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PREFACE

The purpose of this Memorandum is to present a compretiensive and
accurate table of values for the similar solutions of the laminar
boundary-layer equations for a homogeneous gas. These values may be
used to determine skin friction, heat transfer, and appropriate bcund=-
ary-layer thickness parameters for a wide variety of physical situa-
tions. They are applicable to such problems as stagnation-point flo.s,
flow over a wedge or a flat plate, and hypersonic viscous interaction,
and may also be used as good approximation for the determination of
nonsimilar flows. Well over 1800 solutions are tabulated, of which
about five-sixths have not been published before. The study is part
of RAND's work for ARPA on reentry aersdynamics. C. Forbes Dewey, Jr.
is an Assistant Professor in rhe Department of Aerospace Engineering
Sciences at the University of Colorado and a consultant to The RAND

Corporation.
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SUMMARY

The purpose of this Memorandum is to present a comprehensive and
accurate table of values for the similar solutions of the laminar
boundary-layer equations for a homogeneous gas. These values may be
used to determine skin-friction, heat-transfer, and appropriate bound-
ary-layer-thickness parameters for a wide variety of physical situa-
tions. They are applicable to such problems as stagnation-point flows,
flow over a wedge or a flat plate, and hypersonic viscous interaction,
and they may also be used as good approximations for the determination
of nonsimilar flows.

The general boundary-layer equations for a thermally and calori-
cally perfect binary gas mixture are derived together with a discus-
sion of the numerical integration procedure used to obtain solutions
to the equations, the concept of local similarity, and sclutiens for
large values of the pressure-gradient parameter.

The tabulated solutions include effects of pressure gradient
(0 <B<5and B= o), Mach nunber (0 = U:/?He < 1) temperature-
viscosity law (0.5 <w <1 or 0 <s < 0,2), leading-edge sweep
U1l < tg < 1) wall temperature (0 < t, < 2), Prandtl number
(0.5 < Pr < 1), local streamwise velocity (0 < ui/ui < 1), and

mass transfer at the surface (-1.6 < fw < 0).
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SYMBOLS
A1 000 A6 = constants defined in Eqs. (105), (115), and (120)
a = function defined in Ey. (109); also function defined in

Eq. (154)
B = function defined in Eq. (86)
C = Chapman-Rubesin constant

C(a) = limit of g(a,t) as t = =
C, =~ Llocal skin-friction coefficient; C = 27/p U2

C, = local heat transfer coefficient; qw/mem(Haw -H)

h W
th
c, = mass concentration of i~ component
. th
cp = gpecific heat of the i~ component
i

D = binary diffusion coefficient

E = function as defined in Eq. (102)
€ = numerical difference. function defined in Eq. (82)
¢ = function as defined in Eq. (86)

F., = similarity function defined in Eq. (23)

f’ = transformed fluid velocity as defined in Eq. (12)

f = wall constant defined by Eq. (22)

31 = function defined in Eq. (83)

G = dimensionless enthalpy function, (H/He)
g = transverse-velocity function, w/we
3 = numerical difference function defined in Eq. (84)

H = total enthalpy of mixture = h + (1/2)(u2 + w2)
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numerical difference function defined in Eq. (85)

chemical enthalpy of 1th component

integrals defined by kqs. {(74) to (78)

function defined as the nth integral of the error func-
tion

geometrical index in boundary layer equations; also
Reynolds analogy ratio ZCn/Cf

thermal conductivity of the mixture

Lewis number p D12 cp/k
Macn number
constant exponent defined in Eq. (34)

Prandtl number, Cp w/k

fluid pressure

heat flow

gas constant

radial coordinate define: in Fig. 1
Sutherland constant

Schmidt number, u/p D12

S/T
o

transformed velocity function defined in Eq. (150)
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temperature of the fiuid

free-stream stagnation temperature

transforned similarity variable defined in Eq. (150); trans-
formed variable defined by Eq. (108)

dimensionless adiabatic wall temperature, t = t for 6/(0) = 0
Eckert reference temperature defined in Eq. (53c)

dimensionless sweep parameter defined by .q. (32)

=1 - (/i) sin? A

dimensionless wall enthalpy ratio defined by Eq. (31) = Tw/To
free-stream velccity

flow velocity in the x-direction

flow velocity in the y-direction

constant defined in Eq. (141)

flow velocity in the z-directicn (transverce velocity)
coordinate in direction of flow

ccordinate normal to the surface

dimensionless concentration functiou defined in Eq. (15)

dimeneionless function, (1 - Zl); also, coordinate transverse
to the flow direction

pressure gradient parameter defined in kq. (34b)

adiabatic constant = cp/cv

boundary layer displacement thickness defined by Eq. (80)
asymptotic parameter defined in Eq. (98)
similarity variable defined in Eq. (1l1)

boundary-layer momentum thickness defined in Eq. (81)
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dimernsionless enthalpy function, (H - Hw)/(ﬂe - Hw)

trial function for solution of first-order equation de-

finad by Eq. (122)

sweep angle

dimensionless density-viscosity product, (1/C)(pu/peue)

viscusity
transformed x-coordinate defined in Eq. (10}

fluid density

hypersonic parameter (U:/ZHe)
modified hypersonic -aramater, (U:/ZRe) . (ue/uw)2

modified hypersonic parameter,

= (%20 )((u_/u )2 cos? A + sin?A]
; e e «

total skin friction

skin friction in spamnwise direction
skin friction in x-direction

function defined in Eq. (105)
variable defined by Eq. (141)
function defined in Eq. (112)

constant defined in Eq. (141)

stream function defined by Eq. (9)

functions defined in Eqs. (117), (118), and (121)

exponent in the viscosity-temperature law, p ~T"

constant defined in Eq. (53b)
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Subscripts
¢ )y,
()
)

function at the edge of che boundary layer
function at the wall

function evaluated in the free stream
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1. INTRODUCTION

During the last decade, many similar solutions to the laminar
boundary-layer equations have been obtained. Most of these results
have been for specific exact conditions, such as stagnation-point
flow or flat-plate flow, and are based on the assumptions of a linear
temperature-viscosity law and a Prandtl number, Pr, of unity. It is
well recognized, however, (cf. the citations of Refs. 1 to 5) that an
accurate estimate of skin friction, heat transfer, and boundary-layer
thickness in compressible flow usually requires the use of a realis-
tic temperature-viscosity law and retention of the dissipation term
which appears in the energy equacion.

The purpose of this Memorandum is to present comprehensive, sys-
tematic, and accurate tables of solutions to the laminar boundary-
layer similarity equations for a perfect homogeneous gas. These solu-
tions are applicable to the classical cases wherein the requirements
for similarity are satisfied exactly. The solutions may be used also
in applying local similarity methods to cases that do not meet the ex-
act requirements for similar flows. In particular, the sensitivity of
the numerical values of the wall derivatives (which govern heat trans-
fer and skin friction) and the values of the integral thickness parame-
ters to changes ip the similarity variables may be accurately determined.
For many physical situations, relaxing one or more of the conditions
required for exact similarity will not lead to large errors when the
local similar solutions are used to estimate boundary-layer properties.

Solutions are included to illustrate the effects of ieading-edge

sweep, mass transfer at the surface, pressure gradient, wall temperature,
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free-stream Mach number, local external flow velocity, the Prandtl num-
ber, and the viscosity-temperature law of the fluid. The tables in-
clude most of the numerical solutions obtained by previous authors
(recomputed to the accuracy of the present program) and also new so-
lutions. These tables do not include solutions with B < 0 (decelerat-
ing flows) or fw > 0 (suction).

Section I1 preseuts the similarity equations in their general
form, including the equation for species concentration. Transforma-
tions applicable to compressible flows are given, as are equations
for the computation of skin friction, heat transfer, and integral
boundary~-layer thicknesses. Classes of reduced equations are also
discussed; these classes represent cases where one or more of the pa-
rameters Pr, w, B, cs’ tw’ Ui/ZHe and ui/ui are either zero or unity.

Section III gives a concise guide to the solutions of this Memo-
randum. Section IV presents the numerical method of computation used
in this program. The concept of local similarity is discussed in Sec-
tion V, where criteria are presented for judging the applicability of
similar solutions in situations where the similarity parameters vary.
The analysis is extended to large positive values of the pressure-gra-
dient parameter, B, in Section VI.

Our experience indicates that values of the skin-friction and heat-
transfer derivatives and the boundary-layer thickness integrals may be
estimated to high accuracy for intermediate values of the similarity
parameters by careful cross-plotting of the present exact solutions.
The accuracy varies with the particular quantity and the specific val-
ues of the similarity parameters, but it is genrrally between 0.5 per-
cent and 2.0 percent. In particular, use of the solutions for B = «

allows estimation of all quantities for all positive B.




Il. SIMILARITY EQUATIONS FOR THE LAMINAR BOUNDARY LAYER

The purposes of this section are three. First, we shall display
the laminar-boundary-layer equations for a binary mixture of perfect
gases in their most general form, lis*ing the general conditions that
lead to similar solutions. Second, the specific equations treated here
are deduced from the general equations, and relations are given for com-
wuting heat transfer, skin friction, and integral-thickness parameters.
Finally, special reduced forms of the general equations (Pr = 1, etc.)

are discussed.

