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FOREWORD

This report was written for presentation at the ''Helicopter Propul-
sion Systems'' meeting sponsored by the AGARD Propulsion and Ener-
getics Panel, to be held in Ottawa, Canada, 10-14 June 1968,

The work deals with part of a continuing in-house research pro-
gram conducted in the Energetics Research Laboratory under Pro-
ject Nr 7116, "Energy Conversion Research'. Specifically, this re-
port only covers those inertial devices which operate at low pressure
drops (less than 5 psi) and low to moderate particulate loadings (10-3000
mgm particulate/ft3 of air).

Detailed information on the high pressure drop devices can be found
in numerous Aerospace Research Laboratories Reports, e.g., ARL 65-66,

65-219, 66-0218, and 67-0234; and various other technical publications.
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ABSTRACT

The Energetics Research Laboratory of the Aerospace Research
Laboratories (ARL) has been engaged in ultra-microscopic particle
separation studies since 1961, The application of this research
ranges from the protection of turbine engines from dust and/or sea
spray to applications in the field of air pollution. This paper presents
not only the theory of these devices and laboratory experimental re-
sults, but also, field testing results on selected units, The important
trade-offs between design parameters and the selection processes re-
quired to tailor an ARL type dust separator to a specific application are

discussed and other important areas of application are suggested.
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I. INTRODUCTION

A. PROBLEMS

Erosion, deposition and gross damage due to dust ingestion has
drastically reduced engine life expectancies. In field tests conducted by
General Electric, T-58 turbine powered helicopters would fail after only
80 minutes of operation in a dusty environment!. In other tests on nearly
30 engines, engin. life was reduced nearly 90%. In addition to reducing
turbine engine life, the Army Tank Automotive Center (ATAC) has found
that even diesel and gasoline powered vehicles were subject to premature
engine failure®. Under actual combat conditions irn South Vietnam, heli-
copter engine life was reduced by over 70%. The total cost of repairing
equipment which failed duc to Vietnam's red dust exceeded $100, 000, 000
in 1965%* However, if the engines were protected by even a crude se-
parator, engine life expectancies could be expected to intrease by over
100%°. Although dust ingestion significantly reduces engine life and there-
by increases the cost of operations, the results are normally catastrophic,
i.e., results in severe injury or death. Air pollution, however, seriously

affects health and damages or destroys vegetation.

Particulate matter, carbon monoxide, sulfur oxides, nitrogen oxides,
and hydrocarbons are the chief constituents of air pollution®. Particulate
matter causes sickness and premature death, metal corrosion and unsightly
deposits, Carbon monoxide causes headache, loss of visual acuity and re-
duces muscular coordination. The sulfur oxides corrode materials, reducc
visibility, damage vegetation, and add to the number of respiratory diseases
and premature deaths. Nitrogen oxides and hydrocarbons contribute to the
formation of photo-chemical smog which damages vegetation, deteriorates
rubber, and probably increases the susceptibility to or causes various re-
spiratory diseases. The aforementioned results of air pollution are incom-
plete since it is impossible to estimate the total effect on the health of plants

and animals. However, some typical results of 'heavy-smog'' on
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human beings is shown in Table I. Added to the incalculable number of
diseases and premature deaths is $11, 000, 000, 000 a year in property
damage’. Primarily as a result of the economic loss incurred by air
pollution and engine dust ingestion, large sums of money have been spent
to develop and advance filtration techniques. The next section considers
some of the techniques and their range of application. However, in view
of the broad nature of the filtration techniques, only a cursory glance at

the entire spectrum is possible.

B. FILTRATION TECHNIQUES

The elimination of dusts, smokes, and mists (particulate matter)
can be accomplished by: Gravitational settling, inertial and centrifugal
separators, washing and wet scrubbing, electrostatic precipitation, filtra-
tion, sonic and ultrasonic agglomeration, etc. Each method has various
ranges of application depending upon: The flow rates encountered (both
particulate and gas); the energy available to operate the separator (elec-
trical and/or fluid); the space available for the separator; the type, size,
shape and concentration of the particles; the funds available to purchase

1,11 Since the most

and maintain the separator; and many other factorse's'
important parameter is the particle size the device can separate, the range
of application of any separator is quoted as a function of its particle size
separation capakility. Typical ranges of application of the various types of
gas cleaning equipment is shown i. Figure 1. Of all the types shown, ultra-
sonic techniques and thermal precipitators have very limited ranges of ap-
plications and are not suited to the air poliution problem. In the dust inges-
tion case, only the centrifugal separators possess many of the performance
characteristics necessary for application to the engine ingestion problem?¥:*,

These characteristics are:

1. Efficient separation of micron size particles,
2. Low pressure drop thru the separator. £

3. Hi flow rate capability.

RSy, Dt e
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4. Low ejection energies for continuous dust removal.
5. Usable for mobile installations.

