
AIR FORCE REPORT NO.
SAMSO-TR-68-37

NATURAL FREQUENCIES AND MODE SHAPES
OF THE

TRUNCATED CONICAL SHELL WITH FREE EDGES

PREPARED BY

FREDERICK A. KRAUSE
CAPTAIN, USAF

DDC
JANUARY 1968 1 .7, . rw•j

"2 MAR 681968

HEADQUARTERS B

SPACE AND MISSILE SYSTEMS ORGANIZATION

AiR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC
RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED



[I

Air Force Report No.
SAMSO-TR-68- 37

NATURAL FREQUENCIES AND MODE SHAPES

OF -ME TRUNCATED CONICAL SHELL

WITH FREE EDGES

Prepared by

Frederick A. Krause
Captain, USAF

January i968

Space and Missile Systems Organization
"Air Force Systems Commauid

Los Angeles Air Force Station
Los Angeles, California

a



FOREWORD

This report presents a study accomplished by the author

in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at the University of Arizona. The material contained

in this report represents an updating and expansion of Air Force Report

No. SSD-TR-66-201 of the same title and author published in October

1966.

Publication of this report does not constitute Air Force approval

of the report's findings or conclusions. It is published only for

K the exchange and stimulation of ideas.

"ederick iA.Kraus4Xapt, USAF
Sis o(sMTAx)

Approved

Stanley M. I~ckie, Col, USAF
Chief, Advanced Development DivI.sion (SMTA)
Directorate of Technology (SMT)

\I
2"I

F' °

_ _ _



NATURAL FREQUENCIES AND MODE SHAPES

OF THE TRUNCATED CONICAL SHELL

WITH FREE EDGES

by

Frederick Arthur Krause

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1968

- -



9i

I

STATEMENT BY AUTHOR

This dissertati-n has been submitted in partial
fulfillment of requirements for an advanced degree at The
University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of
the Library.

Brief quotations from this dissertation are allow-
able without special permission, provided that accurate
acknowledgment of source is made. Requests for permission
for extended quotation from or reproduction of this manu-
script in whole or :.n part may be granted by the head of
the major department. or the Dean of the Graduate College
when in his judgment the proposed use of the material is
in the interests of scholarship. In all other instances,
however, permission must be obtained from the author.

[ 0

LA

L

i • ~SiGNF0.

s;0



"I

ACKNOWLEbGMENTS

The author wishes to than!k Dr. R. A. Anderson who

supervised this investigation. This dissertation would

not have been completed without his advice and encourage-

ment.

The author also wishes to express his gratitude to

the 'Western Processing Center at the UniverpLty of Cali-

fornia, Los Angeles, for use of the IBM 7094 computer

utilized in this study.

iii



if

TABLE OF CON4TENTS

Page

LIST OF ILLUSTRATIONS ......... .. . .v .

LIST OF TABLES .......... vi

.ABSTRACT ........... ...................... .. vii

CHAPTER

I INTRODUCTION ................. 1

II EQUATIONS OF MOTION AND BOUNDARY CONDITIJNS 5

III SOLUTION OF THE EQUATIONS . ......... . 16
Form of Solutions ............ ....... ... 16
Application of the Galerkin Procedure . . .. 21

IV COMPUTATIONAL PROCEDURE .... ........... . 34
Choice of Functions .......... ...... ... . 34
Arranging the Equations for Computer Solution 36
Accuracy of Computational Procedure ... . 39

V COMPARISON OF ANALYTICAL RESULTS WITH THE
EXPERIMENTAL DATA OF HU, GORMLEY, AND LINDHOLM 43

VI COMPARISON OF ANALYTICAL RESULTS WITH THE
EXPERIMENTAL DATA OF WATKINS AND CIARY . . . . 54

VII CONCLUSIONS . ... ................ 64

APPENDICES........ ........ 67
APPENDIX A COMPLETE FLUGGE EQUATIONS .... 67
APPENDIX B FORTRAN COMPUTER PROGRAM . . . . 70
APPENDIX C COUr.YING OF MODES .......... 83

SYMBOLS ................. ....................... 8(

IREFERENCES ............ ..................... ... 89

II .iv

2"~ .. ... .......



LIST OF ILLUSTRATIONS

Figure Page

2.1 Coordinates .............. ................. 6

2.2 Element Forces ............. ................ 9

5.1 First Mode Radial Displacement Shapes, Case 3 47

5.2 Second Mode Radial Displacement Shapes,
Case 3 . .................... 48

5.3 Comparison of Shapes ..... ............. ... 50

5.4 Effect of Varying Completeness Parameter . . . 52

6.1 Frequency Parameter, Case 5 ......... 56

6.2 Frequency Parameter, Case 6 ...... ......... 57

6.3 Frequency Parameter, Case 7 ... ......... .. 58

6.4 Frequency Parameter, Case 8 ... ......... .. 59

6.5 Normalized Radial Displacements, Case 8 . . . 62

v



..

LIST OF TABLES

Table Page

I Normalized Frequencies for Three and Four
Term Polynomials ......... ................ .

II Cone Geometry, Cases of Hu, Gormley, and.

Lindholm......................... . . . . 43

I III Frequency Parameters, Case 1 ............. . 45

IV Frequency Parameters, Case 2 . . . ....... 45

V Frequency Parameters, Case 3 ............ .. 46

VI Frequency Parameters, Case 4 ............. 46

VII Cone Geometry, Cases of Watkins and Clary 55

I

j -i



II
ABSTRACT

Results from experimental studies concerning the

natural frequencies and mode shapes of the thin truncated

conical shell with free edge conditions have not been con-

sistent. Mode shapes from one study were found to have an

equal number of nodes at the two free cone edges when

vibrating in a given mode while in contrast a second study

revealed an unequal number of nodes at the edges. The

theoretical results presented in this investigation are

obtained through the use of a modified Galerkin procedure

and are in agreement with the equal node experimental data.

At the same time, thi theoretical iresults have been used

as a basis for explaining the opposing experimental data.

vii
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CHAPTER I

INTRODUCTION

The subject of conical shell vibrations has received

very limited attention in the literature until recently.

Although the conical shell has probably the simplest geome-

try, with the exception of cylindrical and spherical shells,

the mathematical analysis of a conical shell is more diffi-

cult due to the fact that the governing diffeiential equa-

tions of motion have variable coefficients. Consequently,

most analyses -f the vibrations of conical shells are

accomplished through the use of approximate methods and

numerical procedures for which large digital computers are

a tremendous aid.

A comprehensive summary of significant previous

works is given by Hu (4)1. The majority of analyses con-

cerning the natural frequencies and mode shapes of trun-

cated conical shells concern those cases where the shell

is fixed at one edge and free at the other, or simply sup-

ported at both edges. A recent work by Platus (9) is an

example of a modern treatment of the fixed-free case,

1. Numbers in parentheses refer to the list of
references.

1
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wherein a digital computer and matrix methods are utilized.

However, the case where both edges of the truncated conical

shell are free of external support has not received similar

analytical attention. Perhaps the reason is that it is

difficult to choose functions which satisfy force type

boundary conditions of the free-free case.

Recent experimental studies for the case of free-

free edge conditions have been made by Watkins and Clary

(12) and Hu, Gormley and Lindholm (6). Watkins and Clary

observed that at certain natural frequencies a greater

number of circumferential nodes occurred at the major end

than at the minor end of the shell. This observation has

generated some discussion in the literature [see Hu (5)]

concerning the validity of the results. In the experi-

mental work of Hu, et al., the phenomenon of different

numbers of circumferential waves at the cone edges was not

observed.

At the time this study was begun, the results of

Hu, et al. were not available. The objective of the

investigation at that time was to investigate the possi-

bility that pure modes existed having nodal lines which

are not generators of the cone, i.e., correlate theoretical

analysis with the experimental data of Watkins and Clary.

However, the analysis, wherein the assumed displacement

shapes permitted an unequal number of circumferential waves

-.-- ------- ,@- - -- - - -



at the two edges of the cone, revealed an uncoupling such

that a pure mode having an unequal number of nodes at the

cone edges is not possible.

With the advent of the experimental results of Hu,

Gormley and Lindholm, a controversy arose since their worI

Sdid not revea.l different numbers of circumferential waves

at the two cone edges in a given vibration mode. The

objective of the study at hand was therefore altered tcwa~ d

the direction of attempting to explain the apparent con-

troversy between the two experimental studies.

In this investigation an approximate solution for

the free-free case is obtained utilizing a modified Galer-

kin procedure wherein functions assumed in the solution

need satisfy only the displacement boundary conditions, a

feature of considerable advantage for the free-free case.

The method accounts for errors in the forces and moments

which result when the assumed functions do not satisfy

the force type boundary conditions.

The theoretical analyses proceeded with the com-

puter programming of the computational procedure described

in Chapter IV. Results from the program for the experi-

mental case of Hu, et al. showed good agreement with the

experimental data both in frequencies and mode shapes.

This correlation of results is presented in Chapter V.

• !-



A plausible explanation of the experimental results

of Watkins and Clary, basea upon specific computer results,

is presented in Chapter VI.
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I CHAPTER II

EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

-The differential equations of motion utilized in

this investigation are those developed by Seide (10) from

energy principles. They are identical to those used by

L hao-tsien (2). Equivalent equations, based upon elemental

equilibrium considorations, can be obtained using Flugge's

Ssim.plified ve.rsion of the elastic law as applied to a

thin conical shell of constant thickness. The equations

apply to homogeneous isotropic conical shells of constant

wall thickness and are based upon linear, small displace-

ment shell theory and the assumptions of a larre mean diam-

r eter to shell thickness ratio and negligible deformations

r due to transverse shear. For "thin" shell theory it is

assumed here that h/ (s sin a) << 1, where h, s and a are

as defined in Figure 2.1. More complete Flugge equations

are presented in Appendix A. Basically, the additional

terms found in the more general equations represent higher

order -a for the very thin truncated shells analyzed in

this study.

