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VAPORIZATION WAVES IN METALS

ABSTRACT

The vaporization wave hypothesis is discussed and its merits and
defects are examined. The vaporizing model is visualized on thermodynamic
grounds as carrying the liquid metal through a continuous succession of
states either on or near the liquidus line in the two-phase region. On
this line the adiabatic sound speed for wet vapor will limit the rate of
propagation of the vaporization front into the liquid., Experimental data
for wire explosions of Al, Ag, Cu, Au, Pb and Hg (frozen) are analyzed
for wave speeds. While the influence of thermal expansion of the liquid
can be accounted for theoretically, insufficient thermal data are available
for the metals to permit correction of the wave speeds for this effect.
The experimentally derived wave speeds are compared with theoretical
values of the adiabatic sound speed in the wet vapor obteined from a
modified, van der Waals equation of state. At low velocities the agree-

ment is satisfactory but higher values deviate considerably from theory.



Possible causes of the deviations are discussed. These include the crudity
of the fluid dynamic model, neglect of thermal expansion, lack of informa-
tion asbout the relationship between density and electrical conductivity

and the approximation imposed by the van der Waals equation.
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INTRODUCTION
We discuss here some recent experiments to examine furiher the
hypothesis that vaporization waves are responsible for the anomalous
resistance rise in exploding wires. While vaporization waves may be
expected in all high temperature matter on general thermodynamic

[ )
L,5% the first instance in which their existence could be

grounds,
recognized appears to be the exploding wire phenomenon.2 If the
vaporization of a superheated metal cylindef {s limited by the speed
with which the head of the vaporization wave travels from periphery to
the axis, then an upper bound is set Bn the rate at which the conducting
cross section diminishes, Resiséance ipcreases above the melting
point, larger than the usual linear rise with temperature, can be
related to the decreasing cross section of thé conductor; thus, wave
speeds can be obtained from the electrical pulse data. In our earlier
pa,per2 we reported wave speeds for Cu wires. Here we present data for
Cu, Po, Al, Au, Ag and Hg (frazen) wires and make comparison with pre-
"dictions from theory.

From a critic's point of view a number of limjtations on the appli-
cability of the vaporization wave hypothesis can ﬁe stated.

The success of the experimental method Qf analysis depends on the
assumption ~f a linear relation between resistivity and specific energy
applied- above the melting point ﬁp through the two-phase region. This
is, at best, a fairly crude approximation but cannot be replaced until

better information is available., Certain metals such as Fe, Ni and W

.Superacript numbere denote refevecrnras which may be found om- page 47.
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display nonlinear re'siativity decreases above the melting point; and,

‘therefore, cannot be treated by the present method. In the'cue of W,

at least, we know now that ‘these nonlinear effects are associated wifh
conduction and arc phenomena in the peripheral vapor emitted by the
wire during expansion, There is reason to hope that eventually wave
phenomena may be studied in W wires immersed in a dielectr;c liquid such
as silicone vacuum pump oil. Needless to say, the effects of a ‘dense
ambient medium on the wave propagation and the electrical pulse shape
are not well understood, although some preliminary unpubliéhed experi-
ments show that voltage breakdown and'peripheral arc formation can be
slightly delayed by ambient liquias of high breakdown strength.,

At the relatively high denéities of the erploding wire experiment,
collision frequencies are high C~1015/sec), the 1liquid and vapor should
obey continuum fluid mechanics, and local thermodynamic equilibrium may
be assumgd from point to point in the medium,

To discuss the fluid dynamical behavior of a superheated metal,

‘one desires to specify a homogeneous, high temperature medium at uniform

pressure as the initial state. For the fast explosions in which we are
interested a plausible argument can be given that ﬁearly uniform condi-
tions exist, at least for the early phases of the explosion. This
means assuming éhat transient skin effect has damped 6ut, that kinetic
pressures rapidly exceed magnetic pinch pressures and that heat losses

via conduction, convection and radiation can be neglected on the time

T bt e ity e T A =~




scale of the experiment., Estimates based on simplified calculations of

'the expected effects show that these conditions may be satiéfied for

events occurring within intervals of a few psec,
Dynamical effects themselves may be expected to lead to non-
uniformities of pressure, temperature and density throughout the med fum

as the flow develops, Figs. 1 and la show that density variations occur

rather early in the expansion process. What, then, is the initial stete
and how uniforé is the expansion which folléws?