GENERAL EQUATIONS

The equatiens that describe the conservation of mass, momentum,
and energy in 2 laminir boundary layer are well known. They can be ex-

pressed as follows:

3 3

= (purd) + — (pvr!) = 0 (1)
Ax dy
du du dp 1 9 du
pu — + pv — = -—+—.—-(prj—) (2)
Ax dy x rd dy dy
ow ow 1 23 3 ow
pPu—+ pv — = —j-(ur —') (3)
ox oy r’ dy oy
op
— =0 (4)
oy




dy rj dy Pr dy rj dy Pr/ 9y 2
1 2 i 1 1 aci
t=—|du—(1-—=) ) n = (5)
r’ dy Pr Le - dy
1
Bci Bci 1 3 . Bc.L
Fu—+ pv — = —j—(erDIZ—- (6)
dx ) r° dy dy
j =0 two-dimensional flow (7a)
j =1 axisymmetric flow (7b)

The coordinates x, y, and r are defined in Fig. 1. Other symbols are

defined as follows:

C,
1

Le

Pr

. .th .
mass fraction of i constituent

binary-diffusion coefficient

total enthalpy of mixture = h + (1/2)(u2 + w2)

chemical enthalpy of 1th constituent

thermal conductivity of fluid

Lewis number, p D., cp/k

12

Prandtl number, cp p/k

local fluid pressure

Schmidt number, W/p Dy

flow velocities in the x, y directions, respectively
flow velocity in direction normal to x, y plane
viscosity coefficient of fluid

local fluid density
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tegrates to

p(x, y) = p(x) = pRT,

equation:

QY/dx = - pvrj

¥y = + purj

and a transformation for the independent variables is introduced:

o 2]
§ J)(: Cpe;.e\.‘ark dx

1 -5;—,;-]‘:prj dy

x only.

of the transformed similarity variable T:

These equations neglect thermal diffusion and diffusion-thermo effects.

If the fluid is a mixture of thermally perfect gases, Eq. (4) in-

(8)

A stream function Y¥(x,y) is introduced that satisfies the continuity

(9a)

(9b)

(10)

(11)

where subscript e denotes any property at the edge of the boundary lay~
er and 2% denotes a characteristic radius. The quantity C, by defi-

nition, is a combination of physical properties that are functions of

In reducing the partial differential equations in 7} and § to or-
dinary differential equations in the single variable T, all derivatives
with respect to & within the boundary layer are neglected. The fluid

velocity, the enthalpy, and the concentration are then defined in terms
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w/u, = dE(M/dN = £°(M)

wiw
/e

H/H
e

c, /c,

i
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= &(M)

= G(M)

= z,(M

(12)

(13)

(14)

(15)

(The dependent variable f appearing in Eq. (12) is simply equal to

/2% times the stream function ¥.) Then the boundary-layer equations,

(2), (3), (5), and (6) for a two-component boundary layer may be

written as a set of coupled ordinary nonlinear differential equations.

23 g

x-—-——

ij Pr

2j

1'2'1

1'2']

X -EE-—— Z

Tk

1

Sc

+ f£f’

23, n
\ = — [—

er Sc

k

!

1

2E du

Le

'
+ fZ1

— (E'Z -

u, dg

P
—e) (16)
P

(17)

'
- ) (h1 = hz)Z{] (18)

0

(19)




where

-
d

leading-edge sweep angle

>
(]

(l/C)(Pu/peue)

u, = free-stream flow velocity in the x-direction

The above equatiows are applicable to the two-component boundary
layer of an axisymmetric body or a swept two-dimensional surface. The
boundary conditions for these equations are given at the surface of the

body by the no-slip condition and the requirement of similarity for

the wall concentration and enthalpy:

£'(0) = 0 (20a)
g(0) = 0 (20b) ‘
G(0) = Gw (20c)
z,(0) = 1 (20d)

At the outer edge of the boundary layer, the velocity and enthalpy must
. match the values in the free stream. The concentration of any material

injected at the surface is assumed to be zero in the external flow.

f'(m) = ] (21a)
g(o) = 1 (21b)
G(=) = 1 (21c)

Zl(w) = 0 (21d)




P e T

T

s Pt ode it it dainalLdu it g g

TN RIS

WP

T T

et

idhinluhd

L o L U AR e

DA TS

The final boundary coadition is obtained by considering the 2-parcicles

at the wall, This yields the well known Eckert=Schneider rondition

represented by the equation:

= A ‘1w Tw 3 n
fw = f(0) = [-Sz]w'l—_—:-Z{(O) (i) (22a)

-

From the continuity equation, the injection parameter is related to

the similarity coordinates by the equation

(ov), /IE o }
f = - R e—t——— g — all B
v Cp L u r2j
eee k

(22b)
2 -1/2

1 du uw
g, = -2 ) - B # 0
v u dx Cop L u ‘k

CONDITIONS FOR SIMLLARITY

In order that Eqs. (16) through (19) be similar, severe restric-

tions must be placed on some of the termc. These are:

2§ du P
£2 _ €Y - F (M) (23)
- S -9 -
A= A (24)
2/l - F, (") (25)
either Pr = 1 )
(26)
or uzlui = const. and Pr = Pr(") ‘
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Le = Le(M) 27
G, c, , and r2/r2 are censtants (28)
w' T lw w 'k
fw = f£(0) = const. (29)

Equations (23) and (25) reprcsent the most severe rastrictions on the
system because the external velocity distribution and the body surface
must satisfy the requirements shown. It may be verified that Eq. (23)

has tb~ following form:

28 du_ T 2 1 2
F](T]) a — =52 Jf -—[(l-t)e-(l-t)g +t] (30)
. 8 w ] W
u df T t
e e s
where
v = (H - Hw)/(He - Hw)
To = free-stream stagnation ’ erature
and
t = H/H - T /T (31)
w w € w o0

(adiabatic and calorically perfect i wiscid flow) and

1+ 1520 cos? A AN
£, = —— = 1-{—]sin’ 2 (52)
2 1+ XLy 2H
2 © e

It ehould be noted that either j = 0 and 0 < ts €1, or j =1 and
ts =1. If ts and qw are considered to be free parameters, Eq. (30)

requires that
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— =22 - 3N (33)

If we assume the relationship between ug and £ to be given t7/

-— .m
u, ~ JTe/To g (34a)
then
2§ due To
— — (?;) ts = 2m = B (34‘))

u, dg§

where B is the mndified Falkner-Skan parameter.
Using Eq. (34) to define the parameter B, the equations assume

the following similarity form:

L2 !
1
— " ~ 12___ - - - 2
A 7] £ + £f B{f - [(1 t)8 - (1 -¢t)g +tw]} (35)
Tk ]

g’l +£7 = 0 (36)
[}
'.zj GI

A ;EE';: + £fG' %[X =3 (Pr }Zc[f f( cos A+ gg’ sin A]g

1 r2j 1 41 G
w
+ — X-——(—-l)(h - h)z! 37)
[ rij Sc ‘Le 1 2 1}




=12~
14
r2j 1
7\—2-1-—z1' +:z1' = 0 (38)
rk Sc

In Eq. (37), 0 = (ui/zue) and i3 given the designation of hypersonic

paraceter. Two modified hypersonic parameters can be defined, as

follows
Ui ue 2
o =\ (39a)
2H /\u
e -]
and
U: ue 2 2 2
o, = = (-—-) cos® A + sin® A (39b)
2
2He u

The parameter ¢, includes the shock-angle effect on the energy equation;

1
it is ¢ times the ratio of the velocity at the edge of the boundary

layer to the free-stream velocity. The parameter o, is a generaliza-

2
tion of % including the eifect of sweep angle. When ¢ = 0, the ratio
of kinetic energy in the flow to the stagnation enthalpy of the free
stream is zero; as a result the dissipation term in the energy equation

is neglected. As o increases, the dissipation term plays an ever-in-

creasing role in the erergy equation.

EQUATIONS FOR SOLUTION

Subject to simplification regarding the flows to be considered,
Eqs. (35) to (38) are those equations for which solutions are presented

in this Chapter. These simplifications are:
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1. The Chapman-Rubesir constant is defined as

¢ = pw“‘w/peue

so that the quantities Y and A\ become

g = »r(rlz(j pw“‘wue ok

¢}
o= oen/p i,
2., Curvature effects are neglected:
(c/ep? = 1

3. The product (Le ~ 1) - (h2 - hl) is assumed to be zero, and
thermal diffusion is neglected. A heuristic justification of this
simplification for equilibrium air is 3iven by Beckwith and Cohen,
Appendix A of Ref. 6.

The Lewis number has been taken to be unity; i.e., Pr = Sc. As
a final step, the concentration variable Z, is transformed to the de-

1
pendent variable

Substitution of € for G aad z for Z1 yields the equations that

were solved exactly to prepare the tables of solutions:

(Kf”)’ + £ff = B{f’z - .1._ [(1 -t)0 - (1 -¢ )gz + t :‘} (40)
t v s "
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(g’ fg' = 0 (41)

14

0\’ 200 (1 2
/X — ) + £06’ -‘ -——————-(—— - ) f”f'(gs) cos? A + gg’ sin® A ) (42)
\ Pr u_ ‘

zl I'4
( —) + f2! = 0 43)
Sc

This is a 9th-order nonlinear set of ordinary differential equations.
Nine boundary conditions are required, five at the wall and four at
the edge of the boundary layer. The boundary conditions to be satis-
fied are:

At the wall when T = 0:
£/(0) = g(0) = 8(0) = 2(0) = O (44)

and the Eckert=Schneider condition which relates the conservation of

2-particles at the wall:

[o4
£0) = - v ___ %0 (45)
Sc(l - ¢, )

1w

In obtaining Eq. (45) from Eq. (22a), we have made use of the fact
that ()\)w = 1. At the outer edge of the boundary layer, the condi-

tions are:
£n) = g(M) = 8(M) = =z(1) = 1 (46)

The value of ne is chosen to be large enough to insure that the bound-
ary conditions given by dq. (46) are satisfied asymptotically to a high

degree of accuracy (see Section IV).
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The similarity conditions are satisfied by:

B = constant 47)
o= opefep. = M) (48)

cither Pr = 1 1
(49)

or (ue/um)2 = constant and Pr = Pr(7) ‘
Sc = 5¢(M) [ = Pr(N) for Le = 1] (50)
t and c¢c. are constants (51)

W W

£f(0) = constant = fw (52)

The viscosity-temperature relationship may be characterized by
the power-law expression: W = ATY. This yields A «»Tm-l. A value
w = 0.7 corresponds to conventional wind-tunnel conditions, -'hile
w = 0.5 represents conditions encountered in hypersonic flight.

