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VAPORIZATION WAVES IN METAIS 

ABSTRACT 

The vaporization wave hypothesis Is discussed and Its merits and 

defects are examined. The vaporizing model is visualized on thermodynamic 

grounds as carrying the liquid metal through a continuous succession of 

states either on or near the liquidus line in the two-phase region. On 

this line the adiabatic sound speed for wet vapor will limit the rate of 

propagation of the vaporization front into the liquid. Experimental data 

for wire explosions of Al, Ag, Cu, Au, Pb and Hg (frozen) are analyzed 

for wave speeds. While the influence of thermal expansion of the liquid 

can be accounted for theoretically, Insufficient thermal data are available 

for the metals to permit correction of the wave speeds for this effect. 

The experimentally derived wave speeds are compared with theoretical 

values of the adiabatic sound speed in the wet vapor obtained from a 

modified, van der Waals equation of state. At low velocities the agree- 

ment is satisfactory but higher values deviate considerably from theory. 



Possible causes of the deviations are discussed.    These include the crudity 

of the fluid dynamic model, neglect of thermal expansion, lack of informa- 

tion about the relationship between density and electrical conductivity 

and the approximation imposed by the van der Waals equation. 
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INTRODUCTION 

We discuss here some recent experiments to examine further the 

hypothesis that vaporization waves are responsible for the anomalous 

resistance rise in exploding wires. While vaporization waves may be 

expected in all high temperature matter on general thermodynamic 

1 5* 
grounds, *  the first instance in which their existence could be 

2 
recognized appears to be the exploding wire phenomenon.   If the 

vaporization of a superheated metal cylinder is limited by the speed 

with which the head of the vaporization wave travels from periphery to' 

the axis, then an upper bound is set on the rate at which the conducting 

cross section diminishes. Resistance increases above the melting 

point, larger than the usual linear rise with temperature, can be 

related to the decreasing cross section of the conductor; thus, wave 

speeds can be obtained from the electrical pulse data. In our earlier 

2 
paper  we reported wave speeds for Cu wires. Here we present data for 

Cu, Pb, Al, Au, Ag and Hg (frozen) wires and make comparison with pre- 

dictions from theory. 

From a critic's point of view a number of limitations on the appli- 

cability of the vaporization wave hypothesis can be stated. 

The success of the experimental method of analysis depends on the 

assumption of a linear relation between resistivity and specific energy 

applied above the melting point up through the two-phase region. This 

is, at best, a fairly crude approximation but cannot be replaced until 

better Information is available. Certain metals such as Fe, Ni and W 

» 
Supereoript nvmbera denote refeven*«* which may be found on page 47, 
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display nonlinear resistivity decreases above the melting point; and, 

therefore, cannot be treated by the present method•    In the case of W, 

at least, ve know now that these nonlinear effects are associated with 

conduction and arc phenomena in the peripheral vapor emitted by the 

wire during expansion.    There is reason to hope that eventually wave 

phenomena may be studied in W wires Immersed in a dielectric liquid such 

as silicons vacuum pump oil.    Needless to say, the effects of a dense 

ambient medium on the wave propagation and the electrical pulse shape 

are not well understood, although some preliminary unpublished experi- 

ments show that voltage breakdown and peripheral arc formation can be 

slightly delayed by ambient liquids of high breakdown strength. 

At the relatively high densities of the exploding wire experiment, 

collision frequencies are high (~10 '/sec), the liquid and vapor should 

obey continuum fluid mechanics., and local thermodynamlc equilibrium may 

be assumed from point to point in the medium. 

To discuss the fluid dynamical behavior of a superheated metal, 

one desires to specify a homogeneous, high temperature medium at uniform 

pressure as the initial state.    For the fast explosions in which we are 

interested a plausible argument can be given that nearly uniform condi- 

tions   exist, at least for the early phases of the explosion.   This 

means assuming that transient skin effect has damped out, that kinetic 

pressures, rapidly exceed magnetic pinch pressures and that heat losses 

via conduction, convection and radiation can be neglected on the time 

8 



scale of the experiment.    Estimates based on simplified calculations of 

the expected effects show that these conditions may be satisfied for 

events occurring within Intervals of a few (isec. 

Dynamical effects themselves may be expected to lead to non- 

uniformities of pressure, temperature and density throughout the medium 

as the flow develops.    Figs. 1 and la show that density variations occur 

rather early in the expansion process.    What, then, is the initial state 

and how uniform is the expansion which follows? 

X-ray and optical shadowgraphs have already shown that the later ' 

stages of the expansion proceed with large density differences between 

adjacent portions of the wire.    Apparently vapor and dense strlations 

exist side by side during appreciable Intervals of the expansion 

process. ' Formerly we supposed that these nonüniform densities occurred 

late in the expansion regime, after the vaporization wave had traversed 

the wire radius.    Fansler and Shear     demonstrate by means of x-ray 

shadowgraphs, correlated in time with ?lectrlcal pulse data, that 

strlations appear at a much earlier stage'than previously thought, and 

must be regarded as practically concurrent with more elementary expan- 

sion processes such as volume expansion of the liquid ir the two-phase 

region and expansion through the head of the .vaporization wave. 

Light scattering studies of the metal vapor peripheral to the wire, 

studies made at this laboratory and to appear s'oon in report form, 

indicate appreciable particle-size changes during i le expansion process. 

