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ABSTRACT

This report presents two methods for the estimation of a periodic signal
in additive noise. Both methods assume that only a finite time sample of the
signal plus noise is available for processing. The estimate of the signal is
chosen to minimize the mean square error between the estimate and the sample
of signal plus noise. This is also a maximum likelihood estimate if the noise
is white and Gaussian.

The first method is frequency domain analysis. Estimates for the
period of the signal and the complex amplitiudes of its hairmonics are derived.

The second method is time domain analysis. Estimates for the period
of the signal and for the waveform of one period are derived.

Under the assumption of white noise and large signal-to-noise ratio,
formuias for the expected values and variances of the period estimates are
derived. The estimates for the period are found to be the same by both methods.
The estimate is unbiased and has a variance inversely proportionral to the
signal-to-noise ratio, and inversely proportional to the cube of the number of
periods in the given sample., The expected values of the estimates of the wave-
form itself are derived, and the estimates are found to be biased.
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THE ESTIMATION OF PERIODIC SIGNALS IN NOISE

T.G. Kincaid¥ and H, J. Scudder, 1II

I. INTRODUCTION

In this report we conside: the problem of estimaring a periodic signal
in additive noise. Although this iy a special application of the established
theory of parameter estimation, (1,2) periodic signals deserve a detailed treat-
ment because of their frequent occurrence, For example, the resuits of this
study are useful in the analysis of sounds produced by rotating machinery. In
this application, good signal estimates can be used for source identification or
malfunction diagnosis.

We shall assume that a finite time sample of the signal plus noise is
available for inspection, We shall show two methods of forming the estimate
of the periodic signal which minimizes the mean square error between this
estimate and the given time sample of signal plus noise. (It is well known that
the minimum mean square error estimator is also a maximum likelihood esti-
mator if the noise is white and Gaussian,) The first method uses a frequency
domain approach, while the second method works in the time domain,

In the frequency domain method, the first step is to estimate the period
by summing the power spectrum of the data at harmonics of a sequence of trial
fundamental frequencies. The period of the fundamental which gives the largest
sum is the estimate, The Fourier coefficients of desired waveform are then
estimated from the values of the Fourier transfcrm of the data at harmonics of
the estimated fundamental,

In the time domain method, the period and the waveform are estimated
simultaneously. The technique is simply to choose a trial period P, divide the
data into P length sections, and average the secticns. The trial period which
produces the average waveform with the largest energy is the estimate of the
time period, and the average waveform is the estimate of the true waveform,

Under the assumption of white noise and large signal-to-noise ratio,
formulas for appropriate statistics of the estimates are derived for both methods.
The mean and variance of the period estimates are found to be the same by both
methods, The mean is found to be unbiased. The varizace 1s found to be inversely
proportional to the signal-to-ncise ratio and inversely proportional to the cube
of the number of periods in the data sample. Formulas for the mean of the
Fourier coefficients are derived for the frequency domain estimates, and it is
found that these estimates are hiased. In the time doemain approach, it is
necessary to assume a roise distribution to compute the mean of the waveform
estimate, On the assumption of Gaussian noise, *his estimate is shown to be

*General Electric Company, Heavy Military Electronics Department, Syracuse,
New York.




biased,

ideal,

In this report thc following notatiocn will be used.
'f'(t) denoteg a functior aefined on the interval -=<t<=, and is a theoretical

f(t) denotes a function which is equal to ?(t) on a finite interval T, and
zero elsewhere, and is the real signal we must work with.

[ 0 for |x|>1/2
rect(x) =41/2 for |x|=1/2
1 1 for |x|<1/2

sinnx

™ or x#0

sinc(x) =

1 for x=0
(rect and sinc are a Fourier transfori pair);
6{t) denotes the Dirac delta fuaction;

@) = 0 for t<0 and t=x
Ex 1 for O<t<x

, the gate function;
* between functions denotes convolution;
* as a superscribt denotes compiex conjugation;

E is an expectation (ensemble averaging) operator,

In general, where smali letters are used for time functions, the

corresponding capitals are used for their Fourier transforms,

Formally, we initiate our analysis with the following assumptions:

(i) Z(t) = X,(t) + n(t) has bandwidth B Hz;
(ii) ;o(t) is periwodic with period Po>>l-B, i, e., many harmonics;

(iii) n(t) is a sample function of a zero mean wide sense stationary
random process with covariance function R(t-s) and Power
Spectrum P(f);

(iv) For band-limited white noise, R(t~-s) = o2 sinc(2Bt) and P(f)
2

f
=35 reclsg)

(v) Xot) =zn wo(t-nPy) (see Ref, 3)
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where wy(t) = 0; for 1<0, t>P,.

(vi) = J‘P° w3(t)dt>>0?
Py 0
i.e,, large signal-to-noise ratio,

(vii) Z(t) is known on an interval of length T>>P,
i, e., many periods.