6. Little or no maintenance requirements,

Fortunately, the engine separator characteristics are also compatible

with the requirements of an air pollution separator (lessen the air pollu-
tion problem by removing particulate matter). In addition, both the
particle sizes of the dusts encountered by various engines (see Figure 2)
and the particle sizes of the various forms of particulate (see Figure 3

for typical distributions) matter overlap in a broad range. This over-
lapping extends from one micron to approximately 1000 microns. Since
the range of centrifugal separators is from one-tenth to one thousand
microns (see Figure 1), the centrifugal separators (hereafter called inertial
separators) are basically capable of solving the two problems. In addition,
the inertial separators simplicity, low initial and maintenance cost, and

iaggedness make the units highly desirable in both applications,

Application of the inertial separator to both the engine ingestion and
air pollution problem is basically a complex problem since scientific, en-
gineering and management r- quirements and capabilities must be satisfied.
However, some general comments can be made on the range of application
depending upon the inertial separators' capabilities and the inherent char-
acteristics of the problem(s). The next section considers some of the broad

areas of application,

C. APPLICATION OF INERTIAL TECHNOLOGY

As one might logically expect, the range of application of an inertial
separator depends primarily upon the requirementsthe device must meect. In
general, these requirements vary for each particular application and as might
he expected, certain requirements must be "'weighed'' more heavily than others
in different applications. However, the single most important restriction on
the separators application is the area available for the devices installation.

Specifically, the inertial separators' flow rate per unit frontal area is

L X2
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normally below 3 1b m/sec ftz of separator frontal area (Q/A), with a
total pressure drop of approximately 4 inches of HZO (AP), and separation
efficiencies above 95% (ns) (3,5,11,13,14). Thus, the inertial separator
cannot be used in space restricted areas. Table lI shows some typical tur-
bine engines with their corresponding flow rates and engine diameters. In
all cases, except one, the flow rate per unit engine frontal area exceeds

3 1b m/sec ftz. As a result, only a highly limited application of the iner-
tial separator is seemingly possible. A note of caution however, if the
space available for the separator is increased and/or the separation effi-
ciency requirement ia decreased (both at the same pressure drop condi-
tions), the inertial separator can be used on other engines®. For example,
both turbine powered and reciprocating engine surface vehicles have lower
engine flow rates and/or more space available for the installation of a sep-
arator. Thus, surface vehicles which operate in an extremely dusty environ-

ment can use an inertial particle separator for cleaning the inlet engine air.

In addition to being used to reduce or elimirate the engine dust in-
gestion problem, the inertial separator can also be used to lower the total
amounts of pollutants dumped into the atmosphere. Figure 4 shows both
the amounts and the principal sources of the main pollutants. Since the
inertial separators are not normally used for separation of particles below
approximately one micron, only the particulate matter can be effectively
removed from the atmosphere by the inertial separators. Thus, it appears
only a maximum of about 22, 000, 000, 000 pounds of air pollutants can be
climinated through the use of the inertial separator. Stated another way,
it couid reduce the total particulate pollution available to every individual
in the United Statcs by over 100 pounds. However, since particulate matter
acts as a catalyst in the formation of other pollutants the total reduction may

be far more substantial than one might initially expect.

In ddition to the aforementioned arcas of application, the intertial

scparator also have applications in arcas of advanced nuclear, clectrical,
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and chemical propulsion, pumping techniques and other advanced energy
conversion and transfer processes. Since all these areas depend upon
multi-component and multi-phase flows and microscopic separation, a
portion of the Energetics Research Laboratory at the Aerospace Research
Laboratories (ARL/ARE) has concentrated in the general and fundamental

research area of inertial separators since 1961. This report however,

only covers a portion of the work on the low pressure devices designed

after the early part of 1965, This latter effort was largely initiated at the
request of ATAC, and has been spurred on by organizations within the De-

partments of Defense and Commerce,




II. THEORETICAL CONSIDERATIONS

A. BASIC DESIGNS AND PERFORMANCE MEASUREMENT

Based on theoretical studies conducted in 1961}'6, the first high pressure
reverse flow swirl chamber was consiructed and tested at the Aerospace
Research Laboratories (ARL)”. A schematic of a reverse flow vortex
chamber is shown in Figure 5. The figure illustrates the basic fluid and
particle flow paths which are common to most reverse flow devices, As

a result of the information obtained from the early reverse flow separa-
torsle’lg'm’al, low pressure devices were designed fabricat~d and tested
(low pressure, normally less than 5 psi). Basically, the low pressure ARL
separators fall into two of the three dust separator categories (dust as used
in this report refers to dusts, smokes and/or mists). Tle three categor -
ies are: the reverse, the partial reverse or partial through flow, and
through flow separator. Essentially, all the ARL separators fall into the
first two categories. The three basic types of separators are schematic-
ally illustrated in Figure 6 with their corresponding fluid and particle paths.
In the full reverse separator, all the air is interaally reversed (axial com-
ponent) within the separator while in the partial reverse (or partial through
flow) separator, only a portion of the air need be reversed. As one might
expect, essentially no (or very little) air is reversed in the through flow
separator. The basic particle-fluid pattern in the reverse separators is

as follows.

