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ABSTRACT

When the predicted position of a satellite contains normally
distributed errors, the position uncertainty can be described by a
Spherical Error Probable or SEP. The SEP is calculated by inte-
grating the three-dimensional normal probability density function
over a spherical volume. The SEP is set equal to the radius of
that volume which contains the satellite with 50% probability. In
this report the authors present four methods for integrating the
density function and finding the SEP. The three normal variates
in the density function are assumed to be independent and unbiased

with known variances.
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SECTION 1

INTRODUCTION

1.1 Purpose of the Report

In this paper we report four methods of solving Eq. (1-1) for R

when 0, ¢ ando, are known and P is set equal to 0.5.

R NBZ B2

P = exp |- l _i
2 Z
(Zﬂ) %( Yy ff [

‘R NR-Z - (1-1)

Eq. (1-1) describes the integration of an unbiased, three-dimensional,

._LZ a dxdy d
o};*{'-o—z-z- X dy 4z

normal probability density function over a spherical volume. R is the
radius of the sphere; x, y and z are independent randbm variables,
and P is a probability., For P set equal to 0.5, we define R as the
Sphex"ical Error Probable (SEP).

1.2 Uses for the SEP

The SEP is useful as a measure of position uncertainty in three
dimensions. Itis a single number, like 3250 ft, describing the un-
certainty in the location of one vehicle at a given time. The SEP is
applicable to problems in satellite tracking, missile defense, sub-

marine navigation and air traffic control. (5)(6)(7) As an example,

e




.v.ve d?scribe in the next four paragraphs a SEP that might 'i)e computea
in pr;edict#ng the location of a manned orbiting iaboratory.

A manned orbiting laboratory in a near-earth orbit requires re-
;luppl!y. The supply mission is to be flown by a second missile, the
ftranl'porte:r. and a rendezvous and docking maneuver is to be executed
;when' the transporter reaches the laboratory. A successful mission
hinges on Ja.n accurate prediction of the laboratory's location at the
time of rendezvous. The mission planners are asked to predict the
laboratory's future position by using radar measurements made just
before the transporter is launched.

The mission planners would like to make an absolute prediction
like the following:

"The laboratory will be at latitude 20° N, longitude 35° W
and 100 am altitude at 2117 Greenwich Mean Time. "

They cannot make such a statement, however, because the radar data
contains normally distributed errors. The present location of the lab-
oratqgry is uncertain so its future position cannot be predicted exactly;
the predicted latitude, longitude and altitude contain the unknown ran-
dom errors x, y and z, respectively.

The mission planners choose to compute a SEP to describe the un-

certainty in the future position of the laboratory. Their computed SEP

is 8000 feet. The mission planners use the SEP to make the following
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probablistic statement to the transporter crew:
"The laboratory will be within 8000 feet of 20° N

latitude, 35° W longitude and 100 nm altitude at 2117

Greenwich Mean Time with 50% probability. "
The transporter crew thus has an estimate for the uncertainty in the
laboratory's location. Upon reaching the predicted point of rendez-
vous, the crew will probably have to search through a sphere of at
least 8000 foot radius to find the laboratory.

The previous example illustrates the information implied in the
Spherical Error Probable. If a vehicle is said to be located at point
L, Kand H with a SEP of 8000 feet, we immediately know that:

(1) The location of the vehicle is uncertain.

(2) The three position coordinates, L., K and H, contain normally
distributed errors.

(3) The probability density function is so shaped that 50% of the
probability is contained in a sphere of 8000 foot radius. The

sphere is centered on the mean predicted location of the
vehicle.

A SEP can be formulated to describe position uncertainties for
many vehicles - satellites, aircraft, submarines, and missiles. In
this report, however, we restrict the SEP application to those three-
dimensional problems where the random position errors are normally

distributed, unbiased and independent.