X-ray and optical shadowgraphs have already shown that the later ~
stages of the expansion proceed with iarge density differences betweep
adjacent portions of the wire. Apparently v;por and dense striations
exist side by side during appreEiable intervals of the expansion
process, - Formerly we supposed that these nonuniform densities occurréd
late in the expansion regime, after the vaporization wave had traversed

the wire radius. Fansler and Shearu demonstrate by means of x-ray

shadowgiaphs, correlated in time with slectrical pulse data, that

‘striations appear at a much earlier stage” than previously thought, and

must be regarded as practically concurrent with more elementary expan-
sion processes such as volume expansion of the liduid ir the two-phase
region and expansion through the head of the vaporization wave,

Light ;catfering studies of the metal vapor periﬁheral to the wire,
studies made at this laboratory and to appear soon in report form,

indicate appreciable particle-size changes &uring 11e expansion process,




Figure 1. Correlated electrical and streak camera data for
10 mil Cu wire. (V = 3 kV, C = 32 uF)

Figure 1a. Enlargement of expansion region of Figure 1. Note that the
vapor veil is penetrated by the backlighting. Luminosity from
the interior is seen just after voltage peak

10




In the light of these experimental indications we recognize that the

ideal of e Lomogeneous medium expanding from uniform initial conditions

continues to be elusive,

The presence of visible density striations in the early expansion
stages would militate against the assumption of a uniform vaporization [=
wave diminishing the conducting cross section at a definite, though
, ) variable speed. Rather one may ask what conduction processes could
simultaneously involve the striations and the nearby less dense regions,
One may also ask whether the striations arise from nonuniformities of i
heating or from initial cénditions in the crystalline solid wire, or
whether striations form because of local conaensation from a more

wniform, vaporous state attained soon after melt and prior to the

violent expansion,

No matier what the answers to these questions, the viability of
the vaporization wave hypothesis, at least 1; its application to ex-
E ploding wires, is clearly still open to question; nevertheless, one
‘cannot say that it is decisively disproven by experiment,

The evidence in its favor is compelling. Our results show that |

experimentally derived wave speeds correlate with those calculated |
from a van der Waals equation of state for metals. Both the onset
energy and the form of the wave speed function are correctly repre-

sented. .In terms of scaling laws based on critical temperatures, the

wave speed curves for several metals cluster about the single the-

oretical curve. These results provide an independent check of recent

11




methods of estimating critical temperatures hithexrto inaccessible to
measurement. One cannot rea&ily reject a theoretical approach with

demonstrable virtues such as these., One hopes that by refinement its
deficiencies can be eliminated; however, the loss of its initial fine

simplicity is to be expected in the ensuinz complications.

THERMODYNAMICAL MODEL

in this section, a simplified fluid model will be developed to
'repre;ent the transient behavior of a material heated rapidly from the
solid state up through its critical temperature. For typical metals,
the heat energy for-melting is small compared to that required to
vgp;rize ihe syatem; therefore,.we concentrate on the mechanism of the
%1gp1d-vapor transition, Fo:* such a twn-phase condensing fluid, there
are a variety of state equations, The most famous is van der Waals
equation, which typifies the essential features of a condensing fluid,
and whigh will herein be used in a slightly modified form.

Consider unit mass of material, and let P, V, and T be pressure,
specific-volume and temperature, respe&tive}y. In the single phase
(either liquid or vapor) the pressure is assumed given by the van der

Wﬁals function, F,,
P, (V,T) = Rr/(V-b) - a/v2 ,

with inequalities T >0, V 2 b, where a and b are substantive

(1)
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constants for each material and ﬁ is the gas constant. For
subcritical temperatures there is a two-phase region where both the
liquid and vapor phases coexist at the same pressure and temperature;
in coexistence, the pressure is not that given by Eq. (1) above;
instead it is the vapor pressure functicn P,(T). For the van der
Waals system, this latter function is not explicitly represented by an
analytic function and must be found by computation. To compute P, (T)
as well as the V,(T) and V;(T) loci of the saturated liquid and vapor
lines, a generalization of the Maxwell criterion5 is used, so that at

fixed T < T, (subscript c always denotes critical ccnditions),

vy (T)
I Pdv = P, (T} {v,(T) - Va(T)} +¢ (T)
V(1)
where
Te T

S (4
#(0) = [-{c, (r)(vepor) ¢, (1) (11a)} a7 + 7 [{c, (r) (vapor)~c, (v) (110) BT .
b; T

Hére C, is the specific heat at constant volume of the single phases.
For either phase, C,(T) is a function of temperature only, and is

chosen to be consistent with the van der Waals system. If CV(T) (vapor)
is identical with C,(T) (1ig) then ¢(T) is zero and (2) reduces to the

usual "equal area" rule first given by Maxwell. We note that the

13
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equal-area rule is resérictive in demanding identical specific heat
functions for the liquid and vapor phases. This restriction is lifted
when the generalized rule above is used, but its use requires some
information about specific heats. The constants a and b for the
material are conveniently replaced in terms of the critical values of

the system by the well-known relations:
3 A
&a=3PV., ;b=V/3;RT =(8/3) PV, . (&)

Knowledge of the critical constants as well as of the specific heats
completes the description of the equi;ibrium state of the system., One
can now find all the pertinent thermodynamical quantities, including
thdése of the coexistence state. These will be explicitly exhibited as
needed.

