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STATEMENT BY AUTHOR

This dissertaticn has been submitted in partial
fulfillment of requirements for an advanced degree at The
University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of
the Library.

Brief quotations from this dissertation are allow-
able without special permission, provided that accurate
acknowledgment of source ics made. Requests for permission
for extended quotation from or reproduction of this manu-
script in whole or in part may be granted by the head of
the major departmen: or the Dean of the Graduate College

. when in his Jjudgment the proposed use of the material is
in the interests of scholarship. In all other instances,
however, permicsion must be obtained frcom the author.
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ABSTRACT

Results from experimental studies concerning the
natural frequencies and mcde shapes of the thin truncated

conical shell with free edge conditions have not been con-

Mode shapes from one study were found to have an

LN

S O N

equal number of nodes at the two frees cone edges when
vibrating in a given mode while in contrast a second study
revealed an unequal number of nodes at the edges. The
theoretical results presented in this investigation are
obtained through the use of a modified Galerkin procedure
and are in agreement with the eoqual node experimental data.
At the same time, the theoretical results have been used

as a basis for explaining the opposing experimental data.
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CHAPTER I
INTRODUCTION

The subject of conical shell vibrations has received
very limited attention in the literature until recently.
Although the conical shell has probably the simplest geome-
try, with the exception of cylindrical and spherical shells,
the mathematical analysis of a conical shell is more d4iffi-
cult due to the fact that the governing differential equa-
tions of motion have variable coefficients. Consequently,
most analyses o the vibrations of conical shells are
accomplished through the use of approximate methods and
numerical procedures for which large digital computers are
a tremendous aid.

A comprehensive summary of significant previous
works is given by Hu (4)1. The majority cf analyses con-
cerning the natural frequencies and mode shapes of trun-
cated conical shells concern those cases where the shell
is fixed at one edge and free at the other, or simply sup-
ported at both edges. A recent work by Platus (9) is an

example of a modern treatment of the fixed-free case,

1. DNumbers in parentheses refer to the list of
references.
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wherein a digital computer and matrix methodc are utilized.
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However, the case where both edges of the truncated conical
shell are free of external support has not received similar »
analytical attention. Perhaps the reason is that it is
difficult to choose functions which satisfy force type
boundary conditions of the free~free case.

Recent experimental studies for the case of free-
free edge conditions have been made by Watkins and Clary
(12) and Hu, Gormley and Lindholm (6). Watkins and Clary
observed that at certain natural frequencies a greater
number of circumferential nodes occurred at the major end
than at the minor end of the shell. This observation has
generated some discussion in the literature [see Hu (5)]
concerning the validity of the results. In éhe experi-
mental work of Hu, et al., the phenomenon of different
numbers of circumferential waves at the cone edges was not
observed.

At the time this study was begun, the results of
Hu, et al. were not available. The objective of the
investigation at that time was to investigatzs the possi-
bility that pure modes existed having nodal lines which
are not generators of the cone, i.e., correlate theoretical
analysis with the experimental data of Watkins and Clary.
However, the analysis, wherein the assumed displacement

shapes permitted an unequal number of circumferential waves

By
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at the two edges of the cone, revealed an uncoupling such
that a pure mode having an unequal number of nodes at the
cone edges 1s not possible.

=With the advent of the experimental results of Hu,
Gormley and ILindholm, a controversy arose since their work
did net reveul different numbers of cirvcumferential waves
at the two cone edges in a given vibration mode. The
objective of the study at hand was therefore altered t~wa-rd
the direction of attempting to explain the apparent con-
troversy between the two experimental studies.

In this investigation an approximate solution for
the free-free case is obtained utilizing a modified Galer-
kin procedure wherein functions assumed in the solution
need satisfy only the displacement boundary conditions, a
feature of considerable advantage for the free~free case.
The method accounts for errors in the forces and moments
which result when the assumed functions do not satisfy
the force type boundary conditions.

The theoretical analyses proceeded with the com-~
puter programming of the computational procedure described
in Chapter IV. Results from the program for the experi-
mental case of Hu, et al. showed good agreement with the
experimental data both in frequencies and mode shapes.

This correlation of results is presented in Chapter V.
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A plausible explanation of the experimental results

of Watkins and Clary, basea upon specific computer results,

is presented in Chapter VI.
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EQUATIONS OF MOTION AND BOUNDARY CONDITIGKS

The differential equations -of motion utilized in

this javestigation are those developed by Seide (10) from
energy principles. They are identical to those used by
Chao-tsien (2). Equivalent equations, based upon elemental
equilibrium considecrations, can be obtained using Flugge's
(3) simplified version of the elastic law as applied to a E
thin conical shell of constant thickness. The eguations
apply to homogeneous isctropic conical shells of constant
wall thickness and are based upon linear, small displace-

ment shell theory and the assumptions of a large mean diam-

eter to shell thickness ratio and negligible deformations

due to transverse shear. For "thin" shell theory it is

Be o wem e s oW

assumed here that L/ (s sin a) << i, where h, s and a are
as defined in Figure 2.1. More complete Flugge equations
are presented in Appendix A. Basically, the additional

terms found in the more general equations represent higher

. i, o VM T o - -
i Rt e oS -’7“5“‘”?ﬁTWW'TﬂW'FW YT poa LN AR S TR
yo - " i

i order ° 3 for the very thin truncated shells analyzed in

this study.
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i ; Development of the equations based upon energy

§ ~ principles will be presented here. Expressions for the
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middle-surface strains and curvatures of a deformed conical

shell as derived by Love (7) are given by

ou

ES -"—'s-g' (2.1)
_u - wcota 1 ov
€ = ) bS5 o 36 (2.2)
_ov Vv 1 ou
Ys =3 " st sna 3% (2.3)
2
vy =W (2.4)
ds©
X = 19ow 1 2% 4_Cos a Ov (2.5)
© 5 Js s? sin2 a 562 52 sina o 6
_ 1 ) 1 ,0w &~
Xse = SIn T 55 [E (Fe_ + v cos a)] (2.95)

where u, v, and w are the displacements in the longitudinal,
circumferential, and radial directions, respectively (sce
Figure 2.1). Following Seide, the strains are retained in
the form of Egs. (2.1) to (2.3), but the curvatures are
modified by deleting the terms involving the circumferential
displacement since experience has shown that these terms

are negligible for very thin shells, especially as a

o
approaches 90~ yhere they become identically zero. Expres-

sions for curvatures are thus given by

o -2 D e
os

TR 5 A SR e et P L SIS R e S SR 2 = et SUE R W P s
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X 10w 1 3% (2.8)
0 N sa sin2 a 862 ’
1 o ,1 9w
Xse = 5w 35 (5 39) (2.9)

Figure 2.2 shows the force and moment stress
resultants acting on a differential shell element. Stress

resultants, N_, Nse’ and QS are forces per unit of circum-

s
ferential length; N,, Nes, and Q8 are forces per unit of
icngitudinal length; MS anrd MSe are moments per unit of
circumferential length, and Me and Mes ere moments per unit
of longitudinal length. The equations ielating the stress

resultants to strains and curvatures are as given by Seide

(10):
Eh .
N = (n.. + V€ ) (2.10)
s 1—v2 S 8
Eh ~
Ng = ET—7§ (g + ves) (2.11)
-v
_ _ Eh
Nse = Nes T 2(1IW) Yso (2.12)
2
- Dh
MS = I3 (XS + \)Xe) (2.13)
- Dn®
My = T - (X + VX)) (2.14)
M, =-M —-]l"f(l-v)x (2.1
58 s ~ 12 s8 (2.15)
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10
where E is Young's modulus, v is Poisson's ratio, h is the
shell thickness, and D is defined as

. Eh

D e (2.16)

Equations of equilibrium and boundary conditions
can be derived from energy principles. The total energy
of a conical shell, i.e., the strain energy minus the work
due to external forces, can be expressed for the complete

circular shell as

2T S5
- l h
. U= I I L§ (Nses + Ngeg + Nog Yoo = Mg Xg
° 5y
- My Xg +2M g X o) - (F, u +F,v + F w) s sin a dsd®
2T

a — = = oW , = 1 ow
- [S(Nsu + NV - Mo 55 M50 55570 39
o

+ Q.w)] sin a 46 (2.17)

where Fu’ Fv and Fw are external forces per unit of surface

- area and the barred stress resultants are forces or moments

T
R 4

per unit length on the cone boundaries. Terms to be inte-

grated along a longitudinal edge from S, to S5 do not

R AT

e
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appear since the development here is limited to a complete
shell 6 = O to 2r. The terms, Fu’ Fv and Fw’ will later be
replaced by inertia forces using D'Alembert's principle.

The energy expression in terms of the displace-
ments, u, v, and w, is obtained by substituting the equa-
tions for stress resultants in terms of strains and curva-
tures, Egs. (2.10) to (2.15), and strains and curvatures in
terms of displacements, Egs. (2.1) to (2.3) and (2.7) to
(2.9), into the energy expression, Eq. (2.17). Wnen the
first variation of the resulting expression is taken and
variations of the derivatives of displacements are elimi-
nated through the use of integration by parts, Eq. (2.18)

is obtained (writt~sn in terms of stress resultants).

