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SUNMARY

Some of the techniques in current use for measuring dynamic stability
derivatives in wind tunnels are described, with emphasis given to the
important features of balance system design, data reduction methods,
instrumentation and typical balance systems. The use of gas bearings
for dynamic stability and roll damping balances is treated and a thre:-
degree-of-frecedom balance system employing a spherical gas bearing is
described.

RESUME

Quelques-unes des techniques courantes pour la mesure des dérivées
de la stabilité dynamique dans les tunnels aérodynamiques sont décrivées
en soulignant les particularités importantes du dessin des systémes de
compensation, des méthodes pour la réduction de données, 1’ instrumenta-
tion et des systémes de compensation typiques. On trait 1’emploi des
paliers & gaz afin d'obtenir de stabilit€é dynamique et des compensateurs
pour 1’ amortissement de roulis ainsi qu'ua systéme de compensation en
trois degrés de liberté avec 1’utilisation d’un palier & gaz.

629.7.017.2:629.7.018.08
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NOTATION AND ABBREVIATIONS

Notation

A reference area or general constant
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c, tare damping coefficient
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Cir 9C;/9(rd/2v,)

Cip 3¢, /38

€15 3c, /3Bd/2v,)

Cpsw ac,/a8*

Cy pitching moment coefficient of a model which has triagonal or greater
symmetry, 2Mg/ApVZAd

Cupa = Capa = Capg

CHQ = CIJ!' = CIIQ

Cuax = Cag = -Cpg

Cus = Cag = -Cpp

Ca pitching moment coefficient, 2My OpVZAd

Capr = 9%,/3(Pd/2v,)3(rd/2v,)

Caps = 9%Cy/3(Pd/2V,) 3B
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Cas = 3Cy/3(4d/2v,)

cy (-C,) normal force coefficient, -2F,/0, VA
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f frequency of oscillation
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SECTION 1

INTRODUCTION

Analysis of aircraft and missile aerodynamic performance and stability requires
knowledge of the forces and moments which act under conditions of steady and unsteady
flight. One of the first studies of aircraft stability was that of Lanchester®' around
1900, fullowed later by more complete and rigorous analysis by Bryan?, which is still
the basis for much of the dynamic stability work today.

Requirements for supplying aerodynamic characteristics for performance analysis
have been met, to some extent, by relying on theories supported by experimental measure-
ments to establish the validity of the theories. In some cases, the theory has only
limited application especially when viscous flow has a pronounced influence on the
flow field, as in the case of high speed flow (hypersonic speeds and above) and low
Reynol7s numbers. There are some situations for which the phenomena cannot be described
adequ .tely by theory. In other cases theory is not applicable because the configuration
and flow field are so complex that the many approximations required invalidate a wholly
theoretical approach. Thus, in practice, strong reliance is placed on experimental
results for use in analyzing the modes of motion of the aircraft or missile.

Early experimental techniques making use of oscillating models to dynamically simulate
rigid modes of motion for determining stability derivatives are well summarized by
Jones®. It is of interest to note that no fundamental changes in the basic experimental
methods have taken place since that time, 1934, although much work nas been done toward
refinement of the methods, equipment and instrumentation. Little emphasis was placed
on dynamic stability experiments until about 1940, and from that time to 1945 experi-
mentation was primarily concerned with sul:sonic flow and tests were made for small
perturbations. Wind tunnel experiments und flight tests within the early forties were
directed more toward static stability and control problems. With the advent of high
speed aircraft, missiles, rockets, and re-entry vehicles, increased emphasis has been
placed on performance and dynamic stability problems since missions demand precise
control not only in small disturbances from level flight, but also in large scale
maneuvers. As a result, dynamic stability measurements have become increasingly important
at supersonic, hypers=onic and hypervelocity speeds and at large perturbations. The
experimental methods suggested by earlier experiments have been used in different forms,
and sany improvements have been made in the experimental techniques since about 1950
These improvements have been in the areas of balance system, model and support systes
design, instrumentation, data acquisition, and data reduction.

In 1954 Valensi' presented a review of the techniques primarily in use in Europe for
measuring oscillatory szerodynamic forces and moments on models oscillating in wind
tunnels. The following year AGARDograph 11 (Ref.5) by Arn.ld was published on the
subject of dynamic measurements in wind tunnels. The most recent summary of techniques




for measuring oscillatory derivatives in wind tunnels was published by Bratt® in 1963

as a part of the AGARD Manual on Aeroelasticity. The paper discusses the basic principles
employed in measuring derivatives and gives some account of the associatuvd instrumentation.
Much of the report deals with the methods and instrumentation employed in England.

Since theose earlier works, the emphasis on dynamic stability testing has increased,
and many reports have veen prepared on the subject, so there exists a need for a review
and summary of the current dynamic stability testing techniques in use at supersonic
speeds and above.

There are many experimental techniques which are suitable for measuring dynamic
stability derivatives; however, only those techniques that are in most common use in
wind tunnels will be described. In addition, many different systems exist for measuring
the same quantities and, since they differ primarily in the specific application, no
attempt will be made to describe all systems; only systems considered to be representa-
tive and those having unique features will be discussced. The report is organized
primarily around the aspects of dynamic stability testing in wind tunnels at supersonic
speeds and above, although much of the report is pertinent to aspects of testing at
transonic and subsonic speeds. Although free-flight testing in ground test facilities
encompasses the use of the wind tunnel and aeroballistic range for measurements of
dynanic stability derivatives, these techniques are not included as a part of this
AGARDograph because other publications on these subjects have been published and are
in preparation’:®.




SECTIO:/N 2

STATEMENT OF T1HE PROBLEM

2.1 DEVELOPMENT TRENDS

Aircraft or missiles in high speed flight are free to respond to disturbances with
motions involving many degrees of freedom. During various stages of aerodynamic design
of a vehicle, as the configuration is developed. dynamic characteristics must be known
and progressively refined to a high degree for the final configuration performance
specification. The designer must necessarily be concerned with the interpretation of
aerodynamic stubility data and with the evaluation of the influence of their accuracy
on an integrated system design.

There are three methods of obtaining stability data:
(1) Theory and empiriccl data.
(ii) Wwind tunnel and aeroballistic range model testing.

(1ii) Sub- or full-scale flight testing.

During the preliminary design stage, it is most ~xpedient to rely primarily on theory
and empirical data for performance evaluation whereas, in the later stages, design
concepts inevitably require evaluation through the use of some scale model tests. As
a final phase in the design development. sub- or full-scale flight tests are reguired
to verify performance and obtain in-flight measuremeints for verification of theory and
prediction methods.

There are certain speed regimes where theoreticai results may be inaccurate due to
insufficient or inaccurate basic data. For example, in the transonic speed regime
(0.9 < M, < 1.5) theoretical methods for determining dynamic stability derivatives are
very limited, and, therefore, reliance is placed on methods involving the use of
empirical data on similar configurations and correlation plots showing the manner in
which the stability derivatives vary with Mach number for similsr configurations.

within the supersonic and hypersonic region (15 < M_ < 10), theoretical methods
are available for estimating derivatives for bodies of revolution and relatively simple
lifting configurations. At Mach numbers above 10 in the nypervelocity speed regime,
theories generally fail to predict the derivatives because viscous effects have a
strong influence on the vehicle aerodynamic characteristics

In order to improve the accuracy of aerodynamic derivatives that are used in per-
formance predictions and to validate theoretical estimates, model tests in ground test
facilities are recognized as being essential to the development of aircraft, missiles
and re-entry vehicles.




Study of vehicle motions in flight involves consideration of many degrees of freedom.
When the vehicle is considered as a rigid body, six degrees of freedom are required.
Since the vehicle is not a rigid structure, additional relative motions of components
such as aeroelastic deflection of lifting surfaces and movable controls constitute
additional degrees of freedom.