We use this model to analyze the behavior of materials heated

from coﬁparatively low temperatures. In particular, we consider a

‘system in the molten state just above the melting temperature, and

allow it to be heated to critical conditions, The usual adisbatic
speed of small amplitude waves (sound speed) in the system is given by

c? = (dp/dp)ad which becomes, with g = 1/V ,

c? = - Vz(%éy. = Vz{g: ,g%? - (gg)} ] )

adiabatic 1

1k
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For the condensing fluid, we note that the pressure and specific heat

functions are different for the single phase regime and for the two-

phase coexistence state. In the single phase regime, we use the van
der Waals functions, whereas in coexistence we use the vapor pressure
function, P,(T), and the specific heat C,,(V,T) of coexistence. Since
P, is independent of volume, the wave speed in coexistence ?educes to

¢, » Where

cu = vir/e, 2 (F) - . (6)

At the saturated liquid line, there are two verj'different Qalues of
wave speed possible; which one applies depends on whether thé dis-
turbing wave tends to change the system to the single phase (all
liquid) state, or to the two-phase state.

The specific heat CVA(V,T) for the coexistence state must also be
found numerically., This is done straightforwardly by finding the

&) + The

internal energy, E,, of coexistence, and using C,, = (
dT
v

internal energy of cdexistence is found by using E, and P, for E.and P

in the general thermodynamical relation

(g%) =T (g-g? - P . (7)

15
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then direct integration yields

E, (v,1) =B, (v,7) + 4() {v - v,()} ,

vwhere E, is the internal energy of the van der Waals function. One

then finds
(V5,1) (T). av ()
C“ (V,T) = '”dTa l + d};TT) V-V, (T)} - M(T) ar ’

noting that

&E, (V, 1) _ 3, 4V (T) 3B,
[—”—ﬁ ] . 4t 3T
¥

For example, at the saturated liquid line, the -specific heat of co-

existence simplifies to

JE av.(T) . aE
ch (v3’T) = {a'—v:' - M(T)} '—'gi,— +-a—T'u‘ .

.The last term on the right is the constant-volume specific heat of the

' E .
liquiq; %\7:- = a./V;,a » as may be seen by using E, and F, in Eq. (7).

With P, (T) and V,(T) found from Eqns. (2) and *(3) we may now evaluate

the two possible wave speeds on V,(T). These are exhibited in non-
dimensional form in Fig. 2 as functions of T/Tc for the example

where Cv(liq) = C,(vap) = (3/2) R.

16
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SOUND SPEEDS
5. AT LIQUIDUS
LINE -
(van der Waals)
4T sound
Speed,
5 C/ RTc)E
5l |
Coexistence
14 (VoporizoE&_
0 5 6 7 8 910

T/ T

Figure 2. Double valued sound sgeeds on liquidus, Kan der Waals-Maxwell
fluid, [Cv(Hq = Cv(vap) = (3/2)R]
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The wave speed in the liquid is seen from Fig., 2 to be very much
larger than the vaporizing wave speed of the two-phase sysfem. The
vaporizing wave speed is very small until temperatures exceeding one-
half critical are attained.

It is characteristic of the van der Waals system (and indeed of
most physical examples) that both the isotherms and adiabatics in the
all-liquid phase are very steep compared to those of either the co-
existence or all-vapor states, except very near the critical point.
The magnitudes of these adiabatic slopes are directly proportiénal to
the squared sound speed, Qo one expects the liquid sound speed to be
usually much higher than the vapor or vaporizing wave speeds.

This fact suggests a simplification of our model for the system
undergoing transient heating from an initially molten state at low
temperatures. We assume that the heating moves the thermodynamic state
along the saturated liquid line; any tendency:to drive the system into

the all-liquid state would be rapidly counteracted by liquid thermal

-expansion, which occurs at a relatively fast rate corresponding to

liquid sound speed. This liquid thermal expansion lowers the pressure
to the vapor pressure, P, (T), where any further expansion must be ac-
companied by partial vaporization. This latter expansion is governed

by the relatively slow vaporizing wave speed of the coexistence state.

. We note that due to the steepness of the all-liquid adiabetics, only a

small volume increase is needed to maintain the system at the saturated

‘1iquid state.

18
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We therefore assume the fluid state of the exploding wire in the
pre-burst stage can be approximated by a molten cylinder from whose
surface partial vaporization is occurring. The speed of the leading
edge of this partially vaporizing wave is assumed to move with the
vaporizing sound speed of the saturated liquid at temperature T, and
is given by Eq. (6).

It is of interest to correlate the vaporizing wave speed with the
added heat content, q, per unit mass, rather than tempera£urc, because
the additional heat energy can usually be found operationally by
energy balance, whereas teﬁperature is a more elusive quantity. 1In
particular, for the moified van der Waals system employed here, one
can compute the equilibrium heat content per unit mass along the
saturated liquid line by using Eq. (2), and the assumed known critical

constants and liquid specific heat. One integrates
dq = dE + PRdV

along the saturated liquid line, V,(T), from T, to T, where T, is
melting temperature, using computed values of E,(V,,T) and P, (T) from
Eqns. (2) and (3). At any T between T, and T, & quantity Aq(T) is

obtained, thus giving e correspondence between Aq(T) and T, For a

" given meterial, one then assumes the hecat.content along the saturated

liquid 1line to be

19
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q(T) = q(T,) + aq(1),

where q(T,) is the assumed known heat content of the liquid at melt,
including the latent heat of melting. It is apparent that q(T)/fr,
depends on the specific heats of the liquid and vapor phases through
Eqns. (1) and (2), as well as on q('r,,)/ﬁ'rc. This latter quantity is
found to have nearly the constant value of .60 fﬁr a variety of
metals, &9 plots of cu/(ch)i against q/(ﬁTc), where c, is the
vaporizing wave speed on V;(T), usually depend only on the singlew
phase specific heats as parameters. We exhibit such plots in Fig. 3

for several examples of specific heats.