II. THE FREQUENCY DOMAIN APPROACH
In the frequency domain approach we begin by characterizing the un-
known periodic waveform xo(t) as a Fourier series. The optimization procedure

then yields estimators of the period Py and Fourier coefficients coy of xo(t).

A. The Estimates of the Period and Fourier Coefficients

Any periodic signal X (t) can be written as a Fourier series as follows

H =Y g IRYEP (1

As our estimate of Xy(t), we seek the particular periodic signal x(t) = %(t) which
minimizes the mean square error between X(t) and the observed data z(t) on the
interval -T/2 < t € T/2. That error is given by

. [T/2
L == f [Z(t) - %(t)E dt . (2)
-T/2

In Appendix A it is shown that the estimates of the period P and the Fourier
coefficients ¢k of x(t) are determined as follows.

First compute Z(f), the Fourier transform cf z(t). Then Pis the value
of P which maximizes the expression

K
1
V(P) = = Z |Z (k/P)P (3)
k=1

where K is the total number of harmonics that can be accommodated by the
bandwidth of z(t). The Fourier coefficient estimates ék are the values of ¢
given by

61(: ak-i-jﬁk (4)




where

& =% Zp &/P) (5)
b =% Z &/ . (6)

Z.(f) and Z;(f) are, respectively, the real and imaginary parts of Z(f). The
estimate X(t) of the unknown waveform can then be generated by the relation

k

These estimates are independent of the noise covariance R(t~s),

The estimates are intuitively what we would expect. The pericd is
estimated by summing the values of the power spectrum of z(t) at the harmonics
of the fundamental frequency 1/P. When plotted as a function of P, one would
expect this sum to be greatest when P is close to the true period. The Fourier
coefficients of x(t) are then just 1/T the values of the Fourier transform at
harmonics of the estimated fundamental frequency.

B. The Resolution of the Period Estimate

In practice, V(P) cannot be tested for a maximum at every value of P,
Usually Py is known approximately {from auto-correlation or power spectrum
data), so that a range of values of P to be tested can be established, In order
to reduce the computing time, it is desirable to test as few values of P as
necessary within that range, How far apart can we choose the test values of P
without danger of missing the maximum of V(P)? To answer this question we
need to know the behavior of V(P) in the vicinity of the maximum,

Since the Fourier transform is a linear operation, the assumption of
a large signal-to-noise ratio carries over into the frequency domain, Thus
the gross behavior of V(P) in the vicinity of the maximum will be dominated by
the signal, and we can study that behavior adequately by considering the ideal
case in which there is no noise. In Appendix B the noise free behavior of V(P)
is studied in a region AP about P,. For h<<Pj it is shown that

K . 2 [KT
Vo + 1) =) gl sine —-r’ . (8)
k=1 Pg

Equation (8) shows that in the vicinity of Py the noise-free V(P) is a weighted
sum of squared sinc functions, centered on P,. The widths of the main lobes
of the sinc functions are inversely proportional to k, each iobe going to zero at
h = P§/kT. The "roll off" of V(P) in the immediate vicinity of P is controiled
by the narrowest of these squared sinc functions, This is the term in Eq. (8)
for which k=K, Thus, in order not to miss the maximum, V(P) should be
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sampled at intervals not larger than

B
KT

We shall call the quantity AP given by Eq. (9) the resolution of the period
estimator.

AP = (9)

Since K is the total number of harmonics in ¥,(t), it is appropriate to
define the bandwidth By of Xy(t) to be K/P,. Then Eq. (9) can be written

P
= =0
AP T . (10)

Equation (10) is satisfying in its simpiicity. It says that the resolution
of the period estimator is equal to the true period divided by an appropriately
defined time bandwidth product. The resolution does not depend upon the detailed
structure of the periodic waveform.

C. The Expectation and Variance of the Period Estimate

Because of the noise, we cannot expect the maximum of V(P) to lie
exactly at Po. As a measuvre of how close P is likely to come to Py, we shall
compute the expectation and the variance of the random variable P. We proceed
as follows, (4)

V(P) is a well-behaved function of P. Thus we can expand V(P) in a
Taylor series about the true period P,.

2
V(P) = V(Po + h) = V(Pg) + V'(Bo) h + V'(Bo) = 4 ... (11)
We shall ouly investigate the region h << Py, so we can neglect terms of higher
than second order in h, The maximum of V(P) may be found by iaking the
derivative of V(P) and equating it to zero.
1 n
V'(P) = 0= V(P + V (Pp) h : (12)

Solving Eq. (12) for h, we find that to a first approximation

_ o . VP .
P=p, \7"?15':)" ) (13)

In Appendix C it is shown that the expectaticn of Pas given by Eq, (13) is
EP = P , (14)

i, e., the estimate is unbiased.,




A
It is also shown in Appendix C that the variance of P as given by Eq.