The vehicle motions may be separated into high frequency and low frequency motions,
where high frequency motions studies such as flutter are primarily concerned with
structural elasticity and unsteady aerodynamics. At low frequencies the motions involve
rigid body mtions and are studied as dynamic stability using quasi-static aerodynamics
The mode of model testing discussed in the present AGARDograph is concerned with this
latter type motion and the determination of rotary damping derivatives

In scaling down a vehicle for model tests the paraaeter that must be considered in
addition to the Mach number and Reynolds number is the angular velocity or frequency
of model oscillation in relation to full-scale conditions. The scaling parameter,
called the reduced frequency, in the form «d/2V, contains the frequency of oscillation
and represents the ratio of some characteristic dimension cof the vehicle to the wave
length of the oscillation. This type of scaling parameter also applies to dynamic roll
tests and has the form Pd/2V_

Exper)mental techniques for measuring dynamic stability derivatives in ground test
facilities may be classified in many different ways. The classification that will be
followed here is presented in Figure 1. The two major classifications are derived on
the basis of whether the model is free to move in all basic degrees of freedom or
whether it is restricted in several degrees of freedom. The subtopics shown in Figure 1
for discussion were selected as those methods currently being employed for most high
speed testing; however, it should be emphasized that the outline does not show the case
of the model fixed in the test section with perturbations generated in the flow. As
noted in the Introduction, only those methods which epply to captive model testing
techniques will be discussed in this AGARDograph since free-flight tests in the wind
tunnel and range are the subject of AGARDographs published and now in preparation”?
Additional general information on methods not described herein may be found in Reference 9

2.2 EQUATIONS OF MOTION

In order to place the role of dynamic stability testing in perspective, it is helpful
to examine the equations of motion. Although the mathematical treatment of vehicle
dynamics is well known and found in many tests'® !2, a brief derivation of the equations
of motion is included to illustrate the basis for the experimental techniques used in
the study of dynamic. stability.

2.2.1 Axes Systems

The equations of motion will be developed using the axes systems shown in Figurzs 2
and 3. ‘lodel orientation is determined relative to the tunnel fixed axes X;Y,Z,
(inertial reference). The XY¥Z &xes are fixed in the model with the X and Z axes
in the model’s plane of symretry. When the origin of this system lies at the center
of gravity, these axes are then defined as the body axes. The angular orientation of
the XYZ system with respect to the )(TYTZ.r system and inertial space is given by the




Euler angles ¥, @, and ?. Sometimes it is convenient to use the nonrolling axes
system (XYZ). These are special body axes whose angular orientation in space relative
to the X, Y,Z. system is determined by the angles ¥ and © . This axis system can
be used even though the model is rotating about the X axis. The origins of all
systems arc assumed to occupy the same point in space (Fig.3).

2.2.2 Inertial Moments

The angular momentum of the model may be expressed as

A= [6«7)a, (D

where T 1is the radius vector from the origin of the rotating XYZ axes to the particle
p of mass dm and Vp is the velocity of the particle p relative to inertial space.

The radius vector T 1is measured relative to the body fixed XYZ axes; therefore,
in order to evaluate the velocity of p relative to inertial space, it is necessary
to use the well-known transformation for the rate of change of any vector from fixed
to rotating axes as follows:

dr dadr _ _
Vp = - = — +axrT
dt |, dt

= Pl +Q +Rk.

£l

where

Assuming the model is a rigid body, the equation reduces to

V, = &af,

since T is then not a function of time.

Substititing this equation into Equation (1) yields

H :IFx(axF)dm.

This expression is then integrated over the vehicle to obtain

H o= 1L},

(3] = [A7K]
Plx “Jxyy  Ixz
I N R
:sz “Jxy Iy
P
{} = |Q
(R




The moment acting on the vehicle is equal to the rate of change of angular momentum

dH

dH _
—_ = —+DxH = 2ZNM
dt|,  dt

This vector equation can be reduced to the following scalar forms:

I + (I; - IRQ - Jyp (R + @) + I, (RP - Q +J,,(R? - Q) = (M)
I,Q + (I, - IPR - 3y (P + @) + Jy,(PQ - R) + J,,(P* - R®) = (Em) (2)
IR + (I, - 1,)QP - Jy,(Q + PR) + J,, (@R - P) + 3,,(Q* - P?) = (3n,).

Roll pitch and yaw rates for the XYZ system may be obtained from Figure 3 as
follows:

P = b-Vsin0®
Q = Ocosd+ ¥ cos © sin ®
R = Yecos ®cosd-0sind.

In order to simplify the nonlinear differential equations given above to a form
which facilitates analysis of the motion, vehicle symmetry will be assumed, and the
motion will be restricted to small disturbances from a reference condition. Let
P=p,+p, Y= ¢0 + 1y, etc., where the zero subscripted quantities are the reference
conditions and the unsubscripted lower case quantities are perturbations from this
reference condition.

For the following discussion, the reference condition is selected such that
qQ, =Ty = 90 = wo = 0 and the reference quantities Po and ¢5 are not necessarily
small. Considering vehicles having symmetry about the XZ plane (ny = J,z = 0) and
neglecting products of perturbation quantities, the equations of motion become

ILP - J,,(F + QP) = M)y
I,d + (Iy - I)Pr + 3PP = (M), (s
It + (I, - I,)PQ - J,,p = (EM), .

The roll, pitch and yaw rates at this condition are given as

\

Py = éo
p = ¢ = ¢ sin 6
. . p 4
q = fcosd+Ycos 6sind
r = ¢ cos 6 cos ® - 6 sin d .




For models having triagonal or greater symmetry, the nonrolling coordinate system
XYz may be conveniently used when these axes correspond to the models' principal
inertia axes. Since the body is moving with respect to the Y and Z axes (rotating
about the X axis), the restriction of symmetry is necessary, otherwise the moments of
inertia with respect to the XYZ system will be time varying. For the above case,

the angular momentum expression is given as

A= P+ I1Q + Ifk |

vhere
15 % o= O
@ = qecos ¥ -rsind
F = rcosd+qsind

t s .
b ~ fo Ptydt , |¥ > |-y sin 8] .

Note that, even though ¢ = 0 for the nonrolling coordinates: its XY plane is
rotating with respect to the XTYT plane at the angular rate -\ sin & .

The equations of motion referenced to the nonrolling coordinates are given as

dH
—+Dxﬁ = EM,
dt

where

0 = ol +q + 7k

These equations of motion reduce to

LP = (EM)y
Iq + ILPF = (Mg (5)
Lf - 1P = (IM)g .

2.2.3 Aerodynamic Moments

The general procedure for expanding the aerodynamic moment relations is that deve-
loped by Bryan®’. It is assumed that the moments are functions of the steady- state
reference conditions and the instantaneous vaiues of the disturbance velocities, con-
trol angles, and their time derivatives. A Taylor series expansion of an aerodynamic
reaction yields this form. For example, the aerodynamic reaction A = A(U,V, ...) is
expressed as
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A(U,V ) = A( ) A (U )
N, .. = u,,V L) 4 |— -u,) +
0 au o 0
A %A .
+$°(V-Vo)+ a—uzo(u-uo) +
+ oA (U )V )
— - - +
Juov /. Yo Yo
IE’A\
t =] (V=¥ +...
avi o 0
where
U = u, +u, etc.

This expansion is linearized by neglecting products of the perturbation quantities;
therefore, for the above example the linearized aerodynamic reaction becomes

AUN,...) = AQu,.vg. )+/3u) /3A>
0

\d \OV

Aerodynamic reactions can be expanded with respect to the variables U, vV, W, P,
Q. R, the control deflection angles, and time derivatives of these variables. For
a given configuration, conditions of symmetry and past experience concerning relative
effects of these derivatives can be used to reduce the number of derivatives needed
to describe the aerodynamic moment system. For a spinning vehicle having triagonal or
greater symmetry, the moment equations can be reduced to

@'p) fa"*} o (6)

N /
Y My, +/2"—'> v +<a—u‘; /Bll'\ +(ai> q

\ov /. 31/0 \Bw \3q

/oM, M M M
z Iz°+—sz+—z v+l =L \'r+3—z r.
ow/ v/, ?v/, or/,

The term (0My/3v), in the pitch equation and the term (JM,/3w), in the yaw
equation are usually negligible except for the case when the vehicle is spinning rapidly.
These terms are caused by the Magnus effect. They are given in a more familiar form
as follows.