The gas-particle mixture is admitted at an outer radius by means of
swirl vanes or an inlet scroll. In either case, the mixture is given a tan-
gential velocity component. The mixture then proceeds in an axial direction
toward the end wall of the chamber continually centrifuging the particles
toward the outer wall from which they are removed by either an injector or
ejector. Upon reaching the vicinity of the end wall, continuity requires that
the ''small' particles, entrained with the fluid, flow radially inward and ac-

celerate to higher velocities (the fluid must conserve its moment of momen-

12
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tum) reaching a maximum inside the exit radius. Continuity then requires
the fluid to turn and proceed in the axial direction toward the exit of the
separator (exit vortex tube). While traveling from the end wall to the exit
of the device, the particles are gradually centrifuged out to larger radii
and swept toward the injector (ejector) region of the device. Upon reach-
ing the vicinity of the end wall some of the particle enriched flow is ejected

out of the separator and the cycle continues,

In all three types of separators the tangential velocity profile can be
composed of three separate regions (see Figure 7). They are the free vor-
tex, the transition, and the forced vortex region. In the free vortex regime,
the product of the local velocity and radius is ideally a constant (vr = k =
constant), The intermediate region between the two regimes is called .he

transition region.

Since the potential vortex (vr = constant) can produce the high rota-
tional velocities necessary for the separation of micron size particles and
since the rigid body core tends to stabilize the flow field and thereby reduce
the effects of perturbations in the flow, the aforementioned flow field is
ideally suited for inertial particle separators. In addition, since the effects
of the three regime flow field on the axial flow patterns are well understood,
gains in separator periormance can be made by modifying the exit of the
separator. These gains will be discussed later, particularly in respect to
the elimination of chamber backflow (see Figure 8) through the use of var-
ious types of diffusers (see Figure 6). It is sufficient now to say that the
devices are aimed at maximizing the separator's performance over the

entire range of operation.

Evaluation of the performance of a particulate separator is normally
extremely difficult if sufficient data are not available. In order to avoid

this difficulty, the performance of the separators was measured according

to four characteristics:
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(1) Separation Efficiency (T)S) - The amount of dust the chamber

will separate when the dust is mixed with air and drawn into the separator.

Computed as a ratio of the amount of dust collected at the dust outlet to the

amount injected. A standardized test dust is normally used to determine

the separation efficiency (AC 0-200 Micron Arizona Road Dust - see Table
Il for stated AC distribution).

(2) Total Pressure Drop (AP) - The total pressure drop through
the device.

Normally, measured at the end of the clean air outlet and

usually expressed in inches of water (approximately 27.7 inches of wate:/
psi).

(3) Compactness (Q/A and L) - Quantitatively measured as the
total through flow rate per unit separator frontal area and the overall sep-

arator length. Normally expressed as cfm/ft2 of separator and inches,
respectively.

The total amount of air entering the separator, minus the
scavenging air, is the total through flow.

(4) Scavenging air (8) - The amount of air drawn through the

""separated'' dust outlet (see Figure 6). Expressed as a percentage of

the total through flow through the chamber.

The above four characteristics were selected since they essentially
completely describe the performance capability of a dust separator. Ex-
tended discussions on the characteristica can be found in a report by
Finchak® and in many of his references. Since many particulate sepa-
rators are basically the same but different in size, the next section deve-
lops some means of predicting a separator's capatility if data are available
on a different size unit. As one might expect, the separation and scaling

concepts section deals only with those areas which affect the performance
characteristics.



TABLE I

DISTRIBUTION OF COARSE AIR CLEANER TEST
DUST *

SIZE RANGE AMOUNT BY MASS
(Microns) ( Percent)

0—5 12
12

14

23

*O—ZOOp Arizona road dust, prepared by A-C
Spark Plug Division, G M C, Flint, Mich.




B. SEPARATION AND SCALING CONCEPTS

Frequently, it becomes necessary to determine the capability of

a dust separator at a condition on which no experimental data are avail-
able.

In other cases, one desires to change the physical dimensions of

the chamber and again estimate the capability of the devices. L: both

cases, some fundamental laws apply which enable cne to closely predict

the new performance characteristics.

Basic to the successful applica-

tion of these ''scaling'' laws is an understanding of the physical require-

ments necessary for particle separation. These requirements are:

(1) The particle must be subjected to a sufficiently high rotation-
al velocity (high );

(2) There must be sufficient particle ''stay time' in the high

rotational velocity field (long residence time), and

(3) There must be no significant perturbations in the flow field
that would cancel the two previous effects.

All three requirements are covered in many reports'?:18:19:3,

Basically, particle residence time can be hopefully varied by
controlling the chamber's geometry, while turbulence is essentially
eliminated in the central regions of the flow be establishing a potential
vortex within the chamber!”.®, Since these two requirements were ade-
qQuately covered in other reports, and since they do not normally enter

into the scaling of the separator's performance, they will not be consid-
ered any further.

The rotational velocity however, is strongly influenced

by geometric scaling. The remaining portions of this section considers

the effect of scaling on the rotational velocity and the separator perform-
ance parameters.