' 
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Figure 1.   Correlated electrical and streak camera data for 
10 mil Cu wire.    (V = 3 kV. C « 32 uF) 

■ 

Figure la. Enlargement of expansion region of Figure 1. Note that the 
vapor veil Is penetrated by the backlighting. Luminosity from 

the Interior Is seen just after voltage peak 

10 
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In the light of these experimental indications we recognize that the 

ideal of a homogeneous medium expanding from uniform Initial conditions 

continues to be elusive. 

The presence of visible density striations in the early expansion 

stages vould militate against the assumption of a uniform vaporization 

wave diminishing the conducting cross section at a definite, though 

variable speed.   Rather one may ask what conduction processes could 

simultaneously involve the striations and the nearby less dense regions. 

One may also ask whether the striations arise from nonuniformities of 

heating or from initial conditions in the crystalline solid wire, or 

whether striations form because of local conaensation from a more 

uniform, vaporous state attained soon after melt and prior to the 

violent expansion. 

No matter what the answers to these questions, the viability of 

the vaporization wave hypothesis, at least in its application to ex- 

ploding wires, is clearly still open to question; nevertheless, one 

cannot say that it is decisively disproven by experiment. 

The evidence in its favor is compelling.    Our results show that 

experimentally derived wave speeds correlate with those calculated 

from a van der Waals equation of state for metals.    Both the onset 

energy and the form of the wave speed function are correctly repre- 

sented.   .In terms of scaling laws based on critical temperatures, the 

wave speed curves for several metals cluster about the single the- 

oretical curve.    These results provide an independent check of recent 

11 
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methods of estimating critical temperatures hitherto inaccessible to 

measurement.   One cannot readily reject a theoretical approach with 

demonstrable virtues such as these.   One hopes that by refinement its 

deficiencies can be eliminated; however, the loss of its initial fine 

simplicity is to be expected in the ensuing complications. 

THERKODmMICAL MODEL 

In this section, a simplified fluid model will be developed to 

represent the transient behavior of a material heated rapidly from the 

solid state up through its critical temperature.    Foy typical metals, 

the heat energy for melting is small compared to that required to 

vaporize the system; therefore, .we concentrate on the mechanism of the 

liquid-vapor transition.    For such a two-phase condensing fluid, there 

are a variety of state equations.    The most famous is van der Waals 

equation, which typifies the essential features of a condensing fluid, 

and which will herein be used in a slightly modified form. 

Consider unit mass of material, and let P, V, and T be pressure, 

specific-volume and temperature, respectively.    In the single phase 

(either liquid or vapor) the pressure is assumed given by the van der 

Waals function, PH, 

PH(V,T) « RT/(V-b)  - a/V3   , (1) 

with inequalities T > 0,    V 25 b,    where a and b eure substantive 

12 



constants for each material and R is the gas constant.    For 

subcritlcal temperatures there is a two-phase region where both the 

liquid and vapor phases coexist at the same pressure and temperature; 

in coexistence, the pressure is not that given by Eq.  (l) above; 

instead it is the vapor pressure function PA(T).    For the van der 

Waals system, this latter function is not explicitly represented by an 

analytic function and must be found by computation.    To compute PA (T) 

as well as the VgCO and Vl{T) loci of the saturated liquid and vapor 

5 
lines, a generalization of the Maxwell criterion      is used, so that at 

fixed T < Tc  (subscript c always denotes critical conditions), 

Vi(T) 

J     p^dv = p.Cr) {V^T) - VgCr)} + 0 (T) (2) 
ya(T) 

where 

0(T) * J-{c¥(T)(vapor)-Cv(T)(liq)} dT + T J{cv (T)(vapor)-C¥ (rKliq)}— .        (3) 

Here Cv   is the specific heat at constant volume of the single phases. 

For either phase, CV(T)  is a function of temperature only, and is 

chosen to be consistent with the van der Waals system.    If C^ (T)  (vapor) 

is identical with CV(T)  (liq) then ^(T)  is zero and (2) reduces to the 

visual "equal area" rule first given by Maxwell.    We note that the 

13 
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equal-area rule is restrictive in demanding identical specific heat 

functions for the liquid and vapor phases. This restriction is lifted 

when the generalized rule above is used, but its use requires some 

information about specific heats. The constants a and b for the 

material are conveniently replaced in terms of the critical values of 

the system by the well-known relations: 

& - 3 PCVC
8 ; b - Vc/3 ; R Tc » (8/3) PCVC . 00 

Knowledge of the critical constants as well as of the specific heats 

completes the description of the equilibrium state of the system. One 

can now find all the pertinent thermodynamlcal quantities, including 

those of the coexistence state. These will be explicitly exhibited as 

needed. 

We use this model to analyze the behavior of materials heated 

from coinparatively low temperatures. In particular, we consider a 

system in the molten state just above .the melting temperature, and 

allow it to be heated to critical conditions. The usual adiabatlc 

speed of small amplitude waves (sound speed) in the system is given by 

ca = (dp/dp) . which becomes, with p = l/V , 

^"■^-    -''{Mil)'-®} • -' adiabatlc    v   y     T 

Ik 



For the condensing fluid, we note that the pressure and specific heat 

functions are different for the single phase regime and for the two- 

phase coexistence state. In the single phase regime, we use the van 

der Waals functions, whereas in coexistence we use the vapor pressure 

function, PA(T), and the specific heat CvA(V,T) of coexistence. Since 

PA is independent of volume, the wave speed in coexistence reduces to 

cN, where 

=.-v(T/c,.)i(^) . (6) 

At the saturated liquid line, there are two very different values of 

wave speed possible; which one applies depends on whether the dis- 

turbing wave tends to change the system to the single phase (all 

liquid) state, or to the two-phase state. 