My

Let

v/, I AL \ 3w/,

/

Zvo °

K Ly, (2




Taking the first term as an example and assuming that it is primarily a function
of P, its Taylor series expansion about the condition P =0 1is given as

oM
My,oP....) = My, o(0,...) +(—_;—"°> (P-0)+...
\

The first term on the right hand side is usually negligible; therefore, this expression
may be reduced to

oM [

M (P) = (2] p = {—L] P.
rvo(P) <ap> \avap>o

/N2
Mgwo) p - (2M)
2p .owdp/,

The pitching- and yawing-moment equations are then given as
oM oM,\ . /oM M

w3, (50), 059, 0 G,
M, M N, N

z Izo+—z‘v+—_§>\'r+~—z r+(—-§ Pw . (8)
av/0 v/, ar/, awop/

The terms Myo o Myo and LP in Equations (6), (7), and (8), respectively, are
the moments about the X , Y and Z axes while the model is at the reference flight
condition. The reference condition is often chosen such that these terms are zero.

Similarly,

MZIO(P)

Equations (3) describe the motion of a model which has three degrees of freedom in
rotation about a point fixed in space. Unique test equipment is required in order to
obtain these motions using a captive model test technique. Two balances which have
this capability are described later in Section 3.1.1. In most captive model dynamic
stability tests, the model is restrained to a single degree of freedom, i.e., rotation
about a single axis. An example of a typical dynamic stability balance would be a
single-degree-of-freedom system using a flexure pivot. The equation of motion for a
system of this type will be developed in the following discussion.

2.2.4 Single Degree of Freedom

The velocity components in the body axis for the case of a model mounted on a single-
degree-of-freedom flexure pivot at an angle of attack & and oscillating symmetrically
at a small angle & are

U Vo (@ +6) = Vg, cos -6V, sin &

vV =0 !




=
1

Vp 8in (@ + 6) = OV, cos & + V, sin &

——

(9)

/

The reference conditions used here are those that exist when the model is at the angle
of attack o . Under these conditions, Equation (2) reduces to

ILia = (2M),

Only the derivation of the equation for a single degree of freedom in pitch is presented,
since the derivations for oscillations in yaw aad roll are similar and are treated in
detail in many of the references included (see, e.3.. Reference 4).

An elastic restraint is provided in the balance to aid in restoring the model to the
reference attitude following a displacement. When the aerodynamic moment is expanded
to include all significant terms and the restoring moment K1(“ +6) and the damping
moment 018 of the restraint are added to this to obtain the total moment, the equation
of motion in pitch is written as

I, = My, + M + M@+ Mw + M + K, (6 +) +C0

where

N, (3My/0u), . Mg = (3My/30),

(8“,/3100 , N,

N, (oM, /3%, .

After including the relationships for the linear and angular components of velocity
(Equation (9)), the equation above reduces to the form

1,6 + (-M - VoM cos & - C,)6 +
+ (MVy 8in & - MgV, cos & - K )6 - My, + K& = 0. (10)
In the undisturbed case, conditions of equilibrium give

My, = K&,

and, for small values of & , Equation (10) becomes

1,6 - (Mg - VoM - €6 + (K, - MV)E = 0. . (11
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Defining the damping-moment parameter and the restoring-moment parameter by Mg and
Me , respectively, where

P (Mq + VM) aerodynamic

damping-moment parameter of

Mgy = C, ., elastic restraint considered
as a tare
Mga = MV, aerodynamic

static-moment parameter of
Mét = K, , elastic restraint considered
as a tare.

With these definitions, Equation (11) becomes
16 - Mgy + Mga)é - (Mgy + Mgg)0 = 0.

Following the procedure presented in Reference 4, similar expressions can be written
for the equations of motion in the body axis for yaw and roll.

2.2.5 Stability Derivative Coefficients

The stability derivative coefficients are obtained in this section using the reference
condition Wo = 80 SWyTVv,=Q, =T, = 0 . This is a typical condition for a sym-
metrical model oscillating about its zero-angle-of-attack trim. The NACA system'® will
be used here with the time constant defined as t¥ = l/u0 . The aerodynamic moments
are defined in this system as

M, = pVZAlC, (12)

My, = pviAlc, (13)

M, = pvialc, . (14)
where Vo = v(UZ + v? 4 wd)

and it is necessary that the reference length (l) be defined in half lengths; e.g.,
l=d/2, |l =b/2, etc.

The coefficient form of the derivative (BMY/Bw)o is obtained, using Equation (13),
as follows:

féu v /3C
i § = Vv —C l 2 —B A
8-)0 e <3w>° MCygo * £VcAL \Bw)o (13)

Since (Qv./ow) = w/V. , the first term on the right-hand side of Equation (15) is
negligible.
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The angle of attack is defined to first order (small angies of attack) as
L]
A = -,
Ug
where
u, a3 Vc .
Substitution of this definition into Equation (15) yields
(a"' = pV_AlC
\a' o pC [ T 3
C
where Coo ° —a) .
CLYAR

The coefficient form of the derivative (au,/aq)o is obtained, using Equation (13)

as follows:
(oMy \ 'ac_>
o = pVAAll—] . (16)
\aQ>o ¢ (Bq 2

The coefficient Cm is defined, using the time constant and the derivative from
the right-hand side of this equation, as

1 focC
Cad = 3 > = Rey/acal/vy], -
t¥ \3dq/, :

Using this definition, Equation (16) becomes

M
¥ = ~ylaleX
(%—q)o = pVAAltYC, .

The remaining coefficients are obtained using techniques similar to those outlined.

Using Equations (6), (7), and (8) and the above methods for obtaining the coefficients,

Equations (12), (13), and (14) can be written in the following coefficient forms, where
l=4d/2:

) d
- 1 .y? _D_
C,

id qod pd
M, = 1oviAd |Co, + Co % + Cuz (— ) + Con (— +C —
Y it~V mno ax [ T3 zvc ng gy mps v 1<

— Zy ,

/id rd pd
N, = toviM [c,, +C +c-—[>+c —>+c /—>a
z c no npP b8 | or pa | =

2v 2v \2v,
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SECTION 3

CAPTIVE MODEL TESTING TECHNIQUE

3.1 GENERAL DESCRIPTION OF TECHNIQUE

Methods for obtaining rotary derivatives in pitch, yaw or roll involve restraint of
the model in several degrees of freedom and measurement of moments required to sustain
an oscillation for specified conditions of frequency and amplitude (forced oscillation
technique) or measurement of model motion after it has been disturbed (free oscillation
technique).

The basic units in the captive model testing system are the pivots, the support
system and, in the forced oscillation technique, mechanisms for forcing the model
oscillation. The pivot is a very important part of a dynamic stability test system,
and the selection of the type of pivot and design will depend on several factors, some
of which have a direct bearing on the quality of data that may be obtained with the
system. Also of importance is the suspension system and the influence it may have on
the aerodynamic measurements. DJetailed descriptions of model pivots, suspension systems,
and balance tare damping characteristi:s are presented in Sections 3.1.1to 3.1.3.

3.1.1 Model Pivots

Pivots of various types which are employed in dynamic stability balances include
ball bearings, gas bearings, knife .dges, cones, and crossed flexures. The selection
of a particular type pivot will depend on the system operating requirements and the
environment in which it will be used. One of the most important factors that must be
considered in the design of a dynamic stability balance for aerodynamic damping measure-
ments is the damping that the system contributes to the measured wind on damping.
Aerodynamic damping decreases with increased Mach number and becomes a small percentage
of the measured damping at the hypersonic Mach numbers. One exception that will be
discussed in Section 3.1.3 are gas bearings which generally have negligible tare
damping. Because of its importance, tare damping will usually be one of the principal
considerations for selection of the pivot type or bearing for roll damping balance
systems.

