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ABSTRACT

A set-theoretic data structure (STDS) is virtually
a 'floating' or pointer-free structure allowing quicker access,
less storage, and greater flexibility than fixed or rigid
structures that rely heavily on internal pointers or hash-
coding, such as 'associative or relational structures,' 'list
structures,' 'ring structures,' etc. An STDS relies on set-
~“eoretic operations to do the work usually allocated to in-
ternal pointers. A question in an STDS will be a set-theoretic
expression. Each set in an STDS is completely independent of
every other set, allowing modification of any set without per-
turbation of the rest of the structure; while fixed structures
resist creation, destruction, or changes in data. An STDS is
essentially a meta-structure, allowing a question to 'dictate’
the structure or data-flow. A question establishes which sets
are to be accessed and which operations are to be performed
within and between these sets. In an STDS there are as many
'structures' as there are combinations of set-theoretic opera-
tions; and the addition, deletion, or change of data has no
effect on set-theoretic operations, hence no effect on the 'dic-
tated structures.' Thus in a floating structure like an STDS
the question directs the structure, instead of being subservient

to it.
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A set-theoretic data structure (STDS) is comprised
of two parts: a collection of sets Q and a collection of set-
operations 8. The collection O consists of two special sets,
n and B, plus a finite number of other sets. The sets of Q
are represented by blocks of centiguous storage locations with
che set n containing nzmes of all the sets, while the set ([
is the set of all 'datum-names.' B is represented by a contig-
uous block of storage locations; the address of a location in
the B-block is a datum-name and an element of B. The content
of a location in the B-block is the address of a stored descrip-
tion of that datum (see Fig. 1). The contents of the n-block
and the B-block are the only pointers needed for the operation
of an STDS. The storage representations oi the remaining set=
do not contain pointers, but contain datum-names. An STDS is
a 'floating' structure or a meta-structure in the sense that
the set-operations S act as the structural ties instead of
using internal pointers or hash-coding. The set-operations are
dependent oaly on the set n, the set containing the names of
e ch set. Thus for any collection Q the set-operations are
independent of: 1) the deletion or addition of datum-names,
2) any changes in datum-names, 3) the order in which the datum-
names are stored, 4) the size of any set, or 5) any other
modification, including the creation or deletion of sets, as
long as n is kept current. Furthermore, each set in Q is com-

pletely independent of any other set in Q (Q need not be dis-

jointed).
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Since each set is an entity unto itself, completely
free of internal pointers, and since the set-operations S are
dependent only on n, the names of these scts, an STDS is re-
lieved from the serious sigidity and excess storage encountered
in fixed structures, such as 'associative or relational struc-
tures,' 'list structures,' 'ring structures,’' or any other
structure relying heavily on internal pointers or hash-ccding.

The viability of an STDS rests on the speed and scope
of the set-operations in S§. The algorithms for these operw.-
tions will be presented in a forthcoming paper [4]; the feasi-
bility of the operations'being extended to sets of arbitrary
length n-tuples is expressed in another paper [3] which was
submitted to IFIP Congress '68. The present paper presents
the available operations along with some times experienced
on an IBM 7090 (see Table 1). The set-theoretic definitions
appear in Appendix I, for those who are not familiar with the
definitions or are not accustomed to the notation preferred
in this monograph. The following tableau presents the avail-
able set operations for constructing questions in any way

ccmpatible with the parent language.

.
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S: THE COLLECTION OF AVAILABLE

UNION
D= UN.(A,B,C)
D= UN.(1,A,C)
INTERSECTION
D= IN.(A,B,C)
D= IN.(1,A,C)

SYMMETRIC DIFFERENCE

D= SD.(A,B,C)

D

SD.(1,A,C)
RELATIVE COMPLEMENT

D

RL.(A,B,C)
EXACTLY N elements of A
D= EX.(N,A,C)
FOMAIN of A
D= DM. (A,C)
RANGE of A
D= RG.(A,7)
IMAGE of B under A
D= IM.(A,B,C)
CONVERSE IMAGE of B under A
D= CM. (A,B,C)
CONVERSE of A
D= CV.(A,C)
RESTRICTION of A to B

D= RS.(A,B,C)

SET-OPERATIONS

{c}

(@]

AuB

va

AnB

Ne.