(1) Rotational Velocity and Scaling: It has been shown?” that the

minimurn rotational velocity required for particle separation is propor-
tional to the viscosity of the fluid and inversely proportional to the pro-

duct of the particle density and the square of its diameter. Thus, if it is

19




necessary to separate a particle one-half of the original diameter, the
rotational velocity must be increased by four. Since the outer regime of
the tangential flow field in the reverse flow chambers (under investigation
at ARL) closely approximates a potential vortex (vr > constant), a higher
rotational velocity can be obtained by decreasing the radius of the exit
vortex tube. However, decreasing radius also reduces the total area
available for the flow and thereby reduces the through flow of the separa-
tor. The reduction in through flow per unit frontal area of a single sepa-
rator is avoided by geometrically scaling down the entire unit (separator).
By proper scaling, the rotational velocity varies inversely as the scale

factor (assuming wllwz = (rz/rl)z), that is:

on. L (1)
wo S
‘where ''S" is the scale factor, and w, and W, are the new and old
rotational velocities, respectively. Since the rotational velocity required
for separation varies as the square of the particle diameter, the new par-
ticle size that the geometrically scaled unit can separate varies as the

square root of the scale factor, that is:

- (S)llz (Z)

o
where dﬂ and do are the new and old particle diameters, respectively.
Thus, if the original chamber was scaled down by a factor of four (§ = 1/4)
and it was capable of separating particles down to 20 microns, the new

scaled chamber could separate particles down to 10 microns,

With equaticn (2) and the particle size distribution, one woulc think
it would be possible tu accurately predict the separation efficienty of

the scaled separator. This. however, is not possible since nearly all

20
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particulate matter is composed of irregular shaped particles which agglom-

erate and change the apparent particle size. Thus, experimental data must

be obtained to determine the apparent particle sizes (and not of the "ultimate"
particle sizes) of the particulate matter, With knowledge of the apparent

size and equation (2), an accurate prediction of separation efficiency can be

made. In additior to influencing the separation efficiency, geometric scal-

ing can also modify the particulate separator's compactness. The last
portion of this section considers the influence of scaling on a separator's

compactness and scine of the design problems encountered in scaling down

a separator.

(2) Compactness and Scaling Problems: Besides improving the
separation efficiency, the scaling down of a separator also results in the
reduction of the separator's total length (Ln/Lo = 8). In addition, since the
scaled units are usually clustered together in a panel, substantial savings

can be realized by reducing separator development costs. Development

costg are lowered since the scaled down separator can be used as the basic

unit in various sized panels (depending upon the application). Thus, com-

plete redesign, fabrication and testing cycles are eliminated.

The advantages gained by scaling down tne separator are partially

o’ fuet by the reduction in the saparatcr's through flow. To obtain the same

through flow, the scaled units rnust be clustered together. The number of

scaled down units required are:

Nﬂ N 2
T s )
Q

where Nn and No are the umber of the new and old units respectively.
Thus, if a separator was geometrically reduced by a factor of three (S = 1/3}),
nine scaled units would be requircd to obtain the sam: through flow (at the

same total pressure drop). By being forced to cluster many single uanits to

st g e o

T T, %
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obtain the same total flow, (see Figure 9 for a forty-six unit cluster),
the compactness of the scaled down units also degenerates. This is
because the flow rate per unit frontal area of the clustered separator
tends to decrease. The amount of decrease depends upon the arrange-

ment and the spacing between the individual cans.

Since the spacing between the cans is normally determined by the
requirements of the scavenging air system, the scavenging air require-
ment should be kept as small as possible. Furthermore, since the smaller
the original separator's scavenging air requirement, the lower the scaveng-
ing air requirement in the scaled unit. One should be extremely careful to
select a design which requires a minimum amount of scavenging air and
thus reduce the physical dimensions of the clustered separator. In addi-
tion to causing a degeneration in the compactness, geometrically scaling
down a separator and clustering the individual units also introduces serious
design problems. They are: (1) Designing for efficient dust removal; (2)
Designing to assure equal flow through the separator (both the through znd
scavenging air flows); and (3) Designing for ease in fabrication and/or as-
semily., The detail problems involved in each area is beyond the scope
of this report and will not be considered. It is sufficient to say that ex-
treme caution must be used when designing a clustered separator so as
not to degrade the separator's efficiency; i.e., decrease ng and/or increase

B a2t the same AP.

Having a basic understanding of the scaling laws and the requirements
for particle separation it is possible to realistically predict the performance
of various types of separators. It is particularly important to realize that
the scaling equations are based on the same total pressure drop through the

old and the new (scaled) separator. Determination of the through flow at a

different pressure drop can be calculated from the "Fan Law'™*,
Q ap, !/
1 ] 1 (4)
Q, AP,

22
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Thus, if the flow rate of a separator is 200 cfm (QZ) at 4 inches of water
(APZ), the flow rate at 16 inches of water is 400 cfm. Equation (4) essen-
tially completes the section on separation and scaling concepts while Table
IV summarizes the scaling concepts. Needless to say, additional reference
will be made to the concepts as the need arises, especially in the discus-
sions on the experimental data. The next section of this report outlines the

experimental test program.
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TABLE IV
SUMMARY ON EFFECTS OF GEOMETRIC SCALING

ORIGINAL SCALED
PERFORMANCE PERFORMANCE

Nsep fl4,]" f[do(S)'/z]"E
AP AFR, AFy
Q/A Qo/Ao Qo/ Ao

L Lo SLo

B Bo = Ro

N No No/S?

W 0, Wy/s

%¥ "f" is a function




IIi. EXPERIMENTAL TEST PROGRAM AND RESULTS

After a study of the theoretical considerations of dust separation
and the requirements for such equipment, an experimental test program
was established at ARL. The maximizing of separation efficiency (ns)
and through flow/unit frontal area (Q/A) combined with the minimizing
of pressure drop (AP) and dust ejection energy (8), were of course, the
goals of this program. These parameters are interrelated and trade-offs

1 are associated with any design, The test program to evaluate and study

these trade-offs evolved around the basic segments of a dust separator.