3.1.1.1 Flexure

High pivot friction may be avoided by employing crossed flexures of the general
type shown in Figure 4. These bend in such a way that the center of rotation remains
at essentially a fixed position. The crossed flexure provides stiffness, which is
necessary to overcome static moments on models tested at angles of attack by the free-
oscillation technique. Flexure pivots are used in wany applications, in particular
scientific instruments, because they have many favorable characteristics. They are
simple in design, yet rugged in construction for their flexibility; they do not
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introduce hysteresis or backlash in the system; they do not require lubrication; and
they are not susceptible to wear. Their main disadvantage is that they are not suitable
for large angles of rotation because of stress considerations, especially under com-
bined loadings. The design of flexure pivots for a particular application requires
consideration of the model loads, moments, and oscillation frequency for dynamical
similitude. Experience at the AEDC-VKF has shown that crossed flexures have linear
stiffness characteristics and structural damping that is repeatable even though the
flexure is of multipiece construction. This method of construction is desirable because
the flexures can be machines as a single unit and then cut into sections for the in-
dividual flexures. The theory for design of symmetrical crossed-flexure pivots is

given in References 13 through 16.

Examples of flexure pivots, including cruciform and torsion tube pivots, that have
been used in various applications are shown in Figure 5. For each of these, the pivot
tare damping varies inversely with the freguency of oscillation. Strain gages mounted
to one member of the crossed flexure are employed to obtain a signal voltage which is
proportional to the angular displacement.

For some applications, such as tests in very small tunnels or low density tunnels
which have a siall test core, it may be impractical to machine flexure pivots of the
type shown in Figure 5. The AEDC-VKF has developed a small dynamic stability balance
using a commercially available instrument flexure pivot of the type shown in Figure 6.
The characteristics of this pivot were found to be repeatable and liear. Angular
motion time histories are measured with an angular transducer described in Section
3.2.2.1.

3.1.1.2 Knife Edge and Cone

Knife edge and cone pivots of the type shown in Figures 7 and 8 have recently been
used in dynamic stability balance systems because they are nearly frictionless.

The principal disadvantage of either the knife edge or cone pivot is that some
method of restraint must be employed to hold the pivots in contact and fine adjustments
are necessary to eliminate binding.

The single-degree-of-freedom knife edge pivot shown in Figure 7 was used in a single--
degree-of-freedom free-oscillation balance system developed at DTMB. Here knife edges
are used to constrain the model and also form the axis of rotation.

A similar technique has also been used by DTMB for a three-degree-of-freedom balance
system; however, in this case, the model mounting system is a cone on the end of the
sting inserted in a conical depression contact within the model (Fig.8). The model
is free to roll, pitch, and yaw about the cone and is held on the pivot by model drag.
In each of these cases, model attitude is measured from photographic records of modeal
motion.

3.1.1.3 Balt Bearing

Ball bearing pivots may be used in a dynamic stability balance system for pitch and
yaw cerivative measurements if high resultant model loads arr to be supported and if
aerodynamic damping is large so that bearing damping constitutes a small part of the
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measured damping. Experience has shown that a ball bearing pivot is likely to have
about two orders of magnitude higher damping than that of a flexure pivot designed to
carry comparable loads. Although the ball bearing pivot has the advantage of being
suitable for large angles of rotation, bearing damping is a function of the amplitude
of oscillation and is often nonrepeatable. A ball bearing pivot used in an AEDC-VKF
free-oscillation balance is shown in Figure 9.

Bail bearing pivots are quite frequently used in forced-oscillation balances when
high amplitudes of oscillation cannot be obtained with flexure pivots. Although the
bearing damping is high, its effects may be eliminated in the measurements by measuring
the forcing torque on the model side of the bearings, as shown in Figure 10. For such
a balance system, angular contact bearings are used with preload to eliminate free play
iu the bearings.

Ball bearings are used in Magnus f{orce and moment balance systems where models are
spun to high rotational speeds. In this application, bearing friction is not important
since the measurements are static forces and moments in the yaw plane; however, bearing
heating may be a problem at extremely high rotational speeds.

Until recently, roll-damping balance systems have been designed with ball bearings;
however, new systems in development are designed with gas bearings to overcome bearing
damping, wear, requirements for lubrication, and sometimes cooling. Angular motion
time histories may be measured with the type of angular transducer described in Section
3.2.2.1.

3.1.1.4 Gas Bearing

Although gas film lubrication is &n old concept, it is only since about 1950 that
the study of gas bearings has noticeably accelerated. The reason for this is that
special bearing requirements can often be best satisfied with a gas bearing. Gas
bearings were used in special wind tunnel drag-force balraces as early as 1956, however,
they were not applied to balunces for dynamic stability in pitch and yaw measurements
until about 1961 (Ref.18), and roll damping until 1964 (Ref.19). Applications in wind
tunnel testing techniques have been extensive since these early developments. This is
understandable since all of the desirable features of a pivot, which include high load-
carrying capability, low damping, and unlimited rotation, are combined in a gas bearing
pivot; whereas flexures and ball bearing pivots have only some of these characteristics.
Gas bearing pivots are used extensively for dynamic stability testing in the AEDC-VKF
at hypersonic speeds where the aerodynamic damping is very low. It is difficult to
measure damping accurately with a flexv e pivot balance under this condition because
of the high percentage of tare damping.

An example of a journal-type gas bearing pivot used in an AEDC-VKF one-degree-of-
freedom dynamic stebility balance for measuring pitch or yaw derivatives is shuwn in
Figure 11. The inner or core section of the bearing is supported on each side by a
sting, and the model is mounted to a pad on the outer movable ring. Supply gas,
generally dry nitrogen, is supplied through the core tc a radial set of orifices in
the center of the bearing. Filters are provided in the corc to remove foreign particles
that will cause bearing fouling. A closed gas supply and return system is not used
at the AEDC-VKF, since tests have shown that the small flow rates have negligible
influence on base pressures and wakes. Bearings have been developed at the AEDC-VXF
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with two radial rows of orifices spaced to improve the yawing-moment carrying
capability. Bearings are usually designed for specific applications; however, com-
mercial gas bearings now exist that may be used in one-degree-of-freedom balance
systems. This is an important fact since design, development and fabrication of gas
bearings can become very time-consuming and costly.

The gas bearing shown in Figure i1 was designed with inherent orifice compensation
according to the procedure outlined in Reference 20. Analysis of this type of bearing
is a problem of compressible flow with friction in three-dimensional passages that
change area with loading. Treatment of this problem consisted of reducing the complex
analysis of the bearing to the analysis of a simple, flat plate model. As will be
shown later, these simplifying assumptions lead to a model realistic enough to yield
acceptable results for design.

The gas bearing shown in Figure 11 differed from the design model cf Reference 20
in the following ways: (i) the gas plenum was located in the fixed center portion of
the bearing to supply gas through radial orifices to float the outer moving ring and
(ii) plates were added to the ends of the bearing. These provided a self-centering
feature required for proper operation and some degree of lateral restraint. In addition,
the end plates were designed with shields to direct the exhaust gas toward the center
of the bearing; otherwise, gas exhausting radially would impinge on the inside of the
model and possibly influence the damping measurements. The bearing shown in Figure 11
is capable of carrying high radial loads; however, the laterel load capability is
small, yet adequate for most purposes. Where side loads are large, additional gas
supply orifices and pads should be provided on the ends.

The performance characteristics necessary for evaluating the journal gas bearing
for application to dynamic stability testing include the radial load capacity, bearing
yressure, and the tare damping. Curves illustrating the relationship of radial load
to critical pressure are presented in Figure 12. The critical pressure is defined as
the pressure loading for an outer shell eccentricity ratio of approximately 0.5 of the
bearing clearance. Permissible loading is nearly a linear function of the supply
pressure and agrees with the performance predicted by theory.