(13) is
_ 2 . 3P} 1 o?
VerP o = ok g %, (13)

where B?_ is the second moment of the spectrum of wo(t), defined by Eq. (C25),
and E 1s the energy of wy(t), defined by Eq. (C26), Equation (15) shows that
the variance of P decreases as the inverse cube of the length of the data sa.mple
T, and that it decreases as the inverse of the signal-to-noise ratio k., /0%

D. The Expectations of the Fourier Coefficient Estimates

The estimates of the complex Fourier coefficients of the signal are,
by Zgs. (4), (5), and (6)

. 1 k
c - Z|=x
k=T (P)

1 k2 -P k
Aol - R () BB el
Thus
Ea =L : ky _ kZ2nit? ku (1“3-Pn)2 0
%k ° T [X°{Po) Pi 3 X°(Pol E =3 Fooo ]
=-,1i,Xo -151{;) [1-%;% fg—{Varﬁ]
I (_‘5_) [1 . K L °2] X (16)
T Py PyT BB‘N E‘N

We see that the estimates of the Fourier coefficients are hiased, but that the
bias approaches 0 as T—-», and decreases as the signal-to-nvise ratio increases.

III. THE TIME DOMAIN APPROACH
We shall assume in this analysis that Z(t), the periodic signal plus

noise, is known on an interval 0<t<T, Let gp(t) be the gate function defined ir
the Introduction. Then

z(t) = Z(t) gT(t)

is the known signal, and

xo(t) = Rolt) grplt)




is the true periodic waveform obscured by noise

ne(t) = Tigp(t) grpit)
on this interval. In this approach we shall find an estimate W(t) of wo(t), the
waveform of one period of %,(t); and we shall find an estimate P of P, the period

of %p(t). These two estimates give an estimate X(t) of xo(t). We shall choose
as our estimate X(t) the particular x(t) which minimizes the mean square error

T
L-1 f [2() - xOF a¢ . (17)
Q

We shall also determine the mean and variance cf P, and the mean of w(t) under
the assumption of Gaussian noise,

A, The Estimate of the Waveform for a Fixed Feriod

In this section we assume a fixed period P and find a periodic waveform
which minimizes L. To simplify the analysis we shall minimize L over a section
of data NP long, rather than T. The integer N is chosen so that the interval
NP is as large as possible i.e., NP £ T < (N+1)P, Thus we shall actually find
the periodic waveform Xp(t) which minimizes

1 NP 2
LP = I\?E‘j; [z(t) - x(t))® dt . (18)
Let #p(t) be one period of Rp(t). In Appendix D it is shown that
1 N-1
#p(t) = NZ z(t + nP) gp(t); NPST<(N+ 1) P ., (19)
n=0

This equation says that wp(t) is the average of N successive P length sections
of z(t). This result is intuitively what one would expect. As successive P
length intervals are averaged the periodic component remains constant while
the noise tends to average to zero.

It is of interest to examine the error in the estimate wp(t) caused by
restricting the data to a duration NP, It is shown in Appendix D that the dif-
ference between Wp(t) given by Eq. (19) and the estimate Wp(t) which minimizes
L given by Eq. (17) is

Wp(t) - wplt) = [z(t + NP) - ¥p(t); 0€t<(T - NP) } ,

1
N+1
0 ; (T -~ NP)St<T

(20)




This error is the difference between averaging the left over "tail® of the data
into the estimate, Since the amplitude of error is inversely proportional to
N+1, cur introductory assumption that T >> P makes this error small. By
neglecting this error we not only simplify the analysis but eliminate an untidy
discontinuity in Wp(t) at t=T-NP,

B. The Estimate of the Period

Now that we have iearned how to form wp(t) for an arbitrary P, we
shall find an estimate P for the true period Po. By our stated criterior, we
require P to be that P which minimizes Lp as given by Eq. (18). It appears
impossible to get any satisfaction by setting the derivative of Lp with respect
to P equal to zero. The P is tied up inside the x(t) in an unknown manner and
cannot be brought out., The best technique appears to be brutc force computation
of LL as a function of P, and to choose the P which minimizes L as P,

However, it is not necessary to actually go through the computation of
Lp for each P in order to minimize Lp. It is sufficient to compute the energy
of the estimate Wp(t) for each P, Then the P for which this energy is a maximum
is the estimate P of the true period Py.

To show this, we first define the error signal estimate

&plt) = z(t) - plt) : (21)

In Appendix E it is shown that ép(t) is orthogonal to X p(t), viz.,
NP
fo ) Sptt) dt=0 . (22)

Now, our objective was to choose P to minimize the mean square error signal,
Lp.