——
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1.3 The Three-Dimensional Normal Distribution

~
If three random variables, x, y and z, are independent, unbiased

and normally distributed, their joint three-dimensional probability

(1),

density function is given by the equation

f(x, y, z)= /zl exp |- 4 XZT + JZ + 222- (1-2)
2% o o 2 o 0 @ o
X y z y

If the density function, f (x, y, z), is integrated over a closed volume,
a probability, P, results. If the three random variables describe the
position of a point, P is the probability that the point is located some-
wherei in the .volume. In this report the closed volume is a sphere.
R is defined as the radius of the sphere and Eq. (1-1) describes the

probability integral for P( ),

R VR-Z \R-Z-y

2 2
P= exp-_ x + Y + zz) dx dy dz
(Z") Y z

\/sz,z

(1-1)

When the standard deviations, LI °y' Gz, are known and R is

(1(2)

specified, Eq. (l-1) can be solved for P, We, however, are

"interested in the complementary problem. We seek a solution for R

when P is given. In particular we want R wheno,, Oy and g, are

T e D £



known and P is set equal to 0.5. This R is defined as the Spherical
Error Probable or the SEP.

The probability limit, in this case 0.5 or 50%, is not unique.
Any limit, say 95%, can be used in the definition of the SEP. The
50% limit, however, is consistent with the definition of the two-dimen-
sional Circular Error Probable (CEP) used in missile accuracy
(3)

studies.

1.4 Outline of the Paper

In the next four sections we outline four methods for computing
the SEP when °x, Oy and Oz are given. In Section 2, for example, we
use the CEP curve to approximate the SEP in the special case when
Oy = Oy. In Section 3 a paper and pencil solution is developed.
Section 4 describes a computer method for finding the SEP, and
Section 5 summarizes the computer data in a graphical solution,

The paper closes with three appendices. The first appendix

extends the approximation method of Section 2 to the cases where
oL ¥°y' The second appendix outlines H. W. Lilliefors' solution
of Eq. (1-1). The third appendix contains a computer program and
sample data.

The reader with standard deviations, °x. °y and Oz, in hand and

a deadline to meet should proceed directly to Fig. 5.2 in Section 5.

“
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For a wide range of standard deviations, Fig. 5.2 permits a direct

reading of the SEP.
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SECTION 2

THE FIRST SOLUTION: A METHOD OF ESTIMATING THE SEP

2.1 Outline of the Estimation Method

In general, the SEP cannot be found by a direct integration of Eq.
(1-1). We cannot write a mathematical equation that expresses R in
terms of P, 0 ay and o, We can, however, estimate the SEP by
looking at special cases. In this section we show how the SEP can be
estimated when Oy and °y are equal and

(1) Small compared to o ,.
) Large compared to 0 ,.
(3) Equal too,.

(4) Equal to one-half of o,

Here we also introduce the normalized function, SEP/g because it

z’
is more easily plotted than the SEP.

2.2 The SEP When o, and o, are Equal and Small
n

L}

In Sec. 1.3 we wrote down Eq. (1-2), the threeedimensional

normal density function:

| 1 2 2 2
f(x, y, z) = exp|- - '&T"'?‘*“Ll (1-2)
X, ¥, 2 (2")3/3 2 ("x o O, )

OxOy0y
If two of the standard deviations in this expression are equal and

smaller than the third deviation, the three-dimensional distribution




looky one«.dimensional. For example, if ox and oy are equal and
smaller tixan 0,, the three-dimensional distribution looks like a one-
dimensional distribution in the variate z. In the limit, as the ratio
0,‘/0; approaches zero, the SEP calculation reduces to the problem
of fix:nding the half-length of a straight line. The full-length of the
straight line includes the location of the random point with 50% prob-
ability.

The probability equation to be solved is just:

1 2
P-= exp | - —Z'Z dz (2-1)
Zﬂ oz _/ [ Zoz ]

We seek R when g, is given and P is set equal to 0. 5.

If q is substituted for z/0,, the integrand in Eq. (2-1) becomes

the standard normal density function for which there are tabulated

solutions, (4) Writing Eq. (2-1) in the standard form we get:
R/,
2
p=_ exp | - Lq dq (2-2)
\er 2 |
-R/9,

We use the tables and find that when R/o, = 0.674, P equals 0. 5,

Thus, for 0, and o equal to zero, the ratio SEP/9, has the value

x Yy
0.674. This result is plotted in Figure 2.1, Sec. 2.6, as a point




on the ordinate where 0,/0, = 0. This point is plotted as the first
step in constructing a curve of SEP/, versus 0,/0, under the special
condition that ¢, equals Oy

‘2.3 The SEP Whenoy and u, are Equal and Large

We have seen that the three-dimensional density function looks
one-dimension:l when two of the standard deviations are equal and
small compared to the third. If, conversely, two of the standard
deviations are equal and large compared to the third deviation, the
distribution looks two-dimensional. If o, and © y are equal and much

larger than 9_, the densit - function looks two-dimensional in the

z?
variates x and y.