As noted previously, the one most desirable characteristic of the gas bearing for
use in dynamic stability balance systems is the extremely low tare damping. Data on
the damping of the gas bearing in Figure 11 are presented in Figure 13 as a function
of frequency of oscillation and radial load. In true viscous damping: the damping
moment, Mgﬁ , is defined as a moment proportional to M which is Invariant with
oscillation amplitude and frequency. This was not found to be the case for the bearing
when evaluated over a range of frequencies and loads at 11.5 deg oscillation amplitude.
The results of the evaluation of the bearing damping presented in Figure 13 shows an
inverse relationsnip with frequency as is t'.e case for flexures and a dependency on
radial load. The damping is in the form

Mé = Cab,

where C and b depend on radial load. In actual practice, these small values of
tare damping are usually neglected. For example, the dampirg shown in Figure 13 is
only C.8% of the aerodynamic damping for a typical blunt cone re-entry configuration
at Mach number 10.
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Gas bearings have been used extensively in industry for application to machinery
operating at high speeds where bearing friction is very important. Satisfectory opera-
tions at high rotational speeds with very low friction makes the gas bearing very
attractive for use in roll-damping balance systems. Until recently, ball bearings
were used exclusively; however, they have many disadvantages, such as significant tare
damping, wear, lubrication requirements, and heating, that can be overcome with the use
of gas bearings. A typical example of gas bearings applied to a roll-damping balance
is shown in Figure 14.

Bearing pivots described up to this point only allow rotation about one axis. Many
problems encountered in flight can only be investigated experimentally using a balance
which has rotational freedom about three mutuvally perpendicular axes. A prime example
of a flight phenomenon of this type would be the coupling of the rigid body pitch and
roll modes. A three-degree-of-freedom balance provides this capability and in addition
simultaneously performs the functions of the several one-degree-of-freedom balances
as it incorporates into one balance the ability to measure pitch, yaw, and roll damping.
The single-degree-of-freedom balances still have an application as they can be used
to restrain the motions to pure pitch, yaw, or roll in situations where this becomes
necessary.

An inherently compensated, spherical, gas journal bearing shown in Figure 15 has
been developed at the AEDC-VKF for use as the pivot in a three-degree-of-freedom
dynamic stability balance. The inner core of this bearing consists of four spherically
surfaced pads arranged in a manner which allows the bearing to resist loads in any
radial direction. Gas is supplied through an orifice located at the center of each
pad. This configuration is capable of supporting maximum radial loads of 100 1b using
nitrogen or 160 1b using helium. Changes in the bearing core design will allow the
bearing to support radial loads of approximately 350 1b. The damping inherent in the
spherical bearing, like that of the cylindrical bearings, is extremely low.

Continuous motion histories provide the data required to determine the aerodynamic
derivatives. For very small flexures or bearing pivots, it is desirable to measure
the motion without physically contacting the moving parts of the system. A device
referred to as an angular transducer was originally developed by the AEDC-VKF for use
in dynamic stability balance systems?!. The variable reluctance angular transducer,
shown mounted on a cylindrical gas bearing in Figure 11, consists of two E-cores
mounted on the outer movable ring of the bearing. When the coils contained in the
E-cores are excited, magnetic paths are established through the E-cores, their adjacent
air gaps, and the eccentric ring. As the hearing rotates, the reluctance of the
magnetic paths through the E-cores and eccentric ring remain constant, while the re-
luctance of the aiT gap changes. This change in reluctance produces an analog signal
proportional to the angular displacement.

Instrumentation for the spherical gas bearing consists of three mutually perpendicular
angular transducers (Fig.15). The pitch and yaw transducers located on the forward
portion cf the instrument ring operate frum an eccentric which is concentric in roll
and eccentric in pitch and yaw, whereas the roll transducer located in the aft portion
of the ring operates from an eccentric which is concentric in pitch and yaw and eccentric
in roll.
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Gas bearing technology is growing very rapidly, and many texts have been prepared
on the methods for design and analysis (see the Bibliography). Reference 2 Vol.I,
contains detailed summaries of design methods, material selection, and measu. :ment
techniques, and Vol.II is devoted to applications.

3.1.2 Suspension System

The design of the suspension system will depend for the most part on the type of
model to be tested and the measurements required. Models may be generally categorized
as (1) two-dimensional models which span the test section and are supported from the
side walls, (ii) three-dimensional, semispan models which are mounted on a reflection
plane supported by the test section side wall, and (1ii) three-dimensional, full-span
models which are supported by a sting, a side strut, or a magnetic suspension system.
With the exception of masmetic suspension, each model mounting system presents a
potential problem when being used for tests of some types of configurations, that being
the influence of the support on the aerodynamic measurements. When this problem cannot
be dealt with in captive model testing by proper support design or evaluation of the
influence of the suspension system, free-flight testing in the wind tunnel and range,
and testing with magnetic model suspension is used.

Support systems for the three types of models commonly investigated in wind tunnels
may be generally grouped into two categories: (i) the we!l support method for the two-
dimensional and three-dimensional semispan models and (ii) the sting, strut, and
magnetic suspension system support for the three-dimensional full-span and body-of-
revolution models.

3.1.2.1 Wall Support

The wall support method for testing half models has the advantage that, for a given
test section size, a larger model can be tested and thus a larger Reynolds number can
be obtained than with a complete model. The large half model also simplifies the
model construction, instrumentation installation, and routing instrumentation wires and
pressure tubes out of the model through the large contact areas at the tunnel walls
Large angles of attack can be obtained with wall-supported models without introducing
interferences from sting supports. In addition, measuring systems and instrumentation
for dynamic stability tests of the complete model or control surfaces can be located
outside the tunnel, so that equipment size is not an important factor. In many tests
of wings or control surfaces, this is the only method of support that can bte used to
acquire dynamic stability data without altering the mode! contour for an internal
balance. An example of a two-dimensional and three-dimensional model mounted on the
tunnel walls, with equipment for measuring dynamic stability, is shown in Figures 16
and 17 to illustrate the principal advantages of the wall-support method described??.

When models are mounted directly on the tunnel walls, the effect of the tunnel
boundary-layer flow hac to be considered, since it may change the flow field over the
model. As noted by van der Bliekz", the wall boundary layer influenced the 1ift and
drag coefficient on delta wings and wing-body combinations mounted on the side walls
and had a tendency to promote separation and stall near the wing root. Although similar
conclusions have not been formulated for dynamic stability tests, the influence on
static tests results should be sufficient to initiate concern about the influence of
the test section wall boundary layer.
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In crder to alleviate the influence of the wall boundary layer, several methods
have been used with success at subsonic speeds by various investigators. These include
boundary-layer removal through porous walls or slots ahead of the model and the in-
stallation of V-shaped vortex generators on the tunnel wall ahead of the attachment.
Formation of large disturbed areas on the model close to the wall may be prevented by
using fences attached to the model or displacing the model from the tunnel wall by
inserting shims between the model and walls. Each of these methods has the disadvantage
of altering the shape of the model configuration and not completely eliminating the
influence of the wall boundary layer.

Tests have shown that wall boundary-layer effects are largely eliminated by using
reflection planes of the types illustrated in Figure 18. With this method, a reflection
plane is introduced as the longitudinal plane of symmetry and is displaced from the
wall to allow passage of the wall boundary layer flow. For some mounting methods,
contouring in the flow passage may be necessary to eliminate choking of the flow and
the resultant ineffectiveness of the reflection plane. The reflection plane can be
fixed to the wall and the model rotated, or the model can be fixed to the plate and
rotated as a unit. When the model is rotated on the reflection plate, as is generally
done in dynamic stability tests, a gap must be allowed, which may introduce leakage
around the model reflection-plane junction and change the local flow field. Tests of
very blunt models on reflection planes will produce significant boundary-layer separa-
tions and thus alter the model flow field. Information on reflection plane design is
given in Reference 26.

3.1.2.2 Sting Support

Sting supports are principally used in tests of complete vehicle configurations and
are inserted into the model base through the center of the wake to minimize their in-
fluence on the model flow field. Careful attention must be given to the design of
the sting to insure that it provides a stiff support; however, modification of the
model contour may be necessary to accomnmodate the sting. Such a modification is a
compromise between a small diameter sting of constant length for a distance behind
the model and one which will carry the aerodynamic loads without significant movement
of the pivot axis. Often the consequences of the compromise are not clear, and there-
fore tests are required to evaluate the influence.