Schematically the program could be summarized as a study of: i

(1) Induction Systems, effects of:

a. scroll inlets
3 b, Multi-scroll (radial vanes) inlets
’ c. Axial vanes

d. End wall admissions

(2) Ezxduction Systems, effects of:
a, Scroll outlets (dual chambers) ;
b. Diffuser/back-up plate design
1) axial flow
2) swirl or radial flow

c. Energy recovery - exit vanes

(3) Dust Ejection Systems, effects of:
a. Injector vs ejector system
b. Effects of radial distance between core and
dust ejection region,

c. Radial, axial or tangential extraction

(4) Geometric Configuration and Parameters, effects of:
a. L/D ratio

b. Diameter ratio

26




¢. Inlet and exit vane angles
d. Length ratio (vortex tube to total length)

e. Size vs separation (scaling)

The program summary as outlined above is very clear and concise,
As test hardware was designed and built however, the program appears
slightly more ''cloudy'' because each chamber was designed with a multi-
plicity of purposes. Early in the program, test chambers were character-
istically large - 12" in diameter. The large size allowed use of diagnostic
techniques, such as, velocity probe measurements, aemometer core speed
measurements, etc., which are much more difficult to use on small cham-
bers. The results from the large chambers were scaled to smaller units
depending on the applicationenvisioned. As the program progressed, 5'
diameter units were utilized in the geometric studies, and then clustered
separators of 5" diameter, 2-1/2" diameter, 1-7/8' diameter, and 1" dia-
meter units were built and tested. After a discussion of the testing pro-

cedures, the test results will be presented in the order indicated.

A, TEST PROCEDURE

The test equipment is shown in Figure 10. It consists of a blower,
scavenging air blower, flow rate and pressure drop instrumentation, and
the separator to be tested. Flow measurements are made by taking ve-

locity measurements in the fiow duct with a pitot probe or by using laminar

flow elements. Manometers calibrated to four (4) significant decimal places

are used where needed to obtain the desired accuracy. Separation efficiency
is determined by feeding a measured amount of the test dust into the separa-
tors, and then collecting and weighing the dust ejected by the separator. Any
residual dust build up in a separator is determined by either cleaning the
separator or weighing it before and after a run. Each dust test is re-run at

least three times to guarantee reproducibility and determine the error spread.
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B. EARLY EXPERIMENTAL WORK

(1) Scroll Inlet - Scroll Qutlet Chambers: The first chamber de-
signed at ARL to specifically remove dust from air (The Mark I) is shown
in Figure 11; the basic flow pattern work had been done on high pressure
droplet separators, and low pressure ratio ''dust retaining'' chambers.
The chamber is a dual cell cluster with tangential scroll inlets and a single
scroll outlet. 1Jsing coarse test dust (see Table IU) this unit had a separa-
tion efficiency of 92%. On A.C. special fine dust (0-5y) the efficiency was

75%. A flow rate of 500 cfm at a pressure drop of 7-1/2'" H,O was obtained

with this unit, i
Two sets of modified inlet scrolls were designed and tested on this
unit. These scrolls were designed to increase through flow in the unit by
increasing inlet area. The inlet areas were increased 1.5 and 2.0 times
respectively, and the through flow correspondingly increased from 500 to
750 and 1000 cfm (at 7-1/2% HZO). The separation efficiency decreased

however, from 75% cn the 0-5y mixture to 65% and 60% respectively.

A plexiglass scroll inlet-scroll outlet chamber was also built and
tested. It was built primarily as a tool for flow pattern visualization, see
Figure 12, however, it is smaller than the steel chamber (Figure 12) by
a scale factorm The flow rate on this chamber is then 1/3 that of the
Mark I. Separation efficiency on this unit increased correspondingly from

75% to 85% on the 0-5y test dust, and from 92% to 96% on 0-200y dust.

These early scroll type chambers were used to run dust ejection
studies, Since the chamber is below atmospheric pressure, energy must
be supplied to remove the separated dust. Tests showed that about 1% of
the flow must be scavenged to adequately remove the separated dust. This
1% can be removed by either applying suction to the ejector port with a
blower or ejector {possibly powered bv compressor bleed air) or creating

a localized high pressure region by injecting higher pressure air into the

29
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chamber in the vicinity of the dust ejector port. If compressor bleed air
is used to power either an ejector or injector, about 1/4 of 1% of through
flow is required. Since any of these three methode are adequate for good
separation, the final selection of scavenge mode-ejector, injector, or

scavenge blower must be made on a systems basis.

(2) Vane Inlet-Scroll Qutlet Chamberg: Clustering of small dust

separator units is simplified using a vaned inlet configuration. This con-
sideration led to an early dual cell design with vane inlet and scroll outlet,
(see Figure 13). The purpose of the dual cell is to use a single energy re-
covering scroll exhaust. In essence it might be said that the two cells form
their own diffuser. Tests with these early chambers and diffuser piates
showed that more recovery was available using properly designed diffusers

than by clustering by dual cells.