AaB

AA

D(A)

R(A)

A[B]

[B]A
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13)

14)

15)

16)

17)

18)
19)
20)
21)

22)

23)

25)

RELATIVE PRODUCT of A and

D= RP.(A.B,C)

CARTESIAN PRODUCT of A and B

D= XP.(A,B,C)

DOMAIN CONCURRENCE of A relative to B

D= DC.(A,B,C)

RANGE CONCURRENCE of A relative to B

D= RC.(A,8,C)

SET CONCURRENCE of A relative to B

D= SC.(A,%,C)

CARDINALITY of A

N= C.(A)

BOOLEAN OPERATIONS:

I= SBS.(A,B) I =1
I= EQL.(A,B) "
= DSJ. (A,B) "
= ELM. (A,B) "

I= EQV.(A,B) "

-5-
B

D = {C} C = A/B

W C=AXx2B

" C =D(A:B)

" C =~ R(A:")

X C =G (A:B)
N is a number N = kA

Ie{0,1}

iff A is a subset of B

A is equal to B
A and B are disjoint
A is an element of B

#A is equal to #B

SPECIAL CONTROL OPERATIONS

SET CONSTRUCTION
= 5.(A,B,C,D,....)
MODE of A
N= M.(A)
INIT{AL SETTING of A

ISET. (A)

X = {A] p = {B,C,D,...}

N ef{1,2,...,8} {see text)

sets A to be empty or the universe
depending on the function which uses
it first, see Appendix II.
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26) ACCESS DATA in A by FORMAT n

D= ACC.(n,A,C) n e{1,2,3,...} p={c}

C = may be a set uf datum-names or a set of data;

t2¢3, two may be distinguished by the mode of C

The cperations are pres.nted in a format compatible
with MAD, and with FGRTRAN if the periods are removed. In
general the last parameter can be deleted from any function.
This default case assigns a temporary storage block, the name
of which is returned by the subroutine. For example: D=UN.(A,B)
gives a name in D for the temporary storage block containing
the unior of A and B. Since all functions operate on just the
name of a storage block representing a set, and since all func-
tions return a name, any degree cf ne_ting of operations within
operations 1s allowable. 1wo exceptions tc the above are (17)
and (24) which are numbers and not storage locations. 1In the
case of (23), if only one set is Ziven, the set is unchanged,
but the name of the set is put in X. The MODE of a set is
covered in depth in an aforementioned paper [4]. It will suffice
here tec explain that 'mode' represents one of eight different
storage ccnfigurations, each tailored to special sets and opera-

tioas. The functions do not require participating sets to be

¢ the same mode. Notice that all the operations are defined
for any set though the result in some cases may always be empty
as in the case of DM.(A) where A is the set of the first 10,000

integess. A forthc,ming paper [2] will show that there is a
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meaningful definition for relations covering arbitrary sets

of variable length n-tuples without couching these rslations

as sets of ordered pairs. Also, the binary-relation properties
(e.g., domain, image, relative product, restriction, etc.)

are extended in a meaningful way tn cover this extended concept
of relation. These extended operations can also be implemented
in an STDS [3].

Table 1 gives the results of implementing some of
these operatior, on the IBM 7090. The four operations considered
here are: unary union, unary intersection, unary symmetric:
difference, ard 'exactly n' for n e{l,...,#G} where ¢ is tne family
of sets being operdated on. The number of elements in G is given
by #G. All the elements of G contain the same number of ele-
ments, #A, and the size of the population which the elem nts
of each A were chosen from is #P.