FXPERIMENTAL
We outline here the procedure for calculating vaporization wave
speeds from the electrical data. This method differs somewhat from
tha@ given previously,2 in that a means of accounting for thermal

expansion of the liquid metal is incorporated in the present scheme,

Data Reduction for Wave Speed

The voltage across the wire and the current through it are
obtained from oscilloscope traces as previously described.6 After
accounting for the inductive voltage on the voltage probe, one then

has the resistive voltage, V,,.as a function of time. Typical V,(t)

and I(t) measurements are seen in Fig. 1. We dssume the rapid increase

20
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* cy(lig)/R=3/2
6 S/2 3
5 —
rCw/(ﬁTc) /2
4k
3
2 Vaporizing
Sound Speeds
Cy(vap)/R=3/2
A
1 | 1 |
%% | 2 3 4 5 B
q /ﬁTc

Figure 3. Vaporizing sound speed on liquidus. A modified van der Waals
equation has been used with 1iquid specific heat as a parameter.
Curves terminate at the heat energy of the critical point
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of voltage to its peak is due to an increasing resistance caused
primarily by a reduction of the conducting cross section of the molten
wire; this reduced cross section is attributed to the partial vapori-

gat! n proceeding inward from the wire surface,

Pre-Vaporization Heating of the Liquid Metal -
As heat is added to the molten metal a slight thermal expansion

will occur. Since the length-to-radius ratio of the wire is large,
expansion waves traveling at the local speed of souhd will not reach
the wire ends during the short time interval of the explosion. We
therefore expect the thermal expansion to be effective in increasing
the radial dimension only, and account for it by assuming the entire
mass is contained within a cylinder of length of that of the original
wire, 4, and average radius r,(t). It is clear that r,(t) must increase
slightly with time, according to the heat addition and consequent
average density decrease of the liquid.

In order to describe the assumed model of the wire explosion, we
wish to map certain boundary, wave path, and_ particle trajectories in an
r,t plane, If m, represents the mass of the solid wire and m the mass
of the wire within radius r before vaporization, we can write
m = nr24d(t) where d(t) is the uniform density of the metal, a density
. which varies only with. time. For m constant, it follows that r = r(m,t)
describe; the variation with time, due to thermal expansion, of the

-represenéative mass particle at the radius which encloses mass m. In

22
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this mapping m is a parameter and t the variable of interest,
Accordingly, r, (t) = r(m , t) gives the curve in the r,t plane of the
expanding outer boundary of the liquid wire, Because of the assumption
of uniform density all other particle trajectories corresponding to
m < m, are similar curves.

The trajectory of the vaporization wave, which we denote by
rz(t), cuts across the particle trajectories in passing from larger to
smaller radii. With the above definitions we could write
rp (t) = rlm (t),t] where m, (t) represents the varieble mass ahead of
the vaporization wave at time t. Here the parameter m changes from

point to point of the r, curve; hbwever, m, is not known & priori but

must be determined from experimént.

Vaporization Model

With increased heat content of the liquid, the threshold of
vaporization will be exceeded and a wave will start. We assume that
the cylindrical interface of average radius r, (t) se%arates the
.intact molten core-from the outer, nonconducting, partially vaporized
mixture. The local velocity of this interface in a reference frame

fixed with a given set of fluid particles is denoted by ¢,. In a

laboratory fixed reference frame the interface velocity is

dr, (t)
dat

. The velocity of the liquid particles at r = r {t) (which

is the same as the velocity of the reference frame -attached tc¢ these

23




particles), is {:—flh g

Therefore,

—‘-"ﬂla dr, (t) S : (1k)

If no vaporization occurred, the entire liquid mass, m,, of. the
wire would be contained within the radius r, (t). Assuming. the density.
of the liquid core to be constant with radius, the mass m (< m,)
contained within r(t), (s r,(t) s n, (t)], is' related to the tofal mass
by r(t) = (m/m )% r,(t). Differentiating this expression, and noting

that both m and m, are time-independent, we find

__L). ~ (ufa, 1} drl(t) (15)

.The mass, m (t), of material contained within r, (t) does change with

time, since r, (t) =(m, /m, )% r, (t). With the foregoing relations

e, = - ry(t) g—E- {(ma/ms)%} . ' (16)

The electrical resistance, R,, of the conducting cylinder of

radius r, (t) is

2k
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R /Ry = p‘(,t) [ r_r%_J]a , (1)

where subscript O denotes some suitably chosen reference conditions
which identify the beginning of the wave, and p is the electrical
resistivity. Furthermore, if d(t) be the liquid density of the core,

we have

m, (t)/mg =[£§ﬂ_| d-%l . (18)