Calculation of the SEP reduces to the problem of finding the radius
of a circle. The circular area contains the location of the random
point with 50% probability., The desired radius is commonly called
the Circular Error Probable (CEP). The CEP is usually used to

speciiy the probable impact error of a long range missile.

The two-dimensional probability integral is given by Eq. (2-3).

R V-2
P=ﬁ?y-./[exp '%(o’%"o);) dx dy (2-3)
‘R ,fp?_,xz'

e ——
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A lc’:lution for this integral is graphed in Ref. 3. For °y/°x greater

than 1/3 the SEP is approximated by Eq. {2-4).

SEP = 0.59 (9, + Uy) (2-4)
In our case, with °y and 0, equal and much larger than? , the SEP is
given by the expression

SEP = 1.180, = 1.18 °y (2-5)

Equation (2-5) is made more convenient if we divide both sides of

the equation by 0,.

(o]

SEP . 1.18 - (2-6)

Oz

This result is plotted in Fig. 2.1 as a straight line with slope equal
to 1.18 and intercept at 9,/9, = 0. The curve fordy =0, in Fig.
5.2, Sec. 5, can be used to verify that this expression for the SEP

is accurate when the ratio :)x/oz is greater than approximately 4. 5.

2.4 The SEP when oy, % and 0, are All Equal

(When all three standard deviations, © Oy ando ,, are equal, the

x'
prob!ability density function retains its three-dimensional form. We,
however, can simplify the integral equation for P by changing to

2 2 2

spherical coordinates and substituting Dz for x® + y~ + 2% in the inte-

grand. The new expression is then:

10



R 27 n/2
1 ¢ 1.2
P: —p—7 exp | - £ | r°sin¢dododé  (2-7)
@m" o 20,
0 0 /2

J. S. Toma, in Ref. 1, reports that if P = 0.5, Eq. (2-7) can be
solved to give the result that the

SEP = 1.538209, (2-8)
If we divide both sides of this expression by °z, Eq. (2-9) appears:

SEF = 1.5382 (2-9)

2
Thus, for % = § = 0, we have the result that SEP/ 9, = 1.5382. This

result is plotted in Fig. 2.1 as a point at %/, = 1.

2.5 The SEP when 9, = °y =0.59,

The last special case we examine is that for ¢ and °y equal to
0.50,. The SEP is calculated using the work of H. W. Lilliefors in
Ref. 2. He plots the probability, P, versus °y when R = 1. His Fig.
2 showe that P = 0.5 when 9, = 0.5, OY = 0.5 and °z = 1, Thus, for
0x/0z = 0.5, the ratio, SEP/0_, must be equal to cne.

2.6 The Predicted SEP Curve for 9, and ULEqual

In Sec. 2.2 through 2.5 we have computed one line and three dis-

crete points which describe the behavior of the function SEP/0 ze We

11
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have plotted these points and the line in Fig. 2.1 and we now draw in
a dotted line to compleie the curve. This graph can be used to esti-

%*
mate the SEP when 0, and o, are equal. The reader should note this

1

&'-

Slope = 1.18

Figure 2.1 The predicted SEP/9, curve when0, =0,

special condition. When 0, and OY are not equal, the SEP must be

estimated by the methods of Appendix A.

* The curve can be used to compte the SEP when any two stand-
ard deviations are equal. The reader need only interchange the
subscripts, x, y and z, on the standard deviations.

12



To find a SEP given 0y = oy, 0, and Fig. 2.1, we first find the
ratio 0,/0 ,. I the ratio has the value 2.25, for example, we enter I
Fig. 2.1 at the bottom where 0 x/0, = 2.25. We proceed vertically |
upward to the curve and read that the SEP/0  has the value 2.85.

The SEP is then computed by multiplying 2. 85 by the standard devia-

tion, O,.
A more exact solution can be found by using paper, pencil, a desk

calculator and the iterative method of Sec. 3.