In terms of the similarity variables, A\ may be written in the

form

>
n

1 w=1
[:— {(1 - tw)e - (1 - t:s)g2 -0 (cos2 A)f'2 + tw}‘

w

If w=1, then A = 1 and pu = constant., In the literature, this lat-
ter assumption has often been made in order to simplify the boundary-
layer equations.

(%)

The authors have demonstrated in a previous paper that bound-

ary-layer characteristics calculated by means of a Sutherland viscosi-y
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law can be approximated almost exactly using the power-law relation
W
b~T r’ provided the empirical exponent & is suitably chosen. Suther-

land's law may be written

ve s+ 1)
— = 32 —l (53a)
uo s+t

where t = t:/'l‘o and s = S/To. The Sutherland constant, S, is a charac-
teristic temperature for the gas, and uo is the viscosity evaluated at
the stagnation temperature To. The empirical equations for calculating

w_are
r

tw + s
3 in t +s
TP N S— (53b)
r 2 In t
r
tr = 0.5 (te + tw) + 0.22 (1 - tw) (53c)

The quantity t is sometimes referred to as the Eckert reference tem-
perature.

Solution of Eqs. (40) to (43) subject to the bour.'ary conditions
of Eqs. (44) to (46) requires the specification of eight independent pa-

rameters. These are

£, £(0) = blowing parameter

Pr = Prandtl number, taken to be constant = Sc

t = sweep parameter
t = normalized wall temperature

local strecwwise velocity ratio

—~
[=
(3}
~
=
8
~
N
|
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B = pressure-gradient parameter
= 1g2 .
g =U /2He = hypersonic parameter
o
w or s = temperature-vistosity law

All eight must be indcpendent of the streamwice coordinate £ for simi-
larity to hold exactly. If Pr = 1, the parameters ¢ and (ue/um)2 are
not required.

It shculd be emphasizad that thermal diffusion has been neglected
and the product (Le - 1)(h1 - h2) has been assumed zero. In this ap-
proximation, solution of the three equations for £, ©, and g are in-
dependent of the diffusion equation and, consequently, are independent

of the value of the Schmidt number.

SPECIAL CLASSES OF REDUCED EQUATIONS

Two-Dimensional Flow

1f :2J/r§j = 1, the ordinary two-dimensional boundary-layer equa=-

tions result:

1 -

(£ + £ = B{f’z - —t— [(1 - :w)e - (1 - :s)g2 + ‘w_i} (54)
8
(e’ + fg; = 0 (55)

|
$

)c052 A+ gg! sin2 A

s:ls:
g Nlo N

RN ‘ 20\ 1
()\—) + f8! = { ——— (—- 1) f”f’(
\ Pr l(l - tw) Pr

C]-W )\ 1 3
v I - 4
+ ( 1) (b, - bz}

i

(56)
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zl’ ’
) +fz1’ = 0 (57)
Sc

Equations (54) to (57) are valid for axisymmecric flow if A is set

equal to zero and j is unity.

A = 0
When the free-stream-flow direction coincides with the x-direction,

then A = 0 and . = 1., For this case, the boundary-layer equations re-

duce to: .
OE) ' + £8° = BlE% - (1 - € )0 + ¢ ] (58)
/oy (1 20N fu’ /
—) + £6/ = (—- - 1)———— -% )f”f’
\ Pr l Pr (1 -¢) \u f
clw A !
+—=|— (— - 1)(h1 - hy)Z) (59)
H Sc \Le 1
e
1 ’
(x—) +f2) = 0 (60)
Sc

No Mass Transfer
In the special case where no mass transfer takes place in the

boundary layer, Z1 = 0 and 1w = 0, and the boundary conditions (in-

*
cluding the Eckert-Schneider conditicn) ure ignored:

*
Although the solution for the concentration ratio Z1 is Z1 = 0,

the solution of Eq. (43) for the normalized concentration z has a non-

vanishing solution and a nonzero gradient z’ at the wall,
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O£ '+ £ = a{f'2 - (-1t )0~ cw} (61)
t
6\ ? R, ui
R T P vrd 1 B
Pr Pr / (1 - tw) u_

Equations (61) and (62) are the ordinary two-dimensional Prandtl bound-

ary-layer equation.

ll-, ».oT
If the viscosity is directly proportional to the temperature,

» =1, and Eqs. (61) and (62) reduce to:

eree = p{e? oo} (63)
61\ ‘o 206 €7 jul | ],
(—) + 6/ = (—— - 1)————-(—%) (64)
Pr Pr (1 - tw) u_

b Y
Pr = 1

Equations (63) and (64) reduce to a form in which the dissipation

term of the energy equation is zero:

£° + ££”

S‘f’z - (1 - tw)e -t (65)

8" + £6' = 0 (66)

B=0

Finally, if the pressure-gradient parameter is zero, the momentum

equation is uncoupled from the energy equation; Eq. (65) becoues




=20«

" ”
f + fff = 0 (67)
and by inspection, the solution of the energy equatic~ is
8 = £ (68)

Computation of Boundary-Layer Properties

Heat-transfer rates and skin friction are related by the similar-
ity transformations to the derivatives 8/(0), £“(0), arnd g’(0). The

heat transfer from the stream to the wall is given by

q, = +k (3T/3y) (69a)

After the proper substitutions have been made, the expression for the

heat transfer in similarity coordinates is

k puH(l -t )ri
q = b N eCe ngifw 6/¢0) (69b)

pw

and the local heat transfer coefficient is
¢, = q,/le U (B -H)] (70)

The skin friction for the x-direction can be described in similarity

coordinates as follows:

T, = W ————= £(0) (71)

T, = B ——— g/(0) (72)
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The total component of skin friction is the vector sum of the twe com-

ponents T_ and T_:
X Z

J

rl pu 2 2 2 1/2
ro=ou =22 (0} 2+ /(01 2] (73)
and the local skin-friction coefficient is defined by
2
Ce = 21/p U (74)

Several integral relations have also been tabulated. They are

I, = (1 - ts)[11(1) - 11(2)] - (1 - tw)11(3) + 11(2) (75)

1, = I: £5(1 - £7) an (76)
where
1) = j: (1 - g% an )
1,2 = j: (a-£%a (78)
1,(3) = f: (L -6) an (19)

These integrals can be related to the boundary-layer-thickness parame-
ters expressed in similarity coordinates.

Displacement thickness:




(o]

& Jm (1 _ fu ) o - vﬁﬂ{_

u
pe e

Momentum thickness:

RANGE OF SOLUTLONS AND PARAMETERS

T°) (Te‘) (80)
—— 11, -|—1]1 80
T 1 T 2-

- _ﬂ 12 (81)

The parameters for the systems of equations under consiceration

here are
pressure-gradient parameter
Prandtl number
Schmidt number
temperature-viscosity-law parametar
sweep~-angle parameter
mass-transfer parameter
wall temperature

shock~angle parameter

hyper:onic parameter

The quantities tabulated are

f " =
W
8! =
w
g' =

0 < B <5 and B = ™
Pr = 005, 0-7, 1.0
Sc = Pr (i.e., Le = 1)

w= 0-5, 0.7, 1.0 or
.01 <5 <.,3

0<t s

8
-0.6 < f <0

w

0t <1.2

w
(u_/u )2 =0, 0.5, 1.0
\ e "o H ey o

o=U0/20 = 0, 0.5, 1.0
@ e

normalized chordwise velocity gradiunt at wall, [£7(0)]
normiiized total enthrlpy gradient at wall, [6/(0)]

normalized transverse velocity gradient at wall, [g’(0)]




plus the integrals Il’ 12, Il(l). 11(2), 11(3) as defined by Eqs. (75)
to (79).
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I1I1. NUMERICAL RESULTS

This sectlon provides a guide to the present solutions of the
laminar boundary-layer equations. The available solutions are shown
schematically in Keys 1 to 6. Each key shows all of the values of the
eight independent parameters covered by the correspondingly numbered
table found at the end of this Memorandum. If the key indicates (by
an X in the parameter matrix) that a solution is available, then the
numerical values are given in the correspondingly numbered table. The
key also provide: the reader with a gravhic display of the solutions
available in the neighborhood :f his range of interest. Inner solu-
tions for the limit B - o are given in Table 7 which is too short to
warrant a separate key.

Approximately a sixth of the solutions listed have been reported
by other authors. All values listed have been computed, or recomputed,
according to the numerical procedures described in Section IV, Some
differences exist between the present values ar . those of earlier in-
vestigators, but the prescnt values are believed to be accurate with-
in the limits prescribed in the succeeding three sections (generally,
correct to four significant figu-es).