The specific heat CVA(V,T) for the coexistence state must also be 

found numerically. This is done straightforwardly by finding the 

internal energy, E4, of coexistence, and using Cw. = ( *.) . The v       NdT ; 

internal energy of coexistence is found by using EA and ?K for E .and P 

in the general thermodynamical relation 

(||)=T-(i)-p ™ 

OP. 
and noting from Eq.   (2) that M(T) » T ^ - PA  is independent of V j 
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then direct integration yields 

EA(V,T) -EW(V3,T) +M(T) {v - V,^)} , (8) 

where E^ is the internal energy of the van der Waals function. One 

then finds 

piEH(V3,T)-|   dM(T). r     t ^ ,     *VS (T) 
CVA(V,T) « l-^ -j   + -5T- {V - V3(T)} - M(T) -W—    > 

noting that 

For example, at the saturated liquid line, the-specific heat of co- 

existence simplifies to 

. The last term on the right is the constant-volume specific heat of the 

liquid; -^f- ■ a/Vg , as may be seen by using EH and PM in Eq. (?), 
0*3 

With PA(T) and VgCT) found from Eqns. (2) and *(3) we may now evaluate 

the two possible wave speeds on V3(T). These are exhibited in non- 

dimensional form in Fig. 2 as functions of T/Tc for the example 

where C¥(liq) = Cv(vap) = (3/2) R . 

16 

(9) 

rdEw(V3,T)n  &EH dV^ ^^ ( 

L^^r—J Wl    dT.    &T * Kl"} 

=,.(V..T).^-««}^^. (U) 
3 



•*.^.■;■... w.-...-  WMOM 

54 

31 

2 + 

I 

SOUND   SPEEDS 
AT   LIQUIDUS 

LINE 
(van derWaals) 

Sound 
Speed, 

C/ (Pjc)i 

Coexistence 
(Vaporization Wave) 

T/Tc 

Flaure 2.   Double valued sound speeds on Hquldus. yen der Waals-Maxwll 
fluid. [Cudlq) • Cv(y«p) ■ (3/2)11] 
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The wave speed In the liquid is seen from Fig. 2 to be very much 

larger than the vaporizing wave speed of the two-phase system.   The 

vaporizing wave speed Is very small until temperatures exceeding one- 

half critical are attained. 

It is characteristic of the van der Waals system (and Indeed of 

most physical examples) that both the Isotherms and adlabatlcs in the 

all-liquid phase are very steep compared to those of either the co- 

existence or all-vapor states, except very near the critical point. 

The magnitudes of these adlabatlc slopes are directly proportional to 

the squared sound speed, so one expects the liquid sound speed to be 

usually much higher than the vapor or vaporizing wave speeds. 

This fact suggests a simplification of our model for the system 

undergoing transient heating from an initially molten state at low 

temperatures.    We assume that the heating moves the thermodynamic state 

along the saturated liquid line; any tendency to drive the system into 

the all-liquid state would be rapidly counteracted by liquid thermal 

expansion, which occurs at a relatively fast rate corresponding to 

liquid sound speed.   This liquid thermal expansion lowers the pressure 

to the vapor pressure, PA(T), where any further expansion must be ac- 

companied by partial vaporization.   This latter expansion is governed 

by the relatively slow vaporizing wave speed of the coexistence state. 

We note that due to the steepness of the all-liquid adiabatics, only a 

small volume increase is needed to maintain the system at the saturated 

liquid state. 

18 



We therefore assume the fluid state of the exploding wire in the 

pre-burst stage can be approximated by a molten cylinder from whose 

surface partial vaporization is occurring. The speed of the leading 

edge of this partially vaporizing wave is assumed to move with the 

vaporizing sound speed of the saturated liquid at temperature T, and 

is given by Eq. (6). 

It is of interest to correlate the vaporizing wave speed with the 

added heat content, q, per unit mass, rather than temperature, because 

the additional heat energy can usually be found operationally by 

energy balance, whereas temperature is a more elusive quantity. In 

particular, for the nuÄified van der Waals system employed here, one 

can compute the equilibrium heat content per unit mass along the 

saturated liquid line by using Eq. (2), and the assumed known critical 

constants and liquid specific heat. One integrates 

dq = dE + WV (12) 

along the saturated liquid line, VgCl), from T,, to T, where T,,  is 

melting temperature, using computed values of EH(V3,T) and PA(T) from 

Eqns.  (2) and (3).    At any T between T,, and Tc, a quantity Aq(T) is 

obtained, thus giving a correspondence between Aq(T) and T.    For a 

given material, one then assumes the heat content along the saturated 

liquid line to be 

19 
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q(T) -q(Tj +Aq(T), (13) 

where <l(TM) is the assumed known heat content of the liquid at melt, 

including the latent heat of melting.    It is apparent that q(T)/$rc 

depends on the specific heats of the liquid and vapor phases through 

Eqns.  (l) and (2), as well as on q(TM)/RTc.   This latter quantity is 

found to have nearly the constant value of .60 for a variety of 

metals, r> plots of cw/(RTc)* against q/(fiTc), where cN  is the 

vaporizing wave speed on VgCT), usually depend only on the single» 

phase specific heats as parameters.    We exhibit such plots in Fig. 3 

for several examples of specific heats. 