13
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SECTION 3

THE SECOND SOLUTION:
AN ITERATIVE METHOD OF FINDING THE SEP

3.1 Outline of the Method

Given one set of standard deviations and P set equal to 0.5, a
SEP can be calculated using paper, pencil and a desk calculator. The
method uses H. W. Lilliefors' solution for Eq. (1-1) and we solve by
iteration for the SEP.

3,2 Lilliefors' Solution

Lilliefors' solution (see Appendix B) for the three dimensional

probability, P, has the form:(l)

p=Az/7 2 ( l)(n+l) 0 (Cp, n) » ( l)
]
n=1 2(n+l) (Zn 1) x Oz ;0 J (202 )

1 T (3-1)
(j+n+5) (j+n- f) .o (j+%)

This solution is valid when R = 1. For R not equal to one, Lilliefors'

solution has the revised form:

(n+1) T
. (-1)" " ay(Cp.n) - -1
P=9q2/n Y E
,(n+1)  (2n-1) .0,
L X N =0 J'(’-—z-
R J\'R R/ _
(3-2)

(j#nts) <j+n--,_-). - (i#3)

15
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To find the SEP, we set P equal to 0.5 and solve for R. The equation,
however, is too complicated to be solved in closed form. We use an
iterative procedure.

3.3 The Iterative Procedure

The first step in the iteration is to specify 9, °y and °z. Next,
we make an initial estimate for the SEP, say R = R,. 7,, oy, 0y and
Oz are then substituted into Eq. (3-2) and we solve for P. If each of

the normalized standard deviations, 9 /R, "y/RQ and % /R, is
greater than about 0.4, the two infinite series in Eq. (3-2) can each
be truncated after 10 terms.

The solution proceeds by comparing the computed P, say it's P,
with 0.5. If P, is equal to 0.5, we define the initial estimate, R, as
the SEP. The solution is deemed ;:omplete for the given values of 0,
Oy and 0,. If, however, Pg is not equal to 0.5, we make a new esti-
mate for the SEP, say R = R], and repeat the procedure.

1f the reader has one set of standard deviations, paper, pencil and
somei patience, this procedure will produce a SEP in a few hours., The
calculation time is reduced if you have a good first estimate for the
SEP. If, however, many sets of standard deviations are to be used,

the time required to calculate the exact SEPs is enormous. In this

case we recommend the computer solution in Section 4.

16



SECTION 4 |

THE THIRD SOLUTION: l
A COMPUTER METHOD OF FINDING THE SEP f

4.1 Outline of the Method

The computer solution for the SEP mechanizes the iterative pro-
cedure outlined in Sec. 3.* The computer method, however, forces
us to deal with three mathematical problems that we ignored in Sec. 3.
First, we have to identify the sets of standard deviations for which
Lilliefors' series solution will not converge. Second, we must find

alternate methods for finding the SEP when the series solution diverges. |

N s

Third, we need to write a mathematical rule for estimating the SEP.

4.2 gonditions for Convergence

H. W. Lilliefors' series solution for P is used in the search for

the SEP. The revised form of Lilliefors' solution is given by Eq. (4-1).

(n+l1) i (-l)'j !

i - (-1) @)(Cz, n) w2

P=‘ Z/" | 1

' gz 2D g fen-1) o\ sa, ' Jz::o itfe % d i
( (R)(T) L R/ ’

1

1 1
(j#n+3) (#n-3).. - (i+5) (4-1)

* A listing of the computer solution is presented in Appendix C.

17
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When any one of the normalized standard deviations, Ox/R, OY/R or

o /R, is less than approximately 0.2, Eq. (4-1) will not converge to
a meaningful value for p.* 1f, for example, ,/SEP = 0.11 and 100
terms are used in each series, Eq. (4-1) may give a probability like
2 x 106, or -0,93, or 25.7. None of these numbers are admissible
values for P. The probability can only have a value between zero and
one. When calculating the SEPs for many sets of standard deviations,
we must identify those sets of standard deviations for which the com-
puter solution will not converge.