Development of the equations based upon enei:-

principles will be presented here. Expressions for the
!•r

"Li
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middle-surface strains and curvatures of' a deformed conical

* shell as derived by Love (7) are given by

? S -(2.1)

= u- w cot 1 •v (2.2)e + (2.2) 00 s s sin a

s = v v 1 ýu (2.3)Yso =7-7, s s sin a .3)

S2 1

Ss =2w (2.4)
s2

1 w I • 2 w cos c OvX S .2 + 2"a 2 + . 2a (2.5)
s sinn 00 s sin

= 1 ~1 ýw
S+ v Cos a)] (2.6)SX ~~so =Sir- a as •( o

where u, v, and w are the displacements in the longitudinal,

circumferential, and radial directions, respectively (see

Figure 2.1). Following Seide, the strains are retained in

the form of Eqs. (2.1) to (2.3), but the curvatures are

modified by deleting the terms involving the circumferential

displacement since experience has shown that these terms

are negligible for very thin shells, especially as a

approaches 900 where they become identically zero. Expres-

sions for curvatures are thus given by

X w (2.7)ýs s2
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l •w +2(2.8)

Xse = sina T-s (-g ) (2.9)

Figure 2.2 shows the force and moment stress

resultants acting on a differential shell element. Stress

resultants, Ns, Ns8, and Q are forces per unit of circum-

ferential length; N,, N O, and Q, are forces per unit of

icngitudinal length; Ms ard M are moments per unit of

circumferential length, and Me and MGs are moments per unit

of longitudinal length. The equations 3}elating the stress

resultants to strains and curvatures are as given by Seide

(10):

N = -__ t" ( o

S-ELE9) (2.10)
S 1-v

"N0 =E2 (ee +ves) (2.11)
1-v

Eh (2.12)
s 6 Os = 2(1+v) so

Ms (x +Dv) (2.13)

M - Dh(2 (X +V ) (2.14)

M so -- 5  ah2 (v-) x (2.15)M ---- ~---Gs- - es = -
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where E is Young's modulus, v is Poisson's ratio, h is the

shell thickness, and D is defined as

D 2 (2.16)(!-v )

Equations of equilibrium and boundary conditions

can be derived from energy principles. The total energy

of a conical shell, i.e., the strain energy minus the work

due to external forces, can be expressed for the complete

circular shell as

2v s2

U f ( [ (Ns +c ee +Ne s -Ms X

- Me Xe + 2 Mse Xse) - (Fu u + FvV + Fww) s sin a dsde

2ir
- s [SNU s~ s + Mse s -sin a TOU

0

+ Q sW)] sin a de (2.17)
s1

where Fu, Fv and F are external forces per unit of surface

area and the barred stress resultants are forces or moments

per unit length on the cone boundaries. Terms to be inte-

grated along a longitudinal edge from s1 to s2 do not
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appear since the development here is limited to a complete

shell e 0 to 2w. The terms, Fu, F and Fw, will later be

replaced by inertia forces using D'Alembert's principle.

The energy expression in terms of the displace-

ments, u, v, and w, is obtained by substituting the equa-

tions for stress resultants in terms of strains and curva-

tures, Eqs. (2.10) to (2.15), and strains and curvatures in

terms of displacements, Eqs. (2.1) to (2.3) and (2.7) toV} (2.9), into the energy expression, Eq. (2.17). When the

first variation of the resulting expression is taken and

variations of the derivatives of displacements are elimi-

nated through the use of integration by parts, Eq. (2.18)

is obtained (writte-n in terms of stress resultants).

2w s2 s1 se

8UT fJ f [j-s (sNs) N9 + 1+s: . 6U= • [[ (Ss) N8+ In a -8+ SF u 6u

0
i To s1

1 Ne 1~ (2s)
+[sin a To s E- s N-s + S~y] 6v

- [s -2 Vw N cot a -sFw] 6w] sin a dsde

27r

+jf [s[(N - N) 6u + (N -Tse)6v
5 so so

o

F(M, T- 6 3w)] + [3(sM) -me

*2 so -- +So 6w] sin a dO (2.18)
sin a --T - s sin a is
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Again, terms to be integrated along a longitudinal shell

edge do not appear because of the circumferential complete-

L4,
ness of the shell. Here V v is the usual cylindrical form £

4_ 1

•2 2 . 2

3w 2 ( s T- s sin2 aL ý-2

-222w 1 1 2
d + + .. (2.19)

ds s sin2 a 0

The first variation of the energy 6U must vanish

for a minimum. Since 6u, 6v and 6w are independent, each

of the factors under the double integral must, therefore,

vanish. In addition, the factors of each of the variations

in the line integral must vanish independently. This pro-

cedure yields the set of equilibrium equations

(SNs) - No +sn + sFu =0 (2.20)

SNj (2 Ns9 + s 2Fv 0(.1

N6 +sin + s

sin a. + s2 5 )' + = 0 (2.21)

K - sDh2  14

i2--V w + N8cot a + sFw =0 (2.22)

and the boundary conditions along s = Sland s= 2

B4
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Ns =i 'N or u= 0 (2.23)Ns =N

""Nse = -Se or v = 0 (2.24)

s ((SMs) - e- 2Ms csc a]

1-1 [sQs - csc a M S or w = 0 (2.25)

Ms =Ms = M or w =0 (2.26)

where N, T, S, and M are the generalized boundary forces

associated with u, v, w, and w , respectively. General-

ized boundary forces here are both forces and moments per

unit length along the shell edge. The indicated deriva-

tives are defined by the notation

- .- )(2.27)

(2.28)

For the free-free case of no displacement constraints and

no external edge forces, the boundary conditions become

simply

N= 0 at s =s and s2  (2.29)

- =0at s =s ands (2.30)

1K.
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Is [(SM) - Me - 2Ms. csca] = 0 at s = s and s2 (2.31)
s1 (232

MS = 0 at s = s and s2 (2.32)

For free vibrations the external forces per unit

area, Fu, Fv, and Fw, are replaced by inertia forces using

D'Alembert's principle. Rewriting the equations of equil-

ibrium in terms of displacements such that they physically

represent force per unit area in the longitudinal, cir-

cumferential, and radial directions, respectively, Eqs.

(2.20) to (2.22) become

Dj [ (+V) Y - csc a - (3-v) v csc a + ul
s 2 s

+ (lv csC2 a+ u U VWcta
2 s2 s s 2 s

2 u

+Ž 2cot a] - ph -= 0 (2.33)

D. ( 2 v/ + v csc 2 a + (-v) v - (l-_v) v
2 s2 2 s 2 s 2

+ V) u csc a + (c-v) a- w" cot a csc a]2 s 2 s-- 2s s 2
S

2
- ph ýv = (2.34)

3t 2
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D [V7 CSC a + v ul + u 2 cot a] cot a

-S S S S

Dh2  2 W" 4[w + 2 +-" csc csc C

12w 2

s s

+ s - s3 c sc2 a 2 V+ s--7- csc2w aw " 4'

2w' 32 w c ~ + ~

t+- -ph 4=0 (2.35)

where the constant p is the mass density. The boundary

conditions, Eqs. (2.29) to (2.32), written in terms of dis-
*

placements and units of generalized force per unit length,

become

D[u' + v(uw cot a + I csc a)] = 0 (2.36)

- %- +-- csc a] =0 (2.37)

-Dh 2 [w (2-v) ww'. csC 2 a- (3-va) csc2a1• s .. ce•- s3w"CC

+= 0 (2.38)

-Dh-2 [w2 wr [w' v(, 20W (2.39)
1-2  + (w csc a +s--)]* 5



CHAPTER III

SOLUTION OF THE EQUATIONS

Form of Solutions

As described briefly in Chapter I, the en:,phasis

during the early phase of this study was to investigate

the possibility (theoretically) that pure vibration modes

of the form found by Watkins and Clary in their experi-

mental work are possible. In order to permit solutions

wherein a different number of nodes can occur at the two

cone edges, consider complete Fourier series solutions

of the form

- (1) (2)
u = U n un (s) cos no + Z Un (s) sin ne] sin wt

.n=o n=l
(3.1)

- (1) . (2)
v = 1 Vn (s) sin no + Z Vn (s) cos n@] sin wt

- n=l n=o
(3.2)

- (1) - (2)
w = E . Wn (s) cos nO + E Wn (s) sin no] sin wt

n=o n=l

(3.3)

16
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17S(1) (i)
Regarding the functions, Un (s), Vn (s), etc., to be

arbitrary, this general form of solution has the property

of completeness and can represent any possible mode

exactly. Consider now the substitution of the solutions,

Eqs. (3.1) to (3.3), into the first of the three appli-

cable dif7ferential equations, Eq. (2.33). The result is

given by Eq. (3.4).
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(lv( (1), • (2),

D((-=a) CSC z n vn 1)n cos no + Z n Vn sin no]
2 s -n=1 n=o

(3-V) c(i) cos ne + E (2) sin ne]
2 [T n011 Vn .=onnn

s n=l.

O ( I)'' C (2)''
+ [ E Un cos no + ' Un sin no]

n=o n=l

(1-v)cscacc 2 (1) 2 (2)
2 l-) E n Un cos nO + E n U sin ne]

S n=o n=l

U (1) W (2)
4 E[. U cos no + ' Un sin no]S -n=o n n=l

1 (1) (2)
_ 1 [ 7 Un cos no + E U sin no]

S n0=o n=l

,O (1), O (2)'
V cot a(( Eot Wn cos nO + E sin nW]n=o n=l

cot CO ( ) (2)
+ c [n E (n cos no + Z W sin no]]

_7 n=o n~ln

""U (1) (2)
+ phw Z U n cos nO + E Un sin nO] = 0 (3.4)

n=o n=l

Equation (3.4), plus two other similar equations

which are obtained when the displacements, Eqs. (3.1) to
(3.3), are substituted into the remaining equations of

motion, Eqs. (2.34) and (2.35 are to be solved for the
(1) (1

eigenfunctions Un (s), Vn (s), etc. and the cor-

responding eigenvalues w2 . Following the usual procedure,
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these three equations are multiplied by either cos mO or

sin me and integrated frome = 0 to 6 = 2r. Consider, for

example, the multiplication of Eq. (3.4) by cos me and the

subsequent integration from e = 0 to 6 = 2r. Due to

orthogonality, the terms involving the functions with a

superscript (2) are completely eliminated, the only

remaining terms being those for which n = m and involving

the superscript (1). When both integrations are performed

independently on each of the three equations, the result is

six equations, three of which involve the functions
t (i)'Vmand wm(1)

U )(s), (s), and (s) while the remaining three

involve the functions Ur(2)(s), Vm(2)(s), and Wm(2)(s).