It should be noted that the times in Table 1 are
dependent on the total number of elements contained in the
elements in G, ard not ths number of elements in G. In (d)
through (i) the total number of elements contained in the
elements of G is 10,000. While #G varies from 20 to 500, the

times for UN. and SD. remain the same.
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#G #A OPERATION

500

500

50

1200

1000

1000

1000

1000

1000

2 200 UN.(1,6)
IN.(1,6)
SD.(1,G)
EX.(1,G) to

4 200 UN.(1,6)
IN.(1,G)
SD. (1,6)
EX.(1,3) to

10 20 UN.(1,6)
IN.(1,6G)
SD. (1,6)
EX.(1,G) to

10 1000 UN.(1,6)
IN.(1,G)
SD.(1,6)
EX.(1,6) to

20 500 UN.(!,G)
IN.(1,G)
sD.(1,G)
EX.(1,G) to

50 200 UN.(1,G)
IN.(1,6)
SD. (1,G)
EX.(1,G6) to

100 100 UN. (1,G)
IN.(1,G)
sD.(1,G)
EX.(1,G) to

200 S0 UN.(1,G)
IN. (1,6)
SD.(1,G)
EX.(1,G) to

500 20 UN.(1,G)
IN.(1,G)
SD.(1,G)
EX.(1,G)
Table 1. EXECUTION TIMES FOR

*N THE IBM 7090

EX. (2,G)

EX. (4,G)

EX.(10,G)

EX. (10,G)

EX.(18,G)

EX.(20,G6)

EX.(23,06)

EX. (24,G)

SECONDS

.03
.05
.03
.16

.06
.12
.06
.42

.01
.10
.03
.37

.73
.90
.76
7.89

.73
.48
.76
10.96

.75
.16
.76
11.00

.75
.15
.76
11.88

.75
.06
.78
12.36

.76
.05
.78
12.50

SET OPERATIONS

vt e M AR
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The rest of this paper will "e devoted to examples

demonstrating the applicability of an STDS.

EXAMPLE 1

of six

Let there be six sets: A,B,C,D,E,F,the membership lists

country clubs. For each male resident of Ann Arbor,

let there be a datum-name in B for a data-block containing:

person's

name, address, phone number, credit rating, age,

golf handicap, wife's name (if any), political affiliation,

religious

preference, and salary. The set N will contain

the

names of the sets, namely: A(0), B(0), C(G), D(0), E(0), F(O).

This along with the collection S c¢f set operations allows

answering

1)

2)

3)

4)

5)

6)

the following questions.

How rany members belong to club A or B but not C?

Find the phone numbers of members in an odd number

of clubs.

Get addresses of members belonging to one and onl
one club.

Get addresses and phone rumbers of people not in

any club.

Find members of A that are not also in B but vho

may be in C only if they are not in D, or in E if

they are not in F.

y

Get *the average credit rating of members belonging

to exactly three clubs.

144t
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The pussible questions may become ridiculously involved

and may interact with any spontanecusly constructcd sets. For

example of the latter, let X be the set of Ann Arbor males
born in Ann Arbor.

7) Find the avcrage age of members born in Ann Arbor

and compare with average age of members not horn

in Ann Arbor.

The answers to (1) through (7) formulated in an STDS
are expressed below, with N and M representing real numbers,
and with BB for 8 and NN for n.

1) N = C.(RL.(UN.(A,B),C))
ans: N
2) ACC.(1,SD.(1,NN),Q)
ans: Q Format 1 gives phone numbers
3) ACC.(2,EX.(1,NN),Q)
ans: 0O Format 2 gives addresses
4) ACC.(3,RL.(BB,UN.(1,NN)),Q)

ans: Q Format 3 gives phone numbers and
addresses

5) RL.(RL.(A,B),UN.(RL.(D,C),RL.(F,E)),0)
ans: Q

6) ACC.(4,EX.(3,NN),Q)

N=20
THROUGH LOOP, FOR I = 1,1,1.G.C.(0Q)
LOOP N = N + Q(I)
N = N/C.(Q)
ans: N Format 4 gives credit rating

T
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7) N 0
M =20
ACC. (5,X,T)
THROUGH LOOP1,FOR I=1,1,I1.G6.C.(T)
LOOP1 N =N+ T(I)
ACC.(S,RL.(BB,X),P)
THROUGH LOOP2, FOR I=1,1,I.G.C.(P)

LOOP2 M =M+ P(I)
N = N/C.(T)
M = M/C.(P)

ans: N and M are the respective average ages

Fuomat 5 gives ages

EXAMPLE 2

Family lineage is easily expressed in an STDS. With
just five initial relations defined over a population U, all
questions concerning family ties may be expressed.