Inadmissible sets of standard deviations are identified by testing
the ratios % /SEP, °y/SEP and 9 /SEP against 0.2, the convergence
limit, We form the ratios by dividing the standard deviations by an
estimate for the SEP. The SEP is estimated by the methods of Sec. 2
or Appendix A. If one of the ratios, 9,/SEP for example, is less than
0.2, we conclude that Eq. (4-1) cannot be used to find the exact SEP
for that set of standard deviations. We look for another method of

finding the SEP for that set.

* We are not concerned here with absolute convergence or
divergence. We define Lilliefors' solution to be convergent
if we get a meaningful value for P by using a reasonable
number of terms in each of the two infinite series. In this
paper we call 100 terms reasonable.

18



4.3 Alternate Solutions for the SEP

If a set of three deviations contains one element, 9, for example,
that fails the convergence test, we can choose to ignore 93 and solve
for a SEP in two dimensions. The SEP, so calculated, is obviously
an approximation to the true SEP since we assume that 0, = 0 when,
in fact, it is a non-zero positive number. The approximation is good,
however, when 9, /SEP is less than about 0. 2.

The two-dimensional SEP can be calculated directly from Eq.

(3)

(4-2) when the ratio, %,/ 9, is greater than about one-third.

y
SEP = 0.59 (% + 0,) (4-2)

The SEP can also be calculated by iteration if we substitute Eq. (4-3)
(2)

for Eq. (4-1) in the computer solution.

(ntl) |(C3, n)

- (-1)
P= ¥ (4-3)

as1 2" n! Oy/R)EP-D(oy/p)
The computer program in Appendix C incorporates both equations

(4-1) and (4-3). The program also contains a rule for selecting Ro'

the initial estimate for the SEP. This rule and a method for upgrading

the estimate are discussed in the following paragraphs.

4.4 A Rule for Selecting R,

As noted in Sec. 4.1, the computer program mechanizes an iter-

ative search for the SEP. The search is started, for a given set of
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standard deviations, by estimating the SEP. If the first estimate, R,
causes the probability, P, to equal 0.5, the iterative search is stopped
and the SEP is equated to R,. In the usual case, however, the first
estirbate for the SEP is wrong and successive estimates must be made
to drive P toward 0.5,

The first estimate for the SEP is made by setting R, equal to the
minimum value of the three ratios, 9,/0.2, °y/0. 2 and 9,/0.2. This
estimate guarantees that none of the normalized standard deviations,
%/Ry: /R, and 9 /R, will be less than 0.2 during the first itera-
tion. This choice of R, avoids the convergence problems discussed
in Sec. 4.2.

If R,, the first estimate for the SEP, is correct, the computer
will make one iteration, stop, and print out R, as the SEP. If the
true SEP, however, is much greater than R,, the computer method
will not converge to a solution for tne SEP. The computer will make
two 'iterations, test for a diverging solution and stop. When the true
SEP! is less than Ro' the computer will proceed to a solution for the
SEP by making successive estimates for R.

If the first estimate for the SEP is not correct, the second esti-
mate, R, is made by adding AR,, a small number, to R,. AR, in

turn, is computed by dividing 4P, = (0. 5-P,) by the first partial

20



* :
der.vative of P with respect to R evaluated at R = R,. APo is the
error in probability resulting from the first and incorrect estimate

for the SEP. See Fig. 4. 1.

Figure 4.1 A graph of P versus R showing the
quantities used in estimating the SEP

The partial derivative, (9P/Q R),, gives the slope of the probability
curve at R = ;. A straight line represestation of this slope appears

on Fig. 4.1. AP, divided by the (JP/d R), gives the approximate

change in R, required to change P, by APO.

* P, is the probability calculated for R = R,.
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The third estimate for the SEP is made by evaluating the JP/J R,
P, AP and AR at R = R;. R2 is computed from the expression

R, =R, + AR, (4-4)

2
The fourth, fifth and successive estimates are made in an analo-
gous manner until the ith estimate causes the probability to be 0. 5.
The probability, P, and the partial derivative, dP/JR, are calculated
‘from Lijlliefors' series solution of Eq. (1-1). The mathematical

details appear in Appendix B.