The most extensive of the earlier tabulations of solutions to the
similarity equations foi. a laminar boundary layer of a perfect gas may
Ee found in the works of Beckwith,(3) Beckwith and Cohen,(6) Li and

(N () Reshotko and Beckwich,(g) and

p(11,12)

Nagamatsu,

Dewey.(lo) Solutions of high accuracy have been obtained by Smit

Cchen and Qeshotko,

and others. Early contributions to the understanding of the role of

fluid properties may be found in the works of Busemann,(13) Karman and
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14) (16) (17)

Crocco,(ls) and var. Driest.

(18)

Tsien,( Young and Janssen,

Emmons and Leigh report a large number of solutions with the sur-
Face mass-transfer parameter fw other than zero. Several recent com-

(19 to 22) on boundary-layer theory may be consulted for a more

pendiums
comp Lete description of previous contributions.

dince this Memorandum is restricted to positive values of the
pressure-gradient parameter B and values ﬁw < 0 corresponding to mass
injection into the boundary layer, a list of sources is offered in
which solutions for B < 0 and fw > 0 may be found. Emmons and Leigh(ls)
have obtained solutions for B = 0 and values of fw/f equal to 10, 6, ,
L, 3, 2.5, 2, 1.5, 1.4, 1.3, ... .5, .45, .40, ... 0.1, and 0.05, as-
suming that Pr = 1 and the viscosity-temperature law is linear. Suc-

tion results are reported alsc by Spalding and Evans,(‘3) (24)

(25) (26)

Pretsch,

Thwaites, ?7) schlichting
(18) and

Watson, Eckert, Donoughe, and Moore,

(29)

and Bussman,(zs) Mangler, Schaefer,(ao) Emmons and Leigh,

(31)

Koh and Hartnett.

Negative values of the pressure-gradient parameter B have been
(32) (21,33) Smith’(11,1z)

(3 (34)

considered by Hartree, Cohen and

(8)

Stewartson,

Reshotko, Beckwith, and Hufen and Wuest. Solutions fcr nega-
tive values of B differ from their counterparts for positive B in two
ways. First, two sets of 'proper"” solutions exist for each value of

B; second, every value of the wall derivative f& and its corresponding
value of 6;, etc., will satisfy the boundary conditions £’ =0 at 1 = 0
and £/ - 1 as | = @, The "proper" solution must, therefore, be defined
as that solution for whica £’ approaches unity most rapidly from above

(see Refs. 3, 8, and 21).
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Key 1

Similar Solutions for w = Py = ]

o
. ® ®
o~
o
— XXX XXX KK XXX XXKR XYM NHE KKK XX XXX XXX XXX
[} X XX XXX KX ®
Yo} ® ® X X X X X X XX ® ®
[Ta ® ® X X X X L T I R
< ® KX XX XX XXX ® ®
o~ ® X X X X XX ® ®
wy
- X X X
o x X X X X X X M4 X X M XX XX KKK XX KK XXX X XX MK XX XX
NN O o OO0 O NN O o m
™ N o O MmN ™ ™A o™
[ Ta i ] o oOwn N o N o m
Is] u QOO M OWOr- OO0 O0O0ODO0O0O MmrmMMOO-MmWOWO~nO
LS 88 88 8 8 e o o e e o o e o o « o e o o e o e o o . e o o
L] e O OO A O rdrderdrd radpdrdrderd OOOOMOOOmOO
F O OPS ~NN N
N T NI~ 00 00N
482607%7
3 O N NI W O OO0 OO NTWOW OONITO O s P
Yud s e o o e o . « o o ® o s & e e o e o o . - .
OO0 O0OO0ODO0ODODO0O0O0O0 OO OO0OO0O0O0 OO0OO0O0OO0 O o o
[ ] [ [ )
~ ~
L [Ta)
~’ [7a) O [T
@ o O N NN ™ 3 [T ~
o o OO o o o o o o

v

(a)All solutions for Pr « ¢y = 1 and § = 0 are linear in t .
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Key 1, cont.

2.0

=]

0 o oM M M X X M M M XX XX X MM X XX XXX K XXX EX X MM XX M X X X X K

o

@ H] bd »

o H] ® >

w KoM oKX XX MoK X X K X MM XM XXX XXX KK KX XXX XX KX XK XX

<t E ® "

L]

o~ H] ® H]

v

— o » »

(=) Mo oM X M M X MK X XX KX X XX XX XX XK XM KX XXX KX X XXX x
OO MmO O NN O™ NN O S NN O QO ONMO DO QONM O
QMO MO Wn MMV ™ N S M QO ™M mMmWwn e lL'a S MM wn
OWnMIN™MmOWN N ™ " N S iy QO uviem N "o Qe
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OO0 HHOOOOROOOFDO OO0 FNOOUVLOOORFNOOORFNOOOO m rm i =

2 O w o S © (o= B ee] (=) o [ e B oo ]

Ut . 0 . . . * o . . s o o
=] o .ﬂ o O o o o (=] QOO

)

o o ES T | o O 3 ® T OO
. . ] ¢ o [ ] L) * e o
- - o~ - ~ (] ™ 3N
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Key 2

=0

f
W

Similar Solutions for a Power-Law Viscosity Relation
Pr = 0- 7,

aw

o X X x X X o XX XX X XXX XXX X XK XX XX XX XK X

—

. b3 E] E E] E] b3 b *

—

o

. E] E] E] b

—
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o

wy
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—
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OO~ QOQOmMm OOm m rirderded rmd rmdedemd rmdededmd memdemd mded O O =t rd md sl =d =4
OO O OO O ™ O O O
™y O Wwn [sa s ] O N o " ™ O wn
L] — — — O N ™ N O N ™y N oy N O N
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Key 2, cont.
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Key 2, cont.
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Key 3

f #0
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Similar Solutions for Pr = 0.7, t
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Key 3, cont.
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Key 3, cont.
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Key 4

Similar Solutions for t
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Key 4, cont.
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Key 4, cont.
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Key S(a)
Similar Solutions for a Sutherland Viscosity--Temperature Relation,
Pr = 0.7, t. = 1.0

[ t
W
g s f g .05 .15 .2 .4 .5 .6 .7 .8 1.0 1.1 |t
W 1 aw
0.0 0.01 0.0 0.0 X X X (b)
0.5 X x X
1.0 X X X
-0.2 0.0 x x x (b)
-0.6 0.0 X X X (b)
0.03 0.0 1.0 x
0.05 0.0 1.0 X X X x
0.1 0.0 0.0 X X X (b)
0.5 X X
0.3 0.0 0.0 X X X
0.5 X X X X
1.0 X X
-0.2 0.0 X X X (b)
-0.6 0.0 X X X (b)
0.4 0.05 0.0 1.0 X X X
0.5 0.01 0.0 G.O X X X (b)
-0.2 0.0 x X X (b)
-0.6 0.0 X X X (b)
0.02 0.0 0.0 X
0.3 0.0 0.0 X X (b)
-0.2 0.0 X x x (b)
-0.€¢ 0.0 X X X (b)
1.0 0.01 0.0 0.9 x X x x
-0.2 1.0 X
0.05 0.0 0.0 X x
0.1 0.0 0.0 X X X
0.2 0.0 0.0 x
-0.5 0.0 | x
0.3 0.0 0.0 X X
0.9 X X
2.0 0.0: 0.0 0.0 x

aTwo sets of answers are given for each case. The first set
represents the Sutherland solution for the indicated value of s, while
the second set represents the solution using a power-law viscosity—
temperature relation with ¢ = w _ as defined by Eq. (53b)-

bSolution independent of s.
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Key 6

Outer Solutions for B ~ =
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IV, NUMERICAL IYTEGRATION PROCEDURE

The program for the numerical integration of the system of equa-
tions (Eqs. (40) to (43)) was written at RAND in FORTRAN for the IBM y
7044. The system was treated as a two-point boundary-value problem,
and the Runge-Kutta method was employed for the numerical integration.

The sequence of operations is shown schematically in Fig. 2. Inputs

to the program are values for the eight parameters and initial guesses
for the four wall derivatives £"(0), ©‘(0), g’(0), and z'(0). The so-
lutions are then separated into two categories: ordinary boundary-
layer solutions and adiabatic wall solutions. The latter requires a
subprogram that searches for and obtains solutions in which the adia-
batic wall condition is met. In either category, the Runge-Kutta meth-
od is used to integrate the equation to a given value of qmax' On the
basis of experience .. is value was selected to yield ar acceptable
asymptotic solution within the limits of the variable values at nmax'
The integration stepsize was varied to insure the proper accuracy, and
the values of the variables at nmax were held to within 10-5.

When the integration procedure is completed, the final values at
nmax are compared with the required values and the Newton-Raphson
scheme is used to recalculate the initial condition. The procedure is
as follows:

Let
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INPUT DATA:

PARAMETERS
& INITIAL  (={1)

CONDITION
GUESSES

|

TAW CASE

RECOMPUTE
™

NO

YES

COMPUTE

CONSTANT  |={2)

EXPRESSIONS

'

SET UP
RUNGE-KUTTA @
INTEGRATION

INTEGRATE

ERROR-
CORRECTION
ROUTINE

PUNCH CASE
DATA & PRINT
PROFILE

{
O,

— — — — —— —

IF THE INITIAL GUESSES
ARE SUCH THAT THE
INTEGRATION CANNOT
BE COMPLETED THE
PROGRAM ALTERS F"(0)

& BEGINS AGAIN

Fig., 2 -- Pro,vam flow chart.
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& = e[£(0), g'(0), 2°(0), 8°(OT = £°(n ) -1
3 = 3[£(0), g'(0), 2°(0), 8°(0)] = g(n ) -1
b = 3l£(0), g(0), 2°(0), 0°(0)] = &M ) -1
Ho= HE(0), g°(0), 2(0), /(DT = =2( ) -1
and
] N s ] B " 1
€ £/ ) £7(0)
3 g (M _,,) g'(0)
. = H B nmax 5 and § =
b & (Max) 8(0)
¥ | 2 (o) | 27(0)

so that € = €(S) = B(S) - 1 = AB.