EXIERXMENTAL 

We outline here the procedure for calculating vaporization wave 

speeds from the electrical ^ata.    This method' differs somewhat from 

that given previously,^    in that a means of accounting for thermal 

expansion of the liquid metal is incorporated in the present scheme. 

Data Reduction for Wave Speed 

The voltage across the wire and the current through it are 

obtained from oscilloscope traces as previously described.       After 

accounting for the inductive voltage on the voltage probe, one then 

has the resistive voltage, V,,,-as a function of time.    Typical V,, (t) 

and l(t) measurements are seen in Fig. 1.   We assume the rapid Increase 

20 
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CW/(KTC) 

.3 

.2 - Vaporizing 
Sound Speeds 

Cv(vap)/R'3/2 
.1 - 
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Figure 3. Vaporizing sound speed on llquldus. A modified van der Waals 
equation has been used with liquid specific heat as a parameter. 

Curves terminate at the heat energy of the critical point 
21 
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of voltage to its peak is due to an Increasing resistance caused 

primarily by a reduction of the conducting cross section of the molten 

wire; this reduced cross section is attributed to the partial vapori- 

sat' "* proceeding inward from the wire surface. 

Pre-Vaporisatico Haatim of the Liquid Metal 

As heat is added to the molten metal a slight thermal expansion 

will occur. Since the length-to-radius ratio of the wire is large, 

expansion waves traveling at the local speed of sound will not reach 

the wire ends during the short time interval of the explosion. We 

therefore expect the thermal expansion to be effective in increasing 

the radial dimension only, and account for it by assuming the entire 

mass is contained within a cylinder of length of that of the original 

wire, |, and average radius r1(t). It is clear that rl{t)  must increase 

slightly with time, according to the heat addition and consequent 

average density decrease of the liquid. 

In order to describe the assumed model of the wire explosion, we 

wish to map certain boundary, wave path, and. particle trajectories in an 

r,t plane. If n^ represents the mass of the solid wire and m th«? mass 

of the wire within radius r before vaporization, we can write 

m ■ TTi^idCt) where d(t) is the uniform density of the metal, a density 

which varies only with. time. For m constant, it follows that r E r(m,t) 

describes the variation with time, due to thermal expansion, of the 

representative mass particle at the radius which encloses mass m. In 

22 



this mapping m is a parameter and t the variable of interest. 

Accordingly, rx(t) - r(ms> t) gives the curve in the r,t  plane of the 

expanding outer boundary of the liquid wire. Because of the assumption 

of uniform density all other particle trajectories corresponding to 

m s: m8 are similar curves. 

The trajectory of the vaporization wave, which we denote by 

ra(t), cuts across the particle trajectories in passing from larger to 

smaller radii. With the above definitions we could write 

r8 (t) »s r[n^(t),t] where n^ (t) represents the variable mass ahead of 

the vaporization wave at time t. Here the parameter m changes from 

point to point of the ra curve; however, ir^ is not known a priori but 

must be determined from experiment. 

Vaporization Model 

With increased heat content of the liquid, the threshold of 

vaporization will be exceeded and a wave will start. Vfe assume .that 

the cylindrical interface of average radius ra (t) separates the 

intact molten core-from the outer, nonconducting, partially vaporized 

mixture. The local velocity of this interface in a reference frame 

fixed with a given set of fluid particles is denoted by cT. In a 

laboratory fixed reference frame the interface velocity is 

dra (t) 
.'   The velocity of the liquid particles at r » ra(t)    (which 

dt 

is the same as the velocity of the reference frame 'attached to these 

23 
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particles), is -[|4 . 

Therefore, 

-{*&\ CT I   ^t      j dt 

dra (t) 

If no vaporization occurred, the entire- liquid mass, nij, of. the 

wire would be contained within the radius rx(t). Assuming-the density 

of the liquid core to be constant with radius, the mass m (< ms) 

contained within r(t), [k ra(t) « ^(t)], is'related to the total mass 

by r(t) ■ (m/nij)* ^(t). Differentiating this expression, and noting 

that both m and m, are time-independent, we find 
3 

(iM 

dr(t)      / /   \i tei(t) (,*) 

The mass, i^(t), of material contained within ra (t) does change with 
• i 

time, since ra (t) «(n^/ms)
? ^(t).    With the foregoing relations 

CT -"xMhfa^j • (16) 

The electrical resistance, 1^ , of the conducting cylinder of 

radius ra (t) is 

2k 
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^-ir^'" (17) 

where subscript 0 denotes some suitably chosen reference conditions 

which identify the beginning of the wave, and p is the electrical 

resistivity. Furthermore, if d(t) be the liquid density of the core, 

we have 

^/^[iiilj8 äM . as) 

The rate at which total heat, Q, is added to the core is 

I* = l(t) V(1(t) = l(t) I^(t), a measured quantity. Since this heat 

input is assumed to be deposited uniformly in the conducting cylinder 

by uniform current distribution we can write jf B "^ jf » where q is 

the heat content per unit mass. With the foregoing relations we then 

have 

Using the experimental values of VR (t) and l(t.), we can numerically 

integrate the left-hand side from the reference conditions R(Q0) to 
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the values for Q(t) at any chosen time within our data record. A 

corresponding integration of the right-hand side, assuming we know the 

law relating the variation of resistivity and density with heat content, 

would then relate the measured heat input to the resulting heat content 

per unit mass of the liquid core. 