4.5 Summary of the Computer Method

The computer method produces an exact SEP for any given set of
standard deviations. If the accuracy requirement, however, is not
too stringent, the SEP can be also found by use of normalized plots.
These plots, generated from computer data, display the ratio SEP/g,
as a function of the ratio °x/°z' We have produced a set of these plots

in Sec. 5. They constitute our fourth and last method for finding the

SEP.
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SECTION 5

THE FOURTH SOLUTION:
A GRAPHICAL METHOD OF FINDING THE SEP

5.1 The Graph

One SEP can be computed by the method of Sec. 4 for any set of

standard deviations, °x, Uy and °z. If a large number of SEPs are

calculated, they can be tabled as in Fig. 5. 1.

o () o (f) o (ft) SEP (ft)
1 1 1 1.538
1 .5 .55 1.045
.25 . 908

Figure 5.]1 A sample tabulation of the SEP
- as a function of P Oy and ©,,

The: tabulation is useful for identifying the SEP associated with a
give:n discrete set of standard deviations. The tabulation, however,
reveals no obvious method of interpolating for the SEP associated
with a set of valpes, °x, °y and °z, that is not tabled. Much more

information can be derived by plotting the SEP as a function of the

standard deviations.
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In Fig. 5.2 we have plotted the ratio SEP/ oz versus the ratio

*
as a parameter. The curves are seen to be smooth

9, /9, with o
and well-behaved. Given values of O, °y and °z, these curves can

be used in a direct solution for the SEP. No iterative calculations

are required. The user need only assign values to the standard devia-
tions, form the ratios C’x/oz and Oy/o x* locate the appropriate curve
on the graphs and read off the ratio SEP/o 2 Since c, is known, the

SEP can be computed directly from the ratio SEP/9, by multiplica-

tion; i.e.,

SEP :
SEP = ( = ) g, (5-1)

Z

In the next section we work a sample problem to show how these
curves could have been used in the satellite rendezvous problem of
Sec. 1.

5.2 A Sample Problem

\
/In Sec. 1 we described an orbiting laboratory travelling in a

100 nm circular orbit., We said that the laboratory was to be re-

supplied by a second vehicle, the transporter, which would rendez-

vous and dock with the laboratory. The rendezvous required a

* The curves are patterned on the CEP/Ol curves used by
R. A. Moore in Ref. 3. The curves were drawn from
computer data displayed in Appendix C.
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Figure 5.2 A parametric graph for computing

the SEP given o, oy and o_.

v
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precise prediction of the laboratory's position at 2117 Greenwich
Mean Time (Zulu). The prediction included a SEP of 8000 feet.

If the mission planners had.computed the SEP by using the curves
in Fig. 5.2, they would first have used three scandard deviations to
describe the uncertainties in the laboratory's predicted position. If

the deviations were

9y (Downrange) = 6350 ft, (5-2)
oy (Crossrange) = 6350 ft, (5-3)
°z (Altitude) = 2540 ft. (5-4)

at 2117 Zuluy, the planners, next, would have formed the ratios Ox/ o,

and °Y/ Oy

2.5 (5-6)

Ox/Oz

/f% = 1 (5-7)

g
y

Entering Fig. 5.2 at oxloz = 2.5, they would have proceeded verti-
cally upward to the curve for °y/°x = 1, On this curve they would have
read, for the ratio SEP/o,, the value 3.15. Multiplying this value by
9, =' 2540 ft. would have produced the SEP.

SEP = 3.15x 2540 ft. = 8000 ft. ' (5-8)

The same procedure can be used in computing any SEP. The

curves are not restricted to problems in orbital mechanics. A SEP

can be calculated in any three-dimensional uncertainty problem where

2

; : 2
we can give values to the normal variances o, , Oy and 0.
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5.3 Application of the Graphical Solution

In the graphical method of finding a SEP, we assign values to the

standard deviations Ux Oy and °z. These values are generated by our

study of the physics and statistics in the actual problem. In general,

these values will be associated with a problem coordinate system,

like x), x, and X4 and not with the coordinates x, y and z. The

question arises as to how the values computed for the three variances

in X x2 and X, space should be assigned to oxz, cxy2 and ozz.