Now d2 = dB = M - dS, where

— I I I
of; of, of,;
3£ (0) 3g 1(9) 28(0)
%8, _ %y %y,
df"(0) 2g'(0) 38 (0)
M =
20, 28, 26,
3" (0) 3g (0) 36 7(0)
azb azb azb
dE7(0) 2g '(0) 267(0)

—
afb
dz ‘(0)

agb

dz ‘(0)

aeb

3z '(0)

sz

dz 1(0)

(82)

(83)

(84)

(85)

(86)

It is required that ¢ = ¢(€£,3,8,H) - 0.

(87}

The integration is performed using the initial guesses for S.

This gives B and eo(S).

follows:

The initial guesses are then perturbed as

b
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e[£7(0) + Af“(0), g (0), 87(0), z'(0)] (88)
IL£7°(0), & (0) + 2g’(0). 87C0), z7(0)] (89)
BLE7(0), g'(0), 87(0) + A87(0), z'(0)] (90)
H[£7(0), g’(0), 87(0), z'(0) + Az’{0)] 91

These integrations give the columns of M. The new guesses for the ini-

tial condition are corrected by calculating:
NS = M e (92)

It was established that convergence was very difficult for caées involv-
ing high B (< 2). 1In these cases, the 10-5 limit accuracy was relaxed,

and this is indicated in each table as needed.



V. APPLICATIONS OF THE CONCEPT OF LOCAL SIMILARITY

GENERAL DISCUSSION

The numerical results tabulated in this Memorandum are rigorously
applicable only when the numerous similarity requirements listed in
Section II are satisfied. In considering the diverse applications of
compressible laminar boundary-layer theory, it is a rare occurrence
indeed when all of these conditions are met. A most important ques-
tion then arises: What approach should be used in predicting the be-
havior of the nonsimilar laminar boundary layer?

The copious literature relating to this question offers four ba-
sic types of approach, The first is to abandon the similar solutions
entirely and adopt approximate techniques such as integral and series

solutions containing free parameters. The most successful of the in-

(3%

(36)

tegral approaches appears to be that developed by Tani. The trans-

cendental approximation proposed by Hanson and Richardson
(37)

and the

"improved approxin. :ion" technique of Yang also appear very pro-

mising. Related to the integral methods is the powerful "strip meth-

(38)

od" proposed by Pallone, which follows closely the inviscid flow

integral method of Belotserkovski.(39)
A second type of nonsimilar calculation employs a strictly numer-
ical approach. The complete nonsimilar boundary-layer equations are
used and a new set of calculations is performed for each particular
problem. Examples of this approach may be found in the works of Smith

and Clutter(ao) (41,42)

and Fl'igge-Lotz and Baxter. Although numeri-
cally satisfying, these calculations are extremely expensive and in-

tractable to generalization.




] +
(43) has been nost '

The third type of approach, suggested by Lees,
successful in capturing the spirit of the use of similar solutions in
situations where exact similarity does not exist. He observed that un-
der certain circumstances, notably when there is a highly-cooled body
in hypersonic flow, the local pressure-gradient parameter, 8, had a
negligible effec: on the heat transfer to the surface. Many elabora-
tions of this approach have been proposed to improve Lees' simple re-
sult to provide more accurate numerical estimates of heat transfer,

skin friction, and boundary-layer thickness. Moore(zz)

gives a lucid
summary of one group of these results, Additional ideas for modifying
local similarity not discussed by Moore may be found in the papers of

Smith,(44) Kemp, Rose, and Detra,(45) (6)

and Beckwith and Cohen,
This third approach is saddled with one significant difficulty: it
is necessary to make one or more implicit ad hoc approximations regard-
ing the contribution of the nonsimilar terms in the complete boundary-
layer equations. In each of the papers cited in the previocus paragraph,
the question is not "Are similar solutions applicable?" but rather "Which
similar solution should be used?" A number of methods have been proposed
for choosing the similar solutions most appropriate to the local inviscid
flow conditions, local wall temperaturc, and boundary=-layer history, 1In
the context of the present discussion, this question necessitates the ju-
dicious choice of values for the eight similarity parameters. These val-~
ues are usually determined (e.g., Ref. 6) by satisfying one or more inte-
gral conservation equations exactly using assumed profiles obtained from
similar solutions. Such procedures are closely related to the integral

(46) (a7)

method of Thwaites and to the more recent use by Lees and Reeves

of a family of similarity profiles generated by Stewartson.(33)
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The fourth, and in many ways most satisfying, type of approach to
nonsimilar boundary-layer calculations may be traced to the work of
MekSyn.(lg) His underlying premise is very powerful: if the boundary
layer is at all times very nearly described by a similar solution, then
the direct effects of the nonsimilar terms may be caiculated by asymp-
totically expanding the full boundary-layer equations in terms of small

parameters which measure the departure of the solutions from similarity.

In this way, the accuracy of local similarity methods is explicitly de-

termined by using the full nonsimilar equations. We shall demonstrate
shortly that the linearized equations governing tuhe departure from sim-

ilarity depend only on the local similarity parameters and, consequently,

need be computed only once.

ASYMPTOTIC EXPANSION OF THE BOUNDARY-LAYER EQUATIONS

For purposes of illustration, we shall limit our consideration to

the "incompressible' momentum equation

2 = -
£y + fme + B(E)[1 - fn] = Zé[fnf?‘, fgf,l,m] (93)

where €, T, and B(E) are as defined in Section II and the subscripts 7
and € denote derivatives. Equation (93) may be obtained from the gen-
eral equations by assuming Pr = w = ts =t = 1. We alsoc assume that

fw = 0, making the three boundary conditions for Eq. (93)

£(§,0) = 0
fn(g,O) = 0 (94)
fn(§9m) = 1 )

e ienh 2l
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Merk(ag)

was the first to expand the complete nonsimilar momentum
equation in terms of a small parameter. Subsequently Bush(so) pointed
out that Merk's derivation neglected important terms in the correction
equation. The remainder of this section will be concerned with Bush's
equations and their approximate solution.

In the spirit of Meksyn's approximation, we loock for solutions to
Eq. (93) when the right-hand side is small. The key to an appropriate
expansion is the inversion introduced by Merk. We change variables

from [Z,M; B(E)] to [B,N: &(B)] so that the streamwise momentum equa-

tion becomes

2
f + ffTm + B[l - £n]

nm (B infay - f5im] (93)

£(g,0) = fn(B.O) 0 f-"(ﬁ.“) = 1 (96)

where

e(B) = 288'(%) 28(B)/E(B) (97)

If ¢ is zero, the momentum equation reduces to the Falkner-Skan simi-
larity equation with B as a single parameter. For small ¢ we may per-

form an asymptotic expansion of f£(B,7) of the form

£(B,M) = £ (B, + e(BE (B,T) + .. (98)

Then the derivatives f£. and fB are

M

fn = (fo)ﬂ + e(B)(fl)n + .00 (99)
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fB = (fo)a + e(B)(fl)B + ...
+ e’(B)f1 + ... (1C0)

As Bush pointed out, the term ¢ ‘(B) i3, in general, of order unity and

may be expressed as

1 d
e(B) = —— — [288/(E)] = 2[1 + E{B)] (101)
B/(8) dE
where
E(B) = EB"(8)/B'(§) = -§(B)§”(B)/[§'(B)]2 (102)

Substituticn of the asymptotic sequence [Eq. (98)] into the momen-
tum equation and boundary conditions produces a hierarchy of equations,
the first two of which are (primes on fo and £ denote differentiation

with respect to M):

Order Unity
£+ £ £ + 81 - (f')zj = 0
2 [o 2o ) (o] I
(103)

fo(a’o) s f;(B,O) = 0 ; fé(a,m) = 1 ‘

Order ¢

f: + fof{ - Alféf{ + Azfgfl = &(B,M) )
» (104)
fl(B’o) = f{(B,O) = f{(B’m) = 0 ’
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In Eqs. (104) the terms (Al’ Az, %) are

A = 2+ 2B+ 2E )

A2 = 3+ 2E > (105)

B, = ENED, - (£ )of!

Note that two independent parameters (B,E) appear in the first-order
equation.

Equations (103) represent t.> similar solutions of Falkner ard
Skan.(SI) Equations (104) represent the first correction f1 to the ve-
locity profiie which arises from nonsimilar terms. For example, the

skin-friction derivative f”(S,O) is expressed as

£(B,0) = fg(s,a) + e:;(s,u) + ... (106)

where f;(B,O) is the local similarity solution correspending to the lo-

"

cal value of B, and fl(B,O) is the correction obtained as a solution of
Eqs. (104). It is apparent that the correction will be of orcer ¢ as

lorg as f;(B,O) it of the same order as fg(S,O) and ¢ is smal’,

DIETERMINATION OF fl(ﬁ,n) BY SUCCESSIVE APLROXIMATIONS

We proceed to a consideration of the first-order equations for
£,(B,M), Eqs. (104). The differential equation is linear with homoge-
neous boundary conditions and may be solved numerically. The primary
difficulty arises in computing the inhomocgeneous term ¢(B,7M) which con-
tains derivatives of fo with respect to both 7 and 8. This is a diffi-

cult term to calculate numerically because a number of similarity
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solutions in the neighkuorhood of P must be known with high precision.
The exact numerical calculation of f1 appears possible but has not bee
attempted.