T
2 ON
- 9 1 s8
= - I I {LEE (SNS) - Ny tsmase t SFu] S
s
1
BN
1 19 2
* a9 s3s (s se) + sF,] ov
2
- [s-%g— uw ~ Ny cot o - sFW] 6w} sin a dsd®
er
+ [ {sl(n, - T ) du + (N ,-N_ )ov
- (M, - M g) o ( )] + [3— (sM.) - My
S,
oM — 1 M < .
_ 2 sf - sQ. + —==— __ s8] ow} sin a d6 2.18)
Sina o8 ° SN %—5g (

e i T Mg T
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. Again, terms to be integrated along a longitudinal shell
edge do not appear because of the circumferential complete-

ness of the shell. Here vuw is the usual cylindrical form

4 3% 1) 1 32
W= (s += + )-
v (652 s 35 52 sin2 a 392

- 2
(igg +.% i s? sin2 Q 262) 2:19)
The first variation of the energy 5U must vanish
for a minimum. Since 6u, 6v and 6w are independent, each
of the factors under the double integral must, therefore,
vanish. In addition, the factors of each of the variations
in the line integral must vanish independently. This pro-

cedure yields the set of equilibrium equations

W NSé - o
(sNj) = Ny + g +SF, =0 (2.29)
SN,
] 2 ' 2,
= (s Nse) +sF =0 (2.21)
2
. -8 %%—-vuw + Ny cot a + sF_ =0 (2.22)

and the boundary conditions along s = S1 and s = S5
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Z . NS = NS =N or u=0 (2.23)
. =N, =T = 2

:

£ H

; -% [(sMs) - My - 2M g csc a)l

;‘i — l - s = o — \
3 = E'[SQS - csc Q MSe =S orw=0 (2.25)
- — - ] -

? M,=M =M orw =0 (2.296)

where N, T, S, and M are the generalized boundary forces
1
associated with u, v, w, and w , respectively. General-

ized boundary forces here are both forces and moments per

. unit length along the shell edge. The indicated deriva-

tives are defined by the notation

BRI Sty e v

: $5=0) (2.27)
S oy
3= () (2.28)

For the free-free case of no displacement constraints and

no external edge forces, the boundary conditions become

$ simply i
: 3 N, =0ats =s; and s, (2.29)
] N.g =0 at s =s; and s, {2.30) f
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0 at s = s, and S, (2.31)

1

0|
v —
P
2
=
)
Noe?
1
=
'
N
=
0
n
0
2]
ol
]

M, =0at s =s; and s, (2.32)

For free vibrations the external force:s per unit
area, Fu’ Fv’ and Fw’ are replaced by inertia forces using
D'Alembert's principle. Rewriting the equations of equil-
ibrium in terms of displacements such that they physically

represent force per unit area in the longitudinal, cir-

cumferential, and radial directions, respectively, Egs.
(2.20) to (2.22) become
e - ° "
D[(—li’ll’—-—-csca- 3V) Y _csc o + W
2 s 2 S2
1 1
+ 1V u—-csceo. + B W ot a
2 2 2
S S
: 2
3 W 9%u
; +Zscot a] - ph == =0 (2.33)
g s° 3t
e '
p (V) v LY ege® g ¢ (VW) ¥ | (32v) v
i 2 s° 2 s o
+ (1tv) 2 __¢sca + (3zv) Y esca - -w—.-cot a csc a}
2 I 2 52 82
3%y
- ph=— =0 2.34
3t2 (2.34)
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* 1
D[-‘-’-,zcsca+7:_”-u +3é--3’—-cotor.] cot a
°s

; 2
g S s
‘ Dh° . m w'! 2 W 4
> -—I-z—-[w + 2 5= ¢csc” a + - csc’ Q
- s s
i‘ i " .
: 2w 2w! .- 2 W Ly 2
- + randiy 3 ¢sec” a - —5 + Y csec o
S s s
2 H
+ W'] 5 W -
- pPh—%=0 (2.35)
3 dt f
’ %
R where the constant p is the mass density. The boundary P
conditions, Egs. (2.29) to (2.32), written in terms of dis-
‘ placements and units of generalized force per unit length, '
L
- become
Dlu' +v(EHEEL L ¥ csca)] =0 (2.36)
| 1-v v u’ -
D(-——-2 )Fv' - g tg—csc a] =0 (2.37)
2 -~
> B -lllzh—- [w" + (8=v) 41 ese? q - (3'5) w* csc? q
. s S
wooow!
+ S_. - ;-é-] = O (2'38)
E . 2
E ] - Dh u w 2 w!
L = v+ V(';’Z cse” a +?—)] =0 (2.39)
E |
: :
. e A I
i i
- - - - - - S e 4
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CHAPTER III

SOLUTION OF THE EQUATIONS

Form of Solutions

As described briefly in Chapter I, the enphasis
during the early phase of this study was to investigate
the possibility (theoretically) that pure vibration modes
of the form found by Watkins and Clary in their experi-
mental work are possible. In order to permit solutions
wherein a different number of nodes can occur at the two

cone 2dges, consider complete Fourier series solutions

of the form
> (1) = (2)
u=[2 v, (s) cos ne + = U, (s) sin nb] sin wt
. n=0 n=1
(3.1)
@ (1) > (2)
v=[Z V, (s)sinné + £ V_ (s) cos ne] sin wt
-n=1 ° n=o0
(3-2)
= (1) > (2)
w=1[2Z W (s) cos np + % W, (s) sin n8] sin wt
n=o0 n=1
(3.3)

16
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_ (1 (1)
Regarding the functions, U, (s), Vv, (s), etc., to be
arbitrary, this general form of solution has the property
of completeness and can represent any possible mode
exactly. Consider now the substitution of the solutions,
Bgs. (3.1) to (3.3), into the first of the three appli-
cable differential equations, Eq. (2.33). The result is

given by Eq. (3.4).
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' o (1)! @ (2)!
D{(;%XJ £eCd r v p v, cos n6 + I nV, sin ne]
5 n=1 n=o
(1) 5 (2)
[--}
_ (3=v) csca cos né + I _ - sin no]
2 S? [ﬂi n Vh =0 Vh
= @ = (@)
+{Zz U, cos né + I U, sin né]
. nN=0 n=1
2, . ® (1) @ (2)
- (1§V) cscga [ = nQUh cos nf + I n° U, sin né]
S n= n=1
L= (D - (2)
L [z U cos nd + I U, sin né]
-n=o0 & n=1
L = (1) - (2)
- =1z U, cos n + I U, sin nb]
s€ n= n=1
® (1) > (2)!
Y cgt L [Z W cos né + I Wh sin né]
n= n=1
© 1) ® (2)
cot a ( .
+—=—=-[Z W cosnd + = W sin né]}
s n=o o n=1 o
5 (1) @ (2)
+phw” [ Z U cos né + I U, sin n8] =0 (3.4)
n=0 n=1

Equation (3.4), plus two other similar equations
which are obtained when the displacements, Egs. (3.1) to
(3.3), are substituted into the remaining equations of
motion, Egqs. (2.34) and (2.353, are to be solved for the
eigenfunctions U ! (s), v g (s), etc. and the cor-

responding eigenvalues w2. Following the usual procedure,
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these three equations are multiplied by either cos mé or
- sin mf and integrated from6 = O to 6 = 2r. Consider, for
example, the multiplication of Eq. (3.4) by cos mé and the
subsequent integration from 6 = 0 to 6 = 2r. Due to
orthegonality, the terms involving the functions with a
superscript (2) are completely eliminated, the only
remaining terms being those for which n = m and involving
the superscript (1). When both integrations are performed
independently on each of the three equations, the result is
! six equations, three of which involve the functions
Um(l)(s), Vh(l)(s), and Wh(l)(s) while the remaining three
: involve the functions Um(e)(s), Vh(g)(s), and Wm(Q)(s).
Furthermore, the three equations involving the functions
-, with superscript (1) are identical with the three equations
involving the superscript (2). Thus there is no need to

consider both sets of functions. The family of modes for

which n = m is completely given by

;* u =10 (s) cos mb sin wt (3-5)
é - v =V (s) sin mé sin wt (3.5)
w =W (s) cos mg sin wt (3.7)

where m is the number of full waves around the circum-
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ference of the shell, also defined by one-half the number
of nodal points encountered when going around the circum-
ference.

For the purpose of obtaining an approximate solu-
tion through the use of the Galerkin procedure, a finite

series approximation of the form

n

u= X q; a;(s) cos mé sin wt (3.8)
i=1
n
: v = I a; Bi(s) sin m8 sin wt (3.9)
: i=1
n
3 w = q; v;(s) cos mé sin wt (3.10)
g 1=1

was used for this investigation. Here m is allowed to take

Caan Tt el ]

on 2 single value for a specific solution. The choice of
the functions ai(s), Bi(s) and Yi(s) are discussed further
in Chapter IV. Modal patterns resulting from using these
displacements will, of course, consist of parallel

q circles and equispaced meridians -- patterns which because
of the axial symmetry of the shell and the boundary condi-
tions, and the circumferential periodicity of the vibra-

: ) ticn motion, are entirely logical. The experimental

‘ investigation of Hu, Gormley, and Lindholm (6), conducted

% at the Southwest Research Institute, confirms the foregoing

B " aaialoi )
.
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discussion. PFurther details of these results appear in

Chapter V.

Application of the Galerkin Procedure

The Galerkin procedure used by Bolotin (1) and
Matthews (8) differs from the usual Galerkin procedure in
that the functions utilized for the assumed solution must
satisfy only the displacement or "natural" boundary condi-
tions. This is an important feature since in the case of
the free-free conical shell it is inconvenient to choose
functions which satisfy the boundary conditions, Egs.
(2.36) to (2.39). 1In fact, it is difficult to find func-
tions which do satisfy these boundary conditions. 1In this
method the errors in the forces and moments at the bound-
aries are weighted along with the error functions from the
differential equations. The total weighted error is then
set equal tc zero which is equivalent to setting the
virtual work done by all the forces and moments moving
through appropriate displacements equal to zero.

The modified Galerkin procedure requires addi-
tional equations to account for the boundary errors. The

. equations are obtained from the requirement that boundary
forces and moments must balance the internal forces and
moments on an infinitesimal end element. Utilizing the

force type boundary conditions, Eqs. (2.36) to (2.39), in
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equations of equilibrium written for an end element, the
required equations for the end element at s = s, are given

by Egs. (3.11) to (3.14).

{- N+ D [u +-§ (u-w cot a) _,_y_'_g_'_, csc al} ] =0 (3.11)
s= 84
{- T+ D(-J—'%y-)[v’ - % +-1-Sl-:- csc all ‘ = 0 (3.12)
. s= 8,
2
(-5 -2 W+ (22v) 1.t csc?a - )
12 ( s2 53
+ LBy =0 (3.13)
s
5= 3
2 ..
{M +-]i)-g—- _w” + v (-:7—- esca +g—l—)]} =0 (3.14)
. s= S

where N, T, S, and M are the generalized boundary forces
per unit length as previously defined. Similarly, the set
of equations feor the other edge of the shell where s = s2
is given by Egs. (3.15) to (3.18). 1In Egs. (3.11) to
(3.14) above as well as in Egs. (3.15) to (3.18) bvelow,

positive forces are generally taken to be in the direction

RS-
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of positive displacements (see Figures 2.1 end &.2). Care
must be exercised in the determination of the signs of the
forces at the shell boundaries. The signs which appear in
these equations must be carried through the steps of the
modified Galerkin procedure which follow.

{N - D [u +-§-(u - w cot a) +-2%; csc all ' =0 (3.15)
- 5= s,
_12:21 [v' - %- %&-csc el , =0 (3.16)
s= s,

{§ + Dh [w” + (22) 4" escla - B2 o csca
s s

FE LB f=o0 (3.17)

s

s= s,

2 .

{-ﬁ-llth !_‘w" +v(-:—’§—- cscla +—g-’-)]} !:O (3.18)
s= 8

2

An exact solution must satisfy the end element
equations, Egs. (3.11) to (3.18), as well as the general
element differential equations, Egs. (2.33) to (2.35). The

approximate solution to be considered here will not satisfy

T R ™ S S B v, 3 BRI o s g e = R R P
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all of these equations. Therefore, errors in all of them
are to be accounted for in the modified Galerkin procedure.