The solution for the SEP is independent of the order of values

assigned to 0, OY and 0, because Eq. (1-1) is symmetric. The

equation is symmetric in the sense that the six combinations of any

three values all have the same SEP. See Fig. 5.3 for one example.

o (ft) 0, (£t) o ift) SEP (ft)
1 2 3 3,105
. 1 3 2 3,105
,‘ 2 3 1 3,105
2 1 3 3,105
3 1 2 3. 105
3 2 1 3,105

Figure 5.3 A table showing the symmetry in the
SEP calculation,
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The user's computed standard deviations, °,, 0, and % can
be assigned in any order to o, oy and o 2 The same SEP will
result for every combination. The graphical solution, however, has
widest application when the largest computed deviation is assigned
to 0,. If the largest standard deviation is not assigned to J,, but to

= instead, the ratio © x/ o, may be larger than 3.5 and beyond the
curves of Fig. 5.2.

Finally, we note that the SEP for mo,, mc:y and moz is just m
times the SEP computed for °x, Oy and 9, This result is not imme -
diately obvio.us from Eq. (1-1) but is apparent in Fig. 5.2. If, for

example, the standard deviations, = 5 ft, °y = 10 ft, and g, =

%

2.5 ft, are all doubled, the SEP goes from 3, 67 ft. to 7: 34 ft.
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SECTION 6

SUMMARY

In the opening paragraph of Section 1 xe advertised four methods
of solving Eq. (1-1) for the Spherical Error Probable. We have
described those four methods in Sections 2 through 5. We have
showed how a SEP can be calculated by approximation, paper and
pencil, computer, or graph.

Our four methods of computing the SEP are not distinctly differ-
ent. Lilliefors' solution of the probaktility integral, for example,
underlies each of the methods presented in Sections 3, 4 and 5. The
same iterative procedure is used in the search for the SEP. We have
identified the methods separately, however, because different com-
puting tool: - paper and pencil, computer or graph - are used in
finding the SEP. The associated computation times also differ
markedly.

This paper is not an exhaustive survey of methods for computing
the SEP. There probably exist more efficient computer solutions to
the protability integral, Eq. (1-1).for example. We have only
described, herein, four methods which the authors have found useful
in making many repetitive SEP calculations for multiple or time

varying sets of standard deviations.
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APPENDIX A

ESTIMATING THE SEP WHEN °y = mox

A. 1 Outline of the Estimation Method

In Sec. 2 we showed how the SEP (or SEP/ %)) could be estimated
in the special case where two of the standard deviations were equal.
In this appendix we develop a method for estimating the SEP when

Oy =mo_, m # 0, 1. The method uses the SE:P‘/oz curve presented

in Fig. 2. 1.

For purpose of example we will only do calculations for the case

when Oy = Zox. Similar calculations, however, can be applied when

m=0.5, 3, 4, 5. .. . Inthe following paragraphs we approximate
the SEP/ o, curve for Oy =2g, by calculating the SEP when

(1) e, is small compared to 9 ,.

(2) i, is large compared to Oz.

1(3) o, equalso .

“) o equals 0, 5¢,.

A.2 The SEP for Oy z Zox and Oy Small

In Sec. 2.2 we noted that the three-dimensional probability dis-
tribution looked like a onesdimensional distribution when oy and o

were equal and much smaller than® ,., The same situation occurs

when Oy = 20y and 0, is small. In the limit, as o, /g, approaches
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zero, the probability density function becomes one-dimensional in the
variate z. The SEP is given by the equation:

SEP =0.56740, (A-1)
when Ox/oz = 0. In normalized form the ratio, SEP/0,, is just 0.674.
This is the same value calculated in Sec. 2.2. SEP/ 0, = 0.674 is
plotted as a point at ox/ o, = 0 on Fig. A.2.

A.3 The SEP for oy = Zox and q % Large

For Oy = 20 and g, large compared toa 2’ the density function,

f(x, y, z) looks like a two-dimensional distribution in x and y. The
SEP is equal to the CEP defined in Sec. 2.3. The SEP is calculated
from Eq. (A.2):

| SEP = CEP = 0.59 (cx + 0y) (A-2)

If we substitute 20, for Ty add, and then divide by ¢,, the familiar

z’

normalized function, SEP/9,, results:

SEP °
_0 = 1.77 —Ox (A-3)
z z

Equation (A-3) says that when oy = Zox and °x/ o, is much greater
than 1, the SEP/oz curve approaches a straight line. The line has a
slope of 1.77 and a zero intercept at °x/ o, = 0. This line is plotted

on Fig. A.2.
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A.4 The SEP for oy = Zox = Zoz