This first vaned inlet separator was capable of separating 71% of the
0-5y test dust. The flow rate however, was only 800 cfm at 7" HZO' The
low flow rate was due to an improper vane design, the height to width ratio
being too large. The chamber did yield some insigiat into vane inlet design,

and led tc the geometric configuration study chambers to follow.

The vaned inlet scroll outlet chamber was utilized for velocity probes
and aneometer core speed measurements. The velocity measurements were
made using a 1/8'" diameter three-dimensional probe. The probe measure-
ments confirmed the profile discussed in Section 1l with the transition occur-
ring at a diameter of about 67% of the vortex tube. The probe indicated a
maximum W at thiz point on the order of 9,500 rpm (at AP = 4" Hzo) as
shown by the velocity profile, Figure i14, The paddle-whee] aneometer and
associated test techniques were the same as those reported by Pinchak and
Poplawski'®. These measurements indicated core speeds of 16,500 rpm
{at AP = 1 HZO) in the core region of the separator. The axial velocities
shown in Figure 14 indicate a "back' {low into the chamber. This back flow
is caused by improper diffuser matching and is detrimental not only to the

Q/A, but to core speed and thus separation efficiency.
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{3) Geometric Configuration Studies: The geometric parameters

of length to diameter ratio (L/D, where D = D0 here), diameter ratio
(Do/Di)’ and inlet vane angle are extremely important considerations in

the design of a dust separator. Two full reversed flow chambers were

used in a study of these geometric parameters. The first chamber, shown

in Figure 15, had radial vanes. Three diameter ratios of 1.4, 1.8, and
2.0 were obtaired in this unit by varying Do with a fixed Di =2.5". The
L/D was variable between 1. 67 and 6.0 by telescoping the outside can.
The second chamber, of the type shown in Figure 6, had axial vanes.
Diameter ratios of 1.6, 2.25, and 2.8 were obtained by varying the Di
with a fixed Do = 5", The L/D was fixed at 1.5, but three sets of inlet
vanes with helix angles of 230, 28° and 33° were used. The vanes were
constructed from plexiglas and dimentional stability is quite a problem.
The indicated angle was tc have a tolerance of + 1/20, but + 2° is much

more realistic,

The aerodynamic data on the radial vane chamber is presented in
Figures 16, 17, and 18; and separation data is shown in Table V. The
fact that L./D has only a slight effect on flow rate is highlighted in Figure
17. Diameter ratio does have a marked effect on flow rate as shown in
Figure 18. An increase in L./D from 1 to 10 increases Q/A by 1 cfm/in3
but increases the volume by 10 times, yet a decrease in diameter ratio
from 2.0 to 1.4 increases Q/A by 1-1/2 times with no change in volume
(if Di is varied). The separation data shows that over the range of var-
iables studied, there is only minimal dependence of separation efficiency
on L/Dor Do/Di' A very weak maximum in separation efficiency is in-

dicated at an LL/D of 3 however.

The aerodynamic data on the axial vane chamber is presented in
Figures 19 and 20, and separation data is given in Table V. Altkough the
L/D was constant at 1.5, the marked effect of Do/Di is illustrated by

Figure 20. The effects of inlet vane angle is shown in Figure 19. The
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TABLE V

SEPARATION EFFICIENCIES OF GEOMETRIC
CONFIGURATION STUDY CHAMBERS

SEPARATION EFFICIENCY OF RADIAL VANE CHAMBER
0-200y Coarse Dust, AP = 4" H,0

2
DIAMETER
RATIO L/D RATIO
1.67 2.14 3 4
1.4 96.8 95.7 96
1.8 96.1 97.2 96.6
2.0 96.0 97.3 96.8

SEPARATION EFFICIENCY OF AXIAL VANE CHAMBER

0-2004 Coarse Dust, AP = 4" HZO
DIAMETER
RATIO INLET VANE ANGLE
23° 28° 33°
1.60 93.9 95.3 91.6
2,25 94.3 94.1 94.6
2,80 95.2 94.2 95.1

TABLE VI

SIZE DISTRIBUTION OF "WHITE WASHED SAND''*

SIZE RANGE %
] By Mass

0-53 1

53.62 2

62-210 20

210-590 74

590-850 3
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ircrease in flow rate with increasing vane angle is due to an increasing
area phenomenon. The flow rate characteristics can be improved if the
vaneless diffuser is replaced by a vaned swirl straightener diffuser. The
vaned type diffuser has been used extensively on partial reversed flow units
and on most of the latter full diffused flow units. The results from both
chambers show that within the limits of the variables studied, the Q/A in-
creases with increasing L./D, increasing vane angle and decreasing Do/Di'
The Do/Di effects predominate over the L/D effects, and no maximum
appears with respect to vane angle, The separation data indicates an in-
crease in separation efficiency with Do/Di’ and a very ''weak'' maximum
at an L/D around 3. Separation efficiency also increases slightly with
increasing vane angle. The process of selecting an L/D, Do/Di' and vane
angle is one of trade-off¢ and optimization. This selection process must
be done with a specific applicaticn and set of performance requirements in
mind. The next section illustrates some of these applications and the de-

sign used.