A set of error functions is generated by the sub-
stitution of the assumed displacements, Egqs. (3.8) to (3.10),
into the general equilibrium equaticns, Egs. (2.33) to (2.35)
and the boundary equilibrium equations, Egs. (3.11) to (3.18).
These are given by Egs. (3.19) to (3.29) which follow.

cos mf sin wt ? q; {D[(lgv) csg g mBi'
— cs:2a mgy + “i” - Y czgza mooy + 56y
_ ié'ai N cgt a Yi' + co: a Yi] + phweai}
= €a(s,6) (3.19)
sin m8 sin wt ? Q {Dg(lgz) Bi” - Eﬁiég mzsi

(1-v) 5 v _ (3-v) _ (3+v) csc a
R M- 5 s may

_ (3=v) csc2a ma. 480t¢ gsc %oy
S * s

2, -
+ phwB,} = eB(s,e) (3.20)
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csc a v oy
cos md sin wt i 4y {D[——?— m, +g Gy
+ 1 4 -COtaY]COta-th[ i _QCsczamE u
2T T 2N -RNLRE] T2 't
2 4 )_’. 2
- (4 2 I3
. +cscain+%Yi, + cschmQYi,_;lﬁYzL
4 o s s
3 hese®a 2 1 ' 2
. - moy; + =z v;'l +phey.} =€ (s,0) (3.21)
S 17 3% i Y
- PR -
] N + cos m8 sin wt ? q {D!ai +35 (@5 - v; cot a
: . + csc a mBy)]} = E1(9) (3.22)
% ) 5=8,
X
3 : T v 1 y -
% N - cos mé sin wt z a {DFai +<5 (ay - vy cota
+ csc a mBi)]} = E2(9) (3.23)
R s=5,
X
F, -
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D(1-v) T
- T 4+ sin mé sinwt);iqi {"'Lz—" [Bi = B;

_ ¢tsc ma‘i]} - E3(9) (3.24)

s
s=s
1

T - sin md sin wt :21 a {D(-l-él) _[Bi' - % By

_csca
s

me, ]} = E,(6) (3.25)

S=52

. g Dh wo_ (2-\)) 2 2 1
S - cos mf sin wt ?_ 93 {——12 [Yi =’ esca m7y,

S
3-v) .2 2 Y9 1, _
+ (—5-3» esca mYy + =3 -;2 \ 1} = Es(e) (3.26)
S=82
T + cos m6 sin wt T {_lllﬁ [v,” - (22Y) csc2a mPy. !
s rii SRS TR L - Yi
, _ Y 1"
+ %‘1) csc®a mzvi 4——%— - ‘Lg v;'1}] = Eg(e) (3.27)
S
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2 2
M + cos mé sin wt i ay @%%—FY1”+ v (= cs: g mayi
* +2 7,91 = E,(6) (3.28)
) s=s;
2 2
Dh u cseTa 2
3 - M- cos m6 sin wt i a %i§~ Fyi +v (- 2 my,
E -
+2 9,013 | = Eg(e) (3.29)
e=s

In the modified Galerkin procedure, the error
functions representing the end errors, Egs. (3.22) to
(3.29), are weighted by displacements in a manner similar
to the weighting of the error functions, Egs. (3.19) to
(3.21), resulting from the differential equations of
motion. Error functions, ea(s,e), El(e), and Ea(e), which

represent errors in force in the longitudinal direction,

;' will be multiplied by the displacement u per unit dis-

E placement of the Jth coordinate. Similarly, GB(S,B),

: E3(9), and Eu(e), which represent errors in force in the
circumferential direction, will be multiplied by the dis-

placement v per unit displacement of the Jth coordinate;
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28 .
and ey(s,e), E5(6), and E6(e), which represent errors in -
force in the radial direction, will be multiplied by the
displacement w per unit displacement of the Jth coordinate. .
Functions E7(9) and Eg(6), which represent errors in -
moment, will be multiplied by the rate of change of radial
displacement in the longitudinal direction dw/ds per unit
in the Jth coordinate. The sum of all these weighted
errcrs, integrated over the ertire conical shell, will be
set equal to zero. Written in terms of the error func-
tions defined previously, application of the foregoing
procedure yields the Jth equation, Eg. (3.30).

2r s 2
+ €
f f I.:eaaJ cos mo + eBBJ sin mé yYj cos mé}s sin o dbds
o s,
er
+ [E,o, cos mf + E,a, cos mel
{ 1 =8, 27J s=s,
4+ E.8, sin m6 + E. 8. sin mb + E_y, cos mp
33 s=s ¥3 s=s 53 s=8
1 2 1
+ E vy, cos mé + E y.' cos mf
6'J s=5, 3 s=5,
+ EBYJ' cos mé ]s sina d8 =0 (3.30)

S=52
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The foregoing procedure is equivalent to applying the
principle of virtual work, i.e., requiring that the vir-

29

tual work done by the forces and moments in a displacement

in the Jth coordinate be equal to zero. Expanding Eq.

(3.30) through the use of the error functions, Egs. (3.19)

to (3.29), integrating the result over 8 and cancelling

th

terms, the genersl 1™ term in the Jth equation can be

expressed as

s

2
(14v) csc a 3-v) ¢sc a p
S 1\ — mf, 'a (3zv) =z mpyay + &0y
s
1
2
_ (1-v) cscfa 2 1 Vv Lot a _ 1
T Tp Mgy b E eyt T V%7 T 4%y
4 cot a + o= v2) 0l . 4 (Azv) 8."8
2 Ti%y TP 1% F 77 Py Py
2
csca 2 1-v) o 1p _ (2=V)
- —p-mByB, + B B BsB:
ot nnany + 050 oytey - O o0,
_ (1#v) csc a 3-v) csc a
) 828 g 1p - (B3 7 "8y
2
cot a csc a (1-v°) .2 csc a
+ 2 my;By +p\g wByBy + [ = mg, Y

cot a n

v 1
+--s—-ai'YJ +-;§-aiyj -—-75— YiYJ] cot a - k [y Yo Yy

A v o i e e e =
- T X e Ty

ai‘ym‘&?r’é%‘*%‘w T
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2, o )
- Besg By Yy o+ Ef—c-z;& muviYJ +£ 77
s~
2 2
2 esc” 2. _1 u csca 2

4

l-v2 2

.1.._13. Yi'yj] + p(-—E——) w YiYJ}S sin a ds

S

[a, 'a, + YOi%§ - veota. .  ,vesca mp.a.ls sin a l
i~J . s i3

23 s
$1
Vo, o
' i"J _vcota v csc a . l
[ai aj + —3 S Yiaj + S mBiaJ]s sin « .
2
(l-v) ' csc o .
8,85 - £ B8y - magB,]s sin o |
s
1
1-v
('5—) [Bi'B - E’BiBJ Eis—g-maisj}s sin o Is
2
k[Y”Y'-vcsceamz' 'Yy, 'y.t]s si I
1Yy - YiYy 5 ¥1'Y5'ls sina .
1
K [v."y,' - Y cscla me +2 vy, 'y, ']s si l
1Yy T2 MYy Te Yy Yy ls sine |
2
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- " (2 \) 2 (3-\)) 2 2
k [Yi Y,j =z cse a moyy YJ + -—--s3 csca m YiYJ
Y1 Y3 1 : w
+ ==t - =Yy yj]s sin a +k[y1 Yy
s Sq .
- I/
- (-2—%) csc2a mzy 'y, + (-3-'-§-) csc2a mzyiy + Y1 Y
s 19 s J s
1 1
-5 vy Y,jls sin « (3.31)
s s
2
where k 1s defined as
2
k =2 (3.32)

and the generalized external boundary forces at $=84 and

s=5,, i.e., T, T, 8§, and M, are taken to be zero.

Through the use of integration by parts, the

general i;jth term may be written in the symmetric form

2 2
[ {[p(l—g—) 0% - %— (1 + (1-v) pPese? a)] a

2 1%3

-3 ai‘a,j' + _[p(l v ) w2 s ..-:SL ((%5—\’-)4~ mzcscga)] Bj_Bj
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2
- (%1) s BiYBJl + [p(-J::.vr.

) w3s - cota
s

- kaCSCQG.

S

2

(m?cscza - 4)] Y4y - %(Qmacsc a + 1) Yi’YJ’

(3-v) mecsc a

- kSYi”YJ” - T "—'—S“"‘"— (aiBJ + Bia,j)

+ (;%2) m csc a (aiBJ' + Bi'aj) +-99§JE (aiyJ + Yiaj)

m cot o CSC Q
')+ CcOT C

+v cot a (ai'vj + Y40y = (v484 + BiYJ)} ds

2 . 2
+ - v“iaj + (152) BiBJ 4+ km (3-v)2csc a YiYJ

S

2 2
kvm ¢csca 1 1 - 1y
+ == (YiYJ + vy YJ) kvys'vy

s
2
- vm csc a (aiBj + Biaj)} (3.33)
s
1

Equation (3.33), which is the basis for all calculations
that follow, may also be derived using the Rayleigh-Ritz
procedure beginning with an energy expression of the form
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33
2r s
U '—'-‘J‘ J' %. [D (€s‘ + 662 + 2\)€See + (.l'_é.l’.) Yse2
o s .
1
+ kD (K2 + K2 + 2vK Ky + 2(1-v) Ky
(3.34)

- (Fu + Fv + Fww)] s sin a dsdé

and utilizing the strains, Egs. (2.1) to (2.3), and the

curvatures, Egs. (2.7) to (2.9).

tion will not be presented here.

Rayleigh-Ritz procedures are equivalent when the differen-
tial equations of equilibrium used in the Galerkin method

are obtained from a variation of the
used in the Rayleigh-Ritz procedure.
by Singer (11).

Details of this deriva-
The Galerkin and

energy expression

This was pointed out
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CHAPTER IV

COMPUTATIONAL PR2CEDURE

Choice of Functions

For the case of a conical shell free of edge sup-
vorts, the choice of displacement functions in the longi-
tudinal direction, ai(s), Bi(s) and v,(s), are somewhat
arbitrary since the displacement boundary conditions are
completely relaxed. Polynomials have been used by sev-
eral investigators, i.e., Platus (9), for the case of
fixed-end conditions on one cone edge. Because of the
great number of integrations that must be performed to
determine the matrix coefficients, it was decided to also
utilize polynomials. There are, of course, other possi-
bilities such as the functioris which might be obtained from
the free vibrations of a tapered beam without end supports.
However, the necessary integrations would be unwieldy.

Third degree polynomials of the form of Egs.