Furthermore, the three equations involving the functions

with superscript (1) are identical with the three equations

involving the superscript (2). Thus there is no need to

consider both sets of functions. The family of modes for

which n m is completely given by

u = U(s) cos m8 sin wt (3.5)

v = Vm(s) sin me sin wt (3.6)

w = Wi(s) cos me sin wt (3.7)

where m is the number of full waves around the circum-

e-i
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ference of the shell, also defined by one-half the number

of nodal points encountered when going around the circum-

ference.

For the purpose of obtaining an approximate solu-

tion through the use of the Galerkin procedure, a finite

series approximation of the form

n
u = qi ai(s) cos me sin wt (3.8)

n
v = E qi Pi(s) sin me sin wt (3.9)i=l

n
W = E qi yi(s) cos me sin wt (3.10)i=l

was used for this investigation. Here m is allowed to take

on a single value for a specific solution. The choice of

the functions ai(s), pi(s) and yi(s) are discussed further

in Chapter IV. Modal patterns resulting from using these

displacements will, of course, consist of parallel

circles and equispaced meridians -- patterns which because

of the axial symmetry of the shell and the boundary condi-

tions, and the circumferential periodicity of the vibra-

tion motion, are entirely logical. The experimental

investigation of Hu, Gormley, and Lindholm (6), conducted

at the Southwest Research Institute, confirms the foregoing
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discussion. Further details of these results appear in

Chapter V.

Application of the Galerkin Procedure

The Galerkin procedure used by Bolotin (1) and

Matthews (8) differs from the usual Galerkin procedure in

that the functions utilized for the assumed solution must

satisfy only the displacement or "natural" boundary condi-

tions. This is an important feature since in the case of

the free-free conical shell it is inconvenient to choose

functions which satisfy the boundary conditions, Eqs.

(2.36) to (2.39). In fact, it is difficult to find func-

* tions which do satisfy these boundary conditions. In this

method the errors in the forces and moments at the bound-

aries are weighted along with the error functions from the

differential equations. The total weighted error is then

set equal to zero which is equivalent to setting the

virtual work done by all the forces and moments moving

through appropriate displacements equal to zero.

The modified Galerkin procedure requires addi-

tional equations to account for the boundary errors. The

equations are obtained from the requirement that boundary

forces and moments must balance the internal forces and

moments on an infinitesimal end element. Utilizing the

force type boundary conditions, Eqs. (2.36) to (2.39), in
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equations of equilibrium written for an end element, the

required equations for the end element at s = s. are given

by Eqs. (3.11) to (3.14).

'fi + D (i' + 2ý (u-w cot a) +-V- csc a]) = 0 (3.11)
S= S

S+D(I-v)[ v + uL csc a] : 0 (3.12)
2 S 5

S= S1

Dh2 (2-v) '.. csc a (3-v) w** csc2a

S- -12L (w" + s2 S

+ w" w] = 0 (3.13)
S =S= SI1

[+h 2I (w +v csc2 + sW_') ] 0 (3.14)
s 5

S= S1

where N, T, S, and M are the generalized boundary forces

per unit length as previously defined. Similarly, the set

of equations for the other edge of the shell where s = s2

is given by Eqs. (3.15) to (3.18). In Eqs. (3.11) to

(3.14) above as well as in Eqs. (3.15) to (3.18) below,

positive forces are generally taken to be in the direction
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of positive displacements (see Figures 2.1 and 2.2). Care

must be exercised in the determination of the signs of the
forces at the shell boundaries. The signs which appear in

these equations must be carried through the steps of the

modified Galerkin procedure which follow.

-N D [u' +-L (u - W cot a -) + "* csc ca]) =0 (3.15)
S 

S 
S= S 2

{ D- (l-v) [vI v + u csc V'3)] 0 (3.16)
2 Ss

22

Dh [w" + (2-v) 1sc 2 3-v)

12 + 7 csc 2 a- (3 -v) _ sa2

+ -f] = 0 (3.17)
s

S= S2

Dh 2 E V **c 2 a +(=)) 0 (3.18)

S= S2

equations, Eqs. (3.11) to (3.18), as well as the general

element differential equations, Eqs. (2.33) to (2.35). The

approximate solution to be considered here will not satisfy

-J-~-- ~ - ~~~~- - - - ----

t
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all of these equations. Therefore, errors in all of them

are to be accounted for in the modified Galerkin procedure.

A set of error functions is generated by the sub-

stitution of the assumed displacements, Eqs. (3.8) to (3.10),

into the general equilibrium equations, Eqs. (2.33) to (2.35)

and the boundary equilibrium equations, Eqs. (3.11) to (3.18).

These are given by Eqs. (3.19) to (3.29) which follow.

cos mO sin wt E qi [D[('+v) csc a m~ i

n5 1

(3-v) csc a c(-v) csc2  m2a.
Smi + a.C - 2+ a.

Ss s sI

4 1 v cot a , cot a + phw2a
; S s S2

C= E(s,e) (3. 19)

(1-v "i csca2a

"sin me sin wt E qi [D[ 2) 2i -2a i
'•i S

-(1-v) '- (1-v) 0. (1Iv) csca ao m
s ( i -2s - 2 s

-(3-v) csc am cot a cscS2 s2 m i + 2 i

* + phw2 B i = F-O(s,O) (3.20)
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cos m9 sin wt Z qi tflt-s- 0'mi+ a

cot m co y-~ 2csco 2 a 2
S 2 i 12 (Ys

S S S

4cc2 m2 y1 +. 13 Y1'] + phw 2 y G e(s~e) (3.21)
S S

-N+ cos me sin wt E qi f(D~a + jL (ai i y1 Cot ix

i

+ csc a xois)]) E1 (e) (3.22)

N -cos me sin wt E qi fflV1  + (a -i cot a
i

+ csc m mp 1 )]] E2(e) (3.23)

I S = S 2
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-T + sin me sin wt E qi { -) [2i' 1 p
i

Csc m% ]a E3 (e) (3.24)

S=S1

'T- sin me sin wt qi"" 2i

CSC Ci] = E)(e) (3.25)

S ~ 4(2
S=S 2

-S-cos me sin wt E qi D [L 2 s2x csc 2a cx'.2 y
i

+ 1-) s cu m2yi +Yi 1 , 3.6
s - ]E 5 (e) (3.26)

S=S

S+ cos me sin wt Z q 2 - - (2-v) csc2a m2y
i 12 s

'3 c s c2a m2yi Y- s y] E6 (e) (3.27)

S=S
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II
- h2 c 2 a 2

17 + cos me sin wt E i t~~YiH+ v 2- m
i S

+. i Y ()33) (3.28)

Dh 2 EY + csc2a2

cos me sin wt E q, • +v( m2Y i
i S

+ 1 Yi 1 E8(e) (3.29)
s=s 

2

In the modified Galerkin procedure, the error

functions representing the end errors, Eqs. (3.22) to

(3.29), are weighted by displacements in a manner similar

to the weighting of the error functions, Eqs. (3.19) to

(3.21), resulting from the differential equations of

motion. Error functions, ca(s,8), E1 (8), and E2 (0), which

represent errors in force in the longitudinal direction,

will be multiplied by the displacement u per unit dis-

placement of the jth coordinate. Similarly, E0(s,e),

E 3 (e), and E4(0), which represent errors in force in the

circumferential direction, will be multiplied by the dis-

placement v per unit displacement of the j th coordinate;

~ ~ ~~ - - -- -
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and e (se), E5 (G), and E6(0), which represent errors in

force in the radial direction, will be multiplied by the
th

displacement w per unit displacement of the j coordinate.

Functions E7(e) and E8 (0), which represent errors in

moment, will be multiplied by the rate of change of radial

displacement in the longitudinal direction 3w/3s per unit

in the jth coordinate. The sum of all these weighted

errcrs, integrated over the er.tire conical shell, will be

set equal to zero. Written in terms of the error func-

tions defined previously, application of the foregoing

procedure yields the jth equation, Eq. (3.30).

2r s

Jf [ eamj cos me + e sin me + eYy, cos me]s sin a deds

o s1

2r

+ (Elaj cos meU + E2a cos me1
0 1 2

+ E 3 sin S=S + E 40i sin me + Cos me =s

+E 6YJ cos Mel + 'Cos meI

+ E8yj' cos menO ]s sin m de 0 (3.30)
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The foregoing procedure is equivalent to applying the

principle of virtual work, i.e., requiring that the vir-

tual work done by the forces and moments in a displacement

in the jth coordinate be equal to zero. Expanding Eq.