NP
Lp = f [z(t) - Rp(t)} dt
0

) NP ¢ NP NP
m—,—{fo Z3(t) dt - 2]0 [Xp(t) + ép(t)] xp(t) dt +fo 25 (t) dt}

;[ NP NP
37'13'{[ 22(t) dt -j; 2,(t) dt} . (23)
0

Since the first term is very nearly a constant for a small range of P, Lp will
be a minimum when the second term is a maximum, (5} Thus P is the value of
P which maximizes the expression




NP P
V(P) = f %%L,(t) dt = P f €v§,(t) dt ) (24)
0 0

The choice of notation is deliberate. In Appendix F it is shown that Eqs, (24)
and (3) are equivalent definitions of V(P).

Since the estimator of the period is the same for both the time and
frequency domain approaches, the resolution of the period estimater is given
by Eq. (9) cr Eq. (10). Similarly, the expectaticn and variance of the estimate
are given by Eqs. (14) and (15), respectively.

C. The Expected Value of the Waveform Estimate

In this section we shall fird the exnected value of w(t), the estimate of
the waveform of one period. Unfcrtunately, it does not seem possible to do this
without assuming a probability distribution for the noise. Under the assumption
of a Gaussisn distribution, it is shown in Appendix G that

-1
% §: x(t + nPg) s(t); t=>0

E w(t) = 0 (25)
0 ;<0
where
s(t) = 1 - erf f:f.ﬂ.)
Ip

and erf(x) is the error function, o is the variance of P. The function s(t) is
plotted in Fig. 1. The function s(t})is a sort of "soft gate, " which approaches
the gate function gp (t) as the noise variance o? approaches zero. This "soft-
ness" of the gate reflects the uncertainty in the period of x(t).

s(?) /Up/P°=(D

| Up/ P * 100
0P, = 10
Fig.1 The expectation
- Up/Po < of the gate function for
various ratios of period
variance to true period.
I




IV. CONCLUSION

Two metihods of finding the least mean square estimate of a periodic
function in noise have been derived. These have been labeled the frequency
domain and time domain methods. Under appropriate assumptions about the
noise, formulas for the expectation and variance of the period estimate, and the
expectation of the vvaveform estimates have been found. The variances of the
waveform estimates were not found.

Of the two methods, the authors have found the time domain method
more satisfactory if it is not necessary to compute the Fourier transform for
other reasons. H n data waveform samples are available, and it is desired to
search m periods for a maximum, then the time required is proportional to mn.
The time domain method has the additional feature that the estiinates can be
made in one pass through the data. This is important if the data are stored on
tape, or some other slow memory.

When the Fourier transform of the data has to be computed anyway for
reasons other than waveform estimation, the frequency domain method is
advantageous. Taking the Fourier transform of n data points requires a time
proportional to n log n, assuming the fast Fourier transform is used. Then,
once the power spectrum is formed, it can be searched exhaustively for evidence
of periodicities. This search requires mh operations, where h is the average
number o harmonics summed on each period tested. This is essentially a
two-pass system. On the first pass the data are Fourier transformed, and cn
the second pass the power spectrum is searched.

It is worth noting that the period estimator also serves as a suboptimal
detector of periodic waveforms. When there are a large number of strong
harmonics, it is somewhat mere sensitive than a spectrogram, which does not
sum the harmonics. The optimum ietector takes advantage of the waveform
estimate in an estimator-correlator configuration. This will be shown by the
authors in a forthcoming report.

-10-
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APPENDIX A

We wish to verify that P is the value of P which maximizes V(P) given
by Eq. (3), and that ¢ is the value of c) given by Eq. {4) of the main text,

From Eqs. (1) and (2) we have that

T/2 . .
_1 200\, +i2nkt/P j2r(k+i)t /P
L = T[_ [z (t) 2z(t)§ ) c e’ +Zkz{'ckc£ e ]dt .

T/2
(A1)
Thus,
T/2
L = % j zz(t)dt +Z Z Cx € sinc ((k'i-{:) T/P;
-T/2 k=14
2 T/2 2kt /P
- S_ K f z(t) e’ dt . (A2)
—x -T/2
If we define
T/2 .
Z(k/P) = [ 2(t) ¢ S2TRYP gy (A3)
__Tllz
the Fourier transform of the input z(t) at frequency k/P, and we use the
assumption T>>P, then
T/2
L=1 f 2t + Y lol? - 25 o 27/P) (A4)
-T/2 k k

since only the diagonal terms of the double sum make major contributions,
Let cy = ap + jby, and note that by = b_k' a = a.y.

Then

a? +b>

L = x TPy

l» T/2

)t - )
“-T/2
Minimizing with respect to the a, and by yields

Z Z,

a = =(/P) b, = =—(k/P) . (AS5)

1
T T

2
- £ [a,Z (k/P)-b Z.(k/P)] .
. Zk k™r k™1

Substituting, we find

L =

=3

f T/ z4(t)dt + l-z\'“ | z(k/P) |? - %y | Z(k/P) |2
-T/2 T Lsy Ty '

-11-~
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or

1 fT/z 2(t)at - L Z |Z(k/P) |2 (A6)
L= = z*(t)dt - Zk/P .
T Jq/2 ™ L,

Since the first term on the right of Eq. (A6) is a constant, L is
minimized when the second term on the right is maximized. Since z(t) has some
finite practical bandwidth, it is not necessary to sum over all k, but rather tc
some upper limit K. Thus the value of P which maximizes V(P) is given by
Eq. (3). Equations (A5) give the values of a) and by which minimize L for any
choice of P. Thus L is minimized with respect to both P and ¢, when ¢y = &,
as given by Eq. (4).