The rate at which total heat, Q, is added to the core is

2
g% = I(t) V,(t) = I(t) R (t), a measured quentity. Since this heat

input is assumed to be deposited uniformly in the conducting cylinder
by uniform current distribution we can write g% = m, %% s where q is
‘the heat content per unit mass. With the foregoing relations we then

have

(R (0)/m,) B2 = (2 4t} aq . (19)

m Po / d,

Using the experimental values of V,(t) and I(t), we can numerically

integrate the left-hand side from the reference conditions ROQO) to




"~ Q(t) - Q, with the heat content per unit.mass, q(t), of the liquid

the values for Q(t) at any chosen time within our data record. A

corresponding integration of the right-hand side, assuming we know the
law relating the variation of resistivity and density with heat content,
would then relate the measured heat input to the resulting heat content
per unit mass of the liquid core,

Unfortunately, p(q) has not been measured at sufficiently high
temperatures for most metals. A further complication is that the model
assumed thus far is an average one, in the sense that both p and d apply
here to the assumed uniform cylinder employed to represent the éctual
conducting path. In order‘to proceed, we use an extrapolation of the
values of pd measured at the lower q values before the vaporization
becomes important. For those q values between melt, q,, and the onset
of vaporization, q(vap), we note that m, = m, and r, (t) = r,(t).

Using the latter relations in Eqns., (17) and (18) gives

R, /R, =-E§El Séﬁl for q between q, and q(vap). Plots of R /R, vs. q.
o 0 .

4n this energy range indicate a linear relation between the product

pd and q. We assume that this linear relation continues to hold for

q > q(vap); this assumption enables us to integrate the right-hand side

of BEq. (19) with respect to q(t). The resulting integral relation,

evaluated numerically, correlates the measured input heat energy,

core, o

26
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Using Eqns. (17) and (18) we then have

m /m = (p(t)/p,) (a(t)/d,) (R,/R (t)) (20)

for the range q(t) > q(vap). Since the right-hand side is now known
as & function of time, numerical differentiation with respect to t
can be done for use in Eq. (16). If one moreover knows how r,[q(t))
varies with q(t), then c, is obtained as a function of q. By
hypothesis, rl(t)/ro'is {do/d(t)]%, so one needs d{q(t)] as a fuaction
of q. Since the density, d(q), is expected to decrease with q, it
follows that r,(q) should increase wi‘h q. If one uses the modified
van der Waals theory described previocusly, assumes the state of the
liquid coré to be that of the saturated liquid, and takes the reference
conditions to correspond to those of t..e liquid at melt, one finds
d(q)/d" decreases slowly from the valu: unity until q values near
critical are approached.

If we define

ST Ao S(id{f (21)

where r, is the original radius of the solid wire, we have from Eq. (16)

¢, (@) =Fa) ¢,y (a) » (22)

27




where

r(o) = (32) (B4 (23)

s To

The quantity cto(q) is obtained directly from the electrical data
using the model just described. On the other hand, F(q) depends on
the thermal expansion of the liguid, and cannot be obtained from our
present data. Estimates of F(q) indicate it may be replaced by a
constant a little lafger than unity for temperatures less than .9
critical. F(q) will be described more completely below. For the

present, we show experimental values of c,, versus q.

Experimental Conditions

Using the above procedure, we have obtaiped experimental
values of c,, versus q from tests on copper, lead, aluminum, gold
silver, and mercury wires. The copper data have been reported
previously,? although not in the scaled form given here, We first
mention briefly the experimental conditions and give tables of
pertinent quantities.

A capacitor of 31.5 uF was used for all tests except those on
copper, and the circuit ringing frequency was 43 kc/sec. Voltage
and currert traces were photographed on a'type'SSS, double-beam

Tektronix oscilloscope, From measurements of these traces we

28



t
obtain V,(t) and I(t); numberical integration gives AQ(t) = I v, Id7,
0

and we have Ry (t) = V,/I. We list in Table I the conditions for all
wires except copper; copper test conditions are given in Ref. 2, The
explosions occurred in air at atmospheric pressure, and the wires were
maintained at room temperature before current switch-on, except for

the frozen mercury wires; they were kept at dry ice-acetone temperatures.

From the measurements, the scaled functions S,(t) =R, nr,®/4 and
u(t) = AQ(f)/ms were plotted as ordinate and abscissa, respectively, for
each metal; here r, and m, are the initial radius and mass of the wires.
For a given metal we find that the S; vs. U plots for wires of different
radii and initial capacitor voltage coincide with each other until a
fixed value of U is exceeded. For U > U,, the plots diverge from each
other, according to initial wire diameter and capacitor voltage.

For U between a typical low value, U,, and the higher value U, , the
experimental functions S; vs. U can be approxirated by a straight line
segment for each metal. On this segment, $, =S {1 +B(U - U,)}; then
the ratio S, /S, = R, /R, as defined by Eq. (17), and we take our
reference conditions (So, Vo) at the largest value of U = Uv where the

.experimental curves depart significantly from linearity. Table II gives
the experimental quantities typifying these straight line segments for
the different metals., The last column, Aq;, is the computed heat content

per unit mass of metal prior to electrical heat addition.