(3.30) through the use of the error functions, Eqs. (3.19)

to (3.29), integrating the result over 6 and cancelling

th thterms, the general ith term in the J equation can be

expressed as

__ CsCa m I 3- csc a "a+ a a

.. s1

S 2 + •3ai'-Ji +ij s2 a

Cot (L (1-v-) w2m i + (l-v) i

+- 2-- Y + P E-)2  i + a 2
S

cs 2am2oi + ) ( i ' - _ i__

- s _ai_ maipi

+ cot a csc a my ij + E w P csc[ a arl'YS~s2 miJ + E s2mSj

V + YJ cot a

+-aiy +---1 YiY cot a -k (Yi YJ
s

_ L
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2 csc a 2ý-~y +v csc a 14 i,, +2

2s 2  2q Y

2 csc m2'y' Yj -1 )il 4 csca a~
S3 S

+ 13 y yj (- W2 y y s sin a ds

+7 + P -f v co miJsSi

+ (a'aj + ciL- v cot a-Ya +V S am a as sin a

- - eamjl~ i

[a la-~ + -Oia v co- c csca oa I si ai- sj s ma s a
22

+k v)1 0Y"J -s a Maioa 2s sina

S k S is , ,
k1yiyt S -- m2YYj' v ~Y~i''ssin a

0
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(2- k ("' - (Ž__)csc2 m2yi,j + (3-)) cSc 2aM2YiYj

k1 ,'yjs s3

Y• s -Is sin a + k[Yi'yjs s s1

(2--v csc 2 a m2yty+(3-v) csc 2 a m2 iYj +
=s

- -Yi 'Yj]s sin a (3.31)

where k is defined as

h2
Sk h (3.32)

; 12

and the generalized external boundary forces at s=sI and

S=S 2P i.e., "N ,•,and "M, are taken to be zero.

Through the use of integration by parts, the

th
general iJ term may be written in the symmetric form

22
s2 (1-v w) 1 - 2 - 2 csc 2 a)] aicjU {P E s • 2 ia

s1

s (V .+ 2l1 ( ) M22[ -P . (lv+ sjo

_ I 1
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s (1-+)[P tI. + 2 w - cot 2ca

km2csc2-- (m2csc2a - 4)] yiYj - (2m csc2a + 1) Yij Yj

s3

_svif/ 0 (3-v) m Cs a (ai0+ Oiaj)

+V m Csc a (ai%' + ?i'aj) + cot a (aiy + Yiaj)

+ V cot a (a i'y + Yi j') + m Cot a CSC a (yio + 0iY ds

++( ) i + km2 (3-v) csc 2 a

s 2 YjYJ

+ kvm2 c sc2a (YiYI + Y j) - kvYi'YJt
si

VM csc a (a io + Pia j)JI [ (3.33)

s1

Equation (3.33), which is the basis for all calculations

that follow, may also be derived using the Rayleigh-Ritz

procedure beginning with an energy expression of the form

IIi

[ = = =
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21r js 2 2,U [D (2s' + •e2 + 2vesee + (-)2 Yse2

0 S1

+ kD (Ks 2 + KS2 + 2vKsKe + 2(1-v) Kso 2

- (FuU + FvV + FwW)] s sin a dsde (3.34)

and utilizing the strains, Eqs. (2.1) to (2.3), and the

curvatures, Eqs. (2.7) to (2.9). Details of this deriva-

tion will not be presented here. The Galerkin and

Rayleigh-Ritz procedures are equivalent when the differen-

tial equations of equilibrium used in the Galerkin method

are obtained from a variation of the energy expression

used in the Rayleigh-Ritz procedure. This was pointed out

by Singer (11).



CHAPTER IV

COMPUTATIONAL PROCEDURE

Choice of Functions

For the case of a conical shell free of edge sup-

ports, the choice of displacement functions in the longi-

tudinal direction, ai(s), 0i(s) and yi(s), are somewhat

arbitrary since the displacement boundary conditions are

completely relaxed. Polynomials have been used by sev-

eral investigators, i.e., Platus (9), for the case of

fixed-end conditions on one cone edge. Because of the

great number of integrations that must be performed to

determine the matrix coefficients, it was decided to also

utilize polynomials. There are, of course, other possi-

bilities such as the functions which might be obtained from

the free vibrations of a tapered beam without end supports.

However, the necessary integrations would be unwieldy.

Third degree polynomials of the form of Eqs.

(4.1) to (4.3) were assumed in the determination of the

results presented in this study. Higher degree polyno-

mials are better able to represent the more complex shapes

of modes higher than the third. On the other hand, the

34
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size of the matrix which must be inverted is increased by

three rows and columns for each added degree, a factor

which reduces computational accuracy. Primary interest was

in the first two modes for each case of a fixed number of

circumferential waves. Therefore a degree high enough to

adequately represent the lower modes was determined to be

the logical choice for this investigation. Further dis-

cussion on computational accuracy is given later in this

chapter.

i- 1

a s i = 1 to 4 (4.1)

i-5

i = (S1-5 1 = 5 to 8  (4.2)
2

2 i= _ i = 9to 12 (14.3)

Other functions, i.e., a5, a6, i' 02'. etc., were taken to

be zero. This seemingly odd indexing was necessary in

order to assemble the matrix elements.

o}I
/ : .... .
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Arranging the Equations for Computer Solution

The n homogeneous equations which result from the

application of the modified Galerkin procedure to the

problem of free vibrations of a thin truncated conical

shell can be expressed in the matrix form

(1-v- -)q -w K] - (4.4)E l2J (q2)

where the generalized mass matrix [M], determined from the

general i th term, Eq. (3.33), is

s 2

M;= (ai j + 0io + YiY sds (4.5)

and the generalized stiffness matrix [K], also determined

from Eq. (3.33), is

-

i-a
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= - II'f- (1+ (~.)m
2 csc2 ] a

K sajj -2 . (j.)+mca] aia

It (22s~a + - sYc Y.

-(1-v)csc a ot + + (1+vc~ m~csc a-4)Pla.
2s 1

(2mco a csc a + 1)it Yi - +sy f-a

(3-v~m csc cs+ a +(+~ S ~

2s 2

+ vm csc a (as. + (Yi +~ p y ds .6)

sI
(1-v)km v)csSa



38

Having chosen the functions ai, 0i and Yi, the above mass

and stiffness matrix elements can be evaluated for a shell

having specified geometry and a fixed number of circumfer-

ential waves, m.

In order to solve t.., problem numerically on a

iigital computer, matrix Eq. (4.4) can be more favorably

rewritten as

1[fK]E= 1 (M] (4-7)

qnj

where [K]-1 is the inverse of the matrix [K]. Equation

(4.7) is solved through a process of matrix iteration

which produces the n frequencies and corresponding mode

shapes for the simplified constrained system. After the

fundamental frequency and mode shape is found, a process

of matrix sweeping is utilized to remove the first mode,

thereby allowing the second iteration process to converge

on the second mode. This technique is continued until as

many frequencies and mode shapes as are desired have been

determined, up to a mlaximum of n. Computations were

accomplished on the IBM 7072 computer at The University of

Arizona and the IBM 7094 computer at the Western Data

Processing Center, University of California at Los Angeles.

The program is similar to that used by Matthews (8)

S.. .... .. .. .. .. . . . -• . . . . .- -
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although somewhat more complex. The FORTRAN language pro-

gram consisting of the main program and subroutines for

matrix inversion, matrix multiplication and matrix itera-

tion are presented in Appendix B.

Accuracy of Computational Procedure

The formulation of the equations is such that the

matrix which must be inverted approaches singularity as the

half cone angle approaches zero. This is due to the fact

that the equations of equilibrium, Eqs. (2.33) to (2.35),

degenerate as a approaches zero and a limiting process

must be utilized for the case a = 0. In addition, for any

reasonable length cone, the quantities sl and s2 become

very large as the cone angle is made small. Since differ-

ences of high powers of sI and s2 are needed in the compu-

tation of the matrix coefficients, round-off errors and

loss of significant figures degrade the results. As a con-

sequence of these factors, computed frequencies and mode

shapes for small cone angles are expected to be less

accurate than those for larger cone angles.

Terms in the expressions for curvature, Eqs. (2.4)

to (2.6), which are neglected in Eqs. (2.7) to (2.9) become

less significant as a approaches 900 since the terms contain

cos a. This fact also contributes to greater accuracy for

the larger cone angles.
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Second degree polynomials of the general form of

Eqs. (4.1) to (4.3) were utilized for certain cases to

determine the effect of choice of degree of the assumed

longitudinal displacement polynomials upon the results.

Differences betw n computed frequency parameters were

found to increase as the circumferential wave number m is

decreased and as the mode number is increased. For

example, in a typical case, the difference in frequencies

for the first mode is about two percent for m=2 and

decreases to less than one-tenth of a percent at m=9,

whereas, for the third mode the difference for m=2 is nine

percent and decreases to one percent at m=9. Table I

illustrates this point, wherein the results are normalized

such that the frequencies determined utilizing the four

term, third degree polynomials are equal to one, thereby

allowing convenient comparison with frequencies determined

from the use of the second degree polynomials.

As m increases, the complexity of the circumfer-

ential shape appears to compensate for the lack of

accuracy in the longitudinal shape of the mode. That is,

for the higher circumferential wave number shapes, the

frequency is predominately determined by the complexity

of the circumferential shape. The inaccuracy of the lon-

gitudinal shape does not seriously effect the natural

frequencies of the lower modes. On the other hand, the
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TABLE I

NORMALIZED FREQUENCIES FOR THRF AND FOUR TERM POLYNOMIALS

1st Mode 2nd Mode 3rd Mode

• m=2

Three Term 102.2 105.4 108.9

Four Term 100.0 100.0 100.0

m--4

Three Term 100.3 105.3 108.8

Four Term 100.0 100.0 100.0

m=9

Three Term 100.03 100.05 101.0

Four Term 100.00 100.00 100.0

inability of the less complex (lower degree polynomial) ion-

gitudinal assumed shape to adequately represent the more

complex modes is evident, i.e., the higher degree polyno-

mial is better able to represent the higher modes, which

is to be expected.

iTi

: i!
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In this study, the primary interest is in the lower

modes, especially the first and second. Therefore, it was

decided to utilize the third degree polynomials as given

by Eqs. (4.1) to (4.3) for the longitudinally varying dis-

placement function. The use of higher degree polynomials

would not significantly increase the accuracy of the fre-

quencies and mode shapes of the first two modes, based

upon results for the test case using both second and third

degree polynomials.