-12-




APPENDIX B

We wish to verify that the behavior of V(P; in the vicinity of the maxi-
mnum _; given by Eq. (8) in the main text,

Since we are assuming the ideal case of no noise, z(:) = x4(t). The
signal is available between -T/2 and T/2, so
xo{t) = rect (%’ Z Con e32ﬂnt/Po . (B1)
n
The Fourier transform of z(l) is

Z(f) = TZ Con SincTf - Plo, . (B2)
n

Substituting Eq. (B2) into Eq. (3) for V(P) gives

K * k 1\ [ n
V(P) = Z Z Z Com Con SincT|H - f’—] sincT l‘l.-; "B (B3)
k=1"m ~n 0 0
If we set P = Py + h and just consider the region where h << P, then Eq,
(B3) can be written
K T kh T kh
V(Pg + h) = Z z Z (9 cakn sincl;- (k-m-— 5| sinc o k-n- Po
k=1 Tm “n 0 "0 -0 ¢
(B4)

Fer T/Pgy >> 1 only the terms for which m = k and n = k will contribute
significantly to the sum on k. Setting the terms for which m, n # k equal to
zero, Eq. (B4) becoraes Eq. (8).

..13_




APPENDIX C

We wish to verify that the expectation of P is given by Eq. (14), and
that the variance is given by Eq. (15). Since the expression for V(P) involves

the Fourier transform Z(f) of z(t), it is a necessary preliminary to investigate
the Z(f).

From assumption (i) of the Introduction,
Z(f) = Xo (f) + N(f) (C1)

where X,y(f) and N(f) are the Fourier transforms of xy(t) and n(t), respectively.
For the transform of the signal alone we have

~j2nft

Xolf) = [T %(t) rect(t/T) e

dt

\]‘—mm [w0(t)* 6(t‘nP)] rect(t/T) e'j2ﬂft

n

dt

(Wl - 2 na{f - i,‘l-)] *TgincTf

%Zn 2H sincT{f - ;‘-,) . (C2)

We now consider the behavior of the noise process N(f), which is a
complex random variable for each f. Its mean is

- T/2 y
EN() = & [ n(t) ™" dt = f Ex(e) e 2 2 o (C3)
-T/2

The average noise energy density is given by E|N(f)|, and is determined as
follows:

E|N(f)|?® = E [f_:?i(t) rect(t/T) e "™t dt]z

E fm f’ Nt/ (s) rect(t/T) rect(s/T) e'jZTFf(t-s) dtds

@®

T/2 , T/2 Ciomefan
. f jerf(t-s) dtds

R(t-8) e (C4)
-T/2 T/Z

-14-
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For band-limited white noise

-j2nf(t-s)

E|N(f)|? = ‘f_‘: J'_: rect(t/T) rect(s/T) o® sinc[2B(t-s)] e dtds

janis

= o2 J":Dds rect(s/T) e *j2nts

[sinc(2Bs)*rect(s/T) e ] . (C5)

Taking the Fourier transform of the convolution, and integrating over s first,
we get

2 o
E|N(f)|? = °—2§— [, sinc®T(t-g) rect|Eiag . (C6)

A plot of 1/TE|N(f)| 2, the average power density of the time limited noise, is
shown in Fig, C-1 for several different BT products. Note that as BT~ « this
function approaches the "rect, " and for BT > 10 a "rect” is a good approxima-
tion to the actval power density. This can be seen directly from Eq. (C6) by
noting that compared to the "rect" function the squared "sinc" function is
becoming very narrow, i,e., approaching an impulse as BT~=, Since this
"impulse® has area 1/T, we can use the approximation

2 .
E|N(f)|? = %g— rect{z—%) . (CT)

With these preliminaries taken care of, we can now turn io the verification of
Eqgs. (14) and (15),

ot T:0
T B1+10
Tes
T:
| f
2 1 0 1 2
8 8 ] 8

Fig.C-1 Average power density of band-limited
white noise for various BT products.
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From Eqgs. (12) and (13) we note that V' (Pg) and V'(Po) are needed.