Let U be a population of pecople and let

M = {<x,y>: y is the mother of x}

:: {<x,y>: y is the father of x}

g v

S = {<x,y>: y is a sister of x}
B = {<x,y>: y is a brother of x}
H = {<x,y>: y is a husband cof x}
Let X be any subset of the population U, find
1) the set G of Grandfathers of X.
G = T[(FuUM)([X]] set notation
IM. (F,IM. (UN.(F,M),X,,G) in an STDS
2) the set GF of Grandfathers of X on the father's side.
GF = F[F([X]] set notation

IM. (F,IM, (F,X),GF) STDS

LT
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3)

4)

5)

6)

7)

9)

10)

-12.

the set GM of Grandfathers of X on the mother's side.
GM = G ~ GF set notation
RL.(G,GF,GM) STDS

the set GR: the grandfather relations over U.

GR = (FuM)/F set notation

RP. (UN. (F,M),F,GR) STDS

the general relation: P = {<x,y>: y is a parent of x}
P = FuM set notation

UN. (F,M,P) STDS

the general relation: Sibling, L.

L =SvB set notation

UN. (S,B,L) | STDS

the general relation: Children, C.

C=MuvF =7 set notation
Ccv.(pr,C) STDS

the general relatior: Aunt, A,

A = (P/S) v (P/B/H) set notation
UN. (RP.(P,S),RP.(P,RP.(B,CV.(H))),A) STDS
the general relation: Wife, W.

W=H _ set notation
CV. (H,W) STDS

the general relation: Cousin, K.

K = P/L/C set notation

RP. (P,RP.(L,C),K) STDS
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11) the general relation: Half-sibling, HS.
HS = P/C ~ (M/MNF/F) set notation
RL. (RP. (CV.(C),C),IN. (RP.(M,CV.(M)),

RP.(F,CV.(F))),HS) STDS

12) people in X with no brothers or sisters
Q = X~ D(L) set notation
RL. (X,DM.(L),Q) STDS

13) find all relations of X to a set Y such that Y is
equal to the image of X.
Q ={A:(Aen) (Y = A[X])} set notation
ISET. (Q) STDS
DC.(X,NN,T)
THROUGH LOOP, FOR I=1,1,I.G.C.(T)

B = IM.(T(I),X)
LOOP WHENEVER EQL.(Y,B).E.1, UN.(0Q,S.(T(I)),0)

Many more possibilities are available and might be
tried by the reader.

An example of quantified questions will be found in
Appendix II, which may also be of help to the reader who is
familiar with associative data structures. Also of interest
is a recently completed implementation of an associative data
structure [1], which, while not as general as an STDS, is more

general than other known implemented data structures.
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APPENDIX I
SET-THEORETIC DEFINITIQNS
Conventions
The logical connectives 'and,' ‘or,' 'exclusive-or'
are represented by 'A,' 'v,' 'a,' 'For all x,' 'for some x,'

'for exactly n x' will be represented by 'v¥x,' '3x,' 'E(n)!x.’
Parentheses are used for separation, and as usual the concat-
enation of parentheses will represent conjunction.

'A' will be a set if and only if (a) it can be repre-
sented formally by abstraction (i.e., A={x:8(x)} where 8(x)
is a predicate condition specifying the allowable elements
'x9; (b) 'A' can be represented by {,} enclosing the specific

elements of 'A.'

Definitions

The symbol ‘e' means 'is an element of'; xeA reads:

"x is an element of A."