* The notation of Ref. 2 is slightly different from that used here. A
factor w was inadvertently omitted from the ordinate of Fig. 4
reproduced there.
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Table I. Test Conditions

Initial Initial

Wire Mamcter Length Capacitor Voltage No. of
Metal (mils) (cm) _(em) _ (xV) Tests
Lead 5.1 ,0130 l.1 1.2 1
Lead 10 0254 1.0 1.0 1
Lead 10 0254 1.0 2.0 1
Iecad 10 .025L 1.0 3.0 1l
Aluminum 5.6 .02 1.1 2.0 1
Aluminum 10 0254 1.1 3.0 2
Gold 10 0254 2.0 3.0 2
Silver 10 L0254 2.0 3.0 1
Mercury 20 .0508 2.0 2.5 &
Mercury 20 0508 2.0 ) 3.0 1
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Table II.

Resistive and Heat Input Measurements

First column gives tabulated values of liquid resistivity at -
Last column gives heat content prior to test,

melt (Ref. 7).

Metal
Copper
Lead
Aluminum
Gold
Silver

Mercury

estimated from tabulated specific heats

2l.1
95

akh.2
31.2
17.2

9l

das
U (1inear)

U, _ U, Aq,

e G 8B 2 & &

29 1.10 8.L0 ko.5 2.4 .083

102 .085 b4 146 .39 .035

26 1.4 S L L8 5.7 .20

35 .35 66 60 72,031
19 75 22.6 28 1.1k .063 -

108 045 700 125 .07 030
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The value S, = S, (U,) should be comparable with the resistivity
of the liquid metal at melt, p,. Previously tabulated values of p,
are given in the first column.7 Assuming the wire length constant,
one expects p, = S,(d,/d,) where d,/d, is the ratio of solid density

to .he liquid density at melt, a factor about 7 to 12 percent greater

than unity for these metals. Thus, one expects p, several per cent
E ’ larger than our measured S,, whereas we find the converse in these
experiments.,

: *
Extra care was taken with the frozen mercury wires, bdoth to

prevent premature melting and to contain the metal vapor. A special,
electrode cell was constructed and cooled to the dry ice-acetone

| temperature., The wire was attached to the electrodes and the electrodes
were enclosed by a lucite cylinder of two inches in diameter, sealed.
with O rings. This cell was placed in the circuit and energized within
seconds after removal from the cold box, Eve; witr these precautions,
erratic electrical behavior was noted on a number of trials with the
‘frozen mercury wires. In at least one case the wire melted beforg the
current pulse was applied. In another, examination of unused portions of
the wire disclosed remnants of the glass capillary not completely dis-
solved away. Only two of the mercury tests were judged worthy of data

reduction,

*We are particularly indebted to A.V. Grosse, J. Cahill and

Mrs. L. Streng of the Research Institute of Temple University for
supplying the frozen mercury wires. The wires tested thus far were
made by freezing mercury in capillary tubee and dissolving the
capillary in acid. 5
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Experimental Wave'Speeds

We show in Fig. 4 the experimental results in deducing Cyo and q
from the data. The g values contain the computed heat content °f the
solid metal just before the test, as given by Aq; in Table II. Data
points connected by a given line were obtained from a single explosionf

We attempt to correlate the data from the different metals by

dividing c,

o by {ﬁTc}% and q by RTc'to give ¢,, and q; the resulting

plot is shown fn Fig, 5. Only the bounds of the data are indicated
for copper, lead and aluminum, The critical temperatures,.Tc, used
here are those estimated by A. V. Grosse and his associates.8’9’10
These and other constants are given in Teble III,

The experimental curves Ero for the different metals (excepting
mercury)-are seen to coincide only at the lowér values of i where the’
experimental wave speeds begiq to be detectable. This scaled.heat
content of wave onset is about 2,1 £ 0.2, Taking this fact as an
exper® eutal test of the critical temperatures used -for the scaling,
-then the values used for T, appear to be satisfactory within the + 10
percent data scatter.

At heat contents higher than that of wave onset, the scaled curves
for the different metals depart from each other. 1In particular, those
for the monétary metals, copper and silver, bend to the right and go to
scaled heat contents considerably higher than the other metals. We

note ¢, ., should be multiplied by the factor F(q/ﬁTc) defined in Eq. (23)

°
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Metal

Copper
Lead
Aluminum
Gold
Silver

Mercury

Table III.