RN JCTTEDWE S LRy T
(C8)

2re[x [ [&]]]

For large signel-to-noise ratios, the last term is much larger than the middle,
and we will drop the middle term, Since Pq is the true period, | ¥(f)|? will
have a maximum at each frequency k/Py, so the first term is zerc. We are
left with

V' (Pg) = Z ?E’P 2 Re[X (k/Po)N(k/Py)] ) (C9)
K

Also, for large signal-to-noise ratios, we may neglect the contribution due
to the noise, compared with that of the signal in calculating

V' (Pg) =~Z —7 IX(i;;)lz ) (C10)
We work on V'(P) first. Let

A(f) = 2Re[X(N()] = X*EN(E) + N* ()X () (C11)
80
Sam = A'(0) = KON + X ONG)
+ XEON*(0) + X' (ON* () : (C12)

Now both the real and imaginary parts of X(f) are at a maximum at the
frequencies k/Py, so X'(k/Pg) = 0 and

A'(k/Pg) = X¥(k/PoIN'(k/Py) + X(k/Po)N*' (k/Po)

v'(Po)azZ < AGk/Py) ) P‘f A'(k/Py) . (C13)
k k

1
A (f) is a random variable, linearly related to N'(f)

-jerft

N(f) = 7 rect(t/T)(t) e dt

-16~-
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SO

N'(6) = [7 rect(t/Ti(t) (-j2nt) A CULLIPN 3
Thus
! ® ; . -janft . _
EN(f) = [ rect(t/T)Ef(t)(-j2nt) e dt = 0 .
Hence EV' (P,) = 0 ) (C14)

Since V"(Po) as given by Eq. (C190) is not a random variable, Eq. (C14) shows
that the expectation of the second term on the right of Eq. (13) is zcro. This
verifies Eq. (14).

Turning now to the variance of P, we see from Eq. (13) that it depends

upon
Var V'(Pg) = E[V'(Po)]P = Zkzc—;;‘;- ;??f' E [A'(%—;) A'(;;—o)]. (C15)
Now

E[ADA (g)] = XZ(OXF(E[N(ONYg)] + Xolf) Xolg)E[N"*(fIN"*(g)]
+ Xg(OX(@E[NOIN"(g)] + Xo(f)X3 (@)E[N(IN'(g)] (C16)

We will evaluate one of these terms

E[N'(ON'(g)]= E [~ rect(t/T) (-j2nt)(t) e 2™ gt

~jangs

5 f:) rect(s/T) (-j2rnsRi(s) e ds

Ao

‘ = ). ‘J‘_u; (-j2nt)(~j2ms) rect(t/T) rect(s/TIR(t-s) o 12nlit+es)

dtds

j:a (=j2mt)rect(t/T) eTI2Mt 4

te J_Z (-j2ms)rect(s/T) e-jZTTgs R(t-s)ds

-jenft j2rht

]

17 (-jemtrect(t/T) e dte [° T%sinc'T(h+g)P(h) e dh

= ]” Tsinc'T(htgIP(hldn » [ (-j2mtrect(t/T) e M-It 4

= f:o T2sinc T(h+g) o T2sinc' T(h-f)P{h)dh

-17-




Substituting for P(h) from assumption (iv) in the Intrcduction,

, 2
E[N (f)N'(g)] ES gf T3 sinc"T(g+f) rect(g/2B) rect(f/2B) (C17)

because the sinc function behaves similar t('> a 6 function for large BT, Since
the above is real, E[N*(f)N*(g)] = E[N'(f)N (g)]. In a similar manner,

2
E[N'(N*'(g)] = E[N*'(ON'(g)] = g—B Tsinc"T(f-g) rect(g/2B) rect(f/2B)

(C18)
Thus
E[A'(f)A'(g)] = {[Xg(6X%(g) + Xo(H)Xolg)] sinc"T(f+g)
+ [Xolf)Xg(g) + Xi(£)Xolg)] sinc"T(f-g)}
o?T3
5B rect(f/2B) rect(g/2B) . (C19)
For f=g,
23
E[A'(f)]2 = 2| Xo(f1|? 02;1; sinc"(0) rect(f/2B)
9 02T3 s "
+ 2Re[X3(f) 55 sinc (2Tf) rect(f/2B) . (C20)
For f = -g we get the same expression, so
1 - k2 _k_ 2 °2T3 -112“
Var V (P) = 2 I [2|XO(PO)| S 5t

|k [<BP,

2re [x3%] ST

Yy Yok L prakak
* «[Z8p, |1 [dBp, Fo Po E [a'55)A"(55)]

J sinc"(ZT%o‘]

k| # [¢]

where we have summed over both diagonals separately, We may neglect the
last two sets of terms, in comparison with the first since they are down by a
factor of at least Py/T. Thus

2 2 2 Z
Var V'(P) = 3—%—- -TE %-, k? |x(i';—]|2 . (C21)
‘ ° |k|<BP, °

-18-




The denominator of the second term on the right of Eq. (13) is

Ve g ) ol It
0

which can be shown to be

" k2 'k - k2 2T’ X
V (Py) e_-}:kp '5) 2" }qk pT * 3 IXo(po)|2

Thus the variance of the estimator of the period P is

iy _ 1 12 H
Var P = [—__‘Var"(Po) |° VarV (Pg)
o2 T3 g2 ;‘ k
T EE L ¥l
- 0 [k|<BPg
- Y. ¢ -2
IS S ST T
0 |4 [<BP, 0
L J
_ §:T1;3 1 g?
- ¢ 2BT -k
y: k?| X,y (13‘] |2
|k [<BP, 0

