pressure momentum is denoted as I (p — Pl where Py is atmospheric

pressure (a constant quantity), p = p(t) is pressure at the point under study at
the passage of a shock wave which is unperturbed by obstacles or measuring
devices.

5311' r is expressed in meters, and m in kilograms, then for a spherical charge

of density 1.6, the value ,é:l cerresponds to the ratio r/R = 19. For a

Ym

point lying on the surface of the charge, computed in technical units %3_:-:0.053.
m

54The similarity is not exact gince in explosion products with initial density

there occur great deviations from the equation of state for an ideal gas, which
depend on density. The proper volume of the molecul=s in explosion products
gives a characteristic density. One can assume, however, that this circum-
stance is of no significance at the moment when the shock wave has travelled
to reach a considerable distance from the charge, and the explosion products
have expanded considerably.

55See footnote 60.

561n the case of an explosion of heavy metal compounds (lead azide, mwercury

fulminate) the high molecular weight of explosion products additionally
increases density.

57Temperature at rest of explosion products turns out to be higher than the

initial temperature of explosion products (detornation temperature). This is
characteristic for an unsteady expansion wave in which energy is being
redistributed: kinetic energy of explosion products rushing ahead is
generated in part from potential energy (expansion) in deeper layers. These
relationships are shown in #ig. 20 where we can compare the relation
between velocity (which determines kinetic energy) and pressure (which
determines potential energy) for a steady flow in the nozzle for which the
sum of enthalpy and kinetic energy is constant, and for unsteady expansion.

58V18.80V'S paper reflects incorrect views regarding the possibility of inter-

mittent expansion waves. Fortunately this error has no practical effect on
the numerical resuits. He aiso ignores the remark by Landau {1-7, 108]
regarding the form of the equation of state.

Correction note: Computations by Landau and Stanyukovich [108] give for
TNT a velocity of explosion products and air of 7800 m/sec, a shock wave
pressure of 750 kg/cm2 and an explosion product temperature of 1200°K.

More precisely to the state which differs from the initial one only by the
quantities proportional, in the case of small amplitude, to the cube of the
amplitude because of a change in entropy from compression in the wave.

60We can readily see that initial distribution with constant sign dp/dx >0

monotonically approaches linear distribution in time, since the linear term
in pressure proportional to Co T t increases.
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p. 209. 61We have simplified the relationship by taking k ,"‘ <t to be greater than o

or appropriately changing the instant when the time count begins.

p. 212. 621:1 deriving Eq. (XXIV-27), in Eq. (XXIV-25) we assumed a simple relation-
ship between ¢ + u and 7, and ignored the terms ~ r-2, In Eq. (XXIV-26)
we substituted ¢ + u for Cor assuming the amplitude to be small.

p. 21u. 6?'Proofer's remark: The formula was communicated by M.A. Sadovskiy in a
paper in 1942. He found later [127] that all the factors have to be decreased
by a factor of 1.92.
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