Static tests’’ have shown that both the sting diameter and sting length have an
influence on force and brse pressure data for most configurations. Some forced-
oscilletion systems have shaker motors in enlarged sections of the sting support, to
simplify the overall design and reduce the complexity of the driving linkages. In
these cases it is important that the enlarged section be located an ample distance
downstream of the model base to permit proper formation of the wake. Very few experi-
ments have been conducted to investigate specifically the influence of the sting
diameter and length on dynamic stability measurements

A series of tests have been conducted at the AEDC-VKF (Ref.28), over a range of
Reynolds numbers, to investigate the influence of the sting diameter and length on
the dynamic stability of a 10-deg half-angle cone with a flat base. To determine the
relative effects of sting length, disturbances downstream of the model base were
introduced by placing a 20-deg conical windshield at various stations along the sting
from 0.75d to 3d. Relative interference caused by the sting diameter size was created
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by repeating the tests with diameters of 0.4, 0.6, and 0.8d. The test results included
dynamic stability, static stability, and base pressure data, since base pressures are
very sensitive to the degree of interference that the support presents to the base
flow. Representative results are shown in Figures 19, 20, 21, and 22 for Mach numbers
2.5, 3, and 4 over a range of Reynolds numbers and sting lengths using three sting
diameters. Evidence of interference caused by the support le.gth may be judged by the
deviation of the base pressure ratio from the reference curve corresponding to the
longest sting length (ls/d = 3).

Boundary-layer transition is generally at the model base, at a Reynolds number which
is slightly less than the value where the minimum base pressure occurs. An analysis
of the results based on the base pressure data and schlieren photographs for ls/d =3
shows that the Reynolds number range was sufficient for a transitional and fully turbulent
wake. There is evidence in the data presented in Figure 19 to confirm that some support
geometry configurations can have an influence on the dynamic stability derivatives.
However, it appears that if the support is designed using criteria for static force
and base pressure test527. it is unlikely that the dynamic stability data will be in-
fluenced. This observation does not apply to configurations which have contoured bases,
since these are more critical with regard to the influence of the support because the
wake condition has a direct influence on the pressure distribution around the base. A
further complication arises in this case because the base must be partially removed to
allow movement of the model over the sting. In cases where the relative influence of
the support system on damping results cannot be assessed by captive model testing, wind-
tunnel, free-flight, and aeroballistic range tests are necessary to obtain comparative
results

Some examples of a very rigid sting and support for a high frequency, free-oscillation,
dynamic stability balance system are shown in Figure 23 and a more conventional support
for a low frequency system is shown in Figure 24.

3.1.2.3 Strut Support

Where limitations on model amplitudes are imposed by mechanical interference between
the model base and sting, these may be overcome by mounting the model on a transverse
rod support system so that it is free to rotate on the rod with no restraints. An
example of one such system used in the AEDC-VKF 50-in. Mach 10 tunnel is shown in Figure
25. The balance, consisting of a gas-bearing pivot, model lock, and position trans-
ducer, is contained within the model; nitrogen gas for the bearing and the model posi-
tion lock and instrumentation leads pass through the transverse rods.

Extension of the transverse rod into the moidel will affect the flow over the model
primarily in the region aft of the rod and along the sides of the model. A regiorn of
flow separation will exist on the model ahead >f the rod. Since the interference flow
field caused by the rod will depend on the boundary-layer flow and the position of the
interference on the model surface, it is to be expected that measurements obtained with
a transverse rod support system will be dependent upon the oscillation amplitude and
the Reynolds number of the flow. An example of such a dependence is shown in Figure
26, where data obtained with a sting support are included for comparison. It is apparent
from these results, for a 10-deg half-angle cone at Mach number 1G, that both Reynolds
number and oscillation amplitude are important parameters. It should be noted that
when the Reynolds number is large the influence of Reynolds number and amplitude dis-
appear and the results obtained with a sting fupport and transverse rod support are
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in agreement. However, at low Reynolds numbers, very large differences can exist in
results obtained by the two methods, thus indicating significant adverse effects from
the transverse rod

'The influence of the size of the trarsverse rod supports at Mach 5 is shown in
Figure 27 for a blunt cone cylinder model with and without a base flare. A cylindrical
rod and double-wedge rod were tested with roughness on the model nose to produce
turbulent flow and thus to eliminate separation ahead of the base flare. The results
show no significant effects caused by rod size for diameters up to 30% of the model
diameter and no effects caused by rod configuration, i.e., a cylindrical rod as com-
pared to a double-wedge rod. A significant reduction of the damping occurred when
roughness and the transverse rods were eliminated for the configuration with the flared
base, because of the rod wake influence on the region of separated flow ahead of the
flare.

Although very few systematic investigations have been conducted to investigate the
effects of transverse rod geometry on dynamic damping over a range of model configura-
tions, Mach numbers, Reynolds numbers, and amplitudes, the data available tend to in-
dicate that (i) rod influence becomes negligible at the high Reynolus numbers when the
flow is turbulent and (ii) rod size effects are small provided the rod is small com-
pared to the model size. Tests with transverse rod supports should be supplemented
with tests employing a sting support balance system to provide comparative data at
low amplitudes, where the influence of the transverse rod is most pronounced.

3.1.2.4 Magnetic Model Support

Magnetic suspension provides a means for suspending a model in a test unit without
any physical support, and thereby eliminates any questions about the experimental
results being influenced by the method of physical support (sting or strut). The
magnetic suspension system consists of a series of electromagnets which produce magnetic
fields and gradients of magnetic fields to provide forces and moments on a model. The
model has a magnetic moment which may be a part of the model if a permanent magnet is
used in the model construction. Other methods for providing a magnetic moment are
described in Reference 29. 1Included in the system for control is an optical system
which monitors the position of the model by light beams passing through the test
section and focused onto sensors. When the system is in equilibrium, forces and
moments caused by gravity, aerodynamics, and inertial effects, for the case of a moving
model, balance out the applied magnetic forces and moments. Changes in model position
activate the control system, and currents flow through the magnetic coils to produce
forces and moments on the model to hold it in equilibrium.

A magnetic suspension system with V-magnet orientation developed at the AEDC-VKF
(Ref. 30) for static force, moment, and wake measurements is shown in Figures 28 and
29. A similar system, but with L orientation of the magnets has been develcped by
MIT (Ref.31) to cbtain static force, moment, and dynamic stability measurements.

3.1.3 Balance Tare Damping

3.1.3.1 Description of Damping

¥Wind tunnel models have to be mechanically suspended on a bearing or spring to pro-
vide oscillatory motion. Exceptions to this are recent developments of magnetic model
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suspension systems which have been refined to the degree that damping data have been
obtained?®. Mechanical suspension introduces damping which must be accounted for in
the analysis.

Aerodynamic damping as a rule cannot be measured directly with most balance systems,
since it is a part of the measured total damping; therefore it must be obtained in-
directly as the difference between the total and tare damping. With gas bearing pivots
this is generally not necessary, since they usually have a negligible amount of tare
damping. It is customary in writing the linear differential equations expressing en
oscillatory motion to assume that the total damping, which is the aerodynamic plus tare
damping, is proportional to & . Therefore the motion in pitch for a free oscillation
may be expressed by

1,0 - (Mg, + M) — (Mg + Mg )0 = O,

where the subscript a identifies the aerodynamic term and t identifies the tare
term.

The term tare damping is applied here to denote the operation of non-aerodynamic
influences which, by resisting the motion and absorbing energy from the system, reduce
the amplitude of motion. A constant-amplitude oscillation would continue to exist if
damping forces of various kinds did not exist. Damping forces arise from the mechanical
system damping, damping capacity of the materials used in the system, and air damping.
Although it is convenient to classify the contributing factors in this manner in dis-
cussing tare damping as applied to dynamic stability testing, the mechanical system
damping and damping capacity uf the materials are inseparable in the measurements and
constitute the term My . Air damping is impo-tant only insofar as determining the
magnitude of My, from air-off tests.