1) UNION
a) binary union of two sets A and B
AvB = {x:(xeA)v(xeB)}
b) unary union of a family G of sets
UG = {x:(3AeC) (xeA)}
¢) indexed union of a set f(A) over the family G

UAer(A) = {x:(3AeG)(xef(A))}
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2) INTERSECTION
a) biuary intersection of A and B
AnB = {x:(xeA)(xeB)}
b) unary intersection of a family G
NG = {x:(VAeG) (xeA)}
¢) indexed intersection of f(A) over the family G

nAer(A) = {x:(VAeG) (xe£(A))}

3) SYMMETRIC DIFFERENCE
a) binary symmetric difference of A and B
A aB = {x:(xeA)a(xeB)}*

*even though the symbol 'a' has two dif-
ferent meanings, no confusion is likely

b) unary symmetric difference of G
AG = {x:(for an odd number of AeG) (xeA)}
¢) indexed symmetric difference of f£f(A) over G

AAer(A) = {x:(for odd no. of AeG) (xef(A))}

4) RELATIVE COMPLEMENT
ANB = {x:(xeA)(x¢B)}
5) EXACTLY NI
the set of elements common to exactly 'n' elements of
a given set G is represented by:
EG = {x:(E(n)!AeG) (xeA)}
6) DOMAIN cof a set A
D(A) = {x:(3y) (<x,y>eA)}*

*<x,y> represents an ordered pair

7) RANGE of a set A

R(A) = {y:(3x)(<x,y>eA)}
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8) IMAGE of B under A

A[B] {y:(3xeB) (<x,y>eA)}

9) CONVERSE IMAGE of B under A

{B]JA

{x:(3yeB) (<x,y>eA)}
10) CONVERSE of A
A = {<y,x>: <x,y> eA}
11} RESTRICTION of A to B
AlB = {<x,y>:(<x,y>eA)(xeBj}
i2) RELATIVE PRODUCT of A and B
A/B = \<x,y>:(32)(<x,z>eA) (<z,y>eB)}
13) CARTESIAN PRODUCT of A and B
A x B = {<x,y>:(xeA)(yeB)}
14) DCMAIN CONCURRENCE of X relative to A
P (X:A) = {B:(BeA)(XeD(B))}
15) RANGE CONCYRRENCE of X relative to A
R (x:A) = {B:(BeA)(XeR(B))}
16) SET CONCURRENCE of X relative to A
G (X:A) = {B:(BeA)(XeB)}
17) CARDINALITY of A
#A = n iff there are exactly n elements in A
18) A is a SUBSET of B iff every element of A is an element of B
19) A is EQUAL to B iff A is a subset of B, and B is a subset
of A
20) A and B are DISJOINT iff the intersection of A and B is empty
21) A is EQUIVALENT to B iff A and B contain the same number

of elements

HRMI
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TRANSFORMULATION OF AN ASSOCIATIVE DATA STRUCTURE

If, in J.A. Feldman's paper [5], an 'attribute' repre-

L EHE MR ivbet

sents a relation, then since any relation can be represented

by a set of ordered-pairs, the formulation involving ordered
triples may be abandoned in favor of sets of ordered-pairs.

A correspondence may then be made between the expression A(o)=v
and a set-theoretic interpretation. 1ln Feldman's paper six

questions are represented by: A(o)=?, A(?)=v, ?(o0)=v, A(?)=7,

TETTTNNT

?(0)=?, and ?(?)=v. As presented in the paper the expressions
are ambiguous concerning whether 'o' and 'v' represent sets,
or elements, or both. The general formulation is to assume
that they are sets, and to replace 'o' and 'v' by tie sets

'X' and 'Y', and to replace A by a set of relations R. 1If

the original intention was for 'o' and 'v' to be elements,

then X and Y will just be singleton sets. 'R(X)=Y' is now

el L U i i e gdead L i

the general form, and generation of questions is accomplished
by asserting one or two of the three sets and pondering the
remaining. Just deleting one or two sets, however, does not

yicld a well-formed question; many interpretations may be pos-

sible. In an STDS all interpretations may be made explicit.
For a sampling, each of the six questions is formulated in the §
most general way and then in some less general internreta-

tions.
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1) R(X) =Q
Gien a set of relations R and a set of elements X, find Q.
Thr st general interpretation for Q is: Find the set of
elements 'v' such that <o,v>eA
a) for some AeR and some oeX