Unfortunately, p(q) has not been measured at sufficiently high 

temperatures for most metals. A further complication is that the model 

assumed thus far is an average one, in the sense that both p and d apply 

here to the assumed uniform cylinder employed to represent the actual 

conducting path. In order to proceed, we use an extrapolation of the 

values of pd measured at the lower q values before the vaporization 

becomes important. For those q values between melt, q,,, and the onset 

of vaporization, q(vap), we note that n^ » m8 and ra (t) « rl(t). 

Using the latter relations in Eqns. (l?) and (l8) gives 

I^/R0 B £iH rili for q between q^ and q(vap). Plots of R,/R0 VS. q 
Po  d0 

•in this energy range indicate a linear relation between the product 

pd and q. We assume that this linear relation continues to hold for 

q > q(vap); this assumption enables us to integrate the right-hand side 

of Eq. (19) with respect to q(t). The resulting integral relation, 

evaluated numerically, correlates the measured input heat energy, 

Q(t) - Q0 , with the heat content per unitmass, q(t), of the liquid 

core. 

26 
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Using Eqns. (l?) and (l8) we then have 

i^/m, » (p(t)/p0) (d(t)/d0) (R0/^(t)) (20) 

for the range q(t) > q(vap). Since the right-hand side is now known 

as a function of time, numerical differentiation with respect to t 

can be done for use in Eq. (l6). If one moreover knows how r^qCt)] 

varies with q(t), then cT is obtained as a function of q. By 

hypothesis, r1(t)/r0 is fd0/d(t)}
2, so one needs d[q(t)] as a function 

of q. Since the density, d(q), is expected to decrease with q, it 

follows that r1 (q) should increase with q. If one uses the modified 

van der Waals theory described previously, assumes the state of the 

liquid core to be that of the saturated liquid, and takes the reference 

conditions to correspond to those of t.ie liquid at melt, one finds 

dCq)/^ decreases slowly from the value unity until q values near 

critical are approached. 

If we define 

c^.-r.Ü^ (21) 

where rs is the original radius of the solid wire, we have from Eq. (l6) 

cT(q) »F(q) cT0(q) , (22) 

27 
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where 

^ (q)^ 'U ■ £) (^) • (23) 

The quantity cT0(q) is obtained directly from the electrical data 

using the model Just described. On the other hand, F(q) depends on 

the thermal expansion of the liquid, and cannot be obtained from our 

present data. Estimates of F(q) indicate it may be replaced by a 

constant a little larger than unity for temperatures less than .9 

critical. F(q) will be described more completely below. For the 

present, we show experimental values of cT0 versus q. 

Experimental Conditions 

Using the above procedure, we have obtained experimental 

values of cT0 versus q from tests on copper, lead, aluminum, gold 

silver, and mercury wires. The copper data have been reported 

o 
previously,      although not in the scaled form given here.    We first 

mention briefly the experimental conditions and give tables of 

pertinent quantities. 

A capacitor of 31.5 pF was used for all tests except those on 

copper, and the circuit ringing frequency was U3 kc/sec.    Voltage 

and current traces were photographed on a-type 555» double-beam 

Tektronix oscilloscope.      From measurements of these traces we 
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obtain VB(t) and l(t); nuraberical integration gives AQ(t) ■ J V^Idr, 

and we have I^(t) «• VB/l. We list in Table I the conditions for all 

wires except copper; copper test conditions are given in Ref. 2. The 

explosions occurred in air at atmospheric pressure, and the wires were 

maintained at room temperature before current switch-on, except for 

the frozen mercury wires; they were kept at dry ice-acetone temperatures. 

From the measurements, the scaled functions S8 (t) « 1^ TT T*/l   and 

U(t) ■ AQCO/nij were plotted as ordinate and abscissa, respectively, for 

each metal; here rs and m, are the initial radius and mass of the wires. 

For a given metal we find that the S^ vs. U plots for wires of different 

radii and initial capacitor voltage coincide with each other until a 

fixed value of U is exceeded. For U > Uv, the plots diverge from each 

2* other, according to initial wire diameter and capacitor voltage. 

For U between a typical low value, UM , and the higher value U¥, the 

experimental functions Sa vs. U can be approxlrrated by a straight line 

segment for each metal. On this segment, Öa » S0fl + ß(U - U0)}; then 

the ratio Sa/S0 » I^/R,, as defined by Eq. (l?), and we take our 

reference conditions (S0 , V0) at the largest value of U ■ Uv where the 

experimental curves depart significantly from linearity. Table II gives 

the experimental quantities typifying these straight line segments for 

the different metals. The last column, Aqx, is the computed heat content 

per unit mass of metal prior to electrical heat addition. 