(4.1) to (4.3) were assumed in the determination of the
results presented in this study. Higher degree polyno-
mials are better able to r»epresent the more complex shapes

of modes higher than the third. On the other hand, the

34
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size of the matrix which must be inverted is increased by
three rows and columns for each added degree, a factor
which reduces computational accuracy. Primary interest was
in the first two modes for each case of a fixed number of
circumferential waves. Therefore a degree high enough to
adequately represent the lower modes was determined to be
the logical choice for this investigation. Further dis-

cussion on computatioral accuracy 1s given later in this

chapter.
a; = (2;) i i=1tok (4.3)
i-5
By = (%* i=5t038 (4.2)
2
i-9
Yy = (-:—2-) i=9to 12 (4.3)

Other functions, i.e., a5, Qs Bl, 32’ etc., were taken to
be zero. This seemingly odd indexing was necessary in

order to assemble the matrix elements.
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Arranging the Equations for Computer Solution

The n homogeneous equations which result from the
application of the modified Galerkin procedure to the
problem of free vibrations of a thin truncated conical

shell can be expressed in the matrix form

5 A a4 ©
oG WPy 41t -kl 4i Y - (b.4)
as Qs 0

where the generalized mass matrix [M], determined from the

general ijth term, Egq. (3.33), is

So

M. =T (aiaJ + BBy + Yin) sds (4.5)
51
and the generalized stiffness matrix [X], also determined

from Eq. (3.33), is

b s
jan LS N
3
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¥ K (1-v) 2 2
1 -V
Kyg=-f 5[+ 057 mescra] ooy
. 51
1 l-v 2 2
- sai’aj' - -é- [('—2—') 4+ m CscC a] BiBJ
(1-v) cotZa kmescoa . 2 2 L
- = s Bi’BJ' - F — + 83 (m“esca- )]Yin

- %l(2m2cscea +1)vy'vyt - ksyi”yj” ?

: - 1+v)m esc o )
cot a ! + y.o,'!
+ = (aivj + Yiaj) +v cot a (o Yy o Y40y )
mcot o csc o . _
+ = (Yisj + Bin)} as + { L
+ (1-v) 8.8, + kmg(3-v) cscza Y.y
5 PiPy 2 1Y
2 2
kvm~ csc o ' ) _ Cty 1
+ s = (vgv5' +vy'vy) - vyt

s
2 ,
~ vm csc a (“153 + 84a,)} ] {4.6)
- o S.l
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Having chosen the flunctions Oy Bi and Yy the above mass
and stiffness matrix elements can be evaluated for a shell
having specified geometry and a fixed number of circumfer-
ential waves, m.
In order to solve i... problem numerically on a
jigital computer, matrix Eq. (4.4) can be more favorably

rewritten as

A 9
L 1 st (4.7)
p(1-vI)/E ) -
n “n

where [K]“l is the inverse of the matrix [X]. Equation
(4.7) is solved through a process of matrix iteration
which produces the n frequencies and corresponding mode
shapes for the simplified constrained system. After the
fundamental frequency and mode shape is found, a process
of matrix sweeping is utilized to remove the first mode,
thereby allowing the second iteration process to converge
on the second mode. This technique is continued until as
many frequencies and mode shap=2s as are desired have been
determined, up to a naximum of n. Computations were
accomplished on the IBM 7072 computer at The University of
Arizona and the IBM 7094 computer at the Wesiern Data
Processing Center, University of California at Los Angeles.
The program is similar to that used by Matthews (8)
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although somewhat more complex. The FORTRAN language pro-
gram consisting of the main program and subroutines for
matrix inversion, matrix multiplication and matrix itera-

tion are presented in Appendix B.

Accuracy of Computational Procedure

The formulation of the equations is such that the
matrix which must be inverted approaches singularity as the
half cone angle approaches zero. This is due to the fact
that the equations of equilibrium, Egs. (2.33) to (2.35),
degenerate as a apprcaches zero and a limiting process
must be utilized for the case a = 0. In addition, for any
reasonable length cone, the quantities S, and Sy become
very large as the cone angle is made small. Since differ-
ences of high powers of 51 and S, are needed in the compu-
tation of the matrix coefficients, round-off errors and
loss of significant figures degrade the results. As a con-
sequence of these factors, computed frequencies and mode
shapes for small cone angles are expected to be less
accurate than those for larger cone angles.

Terms in the expressions tor curvature, Egqs. (2.4)

to {2.6), which are neglected in Egs. (2.7) to (2.9) become

less significant as a approaches 90o since the terms contain

cos a. This fact also contributes to greater accuracy for

the larger cone angles.
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Second degree polynomials of the general form of
Egs. (4.1) to (4.3) were utilized for certain cases to
determine the effect of choice of degree of the assumed
longitudinal displacement polynomials upon the results.
Differences betw n computed frequency parameters were
found to increase as the circumferential wave number m is
decreased and as the mode number is increased. For
example, in a typical case, the difference in frequencies
for the first mode is about two percent for m=2 and
decreases to less than one-tenth of a percent at m=9,
whereas, for the third mode the difference for m=2 is nine
percent and decreases to one percent at m=9. Table I
illustrates this point, wherein the results are normalized
such that the frequencies determined utilizing the four
term, third degree polynomials are equal to one, thereby
allowing convenient comparison with frequencies determined
from the use of the second degree polynomials.

As m increases, the complexity of the circumfer-
ential shape appears to compensate for the lack of
accuracy in the longitudinal shape of the mode. That is,
for the higher circumferential wave number shapes, the
frequency 1s predominately determined by the complexity
of the circumferential shape. The inaccuracy of the lon-
gitudinal shape does not seriously effect the natural

frequencies of the lower modes. On the otkher hand, the
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NORMALIZED FREQUENCIES FOR THREE AND FOUR TERM POLYNOMIALS

1st Mecde 2nd Mode 3rd Mode

m=2
Three Term 102.2 105.4 108.9
Four Term 100.0 100.0 100.0

m=4
Three Term 100.3 105.3 108.8
Four Term 100.0 100.0 100.0

m=9
Three Term 100.03 100.05 101.0
Four Term 100.00 100.00 100.0

inability of the less complex (lower degree polynomial) lon-

gitudinal assumed shape to adequately represent the more

complex modes is evident, i.e., the higher degree polyno-

mial is better able to represent the higher modes, which

is to be expected.
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In this study, the primary interest is in the lower

modes, especially the first and second. Therefore, it was
decided to utilize the third degree polynomials as given
by Egs. (4.1) to (4.3) for the longitudinally varying dis-
placement function. The use of higher degree polynomisls
would not significantly increase the accuracy of the fre-
quencies and mode shapes of the first two modes, based
upon results for the test case using both second and third

degree polynomials.

According to Bolotin (1), convergence in connec~ i
tion with the Galerkin procedure has been investigated

only in connection with very simple problems. The wide use
of Galerkin's method for problems in which convergence is
not conclusively proved 1s based upon a comparison of ?
existing exact results with those obtained with Galerkin's :
method, for those few cases where exact soiutions can be
obtained analytically. One must rely to a certain extent

on checks built into a computational procedure which may

be designed to identify non-convergence. A check on mode

orthogonality with respect to the generalized mass matrix

was utilized in this study.
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CHAPTER V
COMPARISON OF ANALYTICAL RESULTS WITH THE EXPERIMENTAL
DATA OF HU, GORMIEY, AND LINDHOIM ;
Geometry of the truncated conical shells taken T
S .
¢ from Ref. 6, and used here as comparative cases, is given
in Table II. Parameters are as shown dlagrammatically in
N Figure 2.1. :
[ g
. TABIE II ’
. CONE GEOMETRY, CASES CrF HU, GORMLEY, AND LINDHOIM
5
) Case 1 Case 2 Case 3 Case 4
i S —
: Cone Half- 14 . 24° 30.24° 45.12°  60.42°
i Angle, a
Major Edge 6.07 in. 7.95 in. 8.96 in. 10.00 in.
: Radius, r .
: !
: Minor Edge 2.72 in. 3.49 in. 3.98 in. U4.45 in. Z
Radius, r g
: o ;
: !
: length, L 13.2 in. T7.65 in. 4,96 in. 3.15 in.
; ‘ Thickness, h 0.01 in. 0.01 in. 0.01 in. 0.01 in.
i Completeness
P Parvameter, 2.23 . 2.28 2.2l 2.25
H s. /s
2° 71
H
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Comparative results for Cases 1, 2, 5 and 4 are
given by Tables III through VI. The frequency parameter
Q for these cases is defined by

2y 1/2
0 = urp [p 5]

(5.1)

Agreement between the theoretical and experimental data
appears to improve as the cone angle increases. This
trend is partially due to the fact that computational
errors increase as the cone angle approaches zero, as
explained in Chapter IV. In general, the agreement also
improves in each case as m increases. Due to the low
frequencies being measured, the experimental results, of
course, were al:o subject to error. Errors introduced by
cone imperfections, seams, supports, and method of excita-
tion were most likely greater for the lower circumferen-
tial wave numbers.

It can be seen that the computer results agree
quite well with the experimental data. It can also be
noted from Tebies III to VI that with few exceptions the
theoretical freyuencies are greaster than the experimentally
determined ones. Again this is to be expected because of
the constraints imposed by an approximate method.

Mode shapes for Case 3 (45.12° cone half angle)
are presented in Figures 5.1 and 5.2. Actvally the nor-

ma.ized radial displacement is plotted ratrer than the
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TABLE III

FREQUENCY PARAMETERS, CASE 1

Circum- Frequency Parameter Q
g;ggntial Tst Mode ond Mode
No. NASA-CR-38L Galerkin NASA-CR-38F Galerkin
2 .00191 .00243 .0113 .0062
3 .00502 .00571 .0195 0144
5 .0151 .01585 .0393 .03g4
7 .0285 .0300 .0611 .0650
12 .0763 .0789 112 .1285
18 .165 .169 - .264
TABLE IV
FREQUENCY PARAMETERS, CASE 2
Circum- Frequency Parameter Q
ﬁ:gzntial TSt Mode 5nd Mode
No. NASA-CR-384 Galerkin NASA-CR-384 Galerkin
2 .00151 .00191 - .00578
3 .00422 .00456 - .0128
5 .0122 .0126 - .0333
7 .0242 .o24h .0626 .0627
12 L0647 .0656 .120 .129
18 .135 .1356 .200 .213
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1 TABIE V
. FREQUENCY PARAMETERS, CASE 3
Circum- Frequency Parameter Q
g:szntial 1st Mode 2nd Mode
No. NASA-CR-380 Galerkin NASA-CR-384 Galerkin
¥ 2 .00147 .00169 - .00612
3 3 .00399 .00413 - .0120
5 .0113 .01145 - .0313
7 .0218 .0221 .0583 .0578
12 .0599 L0607 127 .133
18 .123 .124 .187 .212
TABLE VI
FREQUENCY PARAMETERS, CASE L4
Circum- Frequency Parameter Q
agigntial T5% Mode 5nd Mode
No. NASA-CR-384 Galerkin NASA-CR-384 Galerkin
2 .00139 .00144 - .00663
] 3 .00377 .00367 - .0133
5 .0104 .0104 - .0298
7 ,0200 .0200 0573 .0533
12 .0552 .0548 .123 .1245
18 .113 .1125 .187 .196
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total displacement., Since the radial displacement is dom-
inant for the first two modes, it was cnosen for discus-
sion purposes. Hereafter the expression "mode ~hape" is
taken to mean the normalized radial displacement shape when
reference is made totne figures. In general, the results
agree favorably with those found experimentally by Hu and
presented in Ref. 6, Figure 5.3 shows a comparison of the
experimental and theoretical mode shapes for the first and
second:modes of Case 3 for m=12.