Q = L&eR oexA[{o}] = {v:(3AeR) (30eX) (cAv)}

Less general interpretations may be given Q by replacing
juantifiers or changing their order:
b) for all AeR and exactly one oeX

Q =N, E()__A[{o}] = {v:(YAeR) (E(1)0eX) (0hV)}

c) for some oveX and all AeR

Q = L%exrkeRA[{o}] = {v:(30eX) (YAeR) (0Av)}

dY for all oeX and for an odd number of AeR

Q=N

oexAAeRA[{o}] = {v:(YoeX) (OAeR) (oAV)}

e) for somz AeR and all oeX

Q = UAeRr%eXA[{O}} = {v:(3AeR) (YueX) (0AvV)}

Expressed in an STDS, these questions become:

a) ISET. (Q)
THROUGH LOOP, FOR I=1,1,I1.G.C.(R)
LOOP UN. (Q,IM. (R(I),X),Q)

b) ISET. (Q)
THROUGH LOOP, FOR I=1,1,I.G.C.(R)
ISET. (T)
THROUGH LOOP. FOR J=1,1,J.G.C. (X)
LoOP IN. (Q,EX. (1,IM,(R(I),X(J)),T).Q)

c) ISET. (Q)
THROUGH LOOF, FOR I=1,1,I.G.C.(X)
ISET. (T)
THROUGH LOOP, FOR J=1,1,J.G.C.(R)
LOOP UN. (0, IN. (T, IM. (R(J),X(T)),T),Q)
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d) ISET. (7)
THROU%G:d4 LOOP, FOR I=1,1,I.G.C.(X)
ISET. (T)

THROUGH LOOP, FOR J=1,1,J.G.C.(R)
LOOP IN.(Q,SD.(T,IM.(R(J),X(I)),T),Q)

e) ISET. (Q)
THROUGH LOOP, FOR I=1,1,I1.G.C.(R)
ISET. (T)

THROUGH LOOP, FOR J=1,1,J.6G.C.(X)
LOOP UN. (Q,IN.(T,1M.(R(I),X(J)),T),Q)

R(Q) =Y

fiven a set of relations R and a set of elements Y, find Q.
Just the most gerieral interpretation will be given since
quantifier manipulation was demonstrated by (1).

Finl the set of elements ‘o' such that <o,v>eA for any

AeR and any veY

Q = L&eRLLeY[{v}]A = {n:(JAeR) (IveY) (oAv) }

gives ISET. (Q)
THROUGH LOOP, FOR I=1,1,I.G.C.(R)
ISET. (T)
TnROUGH LOOP, FOR J=1,1,J.G.C.(Y)
LOOP UN. (Q,UN. (T,CM. (R(I),Y(J)),T),Q)

Q(X) =Y
Given two sets X and Y find the set of relaticns A such

that <o,v>eA for some oeX and some veY

Q = erxuvng({<o,v>}) = {A:(3oeX)(3veY) (0Av)}
Zives ISET. (Q)
THROUGH LOOP, FOR I=1,1,I.G.C.(X) *
ISET. (T)

THROUGH LOOP, FOR J=1,1,J.G.C.(Y)
LooP UN. (Q,UN.(T,SC. (XP.(X(I),Y(J))).T),0)




4) R(Q) = Q

A

Given a set of relations R there is no obvious delinesation

of sets Qo or Qv, three generically different questions
may be phrased, each one of which may be expressed in dif-
- ferent degrees of genevr~lity.