C. SCALING AND CLUSTERINC APPLICATIONS

(1) Runway Sweep:r: Within the Air Force inventory are street-

cleaner type vacuum cleaner units especially designed to clcan runways

and taxiways. These units are required to prevent Foreign Object Damage
(FOD) in the jet engines used on today's aircraft. The runway cleaner units
in the inventory use cloth-bag filters to remove dust from the air vacuuned
from the runway. These filters created dual problems: (1) they needed
cleaning and periodic replacement, and (2) a filter by-pass system was re-
quired for wet weather operation. Representatives of the Systerns Engineer-
ing Group (SEG) of the Research and Technology Division (RT' :onsulted
ARL concerning the feasibility of using an ARL type inertial filter in the run-
way sweeper. The resulting design has been specified for all future Air
Force runway sweepers and will probably be retrofitted on units already in

the inventory.
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The runway sweepc ~ specifications supplied to ARL required the
filter system to have a flow rate of 12, 000 cubic feet per minute (cfm) at
10 inches of water pressure drop (AP). The dust separator should sepa-
rate 100% of all particles 50 microns (y) and larger and fit in a space
96 inches by 30 inches by 120 inches. The dust separator should also b
durable, inexpensive, and have a long life cycle. To meet these specifi-
cations it was decided to use 6 separators operating in parallel, each
with a flow rate of 2,000 cfm at AP of 10 inches of water. A separation
efficiency of 100% of 20y and above was chosen to meet exhaust specifi-
cations mentioned by SEG representatives. Figures 2] and 22 show the
unit as designed and its installation in the runway sweeper. The unit is
in the reverted configuration, discussed in Section LI, with scroll inlets.
The aerodynamic characteristics are given in Figure 23. The unit was
tested in the labiratory for separation efficiency and good agreement
with the design goals was achieved. The 90% achievec on 0-200y AC
test dust generally reaffirmed the 100% separation of 20y particles and
above. Seiving che 0-200y dust through a 53y grid yielded a test sample
with a distribution of 0-53y. The separator had a 46% efficiency on this
special mixture. The separator was also tested with sand to check on
any "bounce'' phenomena within the unit. White washed sand, sce size
dietribution Table VI was used and the separation efficiency was found
to be 100%.

{2) 16 Unit Cluster: A clustered dust separator conmtaining sixteen

5-inch diameter, reverse flow units was designed and buiit to test cluster-
ing principles. The 5-inch diameter, although not optimum, was selected
because: {(a) exact single unit data were available from the 5-inch diameter
separator used for geometric configuration studies; {b) manufacturing pro-
cedures were simplified; and {c) any necded modifications or improvements
could be incorporated into the separator with relative ease. Figure 24
shows the completed clustered lust separator and Figure 25 summarizes

the laboratory performance obtained from it. The unit uses I% “leed air
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to scavenge the removed dirt and dust. Owverall cluster measurements

are 21-3/8" x 21-3/8" x 11",

After laboratory testing the 16 unit separator was mounted on an
experimental gas turbine powered jeep®. The 70 hp turbine was built by
the Williams Res=arch Corporation for ATAC After the installation,
the vehicle was field tested on the U.S. Army Yuma Proving Ground's
dust course (see Figure 27). The vehicle was tested on the dust course
according to Yuma Proving Grounds standard operating procedures. Be-
cause of the special nature of the separator, however, a lead vehicle
was used throughout the testing to stir up a denser cloud. The jeep was
instrumented for separator pressure drop, engine-exhaust gas tempera-
ture, and engine rpm. The separator efficiency was obtained by collect-
ing the dust ejected from the separator and that which passed through the
separator. The dust-collection system was designed and operated in such
a manner that the separator operated under identical conditions with or

without the dust collection system,

The vehicle was run in dust and gravel for slightly more than 150
miles and in dust cloud concentrations varying up to that shown in Figure
27. The average separation efficiency from the Yuma field test was slight-
iy greater than 93%, and was generally independent of the dust cloud con-
centration in which the vehicle was operating. The 93% field separation
efficiency compares well to the 90% obtained in the laboratory. This ex-
cellent agreement between laboratory and field results highlights the fact
that the laboratory testing techniques were valid and representative of

actual field conditions,.

The 16 unit cluster performed as designed with approximately 100%
separation of 5y and larger particles. This scparation capability was in-
di.ated by the 90% cfficiency on 0-200y A.C. test dust. The scaling laws
show that scaling the size of cach unit in the cluster down shall increasce

separation efficiency. Therefore, a new cluster was designed and built
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with 2-1/2" diameter scparators (S - 1/2). The cluster contained 64 units

as shown in Figure 28 but cxactly the same frontal arca as the 16 unit cluster.

The AP verses Q (or Q/A) for each cluster was nearly identical, but the Q/V
was essentially doubled. As predicted by the scaling laws, the separation

efficiency increased substantially from 90% to 97% for 0-200y A.C. test dust.