In Ref. 6, Hu, et al., propose the following semi-
empirical frequenéy equation forrthin free-free conical

shells:

. ,
P D (1) (m+1+4sind%) (5.2)

= 5
2ry faf e

It was shown that agreement between the experimentally

determined frequency parameter and that given by Eq. {5.2)
was in general vefy good for the range of parameters
tested. It wac also stated that the range of applicability
of Eg. (5.2) with regard to the ccmpleteness parameter
S,/sy is uncertain. Equation (5.2) was developed to com-
pare with experimental results having a completeness

parameter of approximately 2.25.
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In order to determine the effect of completeness
parameter upon frequency parameter, the basic shell of Case
3 was utilized, varying S, while nclding 54 constant.
Results of varying 32/51 from 1.1 t& 10 are presenﬁed in
Figure 5.4. It cun te seen that for m=6 and above, the
total variation in frequency parameter, for the ranée of
sz/s1 considered, is almost constant. This means that the
effect of completeness parameter b>comes less pronounced
as m increases, as one might suspect. For example, the
approximate percentage increace in frzjuency parameter
from 32/51 = 1.1 to 92/51 = 10 for m=6 is 65 percent
whille at m=12 it is onlvy 20 percent. It should also be
noted that the variation in frequency parameter between
32/81 = 1.5 and 82/51 = 10 amounts to about half of the
total variation for the range of.'sg/sl considered. Since
the 52/5l = 2.25 curve very nearly divides the area
between the s,/s; = 1.5 -and s,/s, = 30 curves, reasonably
gocd results can be expected of Eq. (5.2) for very thin
shells having a completeness parameter between 1.5 and 10,
especially for the larger values of m.

Attempts were rade to incorporate the completeness

7 parameter 52/3l into Eq. (5.2), thereby extending its

range of éppiicabiliﬁy.i However, these attempts were
ursuccessful. A complete parametric study on complete-

ness parameter and its effect in relation to cone angie,

—————— e

_r - ot =
. R D e A

AP R,
P,

LN YN R RN

)

)
e es BN b s oAy

gt ans

AR b h

e

\
I T IO

Mk bR ¢ e W

I




B i

BRA AErEH

AN S

AL

LAY CRM ok by @ity b4 G NN 2 it s o ok o s PR Tty T
) N D o 1 I TN AP W AT oy P TR DN v

(

Frequency Parameter f}

.01 L

No. Circumferential Waves m

Figure 5.4 Effect of Varying Completeness Parameter

SN

|
|
!

3
e

B i st bt it sy o

\J

—er bt s v s s

w-—— e e

5

X
-
g

L H
T

WA e ita )

w $an et Ll s b

P TRY

oAt ¢




. f " . . T TETN 1 [N BRY LR R [T o 0o Mt IR ot
NN R £ an e e [P R R ) v
LILELS ot AR o bV A . # * 3 ERR g e 1 Wi Bl g oty R R D I e i R T e A R R L L A FE R T T O Pk LR Aram AAVEEA N € bave SR Nk A s .

v

R ey, A , éaanxﬁﬁaaaa.aé==a§wm§u§§a_§§s§§§m§§:£
i

L

EEwstErE
53

e

L T

] ]

T w . |
3

! a

i o

M | _ N
3 m _”
¢ ' i
“ N

, . _
1 ' Yy
i ; M
i ‘¥ 3 | |
1 |
‘,. . q
. ; ,
3 *
! b
|
ot
‘ - _.
- o M

-
@ S

thickness, and other variables, is beyond the scope of this

- i
: o _
L ] 3 |
1 . § 3 |
b } +
w? s £, +
_ : |
| Al
¥
i .,,
&

A

e,
S

M [ ]
% Y [y ¢ . 3 I
?
9 2 ’ ;. ey YL i
‘ ot i e N IS ASOT NSAR  S s RSA EEHR SRR R R IRRRA Bt N i T
S L 3, N < g, 4, o er 3, st ThAs § S Il 3 N SOl i) v .
fetocd i d oy Biindts el e 8 i Py rod i T AR A AR, et A PR .
3 "
H
- ok TR RN - v e oy o ok Doy e - . . : .
. 4 wa (¥ it de e lsazu..xm 5

[




EY

T AR W S L T e T S S ey, e e e o et — e NS S —— e
T =

KA UL NN RURERN Slitd ) N A B AR G R ey

AL AR U B LN AU L r o B pid el g sis epi BEAN (s it

- Dr—T——T T A o ORI 6 § TP ess B TT ORI

CHAPTER VI

COMPARISON OF ANALYTICAL RESULTS WITH THE EXPERIMENTAL
DATA OF WATKINS AND CILARY

The phenomenon wherein a different number of' cir-
cumferential waves are present at the two cone edges in an
apparent natural mode was observed by Watkins and Clary
{12) but not by Hu, Gormley, and Lindholm (data used in
Chapter V). As was mentioned in Chapter I, the validity
of the experimental results of Watkins and Clary was
questioned by Hu (5). Hu points out the care that must be
exercised in setting up such an experiment in order to
excite cnly the true natural modes of the cone. A reason-
able theory which explains the results observed by Watkins
& . Clary, based upon theoretical fragquencies and mode
shapes, 1s presented in this chapter.

Geometry of the conical shells taken from Ref. 12
and used here as comparative cases are given by Table VII.

Comparative results for Cases 5, 6, 7, and 8 are
shown by Figures 6.1 through 6.4. The frequency parameter
Al/2 vlotted in these figures is defined as

22 < waL(p (2-v?)/E) /2 (6.1)
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TABLE VII

CONE GEOMETRY, CASES OF WATKINS AND CLARY

Case 5 Case 6 Case T Case 8

S et o 2 = o .

Cone Half- 3,18° 7.59° 14.04° 23.96
Angle,a

Major Edge .o 140" i.0" 14.0"
Ra@ius, ry

Minor Edge 12.0" 10.0" g.o" 6.0"

Radius, ro

Iength, L 36.0" 30.0" ol,o" 18.0"

Thickness, h o0.o07" o0.o07" 0.007" o.oo7"

Completeness
Parameter 1.16 1.40 2.33 1.75
so/5,
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where A 1s L/ro. This 1s the parameter used by Watkins and
Clary. It can be seen that the.first mode results compare
favorably with the experimental data when the circumfer-~
ential wave number observed by Watkins and Ciary at the
major (large) end is used. The semi-empirical equation
prcposed by Hu, et al., (6) also compares favorably to the
Watkins and Clary data points associated with the circum-
ferential wave number at the major edge. On the other
hand, the data which corresponds to the circumferential
wave number observed at the minor (small) end of the cone
correlate reasonably well with the second analytically com-
puted mode. This fact supports the theory that the experi-
mental phenomenon ovserved by Watkins and Clary, wherein

a different number of nodes were observed at the two cone
edges, may have actually been a combination of the natural
first and second mode shapes corresponding to different
circumferential wave numbers.

In support of the above theory, it was noted from
the computed data that the predominant displacement of the
first mode occurs at the large end of the cone, whereas,
the predominant displacement of the second mode occurs at
the opposite edge. Consider, for example, the cone of
Case 8. Experimentally it was observed that one mode had
three circumferential waves at the minor edge and five

waves at the major edge. The computed frequency parameter
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= 1/2
for m=3, second mode, is A

1/2

= 0.0180 and for m=5, first
mode. is A = 0,0195. The corresponding mode shapes are
presented in Figure 6.5. Note that the predominant dis-
Placements are as indicated above. The closeness of the
frequencies and the shapes of the true natural mcdes,
therefore, support the theory that these two modes could
easily have been excited together in the experimental case
with the observed results that three circumferential waves
would appear at the small end of the cone whiie Tive waves
would appear at the large end. Many other similar examples
are evident from the data such as in Case 7 where for m=5,
the second mode couid have easil, been excited with the
first mode for m=7. In this case, ~omputed frequency
parameters are O.0443 and 0.0450, respectively. The cor-
responding mcde shapes are similar to those presented in
Figure 6.5.

It can be shown that for certain combinations of
circumferential wave numbers, coupling of the theoretical
modes 1s possible as a result of the six point string
suspension system utilized in the experimeﬁis. This
analysis is given in Agpendix C. Huwever, only two spe-
cific modes of the many observed by Watkins and Ciary fall
into this category. Therefore, coupling due to the sus-
pension is of minor importance and does not alter the

validity of the previous discussion. The presence of the
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suspension also has & minor numerical effect on the values

of the frequencies except in the few cases where the sus-

o
Lo pernms s ka0

pension and nodal points coincide. 7
Due to the fact that the experimental frequency
jata plotted in Figures 6.1 through 6.4 correspond to

complex mode shap=2s, whereas, the theoretical frequzncies

R s b e 4 <y

represent pure modes having the same number of nodes at

both edges, comparisons of the data, other than thoss

SIPATIRIE MDA YR J 10 e gl sonsstne 4 2ty 536
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aliready made, are difficult. Since the mode shapes are soO

4

AR v WL B b bbb it v b e

\

drastically different, conclusions regarding a comparison

of Zrequencies would nct be entirely valid.
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CPAPTER VII ;
CCNCLUSIONS = .:

The results of this investigation have added cred- ;
ibility to the experimental data of-Hu, Gormley, and 7
Iindholm, and offered a plausiole explanation to the
phenomenon observed by Watkins and Clary. This phenome-
non, wherein different numbers of nodes were observed at
the two cone edges, was most likely caused by the combina-
tion of a fundamental mode, having a given number of cir-
cumferential waves, with a higher (second) mode having a
smaller number of nodes. This 1is evidenced by the close-
ness of the respective frequencies and the iocation of
the relative predominant displacements. Other possible
causes for the observed complex mode shapes include
material nonlinearities such as might be caused by non-
constant shell thickness or seams, material or acoustic
damping, and, in a few instances, coupling due to the
manner of suspension. These, however, are believed to be
of minor importance.