According to Bolotin (1), convergence in connec-

tion with the Galerkin procedure has been investigated

only in connection with very simple problems. The wide use

of Galerkin's method for problems in which convergence is

not conclusively proved is based upon a comparison of

existing exact results with those obtained with Galerkin's

method, for thoae few cases where exact sol.utions can be

obtained analytically. One must rely to a certain extent

on checks built into a computational procedure which may

be designed to identify non-convergence. A check on mode

orthogonality with respect to the generalized mass matrix

was utilized in this study.

@I

I " I



CHAPTER V

COMPARISON OF ANALYTICAL RESULTS WITH THE EXPERIMENTAL

DATA OF HU, GORMLEY, AND LINDHOUM

Geometry of the truncated conical shells taken

* from Ref. 6, and used here as comparative cases, is given

S* in Table II. Parameters are as shown diagrammatically in

Figure 2.1.

TABLE II

CONE GEOMETRY, CASES CF HIU, GORMLEY, AND LINDHOUM

Case 1 Case 2 Case 3 Case 4

4 =------------------------------------------------------

Cone Half 14.24r°' 30.240 45.120 60.42o
Angle, a

Major Edge 6.07 in. 7.95 in. 8.96 in. 10.00 in.
Radius, rL

Minor Edge 2.72 in. 3.49 in. 3.98 in. 4.45 in.
Radius, ro

Length, L 13.2 in. 7.65 in. 4.96 in. 3.15 in.

Thickness, h 0.01 in. 0.01 in. 0.01 in. 0.01 in.

- - Completeness
Parameter, 2.23 2.28 2.24 2.25

43
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Comparative results for Cases 1, 2, 3 and 4 are

given by Tables III through VI. The frequency parameter

Q for these cases is defined by

= wrL D (E 2)] 1/2 (5.1)

Agreement between the theoretical and experimental data

appears to improve as the cone angle increases. This

trend is partially due to the fact that computational

errors increase as the cone angle approaches zero, as

explained in Chapter IV. In general, the agreement also

improves in each case as m increases. Due to the low

frequencies being measured, the experimental results, of

course, were alro subject to error. Errors introduced by

cone imperfections, seams, supports, and method of excita-

tion were most likely greater for the lower circumferen-

tial wave numbers.

It can be seen that the computer results agree

quite well with the experimental data. It can also be

noted from Ta.bles III to VI that with few exceptions the

theoretical. frequencies are greater than the experimentally

determined ones. Again this is to be expected because of

the constraints imposed by an approximate method.

Mode shapes for Case 3 (45.120 cone half angle)

are presented in Figures 5.1 and 5.2. Actially the nor-

maJlized radial displacement is plotted rather than the

IIQ
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TABLE III

FREQUENCY PARAMETERS, CASE 1

Circum- Frequency Parameter n
verential 1st Mode 2nd Mode

Wave ____________________________
No. NASA-CR-384 Galerkin NASA-CR-384 Galerkin

=------- - - - - - - -

2 .00191 .00243 .0113 •0062

3 .00502 .00571 .0195 .0144

5 .0151 .01585 .0393 .0394

7 .0285 .0300 .o611 .0650

12 .0763 .0789 .112 .1285

1-8 .165 .169 - .264

TABLE IV

FREQUENCY PARAMETERS, CASE 2

Circum- Frequency Parameter Q2
ferential Just Mode 2nd Mode
Wave__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

No. NASA-CR-384 Galerkin NASA-CR-384 Galerkin

2 .00151 .00191 - .00578

S3 .oo422 .oo456 - .0128

5 .0122 .0126 - .0333

7 .0242 .0244 .0626 .0627

12 .0647 .0656 .120 .129

18 .135 .1356 .200 .213

v-I---- !
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TABLE V

FREQUENCY PARAMETERS, CASE 3

Circum- Frequency Parameter Q
ferential 1st Mode 2nd Mode
Wave
No. NASA-CR-3b4 Galerkin NASA-CR-384 Galerkin

2 .00147 .00169 - .00612

3 .00399 .00413 - .013o

5 .0 113 .01145 - .0313

17 .0218 .0221 .0583 .0578

12 .0599 .0607 .127 .133

18 .123 .124 .187 .212

TABLE VI

FREQUENCY PARAMETERS, CASE 4

Circum- Frequency Parameter 0
ferential Mode 2nd Mode
Wave i____ Mode __ndMode
No. NASA-CR-364 Galerkin NASA-CR-384 Galerkin

2 .00139 .00144 - .00663

3 .00377 .00367 - .0133

5 .0104 .0104 - .0298

7 .0200 .0200 .0573 .0533

12 .0552 .0548 .123 .1245

18 .113 .1125 .187 .196
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total displacement. Since the radial displacement is dom-

inant for the first two modes, it was cnosen for discus-

sion purposes. Hereafter the expression "mode -hape" is

taken to mean, the normalized radial displacement shape when

reference is made to the figures. In general, the results

agree favorably with those found experimentally by Hu and

presented in Ref. 6. Figure 5.3 shows a comparison of the

experimental and theoretical mode shapes for the first and

, second modes of Case 3 for m=12.

In Ref. 6, Hu, et al., propose the following sem:i-

a¢ empirical frequency equation for thin free-free conical

shells:

;22 2

(m-l) .(m4+ +Lsin (5.2)
12 rL m2 + 1

It was shown that agreement between the experimentally

determined frequency parameter and that given by Eq. (5.2)

was in general very good for the range of parameters

tested. It was also stated that the range of applicability

of Eq. (5.2) with regard to the ccmpleteness parameter

s2/sI is uncertain. Equation (5.2) was developed to com-

pare with experimental results having a completeness

parameter of approximately 2.25.

EW-

I

. .1
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[ In order to determine the effect of completeness

parameter upon frequency parameter, the basic shell of Case

3 was utilized, varying s 2 while holding sI zonstant.

Results of varying s 2 /IsI from 1.! 'o 10 are presented in

Figure 5.4. It can be seen that for m=6 and above, the

total variation in frequency parameter, foZ thp range of

I s, considered, is almost constant. This means that the

effect of completeness parameter bEcomes less pronounced
as m increases, as one might suspect. For example, the

approximate percentage increace in frzquency parameter

from S2sI = 1.1 to s/sI = 10 for m--6 is 65 percent

while at m=12 it is on'.v 20 percent. It should also be

noted that the variation in frequency parameter between

s /8- = 1.5 and s.2sI = 10 amounts to about half of the

total variation for the range of s-/s, considered. Since

the s 2 /sI 2.25 curve very nearly divides the area

between the s.2sI= 1.5-and ss2sl = )0 curves, reasonably

good results can be expected of Eq. (5.2) for very thin f
shells having a completeness parameter between 1.5 and 10, "

especially for the larger values of m.

Attempts were r'ade to incorporate the completeness

parameter s2/3, into Eq. (5.2), thereby extending its
•.:range of appi:ýcabili-ýýy. However, these attempts were

ursuccessful. A complete parametric study on complete-

[ness parameter and its effect in relation to cone angle,

[I

-" !F _ _ _. _ _ _ _ _ _



-71

a.I

52

0.08

S. 0 7 /,

p .CU82/SJ.1=0
.2/s1=3

~///;,/

,01/51 2.25 ' I

oo Is =2 25
2I

.03 s2/s1=1.-5

? .03 AI

rx 0 4', s 2 /S 1 = ,,,,.2

.01 s/g.4.

00 2 4i 6 8 10 122 1
No. Crcumferential Waves m

Figure 5.4 EffectL- of Varying Completeness Parameter



S~53

thickness, and other variables, is beyond the scope of this

study.

tI
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CHAPTER VI

COMI?ARISON OF ANALYTICAL RESULTS WITH THE EXPERIME NTAL

DATA OF WATKINS AND CIARY

The phenomenon wherein a different number of cir-

cumferential waves are present at the two cone edges i:1 an

apparent natural mode was observed by Watkins and Clary

(12) but not by Hu, Gormley, and Lindholm (data used in
Chapter V). As was mentioned in Chapter I, the validity
of the experimental results of Watkins and Clary was

questioned by Hu (5). Hu points out the care that must be

exercised in setting up such an experiment in order to

excite only the true natural modes of the cone. A reason-

able theory which explains the results observed by Watkins

a - Clary, based upon theoretical frequencies and mode

shapes, is presented in this chapter.

Geometry of the conical shells taken from Ref. 12

and used here as comparative cases are given by Table VII.

Comparative results for Cases 5, 6, 7, and 8 are

shown by Figures 6.1 through 6.4. The frequency parameter

Al/2 Dlotted in these figures is defined as

.1/2 2 ) 1/2 (6.1)A wXL(p (1-v )/E)(61

54•
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TABLE VII

CONE GEOMETRY, CASES OF WATKINS AND CIARY

Case 5 Case 6 Case 7 Case 8

Cone Half- 3.18 7.590 14.04.0  23.96
Angle,ca

Major Edge 14.0 ' 14.0" 14.0" 14.0"
Radius, rL

Minor Edge 12.0" 10.0" 8.0" 6.0"
Radius, ro

SLength, L 36.01 30.01 e_4.0" 18.01

* Thickness, h 0.007" 0.007" 0.007" 0.007"

Completeness
Parameter 1.16 1.40 2.33 1.75

1 .s

*1

1~i
K
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where X is I/re. This is the parameter used by Watkins and

"0
Clary. It can be seen that the first mode results compare

favorably with the experimental data when the circumfer-

ential wave number observed by Watkins and Ciary at the

major (large) end is used. The semi-empirical equation

proposed by Hu, et al., (6) also compares favorably to the

Watkins and Clary data points associated with the circum-

ferential wave number at the major edge. On the other

hand, the data which corresponds to the circumferential

wave number observed at the minor (small) end of the cone

correlate reasonably well with the second analytically com-

puted mode. This fact supports the theory that the experi-

mental phenomenon observed by Watkins and Clary, wherein

a different number of nodes were observed at the two cone

edges, may have actually been a combination of the natural

first and second mode shapes corresponding to different

circumferential wave numbers.