Mechanical system damping involves distinguishable parts of the system and arises
from slip and other boundary shear effects at mating surfaces, interfaces, or joints
Fnergy dissipation here may occur as the result of dry sliding (Coulomb friction)
iubricated sliding (viscous forces) or both.

The damping capacity of materials, or material damping, refers to the energy dis-
sipation that occurs within the material when the structure is undergoing cyclic stress
or strain. These internal energy losses may be considered as being due to imper-
fections in the elastic properties of the material. In a truly elastic member, not
only is strain proportional to stress but also, on removal of the stress, the material
retraces the stress-strain relationship that existed during the application of the
stress. Even if materials are stressed within the elastic limit, some energy is lost.
Energy dissipation in a material during a stress cycle leads to a hysteresis loop in
the stress-strain curve and the area o* the loop denotes the energy lost per cycle.

Air damping results from a loss of energy caused by restrictive effects as a mass
moves through a medium such as air. The damping may result from dynamic pressure,
viscous effects, and vortex formation and shedding; however, the relative effects of
each are not knowm. Theoretical studies of the viscous damping force on a sphere and
cylinder oscillating in a fluid®? *? show that each will experience forces proportional
to the velocity and square root of the fluid density. Experimental air-damping data
for circular and rectangular plates, cylinders, and spheres are presented in Reference
34 and show the effect of pressure, vibratory amplitude, frequency, shape, and surface
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area on the air damping for models that are mounted on the end of a cantilever beam.
The results show that air damping associated with plates is directly proportional to
the ambient pressure and amplitude is indicative of the influence of dynamic pressure.
Low amplitude results for cylinders oriented perpendicular to the plane of oscillatory
motion are in agreement with a theory by Stokes®® and are proportional to the square
root of the density but show no variation with frequency.

It is preferable to design dynamic-stability balance systems in such a way that lie
tare damping is small compared to the aerodynamic damping. For scme classes of models
at hypersonic and hypervelocity speeds, where the aerodynamic damping is low, the tare
damping can approach, or even exceed, the aerodynamic damping. An example of the
contribution of the mechanical system and air damping relative to aerodynamic damping
is shown in Figure 30. It is apparent from this example that, as the Mach number is
increased, extreme care must be taken to obtain measurements of tare damping with a
high degree of accuracy, so that the difference constitutes an accurate measurement
of the aerodynamic damping.

3.1.3.2 Evaluation of Still-Atir Damping

Mechanical and material damping can be determined by tests in still air at atmos-
pheric pressure; however, this can introduce large errors in some cases, since the
damping thus obtained includes air damping. To determine the magnitude of air damping,
tests are made in a chamber of the type shown in Figure 31 to permit variation in the
ambient pressure. The wind tunnel can also be used for this test; howevcr, its
environment must be free of even small amounts of airflow and turbulence. A typical
set of tare damping weasurements for a blunt cone model are shown in Figure 32 for a
range of pressures from atmosphere to vacuum. The level of damping at a vacuum re-
presents the mechanical system and material damping, since the air damping is essen-
tially zero. An example of the magnitude of the air damping as a percentage of the
aerodynamic damping is shown in Figure 33 for a series of model shapes. At supersonic
speeds the air damping is on the order of 2 to 4%, but increases significantly with
Mach number, even approaching 100% of the aerodynamic damping at Mach 10.

The necessity for accurate tare damping results has been mentioned and specific
reference made to some of the sources of damping in a mechanical system, one being
energy dissipation in joints of multiple piece systems. To ensure that tare damping
is repeatable and consistent, - number of tare damping recordings are usually made
following removal and replacement of the model and flexure or pivot system until tare
damping is shown to be repeatable.

In cases where the axial and/or normal forces are large, measurements are made with
the pivot loaded to determine its influence on the mechanical damping and pivot
stiffress. In most cases the pivot static loading will have little effect on thke tare
damping characteristics

Since the model undergoing test will oscillate at a frequency different from that
of the tare damping tests at a wind-off condition, it is necessary to establish how
the energy loss or tare, Mg, . at a vacuum, will vary with frequency. For flexure-
type pivots Smith®® notes that the tare damping per cycle is a constant fraction of
the energy stored in the spring at the beginning of the cycle, independent of the
frequency. This is equivalent to Mg, = C/w , which was found earlier in experiments
by Welsh and Ward’®.
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3.1.3.3 Damping Characteristics of Different Metals

Damping characteristics of materials exposed to cyclic stress are affected by several
factors, which must be considered in the selection of materials for flexure pivots.
Some of the factors are

(1) condition of the material - composition and effect of heat treatment,

(1i) state of internal stress - effect of machining and changes in stress due to
cyclic motion and temperature histories,

(1i1) stress imposed by service conditions - type of stress, magnitude, stress
variations, and environmental conditions.

Factors which include the magnitude of the stress, stress history, and frequency may
be significant at one operating condition and unimportant at another. Final selection
of a material should be based on tests of a specimen in the configuration in which the
material will be used and under simulated operating conditions.

It should be recognized that, in most systems where oscillations or vibrations
occur, the damping introduced by the properties of the materials employed is, in general,
only one factor contributing to the total damping. Nevertheless, a knowledge of the
charascteristics of structural materials is important and the choice of material should
be guided by its damping characteristics.

Materials having a Young’s modulus which ranged from 6.2 x 10° for magnesium to
28.5 x 10° 1b/in? for Armco 17.4 stainless steel have been tested in the VKF to provide
material damping data for use as a guide in selecting materials for flexure-pivot
designs. An example of the material damping results for a range of frequencies and
beam stiffnesses is shown in Figure 34. Additional information on material damping may
be found in Reference 37.

3.2 DYNAMIC STABILITY DERIVATIVES - PITCH OR YAW

The basic methods for obtaining dynamic stability measurements are well known, dating
back to early 1920 when British reports on the subject began to appear. It was found
that aerodynamic pitch damping derivatives consisted of two parts, Hq and Mg . and
experiments were devised to account for these terms separately. These experiments aere
successful; however, it was concluded that the technique was not satisfactory for de-
ducing I& at high speeds (transonic) or high frequencies. Some modes of oscillation
such as short-period damping can be evaluated satisfactorily if the sum of the damping
derivatives, for example (C.q + C-d)- is known, even though the separate values of
C.q and C-d are unknown. Instances may exist at supersonic speeds in which the
application of test data to calculations may require the damping derivatives in some
way other than the combined form; however, the general practice has been to measure
the derivatives in combined form. Wind tunnel techniques that are in most general use
at supersonic sprveds and above can be summarized as the free-oscillation and forced-
oscillation methods.

The free-oscillation method is one of the earliest used and is considered to be the
simplest from the viewpoint of equipment and instrumentation. The model, restrained

by & pivot, is deflected to an initial amplitude and released, and the decaying motion
is observed.
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With the forced-oscillation technique, a restrained model is forced to perform
simple harmonic motion by means of an oscillator, transmitting forces through a linkage
to a torque member which is rigidly connected to the model. Normally the structural
damping of balance systems used at supersonic and hypersonic speeds is very low and
the torque member stiffness is also low. This requires the system to be operated at
or near its resonant frequency. In order to obtain Jata over a wide frequency range,
the model moment of inertia or the stiffness of the structural restraint may be varied.

An alternative method that may be used for tests over a wide range of oscillation
frequencies is referred to as inexorable forcing; ard as the name implies, the model
is driven in a controlled mauner by rigid linkage.

Most forced-oscillation systems employ special instrumentation techniques which
utilize a feedback control system for controlled oscillation of the model when negative
damping is present. In addition, these control systems provided amplitude control for
measuring positive damping.