Results of the higher modes (not all presented
here) could be improved considerably by adding more terms
to the assumed polynomial displacement functions. This
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may also require the use of double pr~cision techniques in
the computer inversion of the stiffness matrix since the
accuracy of the matrix inversion decreases as the order of
the matrix 1s increased. More sophisticated functiomns
could also be used. However, the integration required to
determine the matrix elements may then become unwieldy.

Use of the more general Flugge equations given in
Appendix 4 would not have significantly affected the
results of this study since the terms omitted in the
Donnell type equations utilized here are of higher order
for the very thin shells which were considered. For shells
having the quantity h/(s sin a) greater than 1/30, it is
recommended that the more general equations be uvused. The
thin shell assumption h/(s sin a) << 1 was certairly satis~
fied since this quantity varied between 1/272 and 1/2000
for the eight cases discussed.

Based upon comparisons with available experimental
data, it has been demonstrated that the modified Galerkin
procedure can be utilized to determine the frequencies
and mode shapes of a thin ccnical shell with free edges.
The assumed displacement functions were found to ade-
quately represent the motion of the shelis considered, at
least for the determination of the lower modes. A logical

extension of this work would be to consider the vibrations
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e

of %the conical shell with other boundary ccnditions, some

of which havz not been investigated. The same general pro- . \

cedure could be used. ) !
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APPENDIX A

COMPLETE FILUGGE EQUATIONS

The equations presented in this appendix were
derived from Flugge's (3) fundamenfal equations for a con-
ical shell, which are valid for a variable wall thickness.
His equations were modified by 1) restricting the equa-~
tions to shells having a constant thickness, 2) adding
inertia terms, and 3) changing the nomenclature to agree
with that used in this study. The equations are based
upon the assumptions thet the displacements are small and
that normals to the middle surface are preserved as such
during deformation. The additional terms in the following
equations which are not found in Egs. (2.33) to (2.35)
basically represent the influence of change in curvature
on the norma’ and shearing forces and the influence of
middle surface strains on the moments. For very thin
snells these terms are of minor importance and ccnsequently

the simplified equations were used in this stuuy.
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¢ (1+v)v''csc a (3-v)v'esc a p (1-viu’ ‘csc2a
- | 55 - +u’ + =
3 28 23
i ) | 2 o o 2
3 4ol _u__wwlcoba  wcotay , Dh [(l-v)u cot a csca
3 ) 2 s 2 12 4
] s s 2s
) n | S 2 - e 0 2
~uwcota  w’ _ (I-v)w' - ‘csca . (3-v)w"'csca
s 2s3 25"
2 2
w!' , wcotTa 0%u
+ +=—p—] cot & - ph =5 =0 (A.1)
';3' s 32
D[(l-\))v” + v**escla + (1-v)v! _ (1-v)v
2 2 2s 2
s 2s
+ (l-v)u'‘csec a + (3~v)u'csc a _ w'cot a csc oy
2s 252 5
+ Dh® [3(l-v vicot a _ 3(1-v)v'cot a + 3{1-v)v cot a
12 02 3 4
E S 2s 2s
g;'
: (3-v)w" "ese a _ 3(1-v)w''csc a , 3(1-v)w'esc a
* z 3 + T
2s 28 2s
- ph ——532" =0 (A.2)
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4 ) FIOW DIAGRAM: CONICAL SHELL VIBRATION COMPUTER PROGRAM
. £

2 1=0

3 PRINT INPUTS|

- COMPUTE_CONSTANTS]

ASSEMBLE STIFFNESS
MATRIX {K]
e Y
INVERL STLFEN,
MATRIX [K]
(SUBROUTINE} _|

- Eﬁﬂ?UTE"MAss‘
, MATRTX [M]]

Y
. COMPUTE [K]'[M
(SIRROUTINE)

ZRSERLE Skt RO A i I L
Ve vam P
K3

; TTERATE TO OBTALN | =

FREQUENCY AND L=Lf+1 |
MODE SHAPE {#}

(SUBROUTINE)

,

Y
COMPUTE FREQUENCY A
PARAMETERS; PRINT
QUTPUTS

[COMPUTE DISPLACEMENTS SWEEP PREVIOUS

AND PRINT »L <2 | MODES AND COM-
R 7 PUTE NEW [U]
COMPUTE AND PRINT
[e]T [M][@] FOR
ACCURACY TEST
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COMPUTER PROGRAM NOMENCLATURE

ALPHA = o (half cone angle)

CW, i =m (no. circumferential waves)

DISP = displacements

=
it

E (Young's Modulus)

FPAR = frequency parameter Al/e

FPAR2 = frequency parameter Q

H = h (thickness)

L = count on modes

OMEGA = frequency

PHI = mode shape

RHO = p (density)

RL =1y,

RO =T,

S = 8 Defined by Figure 2.1
sl = 8q

S2 = S,

SM1 to SM2 = submatrices used to gener

V1l to V-32 = various combinations of s
which are used repeatedly

XK = stiffness of matrix

XKT = Inverse of stiffness matrix

XLEN = L(length)

XM = mass matrix

XMU = v (Poisson's ratio)

XT = k (n%/12)

ate XK and XM

1’ 52: v, a, ete.,

-~
no

ARG o g ‘(“”"l“'mb\"-ﬁl‘w“ﬁ .

st

ANty

.

-3 A

A —— e 4 b e
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MAIN PROGRAM - - (ONICAL SHELL VIBRATIONS 73

THE PURPOSE OF THIS_ PROGRAM IS THE SCLUTION OF MULTI-DEGREE
OF FREEDOM VIBRATIONS PROBLEMS FOR THE NATURAL FREQUENCIES !
ANL MODE SHAPES BY ITERATIVE METHODS. )

BASIC EQUATIONS 1./(OMEGA*&?)®AaXK[SN*A !
WHERE A OM THE RIGHT IS A TRIAL EIGENVECTOR i
XKI IS THE INVERSE OF THE STIFFNESS MATRIX :
M IS THE MASS MAIREX . .. . o ... e
A OM THE LEFT IS THE UNITIZED RESULT

SIZES XK=M&M  XM=M&M  AxM%}

DIMENSIONXK(21¢22) oXKI(21021)¢U{2142104UQ4214210¢XN{2142100eC (21010}
LePHIL21021)0PHIT(21621) 4SM1{4 04) sSM2(404) oSM3L444]+SMLlbe4),
P2ME{&04) e SMOELLebs) o SMT1%e4) oSMB(4¢4) +SMI (L o%)9sSMIO0(4e4)eSMLLI4e4)

DIMENSION ROMWE21 221).DiSP{21,21) .. . —. - i

100 FORMAT{1H1.4X,18HENTER NEW DATA SETe//)

101 FORMAT(I2) _
102 FORMAT{ 10Xe2HM=412) i
103 FORMAT(8F10.0 )

107 FORMAT(10X,11HMODE SHAPE ¢12¢5Xe2HQ +1241PE15.T7)

2 108 FORMATL{10X, 6HOMEGA 51221PE20,T) .. _ __. . . . ..
i 109 FORMAT(S5X.14HEND OF PROBLEM)

3 110 FORMATL//)

OO0

L I

CE P L

111 FORMAT (10X.26HORTHOGONALIZED MASS MATRIX6212.1PEL15.7) ;
i 113 FORMAT{ 10X, 19HFREQUENCY PARAMETER.1PEL1S.7) ?
i 114 FORMAT{IHO+10X44HFREQUENCIES AND MODE SHAPES OF CONICAL SHELL)

s 115 FORWUAT(LIX<1P4ELXTT) ... . . e el e e s .

. 116 FORMAT{10Xe 6HLENGTH ¢l OX e FHTHECKNESS ¢8X9HNG. “AVES-IZXQIHE)

T 117 FORMAT(10Xe2HS1015Xe2HS2¢13Xe5SHALPHA)

; 118 FORMAT{IiOXe2HRD 15X e2HRL 15X «3HRHO ¢14 X +3HXMU)

% 120 FORMAT(10Xe4HS/S2514Xe1HU 15X ¢1HV 15X o1HN) .
C READ INPUY DATA AND COMPUTE XKI i
G INPUT UVATA _ . _ cr memmr et e e av e e mm ——— e e e ;

PRINT 114 ;

: 1 READ 101,.M
£ PRINT 100
: L=0

NGTE=1 .
. PRINY 102.M _. — - men e o o+ m e e e e e el
PRINT 110 2
2 READ 103 +RC+RLRHG e XMUSXLENsHCHHE i
PRINT 110
PiI=3.1415927
ALPHA=ATANFU(RL-ROJ /XLEN}
- S1=RQ/SINELALPHA) - e
S2=RL/SINFCALPHA)}
ALPD=ALPHA®S57.29578
XLAM=XLEN/RO
PRINT 113 )
. PRINT 1154RO.RL.RHOXMU
PRINY 116 e em o e e e e e e e
PRINT 11S54XLENeHCHNoE
PRINT 117
PRINT 115,51¢S2.ALPD
PRINTY 110 .. .
XT=(H*HI/12.0
R COQMPUTE _CONSTANT VALUES e e - -
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MAIN PROGRAM - - CONICAL SHELL VIBRATIONS

Vi=$2-S1 S o L
V2=§2852-5S1#51

V3zS2e43-51¢#3

V4=S2¢04-S]1 %24

V5=52¢%5-514£5

V6=52¢26-S1446

VI=LOGF(S2)=LOGFES1) . . _ ... . - R
V85252

V=S 2443

Vi0=S2%%4

V11=Cw/SINF(ALPHA)

V12=vit#vll

V13=COSF(ALPHA) /SINFUALPHA) . .
V14=V13#V13 :
V15=1.040.5%( 1.0~-XMU) #V12
V16=0.5%{1.C~XMU) +V12
V17=(XT#V12)#{V12-4.0)
V18=—(1.0-XMU}/2.0
V19=XT#{2.0#V12¢1.0) _ S
V20=-XT#V12%(3,0-XH4i)
V21=-XT#XMUV]12

V22=XT*XMU

V23=1.0/52-1.0/51
V24=1.0/(57%52)-1.0/(S1*51)