The technique adopted here is to substitute a transcendental ap-
proximation for fo(B,ﬂ) which allows the coefficients of the differen-
tial ~uation and the forcing function ¥(B,T) to be expressed in terums

(52)

of known functions. Following an earlier paper by Bush, wE repre-

sent fo by the relation

£,00,M) = erf(r) (107)
where
t = aj (108)
1 2 1/2
a(B) = = 1+B(1 +—) (109)
2 w

n

This relation is found to be in excellent agi'eement with exact solutions

for fo and appears quite adequate for our present purposes. It is con-

venient to transform coordinates from (B,7) to (a,t) and define a new

dependent variable g(a,t) accorling to the relationg

e) o) 3 t 3 3
— = Q — ; = = a'(B)(-'—""'_') (110)
oM at oB a at da
fl(B,n) = X(a)g(a:t) (111)
2 /da 0.23084
x(a, = (—) = — (112)
azfﬁ dp 3

a
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Substitution of these transformations into Eq. (104) results in a
linear differential equation for zg(a,t) which contains derivatives of
g with respect to t up to third order. The boundary conditions for

this equation are {primes denote differentiation with respect to t):
g(a,0) = g'(a,0) = g'(a,® = 0 (113)

The differential equation for g(a,t) is now integrated formally
three times with respect to t, using the boundary conditions given by

Eq. (113). The resulting integral equation is

tz ] t t
ga,6) = —g'(a,0 - [ J(0ga,0) de+a, [ [a0ea,0) o
2 o ‘o
t
-A, I J ‘. J_j(e)g(a,t) de + v, (6) (114)
0

The coefficients A (a) and Aa(a) are given by

A3(a) = 4+ 2E+ 2B ; A4(a) = 6+ 4E + 2B (115)

and the terms Jn(t) are the nth integrals of the error function:

2 2
~X
n = -1,0 J_l(x) = = e g Jo(x) = erf(x)
1 1 x"
— —— l1+n n 2 0 1 nivn

The term ¢l(t) is defined by
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. Y2t 1 v : (117)
¥, (t) = —=J.(v2t) - =J (t) - =3 _(£)J () +— v (t) 117
1 27 2 2 2 g ° 1 4 2
where
1 ﬁ_ 1 [ ey l
b.(t) = —J(VRt) ~-=J ()1 +—J (o) (118)
2 vz ° 2 ©° 2 17

A method of successive approximations is now applied to Eq. (114),
substituting trial functions g(a,t) for g(a,t) in the three integrals
and continuing until a trial function g is found that agrees setisfac-
torily with the function g computed from the integral equation. This
scheme differs from Picard's method in tha: the sequence of trial
functions g used in the integrals are suitably-chosen integrable func-
tions of t rathrr than the functions g(a,t) obtained in the previous
iteration step. Picard's method converges absolutely, but in practice
it usually carnot be continued analytically beyond one or two itera-
tions. In the present scheme, convergence depends on the choice of

trial functions g but the integrals may be evaluated in closed form.

Evaluation of the Velocicy Profile

In this analysis based on the simplified momentum equation [Eq.
(93)] we are most interested in the correction f;(B,O) to the velocity
gradient at the wall. It is therefore more convenient to work with

the first derivative of Eq. (114), which is (after some rearrang~ment)

t
g'(a,t) = tg’(a,0) - ASJl(c)g(a,t) + A6 Jo Jl(t)g'(a,c) de

t

+a, 'U 3 (68 (a,8) dt + ¥ (t) (119)
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viuere
A = 3428 A, = 2+ 2E (120)
1 1 v 2
Va(t) = =J.(¥28) - = J.(t) - — J5(¢) (121)
3 2 1 2 1 8 o

In following the technique of successive approximations, the terms
g and g’ on the rignt-hand side of Eq. (119) must be replaced by the
trial function g and its derivative g’. The behavior of g and g’ 1 1y
be inferred from the boundary conditions g(a,0; = g’(a,0) = g'(a,«) = 0

and is sketched in Fig. 3.

9,9

Fig. 3 -- Behavior of g ana g'.

ol
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The tehavior of §_(t) and the two integrals appearing in Eq. (119) may
3

be inferred from the behavior of g’ and the quantities Jn(t).

Suppose we decompose the trial function g(a,t) into two parts, so

that

g(a,t) = C(a)u(t) (122)

We then define #(t) to be unity as t — ®, making g(a,®) = C(a) # 0.
The boundary ccnditions g(a,0) = 0 and g‘(a,0) = 0 are automatically
satisfied for all suitable trial functions g{a,t); t“e boundary condi-

tion g’(a,2) = 0 serves to evaluate both C(a) and g”(a,0). The terms

appearing on the right-~hand side of Eq. (119) have the following asymp-

totic forms:

1‘
o [ (DE@,5] = c(a) (c - —-) (123)
A
t
ie [[ 908 @0 o] - c@y, (126)
t
. [U To(OE (a,0) de] = C(@ [vyt - v,] (125)
1 v
B (0] = - (2 - De - — (126)
2 8

The terms (Yl, Yz, Y3) are numerical conitants which are determined by
the choice of the trial function u(t).

Substituting Eqs. (123) to (126) into Eq. (119) and applying the
boundary condition g’(a,®») = 0, we obtain the following formulas for

C(a) and g“(0):

IOTRPToRSe e



-5~
ﬁ[l 1 24
C(a) ----—-+A(—+Y)-AY (127)
8 Lvm 6 N 1 43]
1
g'(2,0) = ¢l +4) - 4,Y,]-=(2-1) (128)
2

We have chosen several functions u(t) snd used Eqs. (127) and
(128) to determine C(a) and g”(a,0). The integrals appearing in [Lq.
(119) have been evaluated in closed form and the profiles g'(a,t) have
been determined for each trial function.

Products and sums of the functions Jn(t) are useful in generating
successively more accurate trial functions n(t) because the integrals

are easily evaluated. Typical examples of n(t) are:
RO

2
O]

v
w(t) = < {1 -—3_1(:)]
2 1

2

(129)

1(8)

\ (V2 - 1)

and there are othsars.

Weighted sums of the functions listed above were also used to ef-
fect a close fit to g’(a,t). The computed profiles g’(a,t) differed
in magnitude with the different functions u(t), but both the qual’ta-

tive behavior and the quantity g“(a,0) were relatively insensitive to

the form of n(t).
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For P = E = 0, g'(a,t) has a maximum near ¢ = 0.84 and decreases
to about 12 percent of its maximum value at t = 2,0, The derivative
g’(a,0) is approximately -0.035. For B = 0, the term a(B) computed

from 4. (109) is 1/2, and

E = =0
& 2 "
£,00,0) = ax(a)g"(a,")

= e 025

The Blasius solution to Eqs. (103) for B = 0 is f"')(0,0) = 0.46960, and
the final estimate of the correction to the szin friztion coeificient

for B~ E =0 is

£7(0,0) = fg(o,J)[l - 0,053 ¢+ ... ] (130)

The physical interpretation of tlis result agrzes qualitatively
with the sign of the correction- If € > 0, P is increasing and the
local similarity value, fg(B,O), would neglect ''relaxation'" effects
and overeatimate the shear at the wall. The correction reduces the
skin-friction value by an amount proportional to ¢. The small wagni-
tude (.053) of the correction term is somewhat surprising, but this
value is probably accurate to within about * 20 percent. Bush esti-
mated the correction terr to be 0.204 but his result was obt-ined by
asymptotically expanding an approximate solution rather than obtaining

an ap;voximate solution to the exact first-order equation.
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VI. SOLUTIONS FOR LARGE VAI.UES OF THE PRESSURE-GRADIENT PARAMETER B

In using the coucept of local similarity in highly accelerated
flows, it is uscfnl to have solutious cf the laminar bourdary-iajer
equat:ons for large values of B. The mathematical difficultiea en-
countered in the 1li<it B >> 1 may be illustrated by rewriting the

streamwise momentum equatiri. [Eq. {40)] in the form

1

1
cll " - 2 - — - - - 2 .
E ey ! + ££8"] {f’ - [(1 € )0 - (1 e)g” + cw]} 0 (131)

Here A\ is redefined as the density-viscosity racio at the wall (pp/pwpw).

In the limit B —» =, Eq. (131) reduces frow third to first order:

( 1 - 11/2
lim .. ‘
£ - i.;_ ‘(1 - kw)e - (1 - ts)g + tw]} (132)
8

The transverse-momenfum equation and the energy equation remain of sec-

ond order. As originally pointed out by 00188(53)

(6)

and as later elabor-

ated upon by Becikwith and Cohen, zhis leads to a singular pec:turba-

tion problem in which the thickness of the velocity layer is of order

B-l 2 with respect to the total enthalpy layer and transverse ve.ority
*

layers of order unity. The method of solution is similar to that em~

ployed in deriving a uniformly valid approximation to the Navier-Stokes
155)

equations in the limit of large Reynolds number [see Kaplun," Lager-
(56) (57‘]

strom and Cole, and the recent book by Van Dyke

*
Discussicn of this problem also appears in an ibbreviated version

(564)

in Lagerstrom's article.
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THE OUTER LIMIT EQUATIONS

Since the mathematics’ justification of this singular perturbation
gsolution (more popularly calied ar, inier- and outer-expansicn procedure)
has been discussed in detail by C les,(sq) cur purposes will be served
by a cursory development of the governing equations. The present
analysis extends the work of Beckwith and Cohen(6) to include a power-
law temperature-viscosity relation, a constant but nonunit Prandtl num-
ber, and the mass transfer at the surface,

Assume that appropriate outer representations of the dependent

variables £, 6, g are of the following forms:

: \
f = fo+'_' f1+-u' ;
VB
1
0 = eo+7§ 0 + e > (133)
1
g8 = 8, + — 8, + ...