Scaling Constants

First column gives estimated critical temperatures
(Refs. 8, 9, 10)

TC
o)

8500

5400
8650
9500

7460

1733

T(melt)

(°x)

1356
601
933

1336

1234
234
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(gg[mol}

63.5
207.2
27.0
197.2
107.9
200.6

A
775}
1.088
217
2.67
401
275
.0718




to obtain the scaled local velocity of the nonconducting wave front,

5,. If this factor were the same for the different metals, its use
would not improve the correlation of Er over that of the 5,0 quantities,
It is possible to compute a theoretical F(q/aTc) curve using the
modified van der Waals model described above, Aside from insignificant
differences caused by assuming different values of specific heat of the
liquid, Cv/ﬁ, this theoreti.al curve is identical for all the metals.
Moreover, the theoretical curve is not defined for q values larger
than that correspondihg tolthe critical point., We show this curve in
Fig. 6 for the example where C, (1liq) = (5/2)%, and C, (vap) = (3/2Xﬁ.
For this same example, w~ also show on Fig, 5 the scaled theoreticel
vaporizing sound speed, ¢, = cu/(ﬁTc)%. This curve terminates at
a > 5. We expect the speed of the wave front, c,, to be closely
related to the vaporizing sound speed, c,, algng the saturated liquid
line of the metal, Note that the experimental data for copper and
silver greatly exceed the limiting heat content of the theoretical
curve, The simplifying assumption of a linear extrapolation of pd
to the higher heat energies may be questionéble for these metals, %
None of the wave speed data shown here was obtained from
electrical data at times larger than that corresponding to a 10 percent
descent of the voltage past its peak value, Two reasons for choice of
- this limiting time are: (a) In those tests where initial capacitor

"6

voltages are "well matched to the wire, the Vvery rapid decrease of
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both voltage and current with time after the voltage peak makes the
resistance measurements inaccurate; and (b) In those instances where the
capacitor voltage is not "well matched," the measured resistance
reaches a maximum and then decreases, suggesting the occurrence of arc
breakdown. In a given test, when the curvature of the R, vs. U curve

changes from concave upward, no further data from that test are used.

DISCUSSION

The pfesent experiments are somewhat ambiguous on the question of
the vaporization wave hypothesis. If there were no agreement between
the experimental findings and the theoretical implications of the wave
speed and thermodynamic models, one could reject the hypothesis as in-
correct. On the other hand the agreement between experimental and
theoretical wave speeds is sufficiently good so that the wave speed
model continues to survive as a partial explahation of the expansion
process., |

The assumption of an incoming, cylindrical wave front sepa;ating

the conducting core from the nonconducting wet vepor enables one to

deduce front velocities which are comparable with the vaporizing sound
speed of the saturated liquid. No other signal speed, either suggested ,
or measured from thermodynamic data, is of the same order of magnitude

as the vaporizing sound speed.
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When different metals are considered, the use of a similarity law
suggested by the theory perﬁits correlation of the lower teﬁperature
wave speeds within a reasonably narrow band. This convenient scaling
which harmonizes the data for the various qetals, permits detailed com-
parisons which reveal significant differences between them. For example,
the effects of adjusting critical temperatures to improve the correlation
can eas'‘ly be seen,

The method of data anﬁlysis jidentifies the radius-time locus of
that front which by hypothesis abruptly separates the finite conductivity
of the intact liquid core from zero conductivity vapor. Such a locus
probably does not exist physically; yet it is in a sense analogous to
the boundary layer displacement thickness of a viscous fluid flow, and
pleys a similarly useful role in treating a complicated problem. From
physical grounds, one can maintain that the electrical conductivity, on
the average, varies as a continuous function of radius, decreasing from

that of"the liquid metal core at the radius of the leading edge of the

‘vaporizing expansion wave, to zero at some larger radius, If this

argument is admitted, then the average radiuis of the front which abruptly
separates finite from zero conductivity must be larger than that of the
leading edge of the vaporizing expansion wave. The reasoning proceeds

as follows: The transition region of conductivity fans out witﬁ time,

as all finite expansion waves do, and the abrupt change in conductivity
must fall relatively further behind the head of the expansion wave;

hence, the speed of this assumed front would be lower than that of the

ko .




vaporizing sound speed in the molten metal. The experimental values

for the noble metals appear to lie below the theoretical curve even after
estimated corrections for dilatation; i.e., multiplication by F(q), are
applied.

The good agreement of wave ;nset for the different metals at the
lower specific energies probably reflects both the fact that the assumed
linear behavior of pd with q cannct be greatly in error here, and also
the likelihood that the early trajectories of both the average conductiv-
ity wave front and the vaporization wave front are closely coincidental.
The divergence of the curves for the Qifferent metals at higher specific
energies, and the f;ct that finite wave front velorities for copper and
silver are obtained at energies.greatly in excess of those expected to
drive the metal past critical temperature, cannot be explained merely by
revising the linear extrapclation of pd.

The abundant data for coppere* exhibit large and increasing re-
sistancés at specific energies sufficiently high to heat the original
‘'mass of copper well beyond critical temperatures., This fact is inde-

pendent of any assumption about the behavior of the product pd for the

“see Fig. 4 of this reference where resistance data for several wires are
plotted versus specific energy obtained by dividimg -the total deposited
energy at a given time by the initial wire mass.
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saturated liquid. One is forced to conclude that the supercritical
copper must have a finite resistivit& both in the core and in the denser
parts of the expanding flow. Thus, it follows that the electrical re-
sistivity of the metal vapor is an important parameter in fixing the
position of the wave front which shuts off conduction., With this
added parameter whose effects cannot yet be accounted for,'one should
not expect per{gct correlation of the conduction-front, wave.spéeds for
the different metals when using a scaling law based on mechanical and
thermodynamical arguments alone. The present scaling law should apply
to the electrical wave fronts only whén the vaporization and electrical
conduction waves are nearly coincident,.as they are expected- to be at
wave onset.