V255V11% (3.0-XMU) /2.0_
V26=—V11#(1.04XMU} 7440
V27=-V11%(1.C-3. 0¢XMU) /44 0

V28=(RHO* { 1.0-XMUSXMU) ) /{ E$386.088)
V29=S2%%5

V30=52%x6
V3I1=S2¢k7-Slex] _ _ _
V32=S28%6-S1%#8
COMPUTE SUBMATRICES
N=M/3
SM1(1,1)=V2/2.0
SM1(1,2)=V3/(3.0%52)
SM1(1,3)=V4/(4,0%V8)
SM1(2+2)=5M1(1,+3)
SM1(2,32=Y5/(5.0%V9) _
SM1(3,31=V6/{6.0%V10)
SM1( i+4)=5M1(2,3)
SM1{2,4)=SM1¢3,3)
SM1(3,40=V31/02.08¥29) . . .
SM1{4.4)=Y32/(8.0%V30)

N0 20C f=1.N

DO 200 J=1,N

SMILJaT)=SML(I,d)

SM2(1,1)=V7

SM2(1.2)=VY/LS2 . ..
SM2{1.3)=V2/(2.0%V8)

SM2{2.2)=SM2{1,3)

SM2(2433=V3/(3.0%VS)

SM2{3.3)=V4/(4.0#V10)

SM2{1.4)=SK2(2.3)

SM2(2,4)=SM2(3,3)

SM2(3:41=V5/15.0%V29)

T4
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210

220

. SM6{1+2)2=-¥23/82

230

240

250

MAIN PROGRAM - - CONICAL SHELL VIBRATIONS 75

SM2(4.4)=v6/(6.0%V3I0)

DO 210 I=1.N
D0 210 J=I.N
SM2L 3,1 )=SM2LT.J}
SM3(1.1:=0.0
SE3(1.2)=C.0

.SM3(1.3)=0.0

SM3(2,2)2V2/(2.0%V8)
SM3(2421=(2.0#V31 /(3. 0%V9)
SM3(3,3)=V4/V10
SM3(1.42=0.0 S
SM3{2.40=(3.0#V4)/ (4. 0%V10)
SM3€03:4)=(6.08V5)/7(5.06VY29)

SM3{4.4)=(3.0¢V6)/(2.0%V30)
DO 220 I=1.N

PO 220 J=I.N

SMAM Je1D=SMIL]I )
SM41141)==-V24/2.0

SM&4{1.3)=VT/V8
SH4(221=3M4i1.3)
SM4{2.3)=V1/V9
SM&4(3430=V2/(2.0%V10) -
SMé{1:4)=SM4(2.3)
SM&(2+4)25M4({3,3)

SM4{3+4)=V3/(3.0%V29)
SM4(4:4)=V4/(4.0*V30)
D0 230 I=1.N

DO 230 .J=IeN

SMel U 1¥=SML(] o J)

DO 240 I=1.N

DO 240 J4=1.N

SM5(1.J0=0.0
SM5(3.,3)=(2.C*V2)/V10
SMS{3.41=(4.C0VII/V29 . ___.
SM514+3)=SM5(3.4)
SMS{4%+4)=(9.0%V5) /V3Q

$M6(1.1)=0.0

SM61 1.2)=V1/82 . N o

SM6{1.30=V2/V8

SM6(2¢2)=0.0 . . .-

SM6{ 2,30=V3/(3.0¢V9)

.AM6(3.2: . D

o rm— o m———— e ———

SM6(1. - v3/V9
SM6{2+4)=V4/12.0%V]10) _
SM6(3+43=V5/(5.0%Vv29)
SM6{4+41=0.0

DO 25C I=l.N

S e~ .—-DQ 250 J=[.N

SM6{ Sl )=-SM6{1+J)
SM7{1+1)=0.0
SM7{1.2)=0.0
SM7(1+3)=0.0
SM7(2.2)=VT/V8

o e ——SMT42+3)=2(2,0¢VLD /NS

i W o TSR ML 4 b

A g Ko ¢ ekt K AR A A W W

SMT(3+3)=(2.0%V2)/V10

SRR

T
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- SM7{1:4)=0.0__ _._

4 MAIN PROGRAM. — - (CONJLAL SHELL VIBRATIONS

cema s e ———— . o

SMT7({244)=(3.0%V¥2)/({2.0%V10)
SMT(34)=12.0%V3)/V29

- SNTL444)=(9.0¢V4) /(4. CEVID)
DO 260 I=1.N
D0 260 J=l1.N

. 260 SMZ{Jel1)=SM1{1.J4). —

SM8{1.11=0.0

SM8(1.2)=Vv1/S82
SM8(1.3)=Vv2/V8
SMB8(2+21=5M8(1.3)
SM8(2+3)=V3/V9
.SM8(3,2)=V4e/ViQ B

SM8( 1,4)=SM8(2,.3)
SMB{2+,41=SM8(3,3)
SM8(3.4i=V5/Vv29
SMB8({&e4£)=V6/V30
DO 270 I=1.N

. 0R.217C =k _

270 SMB(J.I)=SMB(I,.J)
SMIL1.1)=V24

- 549( 1.2)=v23/52

: SMS(1+3120.0

. SMG(2,2)=0.0

SMY{2:30=V1/N9

SMS{3,3)=V2/V1iQ
SM9(1+4)2SM9(2,3)
SM9(2,42=5M9(3.3)
SM9{ 3,4)=Vv3/Vv29
SMG{4.4)=V4/V30

- _..DQ 280 I=1.N

00 280 J=1.N
280 SMO(J.I12=SMI(1.J)} -
SM10{1+10=C.0
SM10(1.2)=v23/52
SM10(1+3)=0.0
. _SM10(2,2)=0.C

SM10(243)=03.0%V1)/V9
SMI0(3¢3)=(4.0%V2) /V10..
SM10U1.40=(3.0%V1ii/V9
SM10(294)2{4,0%Y2}/V10__ .
SM10(3.4)=(5.0¢V3) /V29

e o - SH10( 4. 4)=(6,0%V6) /VIQ

Y
N R R A R R R S R T T PSRRI T AT i o 5~ "wi o 7 7= To .7 Do P

76

DO 290 I=1.N
D0 290 J=I,N_ _ _.
. 290 SM104Je1)=SM10(14J)
‘ 4 00, 300 [=1,N
3 DO 300 J=1.N

1 N —— 300 _SMU1U1+4)=0,0
SM11¢(2430=(2.C*V1)/V9
SMI1{3.2)=SM11(2,3)_ __ _
SM11(3+3)={4.0%V2})/V10
SM11(2+40=03.03V2)./V10
SM11(4,2)=SM1112,4%)

= *y3)/V29
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SH11(443)=SN1113,4)
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MAIN PROGRAM - - CONICAL SHELL VIBRATIONS 7

SMill4+4)=19.08VeD/NIC . . — = -

COMPUTE STIFFNESS FMATRIX

ALPHA~-ALPHA SUBMATRIX

D0 310 I=1.N

DO 33C J=leN

XKL, Jl=v15tsnztl.JttSMB(I.J)#XHuOSMBlI.Jl
BETA-REYA SUAMATRIX

IPh- [ oN

JPN=J+N
XK{IPNoIPN2=VEI6*SM2{] 4 J2—V18¢{SM3 {7 ,J)-SMB(1,J})
GAMMA-GAMMA SUBMATRIX

IP2N=142%N

JP2N=J22%N - e

KKUIP2NoJP2NI=VLIASSM24] 4 J)+V1T78SM4(1.J)

14V1I96SMTI L+ J) ¢ XTESM5( TSP +V20¢SMI([+ ) ¢V21%S5SML10(1+J)
2+V22%SM11(1.J)

ALPHA~BETA SUBMATRIX
XK{IoJPN)=V25¢SM2(1+JI¢V264SMO(1.J) ¢V2TESMB(14J)
ALPHA=GAMMA SURBMATRIX

XKETeJP2N)=VI3#(~SH20T o J) +(XNU/2,0) $4SH6CToJ)-SMB T4 dd )}

BETA~GAMMA SUBMATRIX

XK{ 1PN 3P2N)=—V]11#V138SM2{( 1, J)

DO 320 I=1.M

DO 320 J=1.M

XK{do I)=XKi1ed) c— e =
CALL MAINVIXK o XKI o M)

CALL MAMUL(XKE o XKsUs Mo Mo M)

COMPUTE MASS MATRIX

DO 350 I=1,N .

DO 35C J=1.N

IPN=1eN S
JPN=J4+N

JP2N=J¢2&N -

IP2N=]+2%N

XMUEeJ)=V28*SMI(I.d) . .
XMUIPNJPN)=XM{]I,J)

350 _XMLIPZ2NJU2N)=XN{l .0} — -

COMPUTE U=XKI$XM
CALL MAMULEXKE s XMaUeMoMeM} _ .
ITERATE
CALL ITER(UQ OMEGA M NOTE) __
RS

PHELTL)=0(I)

10 PHITIL.I)=C{})

1/¢(E%386,088)). . ...
FPA&Z*‘?P‘R‘RL'&O)/lXLEN‘XLEN’
——e e PRINT 1078l ol201K)e8=]eM)

~

PRy A 105en R eyt
L]

FPAR=SORTF { (1.0-XNUSXMU) SRHO®XLANSXL AM®XLENSXLEN*OMEGA®OMEGA)

PRINT
PRINT
PRINT
PRINT
PRINT
80 60

AR R
'

-

110

108¢L cONEGA
113.FPAR
113.,FPAR2
110

[=1.M

00 60

KUY, S R Gl pama iR,

J=le3
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MAIN PROGRAM - - CONICAL SHELL VIBRATIONS 78
ROWLJeI2=C.. = . . .. . - - R

PRINT 120

FL=S1/52

SINC={S2~-51)/(20.0%52)

ROM{1.1)=1.0

ROME1e2)FL

RONELe3ISFLEEL . . . . o et e it e e e
ROM( 1oL )=FLEFLEFL

ROWE2.5)=1.0

ROWE2+601=FL

RGAWE 2+ 7T)=RON(1c3)

ROWE 248)=ROW(L %)

RONWE 3+9)=1a0 __ .. ... ... - e e
ROVi3.10)=FL .
ROWE3I+111=RON(L1,3)

RONE 3¢12)=ROH(1e4)

CALL MAMUL(ROW«Q+DISPe3eMel)

PRINT 115.,FL<DISP{1¢1)DISP{(2,1),DISP(3,1)

FL=FLASINC . L Ll .. .
IFIFL~1.0)62+€3,63

CONTINUE

PRINT 110

1F(L-5}) 6.8+8

C FORM NEW U=U-UOQ

6

CALL MAMUL (XMaQ2aUQ eMeMel) _ . - e
CALL MTMUL(Q¢UQoeXKoloMel)
DEN=XK{1+1)*({TMEGA) *%2

CALL MTMUL (QeXMeXKeloMsM)

CALL MAMUL(G+XKeUQoeFsloM)

DO 7 I=1.M
DO 7 Jd=1,® _ _ . _ . . ..
UCLT«JI=UQlT.J)/DEN

T UlTeddi=UlTed)-UQLL o J}
AA=0O.
BB=C.
DO k1 I=1.M

. AAEBANY, i e - ..