In support of the above theory, it was noted from

the computed data that the predominant displacement of the

first mode occurs at the large end of the cone, whereas,

the predominant displacement of the second mode occurs at

the opposite edge. Consider, for example, the cone of

Case 8. Experimentally it was observed that one mode had

three circumferential waves at the minor edge and five

waves at the major edge. The computed frequency parameter
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for m=3, second mode, is Al/2 = 0.0180 and for m=5, first

mode,, is AI/2 0.0195. The corresponding mode shapes are

presented in Figure 6.5. Note that the predominant dis-

placements are as indicated above. The closeness of the

frequencies and the shapes of the true natural modes,

therefore, support the theory that these two modes could

easily have been excited together in the experimental case

with the observed results that three circumferential waves

would appear at the small end of the cone while five waves

would appear at the large end. Many other similar examples

are evident from the data such as in Case 7 where for m=5,

the second mode could have easilj' been excited with the

first mode for m=7. In this case, iomputed frequency

parameters are 0.0443 and 0.0450, respectively. The cor-

responding mode shapes are similar to those presented in

Figure 6.5.

It can be shown that for certain combinations of

circumferential wave numbers, coupling of the theoretical

modes is possible as a result of the six point string

* suspension system utilized in the experiments. This

analys-is is given in Appendix C. However, only two spe-

cific -modes of the many observed by Watkins and Clary fall

into this category. Therefore, coupling due to the sus-

* pension is of minor importance and does not alter the

validity of the previous discussion. The presence of the

•o.

*1

t
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suspension also has a minor numerical effect on the values

of the frequencies except in the few cases where the sus-

pension and nodal points coincide.

Due to the fact that the experimental frequency

lata plotted in Figures 6.1 through 6.4 correspond to

complex mode shapis, whereas, the theoretical frequ-ncies

represent pure modes having the same number of nodes at

both edges, comparisons of the data, other than those "

already made, are difficult. Since the mode shapes are so

drastically different, conclusions regarding a comparison

of lc-requencies would nct be entirely valid.

' -I

I g

I :

I P•

a I
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CAnPTER VII

CONCLUSIONS

The results of this investigat.on have added cred-

ibility to the experimental data of Hu, Gormley, and

Lindholm, and offered a plausible explanation to the

phenomenon observed by Watkins and Clary. This phenome-

non, wherein different numbers of nodes were observed at

the two cone edges, was most likely caused by the combina-

tion of a fundamental mode, having a given number of cir-

cumferential waves, with a higher (second) mode having a

smaller number of nodes. This is evidenced by the close-

ness of the respective frequencies and the location of

the relative predominant displacements. Other possible

causes for the observed complex mode shapes include

material nonlinearities such as might be caused by non-

constant shell thickness or seams, material or acoustic

damping, and,in a few instances, coupling due to the

manner of suspension. These, however, are believed to be

of minor importance.

Results of the higher modes (not all presented

here) could be improved considerably by adding more terms

to the assumed polynomial displacement functions. Tnis

64
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may also require the use of double pr-cision techniques in

* the computer inversion of the stiffness matrix 6lnce the

x• accuracy of the matrix inversion decrease& as the order of

the matrix is increased. More sophisticated functions

could also be used. However, the integration required to

determine the matrix elements may then become unwieldy.

Use of the more general Flugge equations given in

Appendix A would not have significantly affected the

results of this study since the terms omitted in the

Donnell type equations utilized here are of higher order

for the very thin shells which were considered. For shells

Shaving the quantity h/(s sin a) greater than 1/30, it is

recommended that the more general equations be used. The

thin shell assumption h/(s sin a) << 1 was certair-ly satis-

fied since this quantity varied between 1/272 and 1/2000

for the eight cases discussed.

Based upon comparisons with available experimental

data, it has been demonstrated that the modified Galerkin
procedure can be utilized to determine the frequencies

and mode shapes of a thin conical shell with free edges.

The assumed displacement functions were found to ade-

I i quately represent the motion of the shells considered, at

least for the determination of the lower modes. A logical

extension of this work would be to consider the vibrations

-- _ _________
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of the conical shell with other boundary conditions, some

of which have3 not been investigated. The same general pro-

cedure could be used.

r!
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SAPPENDIX A

COMPLETE FLUGGE EQUATIONS

I •The equations presented in this appendix were

$derived from Plugge's (3) fundamental equations for a con-

ical shell, which are valid for a variable wall thickness.

His equations were modified by 1) restricting the equa-

tions to shells having a constant thickness, 2) adding

inertia terms, and 3) changing the nomenclature to agree

with that used in this study. The equations are based

upon the assumptions that the displacements are small and

that normals to the middle surface are preserved as such

during deformation. The additional terms in the following

¶ equations which are not found in Eqs. (2.33) to (2.35)

basically represent the influence of change in curvature

on the normal and shearing forces and the influence of

middle surface strains on the moments. For very thin

shells these terms are of minor importance and consequently

th3 simplified equations were used in this study.

67H
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FLOW DIAGRAM: CONICAL SHELL VIBRATION COMPUTER PROGRAM

! o L--O

DATA I
[ ,

iCOMPUTE CONS=NTS

+I

-7 IOMPt M"SUB-MATPICFSI

•.•- lMATRIX f[K]

[• . [INVERT STIFFNESS ["

SITERTET(SUBROUTINE L L+

iL -- ,

iCOMPUTE MASSI

MATRIX [ M'll

•.. ~ ~I (tRum)'TERATE TO OBTAINI L =L 1

SP~REQUENCY AND
•-•I !- ~MODE SHAPE ,,I

S~~(SUBROUTIN•E)-,,

t,, C•IOMPUTnE FREQUENCY
•.- ARI P ETE'mS; PR•IN

I.OUTPUTSI
ICOMPUTE DISPLrLCEMENTS, T <5IWEEP PREVIOUS -

SAND PRINT .. . MODES AND COM-I]4
•i I-L5 iPUTE NEW [U]_-

•. • •COMUTE ANfD PRINITI..
i! i~[41][M] [#] FOR I'

i L ACC.U2,ACY TES.T.]
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COMPUTER PROGRAM NOMENCIATURE

ALPHA =a (half cone angle)

W, i.I =m (no. circumferential waves)

DISP displacements

E E (Young's Modulus)

FPAR frequency parameter AI/2

FPAR2 = frequency parameter Q

H = h (thickness)

L = count on modes

OMEGA = frequency

PHI = mode shape

RHO = p (density)

RL =.rL

RO ro

S = s Defined by Figure 2.1

Sl

S2 = 2

SM1 to SM2 = submatrices used to generate XK and XM

V1 to V-32 = various combinations of sl, s 2 , v, a, etc.,
which are used repeatedly

XK = stiffness of matrix

XKI = inverse of stiffness matrix

XLEN = L(length)

XM = mass matrix

X•MI = v (Poisson's ratio)

XT = k (h2/12)

fa



MAIN PROGRAM -- CONICAL SHELL VIBRATIONS 73

I ~ rTHE PURPOSE OF -THII-i.ROGRAILIS IkEhf Uf-5OEMU LLI-DEGRNUE.
IC OF FREEDOM VIBRATIONS PROBLEMS FOR THE NATURAL FREQUENCIES
I. - C AND~ MODE SHAPES BY ITERATIVE METHODS.

C BASIC EOUATIGNS I./(1DMEGA**7)*A3XKI*M*A
C WHERE A ON1 THE RIGHT IS A TRIAL EIGENVECTOR
C XKI IS THE INVERSE OF THE STIFF-NESS MATRIX
C M is THE MASS.MLTKIdX -. .-

c A OIN THE LEFT IS THE UNITIZED RESULT
C SIZES XK=M*M XM=M*M A-M*1

1, P'HII21.21) .PHIiTI21,21),SM114 .4) ,SMZ (4,4) SM3(4441 ,5M4(4.4),
* ?SM5(494).SM614,4).5M7(4.4).SM8(494),5M9(4.p4),SM10(4.4),SMILI4,4)

DIMEjLSION ROW12-1&2II..iSPi2iL*Z1) . . .-

100 FORMAT11H1.4X918HENTER NEW DATA SET*//)
101 FORMAT1121
102 FORMATE IOXv2HM=s12)
103 FORMAT(BF10.O
107 FORMAT(IOX*IlHMODE SHAPE 91295Xo2H0 91291PEI5*7)
108 FORMATLIOX,6HOMEGAkjI2a.1.P-E2OI . -.. . .

109 FORMAT(5X*14HEND OF PROBLEM)
110 FORMAT(//)
11I1 FORMAT (IOX*26HORTHUGONALIZED MASS MATRIX921291PEI.5.7)

113 FORMAT(I.OX919NFREQUENCY PARAMiETER*lPE15.7)
114 FORMAT(IHO9lOX944HFREQUENCIES AND MODE SHAPES OF CONICAL SHELL)
115 FORKAT( 1X.IP4E.L.I -U- . ~--
116 FnRMAT(I OX.6HLENGTH.LOX.9HTHICKNESS.8X.9HNO. WAVES*IZX.1HE)
117 FORMAT(IOX,2HS1,15X,21152.13X.5HALPHA)
118 FORMAI IOX.2HROA5X.2HRL.1.5X.3HRHO.14X,3HXNU)
170 FORMATIIOX.4HS/SZ.14X~lHU,15X,1HV,15X.IHW)

C REAi) INPUT DATA AND COMPUTE XKI

PRINT 114
I READ 101,1M

PRINT 100
LaDO
NOTE=1
PAIN..T ~_____
PRINT 110

2 READ 1039R0vRL9RHO9XMUvXLEN9H9CW9E
PRINT 110
P1=3.1415927
ALPHA=ATANF( IRL-RO)I/XLEN)

S2-RL/SINFIALPHAI
ALPD=ALPHA*57. 29578
XLAMaXLEN/RO__ __ _____

PRINT Ila
PRINT 115*RO*RL*RH09XMU

PRIN-T 1 . - _ _ _ __ _ -- * -

PRINT 115*XLENoHoCWeE
PRINT 117
PRINT t159S1vS2vALP0
PRINT 110
XT=( H*H1/ 12. 0
C-W"RUUTCONSTANT VALUES
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VI=S2-S1 .- a