* The notation of Ref. 2 is slightly different from that used here.    A 
factor IT looe inadvertently omitted from the ordinate of Fig. 4 
reproduced there. 
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Table I.    Test Conditions 

Initial 

Metal 

Wiri"« 
(mils) 

limeter 
(crn^ 

Length 
(cm)_ 

Capacitor Voltage 
(kV) 

Lead 5.1 .0130 1.1 1.2 

Lead 10 .0251» 1.0 1.0 

Lead 10 .025U 1.0 2.0 

Iicad 10 .0254 1.0 3.0 

Aluminum 5.6 .0lU2 1.1 2.0 

Aluminum 10 .025^ 1.1 3.0 

Gold 10 .025^ 2.0 3.0 

Silver 10 .025!+ 2.0 3.0 

Mercury 20 .0508 2.0 2.5 

Mercury 20 .0508 2.0 3.0 

No. of 
Tests 

1 

1 

1 

1 

1 

2 

2 

1 

1 

1 
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Table II.    Resistive and Heat Input Measurements 

First column gives tabulated values of liquid resistivity at - 
melt (Ref. 7).    Last column gives heat content, prior to test, 

estimated from tabulated specific heats 

Metal 
PM 

(uQ-cm) (uQ-cm) 

UM 
^j (linear) 

Axn-cnA 
VkJ/W (fin-cm) 

u0 Aqj 

VRm/ 

Copper 21.1 29 1.10 8.U0 1*0.5 2.U .083 

Lead 95 102 .085 Ikk 1U6 .39 .035 

Aluminum 2k.2 26 l.U 5.1 US 5.7 .20 

Gold 31.2 35 .35 66 60 .72 .031 

Silver 17.2 '19 .75 22.6 28 1.1U .063 

Mercury 91 108 .0J+5 700 125 .07 .030 
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The value S„ ■ Sg (UM) should be comparable with the resistivity 

of the liquid metal at melt,  p^,    Rreviously tabulated values of p,, 
7 

are given in the first column.       Assuming the wire length constant, 

one expects p^, ■ SM(ds/clM) where d$/dM  is the ratio of solid density 

to ^he liquid density at melt, a factor about 7 to 12 percent greater 

than unity for these metals.    Thus, one expects p,,  several per cent 

larger than our measured SM, whereas we find the converse in these 

experiments. 

Extra care was taken with the frozen mercury wires,   both to 

prevent premature melting and to contain the metal vapor.   A special, 

electrode cell was constructed and cooled to the dry ice-acetone 

temperature.    The wire was attached to the electrodes and the electrodes 

were enclosed by a lucite cylinder of two inches in diameter, sealed, 

with 0 rings.    This cell was placed in the circuit and energized within 

seconds after removal from the cold box.    Even with these precautions, 

erratic electrical behavior was noted on a number of trials with the 

frozen mercury wires.    In at least one case the wire melted before the 

current pulse was applied.  In another, examination of unused portions of 

the wire disclosed remnants of the glass capillary not completely dis- 

solved away.    Only two of the mercury tests were judged worthy of data 

reduct ion. 

*V« are partioularly indebted to A.V, Groeae, J.  Cdhill and 
Mrs. L. Streng of the Reeearoh Institute of Temple University for 
supplying the frozen meraupy wires.    The wives tested thus far were 
made by freezing mercury in oapillary tubes and dissolving the 
oapillary in aoid. 
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Experimental Wave Speeds 

We show in Fig.  it the experimental results in deducing cT0 and q 

from the data.    The q values contain the computed heat content "Jf the 

solid metal just before the test, as given by Aqi  in Table II.    Data 

points connected by a given line were obtained from a single explosion. 

We attempt to correlate the data from the different metals by 

dividing cT0 by {RTC}* and q by RTcto give cT0 and qj  the resulting 
f 

plot is shown in Fig. 5. Only the bounds of the data are indicated 

for copper, lead and aluminum. The critical temperatures, Tc, used 

here are those estimated by A. V. Grosse and his associates.  ' 

These and other constants are given in Table III. 

The experimental curves cT0 for the different metals (excepting 

mercury) -are seen to coincide only at the lowdr values of q where the" 

experimental wave speeds begin to be detectable. This scaled heat 

content of wave onset is about 2.1 ± 0.2. Taking this fact as an 

exper * e ital test of the critical temperatures used -for the scaling, 

■ then the values used for Tc appear to be satisfactory within the ± 10 

percent data scatter. 

At heat contents higher than that of wave onset, the scaled curves 

for the different metals depart from each other. In particular, those 

for the monetary metals, copper and silver, bend to the right and go to 

scaled heat contents considerably higher than the other metals. We 

note cT0 should be multiplied by the factor F(q/1*TC) defined in Eq. (23) 
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Table III.    Scaling Constants 

First column gives estimated critical temperatures 
(Refs. 8, 9, 10) 

Metal I2K1 
T(inelt) 

(°K) 
M 

(pn/mol) 
RT 

(kJ/ffn) (m/sec! 

Copper 8500 1356 63.5 1.088 10U3 

Lead 5U00 601 207.2 .217 U65 

Aluminum 8650 933 27.0 2.67 1633 

Gold 9500 1336 197.2 .U01 630 

Silver 7^60 123*+ 107.9 .575 758 

Mercury 1733 23U 200.6 .0718 268 
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f 

to obtain the scaled local velocity of the nonconducting wave front, 

cT. If this factor were the same for the different metals, its use 

would not improve the correlation of cT over that of the cT0 quantities. 