VB /

Substituting these representations into the momentum equations and the

/2

- *
energy equations and dropping all terms of order B 1 and smaller,

the following "on:ter" equations are obtained:

*
The outer limit equations are properly obtain.d by applying :he
limit B - « to the full equations expressed in outer variables, with

TN held fixed. This gives identical results to those cited here.
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'1/2
fé' —[(1-t)9-(1-t)g+t! (134)
€, f
B 2)\a 1
— 8’ +f6'+{—‘ (1-—
Pr ° 2% ti-re) Pr
g2, 2 g2 1 !
X t—‘l(—‘i) cos® A + -2 gin? Al } = 0 (135)
2 u_ 2 _I
(g)'+£fg = 0 (136)

The approprviate boundary conditions are found (a) by requiring
that the outer equations satisfy the exact ov-er boundary conditions,
and (t) by exact matching r: the inner representacions with the outer.

The results may be written

£(0) =£ 5 8,(0) =g (0) =0 ; 8 (=) -g (=) =1 (137)

Only one boundary condition on fo may be satisfied by the outer
equations, because the outer limit equation for fo reduces to first
order. The exact boundary condition £’ - 1 as 7| - « is zutomaticzlly
satisfied by Eq. (134). The no-slip ccndition, £/ ~ 0 as 1 — 0, must
be satisfied by an inner solution which is valid in a region of extent
8-1/2 with respect to the scale of the outer solution.

In this approximation, the density-viscosity ratio \ = (pu/pwub)

in the outer layer becomes
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1 1l - 02 2 w=1

b ( t ) [(1 - €8, - (L -t g+ cw]; (138)

W )

where
2 2
U u
02 = (—‘E) (_e_) cos2 A+ sin2 A
.2He u_

As T =0, A = [(1 - 02)/ts]w-1 because £/(0) = (cw/cs)l/2

and £(0) is
nonzero in general.* The energy and transverse momer:ia equations are
coupled through the implicit appearance of oboth 60 and 8, in Eqs. (135)
e d (136). If Pr =1, 90 = 8> and the number of coupled ordinary dif-
ferential equations is reduced from three to two. Setting both the vis-
cosity-temperature exponent « and the Prandtl number Pr equal to unity

(6)

reproduces the equations of Beckwit“ and Cohen. 1f 0y = 0 (i.e.,
the local Mach number is zero), ts = 1, and the transverse momentum and
energy equations are again uncoupled.

Cne interesting case was pointed out by Coles and we extend his re-
gsult to genetralized compressible flow. Let tw = ts = 1, A = 0 so that
g, = (U:/ZHe)(ue/um)2 =0 Then A = (1 - cl)m-1 and fé = 1 for all 7.
In taking this limit with Pr # 1, the product of (£/2) and (1 - t )"

approaches 6; so that the energy equition becomes

" ? l=w -1
07 +0/M+E) Pr(1-0) "[l-0(l-B)]" = 0 (139)

*
It should be noted that the inncr and outer expansion procedure
breaks down in the limit tw - 0, because the outer solution for fo sat-
isfies the exact boundary conditions for the complete equations and the

inner solution for £’ is simply zero.
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with the boundary conditiors
n-0 , 80 =0 ; .
(140)
n - > 90(00) = 1 .
If we define the new variable ¥ and the constants X, and W by
n
X = 'VT_‘;- - Xo )
f
= - B,
Xo m g \ (141)
w-1l.-1
Ww = [1- o (1 - Pr)][Pr(1 - 01) ] /
then Eqs. (139) and (140) are satisfied by the solution
O = lerf(x/V2) + exf(x /VD)]/[1 + ere(x /D] ; (142)
For Xc < 0, we note the identity
erf(-x) = -erf(x) (143)

Equations (134) to (136) with the boundary conditions of Eq. (137)
represent a two-point boundary-value problem for the complete solution
of the outer limit equations. The derivatives 9;(0) and gé(O) along
with the integrals 12, Il(l)’ 11(2), and 11(3) evaluated using fo, 90,
and g, in place of £, €, and g are given in Table 6. The integral I1
is identically equal to zero. Beckwith and Cohen(6) calculated several

of these quantities for the case of Pr = w = 1, fw = 0, and nonunit

values of ts.
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THE INNER LIMIT EQUATIONS

Inasmuch as the order of the energy and transverse momentum equa-
tions is not reduced in taking che limit B — o, the outer equations
(Eqs. (134) to (136)7] represent complete solutions for the total en-
thalpy and transverse velocity profiles for large B. The terms fo and
(f;z)', which appear in the outer equations, differ from the exact so-

/2

lutions £ and (f'z)' only in a region which is B-l smaller in extent
than the region of applicability of the outer equations. Therefore,
the outer equations asymptotically represent the complete sclutions
for 9 c1d g as B = », and in this limit, the inner solutions for 6 ~nd
g are identically zero.

The no-slip condition £/(0) = 0 is satisfied by the inner limit
equation for i&; the inner equations for © and g, as noted previously,
reduce to © = g = 0, To examine the inner streamwise-momentum equa-
tion, it is necessary to introduce the new independent variable f| and
an inner representation for f:

1

N = fB.'n 5 f = fw +7§ fo(‘n)"'-.o (144)

so that

~ . u
£() = £(0) = :‘ (145)

e
After rearrangement, the inner equation for fé becomes

1 t
QE)Y ' +=-2F - (§)2+ 2 2 0 (146)
[o] B [0 2o} [o] t
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/2

and dropping terms of order B-l and smaller, the result is

t
QEY ' - (EH2+ 2 - 0 (147)
° t
8
where
9, cos2 A 2 -1
A s |1 e =———— (£ (148)
t [¢]
w

The boundary conditions on ?; are found from the exact bourdary condi-
%*

tions at the wall and the matching condition that the inaer and outer

representations of £ agree in the limit VB = = with ﬁ large but fixed.

The following boundary conditions for the inner equation result:

ri] . U = .
fo(O) = 0 ; fo() ./tw7t (149)

Since Eqs. (147) and (148) involve only EJ and not fo’ they repre-
sent a well posed, second-order, two-point boundary-value problem. A

more symmetrical form may be obtained by one final transformation:

t
2 #F 1/4
s (t) = 300V I I C P Il | (150)

t
w

Then the problem wmay be written

(kl;)' - sf, +1 = 0 (151)

*
The matching condition applied here is elaborated by Van Dyke:
Inner representation of "outer representation' = Outer representation

of "inner representation”.
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with the boundary conditions
8,(0) = 0 ; s (=) = 1 (152)
and the definitions
A= [1-as2]! (153)
a = o, cosz A/ts {154)

Values of s;(O) satisfying Eqs. (151) to (153) are given in Table
7 for several values of w, o, and A. For the special case of w = 1

“3
(53) . .
Coles pointed out that an analytic solution may be found in the form

s = 1-3 sech2 (t/V§-+ t:anh-1 V2/3) (155)

(o}

Using either the analytic solution for w = 1 or the numerical solutions
for w # 1, the surface skin friction derivative f; is then found by re-

versing the previous transformations
" tw 1
B Ly = VB'(—) 8,(0) (156)

In general sJ(O) depends on the three parameters Tps ©5 and ts; for

w = 1, the value of s;(O) is 4/3.

*Our thanks go to J. Aroesty of The RAND Corporation for suggest-
ing a simple numerical quadrature technique for solving Eq. (151).
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VII. DISCUSSION

The large number of the solutions in Tables 1 to 7 (p. 78 £f.)
suggests many possibilities for numerical correlations and comparisous
with spproximate results. Although an exhaustive discussion of these
possibilities goes beyond our present purposes, we present selected
examples in Figs. 4 to 14 (p. 72 ££.) of the use of the present solu-
tions in understanding the influence of the similarity parameters on
heat, mass, and momentum transfer.

The local skin-friction and heat-transfer coefficients ch and cf
are defined by Eqs. (70) and (73). Following Ref. 59, they may be

placed in a more symmetric form by using the Reynolds number

Ree,x = peuex1ue (157)

and the dimensionless streamwise coordinate

E - gomu it
= (r p‘“’p.wuerlz(j dx) (pwuwuerlz(jx)-l (158)
[o]

With these definitions, the quantities Ch and Cf become

I 1 , -
C, = cos A ('wuw>1/2 (peue) l O (L - &) (159)
h fjﬁ?"‘
2 €e,x PoFe Pelle .Pr(taw - tw)
2 cos A fpw\l/2fpu u \2 , /2
Cf = ( L w) (—9—9 l(fa)z —9) cos2 A+ (g“',)2 sin” A
/2t e,x ‘Pefe Pl Y :

(160)
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In Eqs, (159) and (160), only the terms appearing in the square
brackets depend upon the similarity parameters; the terms preceding
the square brackets represent the external flow conditions and wall

temperature. The Reynolds analogy function

j = zch/cf (161)

is simply the ratio of the square brackets appearing in Ch and Cf and
consequently depends only upon the similarity parameters.

In Fig. 4, the expected increase in the skin-friction coefficient
with increasing pressure-gradient parameter B is shown. The relative
increase in Cf/(cf)B-O is much greater for nigher wall temperatures.
This occurs becaus= the boundary layer is thicker and the response to
increasing B is proportionately higher.