Both free-oscillation and forced-oscillation balances may be further categorized as
either small-amplitude or high-amplitude systems. A small-amplitule balance measures
local values of damping and pitching moment slope, since the model oscillates at
amplitudes of about one or two degrees, and is often used to obtain data at angles of
attack other than zero. The balance stiffness or restoring moment for large-amplitude
balances is normally zero or near zero. Forced-oscillation systems may be operated at
about 115 degrees, as compared to amplitudes which are only limited by the balance
support for free-oscillation balances.

The mathematical treatment of systems with free- or forced-oscillation motion may
be found in many texts; however, the methods are treated in the next section for the
sake of completeness

3.2.1 Theory

The theory for linear and non-linear one-degree-of-freedom and three-degrees-of-
freedom free-oscillation systems will be treated. The forced-oscillation theory will
be developed, followed by a brief treatment of local and effective values of damping
and finally the aerodynamic transfer equations will be developed.

3.2.1.1 Free Oscillation (One-Degree-Of-Freedom)

The equation of motion for a body in pitch was derived in Section 2.2 and has the
same general form as the equations of motion for a body in yaw and roll. For free-
oscillation systems having structural stiffness, the equation of motion has the form

IE = (Mgy + Mz ) (Mgy + Mg )6 = 0. amn

After introducing new nomenclature for simplification of the derivation of the solution
to Equation (17), it becomes

1,6 +CE+KE = O . (18)
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The general solution of this equation describing free-oscillation motion can be
written as

(19)

where A, and A, are arbitrary constants and r, and r, are the roots of the
characteristics equation. These are obtained as

C . <C>2 K (20)
Ty2 © =5 ol
21, 2 I,

but, since the undamped natural circular frequency is « = v(K/IY) , and letting
C/21, = a . Equation (20) becomes

_ 2 2
r,, = -as tv(a® -« .

The case of interest is a < « , where the roots are complex, representing the condition
where the system will oscillate. The general solution to Equation (19) for this case

is
- bi)t a-bi)t
6 Ale(a’ "o, Aze( e (2D
where T . = a tbi
a = -c/2,
K c \?
b = ;— - —;— : uy (undamped natural frequency) .
Y “ty

Equation (21) can also be written as

. =(c/2ry)e
¢ = c.e cos (uy t ¢) , (22)

80 and  being arbitrary constants. Equation (22) represents a hsrmonic oscillation
with damping. When cos (wgt - &) =1, the envelope encompassing the points of tangency
with the displacement is described by

. -(c 21Y)t
c = e .

From this relationship, the logarithmic decrement loge(é'él) is used to obtain the
damping term C . An often used parameter for measuring the damping coefficient is
the time required to damp to a particular amplitude ratio. Letting 81 and 52 re-
present amplitudes occurring at times t, and t, . respectively, and letting

82/5l = R, we obtain the following equation for the damping moment

C = -2I,f log, R/C_, . (23)

since t,-t, = Cp/f.
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From Equation (21) for the natural damped frequency, the static moment is

K = Iy + I(C/21)°% . (24)

The term IY(C/2IY)2 is usually very small and can be neglected.

As shown in Equations (17) and (18), the dynamic damping and static ooments consist
of moments due to the aerodynamics and moments produced by tares in the balance system.
The tares are evaluated from wind-off measurements, and the final aerodynamic dynamic

damping and static moments are given by

C = - Mgy = - (Mg + Mg)y
Mag = (Mgg + Mge), - (Map)y

K= - Mgy = - (Mgg + Mgy)y
Moa = (Mg + Mgp)y = (Mgy), .

where the subecripts w and v denote wind-on and vacuum conditions, respectively.

Since the structural damping moment parameter varies inversely as the frequency of
oscillation, incorporation of Equations (23) and (24) along with the eguations above

gives

. f
Mge = 2I, log, R Ef/c,u)' - (£/C5", ?%]

Moy = Iyllagly - (wg)y] .

In cases where the balance system has no structural stiffness (systems using a gas
bearing or ball :earing pivot), the tare damping may be evaluated independently of the
model. Semi-empirical means may be needed to find the tare damping at the fregquency

and the motion axial load that will be experienced in the wind tunnel. Egquation (23)
is simply used to yield

Mgy = 2I,f log, R/C,u .

The tare damping is noted as Mg, and

Mag = 2I,f log, R/C p - Ma,

The aerodynamic stiffness is obtained from Equation (24) as

_ 2
"95 - IY“- :

The derivatives, when reduced to a dimensioniess form for pitching motion, become
- . 2
Caq * Caz = Méa(2Ve/qAd”)

Car = Mga/GoAd .
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It should be noted that the above equations were developed for a linear model. It
will be shown later, in Section 3.2.1.2, that erroneous values of damping may result
if the linear equations are applied to models which have a nonlinear restoring moment.
It will also be sho#n in Section 3.2.1.2 that Equation (22) may be generalized as

. «(0) : -(C/21,)t
e = 2,00 [—]| e Y cos [Tty - ¢) .
w(t)
where Tty = lw(t) dt

and Equation (23) now becomes

1
C = -2I,f log, [R(a,/u))?)/Cyp

3.2.1.2 Ejfects of Nonlinearities

Many aerodynamic configurations of interest have damping rates and oscillation
frequencies that vary with time. Quite often these parameters are functions of the
dependent variable and its time derivatives; therefore the differential equation which
describes the angular motion is nonlinear. In many cases, these nonlinearities are
slight, and the amplitude-time history may be broken into intervals over which the
motion is approximately exponentially damped. It has often heen scsumed that, by
applying the linear theory over these approximately exponentially damped segments, an
accurate estimate of the aerodynamic damping may be obtained. This is true only when
the aerodynamic stiffness is constant. Nicholaides®® has shown qualitatively how
errcrs in the damping measurements can be made using this approach. In order to show
this, Equation (18) will be used in the form

1
o

G+ DIE + Dzé (25

where

D, = D,E.6,t)

(1]

D, = D,(5.6.1) .

Multiplying Equation (25) through by 2""/D2 and integrating yields

_ a4l

t, [tz . ;
Lt (D, + 20,D,](6/D,)? dt .

1 t1

t .
= (YD)
t'1

Assuming that t1 and t, are times that peaks in the motion occur, this expression
reduces tn

\ t, .. .
87 . g2 = J; ? (b, + 20,D,](6/D,)? dt .
1
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A dyramic stability condition is obtained from this expression as
b, + ,0,] > 5.

For zero viscous damping (D1 = 0), the convergerce or divergence of tle motion is
dictated by the rate of change of D, with respect to time. Thus the variable aero-
dynamic stiffness term D2 supplies a mechanism by which energy may be fed into or
taken away from the aystem. The linear theory, Equation (18), assumes that Dz is
constant aud therefore that the constant term Dx determines the convergence or
divergence of the system. One can readily see that if the linear theory is applied to
a situation where D, 1is a variable, the value of D, obtained will be erroneous.
This is true even if the linear theory is applied to the nonlinear oscillation over
small approximately exponentially damped intervals. The magnitude of this error is,
of course, dependent of the magnitude of 62 .

When the aerodynamic nonlinearities are large, Equation (25) is very difficult to
solve. Fortunately, as mentioned previously, there are many aerodynamic configurations
of interest for which these nonlinearities are small. 1In addition, these shapes usually
have damping moments that are small compared to the restoring moment. For such shapes
Equation (25) may be written as

6 +0,6.6,t)6 + [p,, +D,,6.6,t))6 = 6, (20)
where
D, = D,, +D,,
D,,6 > Dlé

D,, > D

20 21

This equation may be reduced to the van der Pol equation, which is given as

5+%§ =e&&&0. 27)

where $(9,é,t) contains the nonlinear terms and € 1s a small dimensionless parameter
which characterizes how close the system is tc 2 linear conservative one. For the
above example,

ed(6.6,t) = - [D,(6.6,£)8 +D,,(6.6,£)6) .

The motion may be approximated for short time intervals by the solution for a harmonic
oscillator (€ = 0) which is given as
6 = 6, co8 (D0t +¢) .

Since the right-hand side of Equstion (27) is small but not zero, 00 and ¢ are
actually slowly varying functions of time.

It is shown in Reference 39 that a second-order nonlinear differential equation<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>