V2=S2*S2-SI*St
V 3= S2** 3-Si ** 3
V4=S2**4-Sl**4
v5=S2s**5-S**5
V6-S2**6-SI*0*6
V7=LOGF(S2)--LaGF.(S1J-------
V8zs2*S2
Vg=S2**3
V1OSS2**4
ViizCW/SINF4 ALPH4A
V12=Vl!*Vll
V13=COSF(ALPHA)/5INFIALPHAl
V14.V13*V13
Vt5=t.040.5*( 1.0-XIU) *V12
V16=0.5*( 1.C-XMU)+V12
vil=(Xr*Vl21IsIV12-4.O)
Vt8=-(I.0-XMUI/2*O

V20=-XT*Vi2*I 3.0-XM4U!
V21=-Xr*XMU*V12
V22=XT*XMU
V23=I .0/S2-L.O/Sl
V24=i.0/LS?*S2)-I.0/( SI*SI)
V25ýVji*(3.0-XMUU-Z.0
V26=-V1l*( 1.04XMU)/4.O
V27=-Vii*( I.C-3.O*XMU)/4.0
V28=(RHO*( 1.O-XMU*XMU)I/IE*386.088)
V29=S2**5
V 30= S24*6

V32=S2**S-Sl**8
C COMPUTE SUBMATRICES

N=t413
SMI( loi)=V2/2.0
SMI( i,2)=V3/(3*0*S2)
sm I1 3!,3)3-V4/-;4.O *Y.B)L
SMi( 2.o2ISMtl4 13)
SM1(2,3!=Y5/(5.n*v9) -

SMi (3*31=V6/(6.0*VIOJ
SMiI l,41=SMI(293)
SMII 2.40ISM!13#31
SO 14 3, 9 4IViMLU.~~
SMl(4*4) =V32/(8.0*V30)
00 20C £sl.N
00 200 'j'a 0 ."

700 SM1IJ.i)=SMI(I,1)
SM2( l~l)=V1
SM2(i,2)=V1/S2-.- -

SM2(11.3)3V?/(2.OiVR
SM24 2*2)=SM2(l.,31
SM2( 2931-V3/(3.0*Vgi
SM2( 393)-V4/44.0*VIO)
SM2( 1941=SM242931

* SM22,3)M213*31
SM2E 3.4 =V5/15*0*V29)
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SN2IA4 *.4J.V6dZL6 OV 1(lIfL
00 210 1=19N
00 210 J1.*N

210 S"2!JoI)=Sf42(1.Jl

S~:34I*2)=C.O
*~~~~-1 Stt.4 1~ .._________

S434 292)zV2/42*O*V8)
Sf43(2.v)=42.0f*VI)/(31 0kV91
S434 393)=V4IVIO
Sf434 1.4!-0*
Sf434 2.41=43.0*V4)/f4.0*V10)

Sf43(44.4)=43.O*V6J/(2o0*V30)
D0 220 1=19N
PO 220 J=I*N

270 Sf43tJtIlzSM31I,11
SM444 1* 1)=-V24/2. 0
Stf4A1*2 .V2)3-2 3 ~ .
Sf944 1.3)=V1/VS
SM44i2*2=SM4tl9,3j
Sf444293)=V1/V9
Sf4443#3f-V2/42*0*VIOI
Sf444114)=SM442,31

Sf4443*4l=V3/13.0*V`291
* ~SM4(4*4./,V*/(440*V301

DO 230 Is1.N
00 230 *)1=19N

230 SM444JvlI*ýSM44IJ)

00 240 J1.PN
240 Sf454 .Jl-0.o

SMS543e3 )=s42.C*V2)/VIVO
SMS5(31p4i-4.C*V3)/V29
SfM4544.3)=SM5( 3*4)
SKU A-At'Lsf 9 QV41 LV3 0
Sf464 l.I)0.0
Sf46t I1.2)mVlZS2
Sf4641*31=V2/VS
S4642*21-0*0

Sf46(*1. V31V9o*~

Sf4612,p4)=V4-uiI2.()lY1O)
Sf464 3*4SV5/45.O*V291
Sf4614,41-Q.0O
DO 25C IwI*N

250 S4641JI)z-SM6([vJ)
Sf474 Up I) 2!. 0
S474 192)w0o0
Sf474 I3)z'O.
SM7(2*2)-v7/VB

-- ...SM712*3)in(2.0*VlI/V9
Sf474 3931(2.0*V2)/VIO
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SMZ( "41)=0-0l ___-___-

Sf474 24)=43*C*V2)/42oO*VIGI
* 5f4743*4)=2.C*V331V29

00 260 11.*N
00 260 J=1.N

* ~260 SU.)St1 I... --- ~
Sm4l,1.110.O
Sf484 1.2 =Vl/S2
SM484l*1=3V2/V8

5f482,2ISMB4I,3)
Sf484 2*3=V3/V9

Sf484 I.dSf4842,p3)

S484 3*4)zV5/V29
Sf48(4*4)=V6/V30
00 270 I1.N

270 Sf4844,3=Sf4841.Ji
S494 191)sV24

-SM4941*21-V23/'a2

Sf49(292)=O.O

Sf4913. 31-V2/VIO
Sf4194 lp4)5M9(293)
Sf494 ?4)=SN94 3.3)
Sf494 34)=V3/V29
Sf949414-)V4/V30

DO 280 J=I*N
290 Sf49(J*I3=SM94IJl

Sf4104 1.2)=V23/S2
Sf4104 131=0.0

- SM1QiLt2*2J=.C
Sf410 42, 3 1 33O*Vt)I/V9
Sf410 (3,v31-4 4, l*VZiJ-V10-
Sf410I4 1.4=43.0*Vl;IV9
Sf41042,p34la4ý,p"Y21tV[Q -
SMI1043,p4)s4 5*0*V3) /V29

* --$MAW494j-f.0*V4)/V30 ___

DO 290 Ia1,*d
00 290 JuIttv

790 llvImloIJ
00. 300 Is 10N - -

DO 300 .JXl.N

Sf4l(2s38=42. C*VII /V9
SN4114392)=Sf41142*A!--
Sf411.43*3)=44.0*V21 /VlO

SfII4*142)=5f1112941
Sf41113s4f=16o0*V3f/V29____
SfII4119.31-SHI1143943
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C COMPUTE STIFFNESS RAiRIX
C ALPHA--ALPHA SUBMATRIXj

00 310 Ixl9N
0O 3)C isb*N
XK( IJ§aVi5*SM2(I,PJh4SM3tI.J).XMU*SM8II ,J)

C BElh-=ErA, S&IMATRIX ____

K JPN-J IN

C GAMMA-GAMMA SUBM4ATRIX
IP2N=I+2*N __________

XKE IP2N 4JP2Nb=V14*SM2II419)4Vl1*SM4(1.J)
1+V1l9*SM7? 1,J)4XT*ýSS4( I.ji+VZO*SM9(I.J)+VZ1*SMIotI.J)
24V22*SMIIEI .4)

VC ALPHA-BETA SUBMATRIX
XKII.JPN)sV25*SN2IIJ)4V26*5ti6( I.J)4V27*SM8( 1.4)

C -ALP-HA=.GANMM SUBMATRI9_______ __

XK41JJP2N)zV13*(-SM2(1.J)+(XMU/2.0h*tSM6(IJI-SM8(19I,))
r C BETA-GAMMA SUBMATRIX-

310 XK(EPN*JP2N)=-V11*V13*SM2119J)
D0 320 1-19M
00 320 J=I.M

.320 ýxKl.L.IjImXKfI..i1
CALL MAINVEXK*XKI.MJ
CALL MAMULIXKI .XK*UvNMtM)~

C COMPUTE MASS MATRIX
00 350 I-I.N

JPN-J4Nj
JP2N-J*2*N
IP2N= 1.2*N
XMtIvJ)ýV28*SMlI( 1.41
XMIIPN*JPNI)XN(I*J)

350- X.NtP2N..II,2NlsXMlIma1
C COMPUTE U=XKI*XM

CALL MAMUL(XKl.XP**MMU)5N,11
C ITERATE

5 CALL ITER(Ut0AOMEGAvM9.NOTE) -_-

t Q0 ~~10 I-Im1M_____________
PHIl I*Ll-Q(I)

FPAR-SORTF(((1.0-XMU*XMU)*RHO*XLAM*XLAM*XLEN*XLEN*OMEGA*OMEGA)

ii.~~I - 3 86PITI.I0z811- ; ___

PRINT 113*FPAR
FPRINT 1139FP AR2.