Figure 5 shnss similar behavior for the heat-traisfer coefficient.
We have used the wall-gradient parameter 94[(1 - t:w)/(t:aw - tw)] in
forming the heat-transfer coefficient. As shown previously,(a) Gé
varies greatly with B for t, > 0.6 because t o varies with Bifo# 0.*
The percentage increase here is less than for the skin friction but the
trends with B and tw are the same. Lees(43) argued chat the high den-

sity in the boundary layer near the wall for low wall temperatures '"in-

sulates" tne wall from pressure-gradient effects and the influence of

*It is particularly important to determine the proper adiabatic
wall temperature ir cases with mass injection because taw is greatly
decreased by injection (see Table 3). The assumption Pr = 1 predicts
taw = 1 under all conditions, which is seriously in error for larye

injection and high local Mach numbers.
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B on C, is greatly reduced. This behavior is shown with decreasing

h

values of t .
W

The next two figures deal with the Reynolds analogy function
j= 2Ch/Cf- Li and Gr ¢(60) showed earlier that large deviadtions
from unity could occur in a hypersonic boundary layer even for
t << 1 and B = 0.
w

Figure 6 demonstrates that j decreases with increasing B, the de-
crease being faster with increasing wall temperature. This result can
be easily explained by examining the limiting equations for B = ». The

heat-transfer coeffi:ient C, approaches an asymptote as B — o, whereas

h
for large B the skin-friction coefficient increases as 81/2. The ap-
proach to this limitir: behavior is more rapid with larger wall temper-
atures. Similar behavior is shown in Fig. 7 for values of the hyper-
sonic parameter ¢ = 0, 0.5, and 1,0.

Figure 8 shows the well known boundary-layer property that heat
transfer is decreased by mass injection at the surface. The heat-
transfer reduction caused by a given value of fw decreases with in-
creasing B. The reason will be explained below in the discussion on
limiting solutions for large B.

Finally, the sweep angle parameter, ts, is varied in Fig. 9. When
the sweep angle {\ is zero, there is skin friction only in the x-direction
(see Eq. (160)). As the sweep angle increases, the spanwise term,
g'(0)sin A, contributes increasingly to the skin-friction coefficieat.

If the free-stream direction is sufficiently oblique, the :-component

of C_., £"(0) (ue/uw) cos /\, no longer exerts an appreciavle influence.

f’
The quantity

bt b i

N
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2 -1/2
{1+ [g"(0) sin A/E"(0) cos 1]°}
plotted in Fig. 9 is a relative measure of the contribution of the two
skin-friction components, and approaches a limiting value as ts*O. thlen(6 )

reported a similar result for the displacement thickness for Pr = w = 1,

It is very difficult to obtain exact numerical solutions of the
laminar-boundary-layer equations for values of B grea.er than 2. The
reason is simply that the singular behavior of f’(7M) near the wall as
B = » becomes dominant even for moderate values of B. Conversely, the
results obtained for B = » should be good representations of the be-
havior of the boundary layer for large but finite values of B. Ore
of the important results we wish to demonstrate is that, by combining
the exact numerical results for B < 5 given in Tables 1 to 5 and the
limiting solutiorns for B — « given in Tables 6 and 7, it is possible
to estimate accurately the skin-Ifrictio.a and heat-transfer derivatives
f&, gé, and 9; for all positive values of B.

The skin-friction results for B = o are displayed in Fig. 10.

The influences of the two parameters w and a on the inner solutions
for sé(O) are seen to be rslatively small. ¥For 0.5 < w < i.0 and
0 <a <1.0, the value of a;(O) may be found by interpolation co
better than 0.25 percent.

- - I
1/2(tw/ts) /4 approaches the

The skin-friction parameter iéﬁ
limit of aé(O) ag B » o. The difficulties that were observed previ-
ously in calculating exact solutions for 8 > 2 imply that this limit
is approached very rapidly with increasing B. This supposition is

borne out by Figs. 11 to 13, wheire the skin friction parameter is
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/2 /2

shown as a function of B'l » The limit parameter B-l is suggested
by the ordering procedure used to obtain the inner and outer equations.
Solid lines indicate exsct numerical solutions ard dashed lines are
extrapolations,

Figure 11 illustrates the approach of the skin-friction parameter
to its asymptotic limit q;(O) for different wall temperatures. The
iimiting value is approached most rapidly for high weall temperatures.
This result is to be expected from the bzhavior of the outir equations.
Large values of tw increase the magnitude of the velocity difference
across the inner layer, whereaa for tw - 0, the distinctien between
the inner and outer layers breaks down zud no proper limit is obtained.
It has also been found empirically that exact solutions are more diffi-
cult to obtain for large e,

The approach of the skin-friction parameter to its limiting value
with §'icreasing B 1s illustrated in Fig. 12 for several values of the
sweep parameter t‘. From a8 numerical point of view, the accuracy of
the present extrapolation procedure increases with increasing gsweep.

It 18 of interest to examine the behavior of the inner and outer
equations with mass inject’ sn at the wall. Applications of these re-
sults include mass-transfer cooling of rocket nozzles (Back and
w1tte)(57) and blunt hypervelocity vehicles. The outer equations de-
termine the heat-transfer derivative 9;, and they contain the boundary
condition fo(n - 0) = fw. Thus, surface mass transfer (fw < 0) acts
to reduce 9; and, consequently, surface-heat transfer even in the limit
B —» » On the contrary, the skin frictien derivative fz is found from

the inner equation for fé(O), Eq. (147), a the solution of this ~ ua-

tion is independent of the value of fw. In highly accelerated flows,




-69-

therefore, the effects of bloving on skin friction become negligible
in the limit B — o with fw fixed.

Figure 13 illustrates the behavior of the skin-friction parameter
as a function of the injection parameter fw. The limit is approached

smoothly with decreasing values of B-l/z

for all fw’ and accurate esti-~-
mates of f& may be obtaincd for all B by comparing the exact solutions
for B <5 and the inner limit solutions of Fig. 10.

The wall heat transfer is related by the modified Stewartson and
towarth-Dorodnitsyn transformations (Eqs. (10) a- 1 (11)) to Gé. Inas-
much as 90 anf g, represent the complete solutions for © and g as
B = o, the values of 9;(0) and gé(O) represent tte asymptotic limits
of Bé and g; as B - », .t should be emphasized that GJ and gé be-
come independent of B as B — =, demonstrating that the heat transfer
predicted by a local similarity analysis ir highly accelerated flows
approaches a limiting value.

Figure 14 shows the typical behavior of the heat-transfer deriv-
tive BJ with increasing vaiues of B. The approach of eé to its limit-
ing value for B - =, is seen to be smooth =1 (at least for the case

(4)

of ¢, = 0) monotonic., In an earlier paper, we demonstrated that
A
the proper parameter to uwse in comparing different heat-transfer cal-

. , ! = =
culations is Gw[(l tw)/(taw tw)]. For ¢, = 0 and t_ = 1, the

1
adiabatic wall temperature taw is unity for all Pr so that the heat
transfer parameter reduces to 8;. Although we have nc been able to
prove it analytically, it appears that taw = 1.0 for all values of

Pr, ts, w, and ¢ in the limit B = o, This is a very s ~prising result

and should be examined further,
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*
The boundary-layer displacement thickness & 1is defined by the

relation [Eq. (79)]

where the integrals 11 and 12 are given in the list of symbols. For

B = o, the integral I, is identically zero and the integral I, (Eq.

(75)]
! !
1, = fof(l-f)dn

is recorded in Table 6. In the absence of sweep, the velocity profile

is monotonic and 0 < £/ < 1, so that the integral I, is positive and

2
the displacement thickness is negative. With sweep (ts < 1), there
is often an overshoot in the velocity profile, so that £’ > 1 for some

range of 7|, and I, becomes negative. With sweep, therefore, the dis-

2
placement thickness may be either positive or negative, depending upon
the particular parameters being considered. Numerical comparison be-
tween the calculated results for moderate B and the present results
for 3 = » suggests that 5* monotonically decreases with increasing B.
In the special case when B = « and L, = t =1, £/ =1 and 6* is of

s
the order of 8-1/2

times the scale of the boundary displacement layer
thickness for B = O,
The numerical results giv:n .n Table 5 display the variation of

boundary-~layer properties for various Prandtl numbers near unity.

These results may be used to estimate recovery factors for Pr > 1 by
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combining the present results with the asymptotic solution of Narasimha
and Vasantha(sl) for Pr >> 1. Although these authors explicitly solved
the problem of a flat plate (B = 0) with w = 1 and low Mach numbers,
there is no reason why a similar analysis could not bs conducted for

B > 0 and general compressible flow. As Narusimha and Vasantha demon-
strate, interpolations accurate to better than 3 percent in the re-
covery factor can be made between first-order asymptotic solutions for
Pr >> 1 and exact numerical results for Pr of order unity,

In concluding this discussion, it is advisable to point out that
the numerical values listed for the wall derivatives f&, 9;, and gJ
allow reconstruction of the complete velocity and total enthalpy pro-
files by standard numerical integration techniques. Whereas the bound=-
ary-layer equations themselves, including the boundary conditions at
N =0 and M - », represent a two-point boundary-value problem, one may
gsolve the equations as an ititial-value problem if the wall deriva-

?

tives £Y, © ’
w w

» and g, are known. Furthermore, by using the wall deri-
vatives given here, multi-term expansions of the boundary-layer equa-
tions may be constructed for small T, This property is useful in
cases where additional "nonclassical® behavior occurs near the surface,
for example, in MHD boundary layers where an electrostatic potential

sheath exists for small 1.
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