When Oy = 20, and o, equals 0,, the SEP can be estimated by
using Fig. 2.1 and interchanging the subscripts on the standard devia-
tions. Figure 2.1 was plotted under the assumption that Oy = Oy, In
this new case we have, instead, 0 equal to o . Ifyand z are inter-
changed wherever they appear on Fig. 2.1, we get Fig. A.l and a
direct solution for the SEP,

6 - \

Slope = 1.18

Figure A.l. The predicted SEP/ay curve wheno, =0

At the point where °x/°y = 1/2 we read that:

SEP/o, = 1.5382 (A-4)
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Multiplying Eq. (A-4) by the ratio oy/orz = 2 produces our familiar
normalized function, SEP/gg, and we have

SEP/o0, = 2 x1,5382 =2.0764 (A-5)
This point is plotted on Fig. A.2 at °x/°z =1,

A.5 The SEP when cJy =0, = 20

A final point can be found on the SEP curve for oy = 2q 4 when
9x = 0.5q,. As in Sec. A.4 we find this point by re-plotting Fig. 2. 1.
The plot is not reproduced here. We interchange the x and z sub-

scripts on the standard deviations and find that the SEP/o, = 2.58 at

The function, SEP/a x* 18 changed to our standard form through

multiplication by the ratio ox/cz = 1/2. Eq. (A-6) results,

SEP _ ("x ) (SEP)=(1).(2.58)= 1.29 (A-6)
Oz oz °x 2

The point, SEP/0, = 1.29, is plotted on Fig. A.2 at o /o, =1/2.

We now have sufficient data to draw in the rest of the SEP/oz curve.

A.6 The SEP/9, Curve for g, = 27,

The points and the line found in Sec. A.2 through A.5 appear

on Fig. A.Z.
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Slope = 1.77

SEP s

=

olo

N % ra
(]
=

Figure A.2. The predicted SEP/oz curve for© y = 2%

A dotted line is drawn to connect the points and coraplete the curve.
The SEP can be estimated from this curve in the special case when
Oy = 20 .

By analogous methods the function SEP/o 2 can be graphed for any
combination of oy and o; i.e., for Gy =mo,; m = 0.5, 2, 3, ' . . .

When m = 4, for example, the approximate SEP/CJz curve is generated

by using the curves for m = 0, 1, 2, and 3.
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APPENDIX B

THE MATHEMATICS IN THE ITERATIVE
SOLUTION FOR THE SEP

B. 1 Lilliefors' Solution for P

Our iterative solution for the SEP is based on a series solution

to the integral equation:

2 2 2
P =— exp -%—z" +Lr + 25 ) |dx dy dz
(2")3/2 5o OIx & 02
X'y z
‘, 2
-R m NRE - - (B-1)
The series solution was reported by H. W. Lilliefors in Ref. 2.
*«
For R =1 and o, + °y + 0, Lilliefors' solution for P has the form:
(n+l)
* (-1) Q (C ,n) @©
P= \2/1Y L e > =13
n=1 _(n+l), (2n-1)
2 oy Ox Oz j'O( j!(ZOZZ)j
1 (B-2)
1
(an%) e (343)
* For Ox =0 = 0, =9, the probability integral can be solved by
a series expansion of the integrand in Eq. (A-1). For this case,
J. S. Toma has reported that the SEP equals 1,5382 . (1) The
same answer is derived from Lilliefors' Eq. (B-2).
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This solution is correct for 0, ¥ 0. If ° =0, Pis computed from

the expression:

o (-1)(n+l)°l (Cz’“) (B-3)

P = Z (Z2n-1T} p

n
n=1 Oy X

n!
The factor, 01 (Cz,n), appears in both Equations (B-2) and (B-3).
a) (Cy,n) is calculated from the following recursion formulas:

(!1 (CZ' n) =a GZ (CZo n) + bBZ (Czo n)

@.,(C2,n) =1 whenm =n

(C,, n) when m # n

%m (C2,n) =ac ., (Cy,n) +bB

Bm (Cz.n) =0 whenm =n

Bm (Cz-n) = <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>