i) Find Qo independent of Qv
ii) Find Qv independent cf Qo

i1i) Find Q° X Qv

For (i) find the set of 'o' such that for scme A in R there

exists a 'v' such that <o,v>eA

Q, = LkeRD(A) = {o0:(3AeR)(0eD(A))}= {o0:(3AeR) (IveB) (0Av)}

For (ii) find the set of 'v' such that for some A in R

there exists an 'o' such that <o,v>eA

Q.= L&eRR(A)= {v:(3AeR) (veR(A)) }={v:(3AeR) (F0eB) (0AV)}

For (iii) find the set of <o,v> such that for some A in R

<o,v>eA

Q = L&eRA = {<o,v>:(3AeR) (0Av)}

These are represeated in an STDS by:

i) ISET. (Q)
THROUGH LOO?, FOR I=1,1,I.G.C.(R)
LOOP UN. (Q,DM. (R(I)),Q)

ii) ISET. (Q)
THROUGH LOOP, FOR I=1,1,I1.G.C.(R)
LOOP UN. (Q,RG. (R(I)),Q)
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Q1) = Q

v

Given a single set X requires, as in (4), three

formulations:

i) Find QA independent of QV

ii) Find QV independent of QA

i'i) Find Q, x Q

separated

For (i) find set of 'A' such that for some oeX there

exists a 'v' such that <o,v>eA

Q, = erxa3({o}:n) = {A:(JoeX)(0eD(A))}

= {A:(30eX) (IveB) (0av)}

For (ii) find set of 'v' such that for some oeX there

exists an 'A' such that <o," >eA

Qv = L%ex UAen

= {v:(JoeX) (FAeD(Xzn)) (veA[{0}])}

A[{o0}] = {v:(30eX) (3Aen) (0Av)}

For (iii) find the set of <A,v> such that for some oeX

<o,v>eA

O 2 erXlJAen

{A}xA[{o}] = {<A,v>:(JoeX)(0Av)}

= {<A,v>:(3oeX) (Ae®D(X:n)) (veA[{o}])}

These are expressed in an STDS as:
i) DC. (X,NN,Q)

ii) ISET. (Q)

THROUGH LOOP?, FOR I=1,1,I.G.C.(X)

DC. (X(I),NN,A)

THROUGH LOOP, FOR J=1,1,J.G.C.(A)
LOOP UN.(0,IM.(A(J),X(1)),Q)

1ii) ISET. (Q)

THROUGH LOOP, FOR I=1,1,I.G.C.(X)

DC. (X(I),NN,A)

THROUGH LOOP, FOR J=1,1,J.G.C.(A)

(see mnote)

(see note)

LOOP UN.(Q,XP.(S.(A(J)),IM.(A(J),X(1))),Q)
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NOTE: Execution is minimized since C.(A) # C.(NN) and

the substitution of erx UAe ({0} :n) for erx ’Aen is

justified by a trivial theorem [3] which states: g'ven X
and n then

(YoeX) (VAen) (Ae ©({o}:n)<«>*A[{0}] # 9)

QA(QQ) = Y is similar to (S5).
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Symbol

iff

AnB
AuB
AaB
ANV B
<xX,y>
{x:8(x)}

XAy

GLOSSARY OF SYMS50LS

Symbol Definition

if and only if

Identity

Conjunction

Disjunction

Exclusive or

Implication (if ... then®
Equivalence

Universal quantifier (for all)
Existential quaatifier (for some)
Uniqueness quantifier (for exactly one)
0dd quantifier (for an odd number of)
Exact number quantifier

Set membership

Empty set

Non-membership

Set inclusion

Intersection

Union

Symmetric difference

Relative complement

Ordered pair

Definition by abstraction

Ordered pair <x,y> contained in A




Symbol
Ue

Ne

AG

E G
AxB
D(A)
R(A)

A/B
AlX
ATX]
[x]A
D(X:A)
R (X:A)

& (X:A)

GLOSSARY OF SYMBOLS (cont.)

Symbol Definition

Union or sum of G

Intersection of G

Symmetric difference of G : ‘
Elements contained in exactly n elements of G
Cartesian product

Domain of A

Range of A

Converse of A

Relative product of A and B

A restricted to X

Image of X under A

Converse-image of X under A
NPomain-concurrence of X relat‘ve to A
Range-concurrence of X relative to A

Set-concurrence of X relative to A
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