Now IXQ(%’)(';) |2 = (T?/PE) | Wo(k/Py)|? and since

L) b 1wt/ 17 = B W |7

|k|<BP

(C22)

(C23)

(C24)

Note that the integral is the second moment of the power spectrum of
w(t) about f=0, We could appropriately define the bandwidth B, of w(t) by the

positive square root of

1 B
2 - = 2
B = 5— [ Flw|af
where

By = [op IWO [2df = [T who) dt

(C25)

(C26)

Then the integral on the right of Eq. (C24) is B2 E.,. Substituting this result

back into Eq. (C23) gives Eq. (15}, v
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APPENDIX D

We shall verify Egs, (19) and (20). We shall first verify Eq. (19) by
finding the periodic waveform ip(t) which minimizes Lp given by Eq. (18). Let

(N-1)P
Xplt) = Z wp(t-nP)

m=0
where wP(t) = 0; t<0, t=>P
Now let n(t) be a function like wp(t)

i-e.: 'ﬂ(t)= O;t<0: tBP .
Then iet
wP(t) = ﬁfP(t) + en(t)

where ¢ is a real variable, Since \'a"vr (t) minimizes LP" it is necessary that

N

Lp(e) = _I\%l; ISIP [z(t) - ¥ Wp(t-nP) - e:n(i:-nP)J2 dt '
n=0

be stationary with respect to an incremental change in ¢ when € = 0, Thus

Lp(¢) l

o€

o
[]
!

[ F

=0

1 NP N a N
NF Jo z(t) - Z wp (t-mP) Z n(t-np) dt
m=0 n=0

Now if we multiply out the integrand and use the fact that ﬁ/P(t-mP) and n(t-nP)
are in disjoint P length intervals when m#n, the right-hand side becomes

1 e | & N
NP 0 {Z z(t)nit-nP) - ) %p(t-nP) n(t-nP)} dt
n=0 n=0
N
= Nlp Z I(I;IP [z(t) - #p{t-nP] n(t-nP) dt
n=0

Now make the substitution of variables

s = t-nP

-20-




Then the integral becomes
1. N NP-nP
5 L Lop | [z(s+nP) - @p(s)] nislds .
n=0

Since n{s) is zero except in the interval 0K s < P, this expression can be
written

. N oop
NP n—zo Jg [z(sinP)-wp(s)] n(s)ds .

Taking the summation back inside the firat integral, and making use
of the gate function notation, the expression becomes

1 p N_:l
NP Jo [ rgéo z(t+nP) gp(t) - Nwpit) | n(t) dt

clear that if this expression is to be zero for all possible r(t), then it is required
that

, N-1
Wplt) = 5 L z(t+nP) gp(t) .
n=0

Or, stated in another form

p N1
wp(t) = % V. z(t+nP) ;0<t<P (D1)

{v‘
N n=0

which is Eq. (19). This is indeed a minimum since

asz(e)
IEYS >0 forn(t) # 0

In order to verify Eq. (20) it is necessary to first repeat the above
minimization process over the data intervals T, rather than NP, The result is

. N
“——Nil ). z(t+nP) ; 0gt<d
\‘)‘V (t) n=0
P (D2)
|1 Nt |
3 Y z(t+nP) ; ALt<P
n=0

-




This equation shows that \'a‘vp(t) differs from wp(t) only in that the "left-over"®
portion of z(t) between NP and T has been averaged in also. The error between
the two estimates is given by

¥p (1) - #plt)

1 N 1 N-1
T cr—— - - . < < -
Nl Z z(t+nP) N Z z{t+nP) ; 0<t<(T-NP)
n=0 n=0
1 1 1 N
= emmmemn & —— e . < < -NP
S 2OHNP) + (o= - § pgo z(t+nP) ; 0<t<(T-NP)
= == [2(t+NP) - ~ g 2(t+nP)] ; 0.<t<(T-NP)
N+1 | N * U
n=0
1 a
* 1 [z(t+NP) - Wpl(t)] ; 0<t<(T-NP)

and zero elsewhere, This is Eq, (20).
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APPENDIX E

Equation (22) is to be verified, First we note that

[ gp() eplo)at = [ gp(t) [2(t) - Zp(v)] dt
= [P spatat - [T 0 dt . (E1)

Second, )'EP(t) can be expanded as follows:

N-1
)?P(t) = Z Wp(t-mP)
m=0
N-1 N-1
Y Z z[t+(n-m)P] gp(t-mP) . (E2)
m=0 n=0

A Lo

1]