The.physical properties of supercritical materials at high
densities are not well known,.but there are some theoretical reasons3’11
for thinking that electrical conductivity may persist or even he enhanced
in matérials at temperatures above critical and at nhormal liéuid

"densities. According to Rouse's calculations made with a modified Saha

equation, copper at.normal densities and temperatures near 1 eV -will have up

to 15 percent concentration of the first ion present on account of pressure
ionization. Presumably the free electrons will participate in conduction
end Ohmic heating processes as usual. Thus, argumenfs based on the pre-
sumed zero conductivity of condensing materials above the critical

temperature can be seriously in error, If this is the case, the
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indicated high temperatures may be real and the temperature multiplying
capabilities of the exploding wire experiment are realized in practice,
Since the argument of an earlier paragraph shows that the most conserva-
tive method of calculating specific energies for copper leads to the con-
clusion that supercritical temperatures (T, ~ 8500°% for Cu) are indeed
attained, the conclusion seems inescapable that some process capable of
increasing the number of current carriers, e.g., pressure ionization of
the neutral atoms, is an important factor at the higher temperatures and
densities encountereé in the wire cores.

A further anomaly in the thermal behavior of the metals studied
should be noted. The measured input heat energy to the wires always
appears to be larger than expected. For example, the experimental heat
content of the liquid at melt is always larger than that computed by
using tabulated specific heats and heats of fusion., For the listed
metals in Table II, these excesses are respectively, 55, 20, 30, 80,

100 and 90 percent . The point corresponding to the liquid at melt is

.taken where the §, vs. U curves first show an abrupt decrease of slope

to the linear portion; this point also corresponds to the first abrupt
slope decrease easily visible on the voltage-time curve., The slope of ’,

the linear portion of the §,,U curve can be related to tabulated values

of the temperature coefficient of liquid resistivity. Even after ac-
counting Tor the expected volume change, and uSing the best estimated
values for liquid specific heat, the experimental slope is smaller.than

expected, Conversely, for a given liquid resistivity, the corresponding
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heat content from the present data is much higher than that obtained
using handbook values for the temperature coefficient of liquid re-
sistivity.

The presence of the striatigns at an early stage, as discovered by
Fansler and Shear,h at first appears to be a strong argument ageainst
the existence of a vaporiz;tion wave phenomenon, The striations do in

fact rule out the possibility that the vaporization wave proceeds uni-

formly into the material on a front with cylindrical symmetry ebout the

wire axis., Rather one must argue that as vaporization begins at
temperatures far below critical and with specific energies too small to
produce complete vaporization, the striations may be the physical
evidence of the random, statistical way in which vaporization takes
place at favored surface sites, during passage of the wave. The shape
and number of striations may be indications of the manner in which small
regions are cooled by local, thermal transport processes to support the

vaporization of adjacent regions. If so, this new hypothesis would

‘force a reconsideration of our primitive ideas of the symmetry of the

process of vaporization, but not necessarily a revision of its funda-
metal basis., Clearly, such a view of the striation problem provides an
alternative, or a supplement, to thgories based on assumption of the
prior existence of elastic or plastic waves, buckling phenomena and the

like.
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SUMMARY

The energy dependent exfansioa of a cylinder of superheated liquid
is offered as an idealizeq, physical model of flow phenomena occurring
in exploding wire events. Magnified streak shadowgraphs of Cu wires
show complex radial mot ions accoﬁpanying two major stages, vizs (1) a
linear boundary expansion during which a vapor veil proceeds ahead of a
denser. expanding core and, (2) a parabolic boundary expansion characterized
by violent acceleration of the inner core as a result of sudden energy
addition, Correlated electrical data show that the main deposit of
electrical energy occurs near the end of the linear expansion during
which the vaporization wave is presumed to initiate the expansion,

Vaporization wave speeds héve been obtained from experiments on
wires of Al, Pb, Ag, Cu and Au and from the first, preliminary experi-
ments on solid Hg wires. The wave-speed curves for these metals show
similar behavior although the initial specific energles differ by a
factor ﬁp to 102, A thermodynamic model of the expansion is obtained by
-assuming a modified van der Waals equation of state together with a
state path lying on the liquidus line in thé p - v plane. Values of
the adiabatic sound speed calculated from the thermodynamic model and
representing expansions from the liquidus line into the two-phase
region, agree well with the initial portions of the experimentai wave
speed curves, When speed is scaled by (RTC)% and specific energy by
RT., a plot of corresponding states is obtained wherein for all the

metals the experimental data initially overlap the thecretical curve but

k5




deviate in different ways at larger values of the sceled variables.
Discussion of these deviations shows that to some extent they can

be attributed to the approximations inherent in the fluid dynamic and

thermodynamic models, and to assumptions made necessary by the lack of

electrical and thermal date for the elements.
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