PRINT 110
59 00 60 I=1.M _____

00 60 J-193
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6(0 ROWLJIlzO!..
PRINT 120
FL=Sl/S2

* SINC-(S2-Sli/(20.O*S2$
67 ROW I.1)z1.0

ROWE 192)sFL

ROWE 194)=FL*FL*FL
ROWt295)-l.O
ROWE 2.6 =FL
ROWE 297)sROW( 1q3l
ROWE 2*8)=ROW( 1.41
ROWE 399)1.-fo....... --

ROWi 39101-FL
ROW43,l11IROWEI,31
ROWI 3c12)=ROWE 1.4)
CALL MAMULEROW909DISP*39M,1l
PRINT 115.FL.OISPLI.1).DISPE?.11.DISP(3.1)

IFIFL-1.0)62963963
63 CONTINUE

PRINT 110
)ý:EL-51 6.8,8

* c FORM NEW U=U-UO
6 CAU. MAMUL(-X&0iAUQ±MMdl
CALL MTMULW.9UO.XK.1.M~ll
DEN-XKC 1 1*1 O(MEGA)**
CALL MTMUL (O.XM*XK.1..M*Ml
CALL MANUL(G.XKtUQ*Pol*Ml
00 7 1=1.14
DO -1. JfricP.M
UQEI .11=0011.11/DEN

7 U(t.j)=Ii(IqJI-UO(Iqj)
AA-O.

DO 11 1=1.14

IF (AA-88I 5.12,5
12 NOTE=2

GO TO 5
c FIND ORTHOGONALIZEO MASS MATRIX TO TEST FOR ACCURACY

8 CAIJ. M&RU L (1*P I9X±M*95L.___ - -

CALL MAMUL EPH1T*XK*XKI*5*Nt5b
PRiNT IlldEi.iJXKI(I.Ji.I=I.*5).J=1,52
PRINT 110
PRINT 109
GO TO 1
EN-!¶ ,Qt-QLLLLL±LJJfA OL



SUBROUTINE MAMUL £AsB.C*M*NvMMI 79

SJBR OUT LNE AAMULlA&&&LN&teK.. Ns- -

c THIS SUBROUTINE IS FOR THE COMPUTATION OF MATRIX C FROM C-A*B
C WHERE CIS AN M*MM MATRIX. AIS AN M*N, BES AN N*MM

DIMENSION AIPI2192IJ*B2t*21)vC(2t*2I)
00 3 l.1=19
00 3 Jz1tmM4

DO 3 K-l.N
3 Ctl*J)=C(IIJ)+AEIPK)*B(K,@J)

RETURN
ENDE 1.O.O.O.O.C~tlCO.1.O.OO.O.O)



SUBROUTINE MJMULtABimC.M.*NK)

DIMENSION AEI.I).B(21.21),C(21,21),AT(
11 2 1 )

DO I 1=19N
I AT(1.I)=A(I,1)

00 2 1=l9K

00 2 J=l*N
2 C(lI)=Cf1Il)+AT(1*Jl*B(J9I)

RFTURN
ENDIl.O.OCCqOI.*Cv0,O9090000 0 )
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SUBROUTINE MAINV (AAINV,MI 81

SUBROUTINE .KALNV• AtL.ALENML .
C THIS SUBROUTINE IS FOR COMPUTING MATRIX AINV WHICH IS THE
C INVERSE OF MATRIX A

DIMENSION A(21v2118B(21,42)*AINV(2l*21)
"N = 2*M

DO 4 1=19M S;+ DO~~0 5 J=l1 .. . . .. .. . .. .. ...

84JBU ) - A(19J)
5 CONTINUE
4 CONTINUE

00 6 I=1,M
DO .7 JLN ..
IF 4I-J÷MI 8,9,8

8 81I9j) 0.
GO TO 7
B9 (lJI = 1.

7 CONTINUE
6 CONTINUE..

DO 1O J=lvM
C = B(JgJ)
IF (C) 20921v20

O G DG 11 K=19N
11 B(JoK) = BIJK) / C

00 -14 L =-,M
IFIL-J) 13,14.13

•. +•130D B(LJ)

"DO 15 KzI.N
"15 8(LK) = B(LK) - B(JK) J D

S14 CONTINUE
I G CObT.IN_ .. . .. . ...

; L - M÷I

00 16 I=1.M
00 17 J-1,M

,AINVII*J)fBI*iL)
17 .QIT I• E.... ..

16 CONTINUE
GO TO 23

21 PRINT 22
22 F(-RMATII//,5X,39HINVALtD SOLUTION--ZERO DIVISOR IN MAINV, //)
23 RETURN

.. . ... . ..... .

LII V ~ i -_ ___ ____ ___ ____ ___



SUBROUTINF ITER IU*Q*CMEGA*M.NOTE) 82

SUBROLTINE ITER lU*QaQMEGA*K*NGTE)
DIMENSION U421,21).0(21vl)Al21#1)

001 I lzlM

GD TO (397),NOTE u
7 00 a I=1.M*2
8 Q(l)z--j
3 CALL MAI4ULEU*Q*A*Md4.1) -

ROwAE!4b

00 6 1=19M
6 B=BQtl)

00 4 1=lM
04 1 )=A( I i iRO

4 C=C+Qfl

IFIX-1GO.) 109-10,05
10 IF (A8SF(B-C)-.0000001) 5.5,1

5 PRINT 3009X
IFIRO)11. 12.12

11 PRINT 301.RO
12 RD=ABSF(RO§

OMEGA=SQRTF(1...0/ROi
300 FORMAT 4 1OX*21HNUMBER OF ITERATIONS *IPE15.79I/)
3 01 FORMAT(IOX*14HOMEGA NEGATIVE*1PE15.7*/)

RETURN
ENDE k,0,tO.O.0.C.1.C.O.1.0,0.0.0,0)
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APPENDIX C

COUPLING OF MODES

A mathematical demonstration that the natural modes

of the conical shell are coupled by the six-point string

suspension utilized by Watkins and Clary is presented in

this appendix.

In the expansion of the kinetic energy expression

T 1/2 fph(u+ )s sin a dsdO (C.1)

the cross terms involving m and n, two distinct modes, inte-

grate to zero, verifyirng that no inertial coupling exists.

Elastic coupling due to the presence of the strings will now

be examined. Consider the six support strings to be located

at 0--0, r/3, 27r/3, 4r/3 and 57/3. The displacement of the

strings in the m mode is longitudinal only and is given

F by

Um = am(s) cos meoql (c.2)
wm

u2 = q2= am(s) sin me-q 2  (C.3)

The two functions are needed for complete generality in

orientation of the mode with respect to the support strings.

83
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"* .oThe total displacement in the direction of the suspension

strings is then

U = U 1 + u 2  (C.4)

Forces in the strings are given by Eqs. (C.5) to (C.10)

where k represents here the string spring constant.

e = 0: - kuI - ku - kam(S)(cOs O.ql + sin O.q 2 ] (C.5)

o = r/3: - kuI - ku 2  - kam(s)[cos mr/3"qI + sin mr/3-q 2 ]

(c.6)

e = 2r/3: -ku - 2= - km(S)[cos mr/3.q + sin 2mr/3-q21

(c.7)

0 = r: - ku1 - ku 2 = - kcm(s)[cos m-.ql + sin mr.q2 ]

(c.8)
e = 4r/3: - ku -ku 2 = - kmm(S)[COS 4m7/3.ql + sin 4mr/3.q2]

(c.9)

e = 5r/3: - ku 1  ku 2 = - kam(s)[cos 5mr/3-ql + sin 5mr/3.q 2 ]

(C. 10)

A virtual displacement in the nth mode is given by Eqs.

(C.l1) to (C.16).

e = 0: 6uI + 6u 2 =- acn(s)[Cos 0-6q3 + sin 0"6q4j (C.11)

0 = 7/3: 6uI + 6u2 = an(s)[cos nl/3-6q3 + sin n-,/3.6q•]

(C.12)

I.
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e=2ir/3: 6u1  6u2  n .(s)[cos 2n~r/3*6q3 +sin 2n~r/368q4]

(C. 13)
e n: 6u1 + 6u2  a .8sosn*q3 + sin nrT.8q4] (c.14)

4r L.1/3: 6u1 + 6u2 a n(s)(cos 4Inir/3.8q3 + sin 4r36~

e=5rn/3: 6u~ + 6u2  n(s)(cos 5n~r/3.6q 3 + sin 5nir/3.6q4]

(c.1a6)

The virtual work done by the string forces, Eqs. (C.5) to

(C.10), during the virtual displacement, Eqs. (0.11) to

(c.16) is given by

6 W -kCLM (s)aCs)(q + O-q2 )(6q 3 + O.6q4)

+(Cos mlT/3.q 1 + sin nrir/3*q 2)(cos nr/3*6q3 +sin nir/3.8q4)

+(cos 2mrr/3.q, sin 2mir/3-q 2) (cos 2rnr/3.8q3 +s~in 2n~r/3-6q4)

+(cos mir-ql sin mir.q9)(cos rrir.6q 3 +sin nir.6q4)

+(cos 4Jm~r/3.ql sin 4m~r/3.q 2)(cos 4Inir/3-6q. + sin 4In~r/3.6q4)

+(cos 5m~r/3.ql sin 5m~r/3.q 2)(cos 5n~r/3-6q3  sin 5n~r/3.6q 4) J
(C.17)I
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which can bcý put in the form

6W -ka m(S)an(S)[alqlq3 + a 2 ql6q4 + a 3 q2 8q3 + a4q2
6 q4

+ higher order terms] (C.18)

Evaluation of the coefficients a,, a 2 , a 3 , and a4 in Eq.

(C.18) reveals that for certain combinations of m and n,

they are not zero, indicating that coupling exists. The

following modes, in addition to others involving higher m

and n, are coupled: m=2, n=4; m--2, n=8; m=-4, n=8; m=5, n=7;

Mm=5, n=ll; m=7, n=ll; m=8, n=lO. Since the functions in

the coefficients repeat, there are infinite numbers of

coupled modes.

|l
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SYMBOUS

D Rigidity parameter defined by Eq. (2.16)

E Young's modulus of elasticity

E1 E2  E8 Error functions

Fu, Fv, Fw External forces

h Thickness

K Stiffness

"k Thickness parameter defined by Eq.. (2.64)

L Length

M Mass

m Number of circumferential waves

'M Generalized boundary force

Ns, Qs, Me,

N9s, ... Stress resultants

N Generalized boundary force

rL Cone radius at major end

ro Cone radius at minor end

S Generalized boundary force

s Longitudinal coordinate

T Generalized boundary force

t Time

u, v, w Components of displacement

87
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U, Vn, W Fourier coefficientsnn na
U Strain energy

W Work

a Cone semi-vertex angle

a. Function of s in assumed u

Function of s in assumed v

A Frequency parameter defined by Eq. (5.1)

Yi Function of s in assumed w

Ys0 Shear strain

G, O •, ey Error functions of s and e

es6 0 Normal strain

e Circumferential coordinate

xs X se Curvature

v Poisson's ratio

p Density

w Frequency

Frequency parameter defined by Eq. (4.1)

( )First partial derivative with respect to s

( )" First partial derivative with respect to 0

(') First derivative with respect to time

6( ) Variation of ( )

( )" ( )'( )"" Higher partial derivatives with respect to s
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