It is possible to compute a theoretical F(q/RTC) curve using the 

modified van der Waals model described above. Aside from insignificant 

differences caused by assuming different values of specific heat of the 

liquid, Cv/R, this theoretical curve is identical for all the metals. 

Moreover, the theoretical curve is not defined for q values larger 

than that corresponding to the critical point. We show this curve in 

Fig. 6 for the example where Cv(liq) *  (5/2)^, and Cv(vap) = (3/2)^. 

For this same example, VJ also show on Fig. 5 the scaled theoretical 

A  -1- 
vaporizing sound speed, cw = cw/(RTc)

2. This curve terminates at 

q *• 5« We expect the speed of the wave front, cT , to be closely 

related to the vaporizing sound speed, cw, along the saturated liquid 

line of the metal. Note that the experimental data for copper and 

silver greatly exceed the limiting heat content of the theoretical 

curve. The simplifying assumption of a linear extrapolation of pd 

to the higher heat energies may be questionable for these metals. 

None of the wave speed data shown here was obtained from 

electrical data at times larger than that corresponding to a 10 percent 

descent of the voltage past its peak value. Two reasons for choice of 

this limiting time are: (a) In those tests where initial capacitor 

voltages are "well matched"  to the wire, the very rapid decrease of 
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both voltage and current with time after the voltage peak makes the 

resistance measurements inaccurate; and (b) In those instances where the 

capacitor voltage is not "well matched," the measured resistance 

reaches a maximum and then decreases, suggesting the occurrence of arc 

breakdown. In a given test, when the curvature of the 1^ vs. U curve 

changes from concave upward, no further data from that test are used. 

DISCUSSION 

The present experiments are somewhat ambiguous on the question of 

the vaporization wave hypothesis. If there were no agreement between 

the experimental findings and the theoretical implications of the wave 

speed and therraodynamic models, one could reject the hypothesis as in- 

correct. On the other hand the agreement between experimental and 

theoretical wave speeds is sufficiently good so that the wave speed 

model continues to survive as a partial explanation of the expansion 

process. 

The assumption of an incoming, cylindrical wave front separating 

the conducting core from the nonconducting wet vapor enables one to 

deduce front velocities which are comparable with the vaporizing sound 

speed of the saturated liquid. No other signal speed, either suggested 

or measured from thermodynamic data, is of the same order of magnitude 

as the vaporizing sound speed. 
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When different metals are considered, the use of a similarity law 

suggested by the theory permits correlation of the lower temperature 

wave speeds within a reasonably narrow band.    This convenient scaling 

which harmonizes the data for the various metals, permits detailed com- 

parisons which reveal significant differences between them.    For example, 

the effects of adjusting critical temperatures to improve the correlation 

can easily be seen. 

The method of data analysis  identifies the radius-time locus of 

that front which by hypothesis abruptly separates the finite conductivity 

of the intact liquid core from zero conductivity vapor.    Such a locus 

probably does not exist physically; yet it  is in a sense analogous to 

the boundary layer displacement thickness of a viscous fluid flow, and 

plays a similarly useful role in treating a complicated problem.    From 

physical grounds,  one can maintain that the electrical conductivity,  on 

the average, varies as a continuous function of radius, decreasing from 

that of" the liquid metal core at the radius of the leading edge of the 

vaporizing expansion wave, to zero at some larger radius.    If this 

argument  is admitted, then the average radius of the front which abruptly 

separates finite from zero conductivity must be larger than that of the 

leading edge of the vaporizing expansion wave.    The reasoning proceeds 

as follows:    The transition region of conductivity fans out with time, 

as all finite expansion waves do, and the abrupt change in conductivity 

must fall relatively further behind the head of the expansion wave; 

hence, the speed of this assumed front would be lower than that of the 



vaporizing sound speed in the molten metal.    The experimental values 

for the noble metals appear to lie below the theoretical curve even after 

estimated corrections for dilatation;  i.e., multiplication by F(q), are 

applied. 

The good agreement of wave onset for the different metals at the 

lower specific energies probably reflects both the fact that the assumed 

linear behavior of pd with q cannot be greatly in error here, and also 

the likelihood that the early trajectories of both the average conductiv- 

ity wave front and the vaporization wave front are closely coincidental. 

The divergence of the curves for the different metals at higher specific 

energies, and the fact that finite wave front velenities for copper and 

silver are obtained at energies greatly in excess of those expected to 

drive the metal past critical temperature, cannot be explained merely by 

revising the linear extrapolation of pd. 

2* The abundant data for copper       exhibit large and increasing re- 

sistances at specific energies sufficiently high to heat the original 

mass of copper well beyond critical temperatures.    This fact is inde- 

pendent of any assumption about the behavior of the product  pd for the 

AL 

See Fig, 4 of this reference where restBtanae data for several wires are 
plotted versus speoifio energy obtained by dividing-the total deposited 
energy at a given time by the initial wire mass. 
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saturated liquid. One is forced to conclude that the supercritical 

copper must have a finite resistivity both in the core and in the denser 

parts of the expanding flow. Thus, it follows that the electrical re- 

sistivity of the metal vapor is an important parameter in fixing the 

position of the wave front which shuts off conduction. With this 

added parameter whose effects cannot yet be accounted for, one should 

not expect perfect correlation of the conduction-front, wave speeds for 

the different metals when using a scaling law based on mechanical and 

thermodynamical arguments alone. The present scaling law should apply 

to the electrical wave fronts only when the vaporization and electrical 

conduction waves are nearly coincident,, as they are expected-to be at 

wave onset. 