11 AB=BB+Q{ 1)
IF (AA-BB) 5412,5

12 NOTE=2
GO 70 5

c FING ORTHOGONALIZED MASS MATRIX TO TEST FOR ACCURACY
- 8 CALL MAMUL (XM PHI oXKoMoMs3) ___ = _ . __ _
CALL MAMUL (PHIToXKeXKIeSeM,e5)
PRINT 110o0C odoXKEtIoJdol=1e5)ed=l,52
PRINT 110
PRINT 109
G0 10 1
- ENGU1+000902000010+000202000:00) . _.
ol T SR Gt o BT A R S e caS e T o e | he B e = - .-
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SUBROUTINE MAMUL (AeBsCoMeNsMM)

SUBROUTINE MAMUL (A+B.CoMaNsMM) .
THIS SUBROUTINE IS FOR THE COMPUTATION OF MATRIX C FROM C=A%8

WHERE CIS AN M®MM MATRIXe AIS AN M®N, BIS AN N&MM
DIMENSION A(21421) e8(21,21),C(21.21)

00 3 t=1,.4

DG 3 J=1cMM
Clladi=0a. . .. ..
DO 3 K=le¢N
CCEledI=CUIed )ALl oK) EBIKo )

RETURN
END{(140¢0¢020¢CoLl9Cc0e1¢0¢0¢0+0,0)
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SUBROUTINE MTMUL(A+BeCoeMeNeK)

SUBROUTINE MTMUL {A +BeCoeMeNsK)

DIMENSION A(21e1)eBl2142110C(21421)0ATH1,21)
N0 1 I=1.N

AT(1.13=A(1.1)

D0 2 I=1.K

Ctl.10=0.

DO 2 J=1.N

Clle1)=CULo 1) ¢ATIL oSN *B(J,1}

RETURN
ENDY 1000000000091009001'0000000'0)
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SUBROUTINE MAINV (A+AINV.M) 81

SUBROUTINE MAINV. {A<AINV.ML . . ___

THIS SUBROUTINE IS FOR COMPUTING HATRIX AINV WHICH IS THE
INVERSE OF MATRIX A

DIMENSION A(21.,21) 48(21442)sAINV(21.21)

N = 2&M

00 4 IxleM .

DO 5 J=1+M e e e e e e - -
BlI«ed) = AllLJ)

CONT INUE

CONT INUE

L=M+]

D0 6 I=1l.M

00 7 J=L.N e e e -—— . e o .
IF {I-J+M) £8,9,8 :

8(1.,J) = 0.

60 10 7

8{l+sd) = i.

CONT INUE

CONTIENUE = = . . . e e — e e -
DO 10 J=1.M

C = BlJed)

IF (C) 20.21¢20

00 11 K=1eN

BlJeK) = BldoK) /7 C

DO_14 L=leM__  _ _ —_— e e .

IFlL—-d) 13.14.13

D = B{L.J)

DO 15 K=1,N

BLLWK) = B(L4K) - B(JyK) * D

CONTINUE

CONTINUE . . ... e R,
L = M¢]

00 16 I=1.M

DO 17 J=1.M

L=Med

AINVELI«J)=BLI L)

CONTINUE . _____ __ . - — -
CONTINUE

G0 70 23

PRINT 22

FORMATU//7/7¢5X«39HINVALED SOLUTION--ZERG DIVISOR IN MAINVe///)
RETURN .

. EN2{140509090+Cel1909001+0+0400000) . ____ _ _

P S e S Ip

s sssobm b s




I e Tt e T £ A H e -
FEEZRE N e A R i Tt I e T el - -

- ol T 8

A R R A R S R R e S B A e Sl T

SUBROUY INE ITER {UsQeCMEGACM.NOTE) 82

SUBROLTINE ITER {UeQ.DMEGA+M.NOIE)
DIMENSION U(21,21).Q0€¢2141).A(21+})
X=0e
DD 1 I=1.M
1 Qtl)=1.
GO TO (3.7).NOTE
DO 8 I=1eMe2
Cli)=—1.
CALL MAMUL{U+QoAeMeM,1)
RO=A{(M)
B=0.
DO 6 [=1.M
6 B=R+Q{(]) -
C=0.
DO 4 [=1l,M
QU1)=A(1}/RO
4 C=C+Q{i)
X=Xe¢1l, . . B
IF{X~100s) 1021045 . : :
10 IF (ABSF{B-C)-.0000001) 5¢5.3 . i
5 PRINT 300X - -
IF{ROY11.12.12 -
11 PRINT 301+R0 -
12 RO=ABSF(RO)
OMEGA=SORTF( 1.0/R0) - .
300 FORMAT { 10Xe21HNUMBER OF ITERATIGNS +1PEL15.74,//)
301 FORMAT(10Xe14HOMEGA NEGATIVE«1PEL15.7+/)
RETURN
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APPENDIX C
COUPLING OF MODES

A mathematical demonstration that the natural modes
of the conical shell are coupled b& the six-point string
suspension utilized by Wetkins and Clary is presented in :
this appendix. %

In the expansion of the kinetic energy expression

T = 1/2 [[ph(u®+v?#°)s sin a dsde (C.1)

the crcss terms involving m and n, two distinct modes, inte- ‘
grate to zero, verifying that no inertial coupling exists.
Elastic coupling due to the presence of the strings will now
be examined. Consider the six support strings to be located
at 6=0, n/3, 2r/3, Uw/3 and 5v/3. The displacement of the
strings in the mth mcde is longitudinal only and is given

by

n
8
]
Q
—d
il

uy am(s) cos mé-qy (c.2) ?

|
|

) u, = w 4y = Gp(s) sin me-q, s (c.3)

The two functions are needed for complete generality in

orientation of the mode with respect to the support strings.

St s - "

83

- o

MR b S e D g s -

- - S i SN

.
S e L R T




v

e AT it

AR Rkt s

R VTCT AT o

TR

2t Al

84
The total displacement in the direction of the suspension

strings is then
u=u; +u, (c.4)

Forces in the strings are given by Egs. (C.5) to (C.10)

where k represents here the string spring constant.

® =01 - ku; - ku, = - ko (s)[cos C:q; + sin 0-9,]  (C.5)

1 2

8 =u/3: - ku; - ku, = - kam(s)[cos m1r/3-c1:L + sin mv/3-q2]
(c.6)

8 = 21/3: - kul - ku, = - kam(s)[cos 2m.1r/3-q1 + sin 2mw/3aq2]
(C.?)

8 =m: - kuy - ku, = - kam(s)[cos mr-q; + sin mw-qal
(c.8)

8 = Uw/3: - ku, - ku, = - ka_(s)[cos 4mr:r/3-ql + sin 4mv/3-q2]
(c.9)

8 = 5n/3: - ku; - ku, = - ka_(s)[cos 5m.17/3-ql + sin va/3'q2]
(c.10)

A virtual displacement in the nth mode is given by Egs.

(C.11) to (c.16).

@
It

0: du; + 6u, ~a_(s){cos O-6q3 + sin 0°6q)] (c.11)

@
|

= n/3: du; + bu, =a (s)[cos nw/3-6q3 + sin nv/3-6q4]
(c.12)
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2n/3: duy + du, = an(s)[cos 2n.1r/3‘5q3 + sin 2nv/3-6q4] S
{C.13) :
 =m: duy + bu, = a (s)[cos nm-8q5 + sin nr-6qu]  (C.1%4)

0 = 4r/3: du; + du, = an(s)[cos 4nr/3-6q3 + sin 4nm/3‘6q4]
: (c.15)

6 = 57/3: du, + bu, = an(s)[cos 5nw/3-6q3 + sin 5nm/3.6q4] !
(c.16)

The virtual work done by the string forces, Egs. (c.5) to
(C.10), during the virtual displacement, Egs. (C.11) to i

1
(C.16) is given by i

oW = - kay(s)ap(s)[{ay + 0-qy)(8ag + 0-6qy) o
+ (cos m1r/3-ql + sin mw/3-q2)(cos n.1r/3-6q3 + sin nr/3-6q4)

+ (cos 2m1r/3°ql + sin 2mv/3-q2)(cos 2nm/3~6q3 + sin 2np/3'6q4)
+ (cos mr-q, + sin mw.qg,)(cos nw-8qg + sin nw-6qy) %
+ (cos 4mn/3-ql + sin 4mw/3'q2)(cos ll»mr/3'6q3 + sin 4nw/3'6q4) |

+ (cos 5m1r/3-ql + sin 5mx/3-q2)(cos 5n7r/3-5q3 + sin 5nr/3.6q4)

(c.17)
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Evaluation of the coefficients al,'az, a3, and ay in Eq.
(C.18) reveals that for certain combinations of m and n,
they are not zerc, indicating that coupling exists. The
following modes, in addition to others involving higher m
and n, are coupled: m=2, n=l4; m=2, n=8; m=U4, n=8; m=5, n=T;
m=5, n=11; m=7, n=11; m=8, n=10. Since the functions in
the coefficients repeat, there are infinite numbers of

coupleG modes.

[“ it e e L
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which can t<e put in the form §
W = - kam(s)an(s)[alq16q3 + ayq,8qy + a3q26q3 + ayd,8q) ;
+ higher order terms] (c.18)
3
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. SYMBOLS
D Rigidity parameter defined by Eq. (2.16)
E Young's modulus of elasticity
; El’ E2, coo E8 Error functions
Fu, Fv, Fw External forces
h Thickness
* K Stiffness
k Thickness parameter defined by Eq.,(2.64)
. L Length
. M Mass
T m Number of circumferential waves
{ M Generalized boundary force
Ns, Qs, M, ’
Nygs o Stress resultants
i N Generalized boundary force
Ty, Cone radius at major end
r, Cone radius at minor end
K Generalized boundary force
s Iongitudinal coordinate
L T Generalized boundary force
K , t Time i
h u, v, w Components of displacement
o 87
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Fourier coefficients

Strain energy

Work.

Cone semi-vertex angle
Function of s in assumed u
Function of s in assumed v
Frequency parameter defined by Eq. (5.1)
Function of s in assumed w
Shear strain

Error functions of s and e
Normal strain
Circumferential coordinate
Curvature

Poisson's ratic

Density

Frequency

Frequency parameter defined by Eq. (4.1)
First partial derivative with respect to s
First partial derivative with respect to 6
First derivative with respect to time
Variation of ( )

Higher partial derivatives with respect ¢o s
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