A decrease in predicted flow rate was encountered on this ¢4 unit
cluster. This 20% decrease in flow rate was causcd by reducing the number
of inlet vanes from 15 (on the 16 unit cluster) to 10. The reduction was ini-
tiated by design considerations only. Because the vanes were cast in alumi-
num in a straight not helical configuration, a decrease in the number of
vanes necessitates an increase in vane overlap angle. On straight vanes,

an increase in overlap angle decrcases area and therefore, decreases flow,

(3} 46 Unit Cluster: A cluster of 46 semi-reverse flow separators

was built and tested at ARL. The unit, (see Figure Y), was built as a test

of not only clustering principles, but to study the problems unsolved in the
dust cjection plenum. Each separator in the cluster 1s 1-7/8" in diameter

x 4-3/4" overall. The overail cluster measurements are 13-11/16" x
12-3/10" x 4-3/4"., The inlet vaaes are sct at 28" while the CNeTEy recover-
ing cxduction vanes have a 35° lead.np edge angle. The unit uses 2-1/27%
hleed air to scavenge the removed dirt and dust. Figures 29 and 30 show
the aerodynamic and separation etfi 1ency characteristics ot the chamber,
The slightly lower separation efficiency achiesed at low through flow rates
with 2-1/2% bleed normally would noi appear in most systemoansaad!iations,
This is because a “vonstant! flow rate —cavenging devive 1s normaily used
ina svstem and s designed to give 2-1,0% bleed at the high through flows,
At the lower through flows the bleed aie 15 more Like 3-5% and the effects of
the decrease in separation efficiency are taninuzed.  Increasing the bleed

atr to 8% does not substantinidy increase soparation al the hgher tlow rate s

however,

L FXY




‘SHIVd MOT14 TYH3IN3IO
3HL ONIMOHS HOLVHVIIS HILSNTO LINN ¥NO4-AL XIS V 40 DJUVYW3IHIS 82914

1371n0 18na 43N0 LSNA
031vyvd3s Q3ivdvd3s

MO IV AMYNIND

-
- -
e

x
i
Za
wh
42
oo
i
-~
>3
)
”n
-

=

QL

b R
X! | isna

LS
SOOI

\2\;,4\/\/

PANY AN AN AW AN A YWAN

NL
T 0030
N

L
N

|
P

L
P

|
)

=
P

-




¢1>~

MO13 G3ISUIAIY ANIVILNYG

-HOLVHV43IS Q3I¥ILSNTD LINNOY 40 SHILIWVHYY MOT4 62 3HNOIS
(0%°H,) 4V

9 ]

e

- -~
2 B

£ s2 [4 ¢! 1

re
v

L

4
8

4002

ry

-0§¢

e

00¢

4 009

'y

- 004
- 008

2

1

+ 006!

40002

55

(N42) 0




MOTTd G3aSHIATY ATIVILEVYD — HO.LVHVd3S
d3431SNT0 LINN 9% NO SYIL3IWVYYd NOILVHVLIS O 34N9i4

(W42) O
0ozl 00 Ql 008 009 o]0} 002

$ 4 - } $ -+ (03 °]
w
THP8 m
R
)
>
l.lmm u
dIV 3ION3IAVIS %S 2 m
m
126 AL
o
m
— 3
496 <
2

00l

56




This partial-reversed-flow clustered separator has also been
*ested for separation in sait water spray. The testing was conducted by
Naval personnel at the Ship Engineering Center (NAVSEC), Philadelphia
Naval Shipyards. Figures 31 and 32 show the NAVSEC test facilities.

Separation efficiency measurcments are taken by the use of im-
pactors as shown in Figure 33. One impactor is placed in the duct before
the separator, another in the duct behind *he separator. Separation effi-
ciency is then determined by comparing concentrations of sea-spray before

and after the separator.

The ARL separator worked extremely well as a sea-spray separator.
Figures 34, 35 and 36 show separaticr efficiency of the ARL separator
compared to several commercial separator units {26). The Donaldson
unit is a through flow type similar to those shown in Figure 6, and the
York Demister is a barrier filter composed of stainless steel mesh. The
excellent sea-spray separation results of the barrier type are offset by

extremely poor perfcrmance in dust or sand (27).

The ''two-way' performance (sand-dust and sea-spray) of ARL's
separator leads to several interesting applications. Turbine-powered
landing craft under study by the Navy, for instance, will require engine
protection (28). Large naval vessels, such as turbine powered destroyers,
may find sufficient protection from sea-spray by ducting, etc., but small
hover craft class vehicles, or surf vehicles have separator requirements,
Efforts are continuing between ARL and the Office of Naval Research(ONR)
to exploit these and other possible applications of ARL's separator tech-

nology to naval separator requirements,
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IV. CONCLUDING COMMENTS

Although the results obtained from the research efforts at the Aero-
space Research Laboratories (ARL) on inertial separators are manyfold, the
program is not yet complete. Separation efficiencies in excess of 98% (on
0-200uy AC dust), low (or no) dust removal energies, and fairly high through
flow/frontal areas have been demonstrated. ARL units have been laboratory
tested by the Army at ATAC, and the Navy at NAVSEC in dust and sea-spray;
and field tesied on a turbine vehicle. Configuration studies, however, will be
continued on ARL dust separators while the program undergoes evalv tion and

application to specific turbine powered vehicles.

A segment of the ARL in hcuse program is now devoted to studying
the feasibility of using inertial separators to remove sub micron size parti-
cles from gases. These separators are small and operate at a higher pres-
sure loss than those used for turbine protection. In current experiments,
tobacco sinoke (.0l-1y size range) is used as the contaminate and early re-
sults indicate approximately 50% separation efficiency. The objective of
this work is to improve performance of the smoke separators for future

application to air pollution control.
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