The physical properties of supercritical materials at high 

3 11 
densities are not well known,.but there are some theoretical reasons ' 

for thinking that electrical conductivity may persist or even be enhanced 

in materials at temperatures above critical and at normal liquid 

densities. According to Rouse's calculations made with a modified Saha 

equation, copper at normal densities and temperatures near 1 eV-will have up 

to 15 percent concentration of the first ion present on account of pressure 

ionization. Presumably the free electrons will participate in conduction 

and Ohmic heating processes aß usual. Thus, arguments based on the pre- 

sumed zero conductivity of condensing materials above the critical 

temperature can be seriously in error. If this is the case, the 
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indicated high temperatures may be real and the temperature multiplying 

capabilities of the exploding wire experiment are realized in practice. 

Since the argument of an earlier paragraph shows that the most conserva- 

tive method of calculating specific energies for copper leads to the con- 

clusion that supercritical temperatures (Tc ~ 85OO K for Cu) are indeed 

attained, the conclusion seems inescapable that some process capable of 

increasing the number of current carriers, e.g., pressure ionization of 

the neutral atoms, is an important factor at the higher temperatures and 

densities encountered in the wire cores. 

A further anomaly in the thermal behavior of the metals studied 

should be noted. The measured input heat energy to the wires always 

appears to be larger than expected. For example, the experimental heat 

content of the liquid at melt is always larger than that computed by 

using tabulated specific heats and heats of fusion. For the listed 

metals in Table II, these excesses are respectively, 55» 20, 30» 80, 

100 and 90 percent . The point corresponding to the liquid at melt is 

taken where the S vs. U curves first show an abrupt decrease of slope 

to the linear portion; this point also corresponds to the first abrupt 

slope decrease easily visible on the voltage-time curve. The slope of 

the linear portion of the S2,U curve can be related to tabulated values 

of the temperature coefficient of liquid resistivity. Even after ac- 

counting for the expected volume change, and using the best estimated 

values for liquid specific heat, the experimental slope is smaller than 

expected. Conversely, for a given liquid resistivity, the corresponding 
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heat content from the present data is much higher than that obtained 

using handbook values for the temperature coefficient of liquid re- 

sistivity. 

The presence of the striations at an early stage, as discovered by 

Pansier and Shear,      at first appears to be a strong argument against 

the existence of a vaporization wave phenomenon.    The striations do in 

fact rule out the possibility that the vaporization wave proceeds uni- 

formly into the material on a front with cylindrical symmetry about the 

wire axis.    Rather one must argue that as vaporization begins at 

temperatures far below critical and with specific energies too small to 

produce complete vaporization, the striations may be the physical 

evidence of the random, statistical way in which vaporization takes 

place at favored surface sites, during passage of the wave.    The shape 

and number of striations may be indications of the manner in which small 

regions are cooled by local, thermal transport processes to support the 

vaporization of adjacent regions.    If so, this new hypothesis would 

force a reconsideration of our primitive ideas of the symmetry of the 

process of vaporization, but not necessarily a revision of its funda- 

metal basis.    Clearly, such a view of the strlatlon problem provides an 

alternative, or a supplement, to theories based on assumption of the 

prior existence of elastic or plastic waves, buckling phenomena and the 

like. 
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SUMMARY 

The energy dependent expansion of a cylinder of superheated liquid 

is offered as an idealized, physical model of flow phenomena occurring 

in exploding wire events.    Magnified streak shadowgraphs of Cu wires 

show complex radial motions accompanying two major stages, viz: (l) a 

linear boundary expansion during which a vapor veil proceeds ahead of a 

denser, expanding core and, (2)   a parabolic boundary expansion characterized 

by violent acceleration of the  inner core as a result of sudden energy 

addition.    Correlated electrical data show that the main deposit of 

electrical energy occurs near the end of the linear expansion during 

which the vaporization wave  is presumed to initiate the expansion. 

Vaporization wave speeds have been obtained from experiments on 

Wires of Al, Pb, Ag, Cu and Au and from the first, preliminary experi- 

ments on solid Hg wires.    The wave-speed curves for these metals show 

similar behavior although the initial specific energies differ by a 

factor up to 108.    A thermodynamic model of the expansion is obtained by 

assuming a modified van der Waals equation of state together with a 

state path lying on the liquidus  line in the p - v plane.    Values of 

the adiabatic sound speed calculated from the thermodynamic model and 

representing expansions from the  liquidus  line into the two-phase 

region,  agree well with the  initial portions of the experimental wave 
l 

speed curves. When speed is scaled by (RTCP and specific energy by 

RTC, a plot of corresponding states is obtained wherein for all the 

metals the experimental data initially overlap the theoretical curve but 
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deviate in different ways at larger values of the seeled variables. 

Discussion of these deviations shows that to some extent they can 

be attributed to the approximations inherent in the fluid dynamic and 

thermodynamic models, and to assumptions made necessary by the lack of 

electrical and thermal data for the elements. 
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