Now the two terms on the right of Eq. (E1) will be shown to cancel. Expanding
the first of these with the aid of Eq. (E2) gives

NP , N-1 N-
f z(t)xP(t) dt = -1\3 Z Z J' Z(t)z[t+(n-m)P] gp(t-mP) dt
m=0 n=0
N-1 N-J
=%1 XL Iﬁw z(t)z[t+(n-m)P] dt . (E3)
m=0 n=0

The second term on the right of Eq. (E2) gives

i
z;—
s
|

fé\lp 5 (t)dt = N j(f 32,0 at
N-1 2
P{1
N[y |§ L #eop) gpt) ot
1 N-1 N-1
N 2 ) ‘ro z(t+mP) z(t+nP) dt
m=0 n=0
Substituting s = t+mP
N-1 N-1
1 mP+P
"N my Y f z{s)z[s+(n-m)P] ds . (E4)

Since the right side of Eq. (E3) is 1dentica1 to the right side of Eq. (E4), therefore
the right side of Eq. (E1l) is zero, Thus, Eq. (22) is verified.
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APPENDIX F

We wish to show that Eqs. (24) and (3) are equivalent definitions of
V(P). From Eq. (24),

vp) = NP

Bt = [ |Xp@)? df

The second equality is from the Parseval theorem, Now by definition

N-1

1]
~
. .

%p(t) Wp(t-nP)

n=0

gnp® [Fp)%)  st-nP)]
n

gNP(t)( { fz(t)*zm 6(t+mP)] gP(t)}*fn 6(t-nP)).

Taking the Fourier transform of both sides gives

Xp() = NP sinc(vp) (L {[z) L ofe- B
k
*P sinc(Pf) e~jnPf}Z 1 ( L ‘
= sinc(NPf) e TTNET 4 ({[ Z (P) sinc P|f - -’ it - ,}V ole - —))
= sinc (Tf) e-jnNPf* [Zk Z{, Z (ll‘;) sinc P (%;—k-’ e-jTTP (—P—)J
. k
- Z z (15,) sinc NE |f - ;‘—,) oITNP[E- ) (F2)
Then :
X3,(1) = Zkzl, z(-;i,) zx| P, sinc NP(f - ) sinc NP(f - —)
and

V(P) = [ X5 (]2 df = 1 (%) 12
"k

which was to be shown.
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APPENDIX G

A
In tnis Appendix we shall verify Eq. (25). Once a P has been chosen
as the period estimate, the waveform estimate is

. p N1 Sy e
W(t) = & nz=:o z(t+nP) gp(t) . (G1)

Letting P = Po+h, we can expand z in a Taylor series about Py,

N-1 -
Wwit) = lﬁ ,Z:-o [z(t+nPy) + z'(t+nPonh + ...] gf,(t)

For large signal-to-noise ratio, we can assume that nh<< 1, in which case

1 N-1
w(t) = N ,,Zo [z(t+nPg)] gf,(t) .

The expectation of w(t) is then
N~-1

Y x(t+nPo) Egp(t) + E[n(t+nPo) gp(t)] . (G2)
n=0

Ew(t) =

Zi-

Now we shall evaluate each of the expectations on the rigiht separately.

Egp(t) = [ gp(t) pP)aP,

where p(f’) is the density function of the period estimate, Unfortunately, it is
necessary to have a probability distribution for P to evaluate Egf(t). Therefore,
we shall proceed with the assumption that the noise is Gaussian, Let

A ~N
P = Po + h .
From Eq, (13) we have that

R . VP
V(Pg)

By our approximations V"(Py) is given by Cq. (C9) and is not a function of the
noise, However, Eqs. (C8) and (C7) show V'(Fy) to be a linear function of the
noige, Thus h is (to a first approximation) a Gaussian random variable, with
zero mean and variance ozp given by Eq. (15). Then

p(P) = 9p, op (P)

-25=-




where @ ig the Gaussian density function with mean Py and variance o"i,. Then

Egpt) =[O, ept) op,op (PP

For any t<0, gf;(t) =,

For any t>0,
1 for i’zt
gP(t) ={0 for f’<t
Hence, . .
Egp(t) ={ i #Poop B
0

Substituting x = (f’-Po)/cP gives

It‘:Pn %, 1(x)dx

Egﬁ(t) = OP
0
] - ’(t-Pn’
op
0

where ¢# is the Gaussian distribution function,
first term of Eq. (G2). The second term of Eq. (G2) is

E[n(t+nP,) gp(t)]

for t20

for t<Q

for t20

for <0

for t20

for t<0

This allows us to evaluate the

which is essentially the average value of the noise over an interval P, Since the
expected value of the noise is zero, it is reasonable 1o expect this term to be

nearly zero, Hence

N-1

—11\-] Y x(t+nP) [1-9(%9-]]

. =)
Ew(t) ~ n

-26-
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