FLUORESCENT ION INTERACTION IN LASER CRYSTALS

W. W. Holloway
Sperry Rand Research Center
Sudbury, Massachusetts
February 1968

Processed for...
DEFENSE DOCUMENTATION CENTER
DEFENSE SUPPLY AGENCY

UNCLASSIFIED
FLUORESCENT ION INTERACTION IN
LASER CRYSTALS

by

W. W. Holloway

Sperry Rand Research Center

FINAL REPORT

FEBRUARY 1968

Contract No. N00014-67-C-0266
ARPA Order No. 306

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research is part of Project DEFENDER, under the joint sponsorship of the Advanced Research Projects Agency, the Office of Naval Research, and the Department of Defense.

Prepared for
OFFICE OF NAVAL RESEARCH
WASHINGTON, D. C.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A. Summary</td>
<td>1</td>
</tr>
<tr>
<td>B. List of Publications Related to this Contract</td>
<td>2</td>
</tr>
<tr>
<td>II SINGLE CRYSTAL GROWTH</td>
<td>3</td>
</tr>
<tr>
<td>III ENERGY TRANSFER</td>
<td>3</td>
</tr>
<tr>
<td>IV COMPENSATING ION EXPERIMENTS</td>
<td>6</td>
</tr>
<tr>
<td>V REMARKS ON THE TWO COLOR LASER PROBLEM</td>
<td>12</td>
</tr>
<tr>
<td>VI FUTURE INVESTIGATIONS</td>
<td>14</td>
</tr>
</tbody>
</table>

APPENDIX A -- "Optical Properties of Cerium-Activated Garnet Crystals"

APPENDIX B -- "On the Fluorescence of Cerium-Activated Garnet Crystals"
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Photograph of $Y_3Al_5O_{12}:Lu:Nd$ laser rods fabricated from Czochralski-grown boules and demonstrating the optical quality.</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of the Nd^{3+} ion $^4F_{3/2} \rightarrow ^4I_{11/2}$ fluorescent transitions in crystals of $Y_3Al_5O_{12}$ at room temperature.</td>
</tr>
<tr>
<td>3</td>
<td>Comparison of the Nd^{3+} ion $^4F_{3/2} \rightarrow ^4I_{11/2}$ fluorescent transitions in crystals of $Y_3Ga_2O_{12}$ at room temperature.</td>
</tr>
<tr>
<td>4</td>
<td>Comparison of the Nd^{3+} ion $^4F_{3/2} \rightarrow ^4I_{11/2}$ fluorescent transitions in crystals of $Y_3Al_{3}Ga_2O_{12}$ at room temperature.</td>
</tr>
<tr>
<td>5</td>
<td>The fluorescence of the Nd^{3+} ion $^4F_{3/2} \rightarrow ^4I_{11/2}$ fluorescence transitions in crystals of $Y_{1.5}Lu_{0.75}Nd_{0.75}Al_5O_{12}$ at room temperature.</td>
</tr>
<tr>
<td>6</td>
<td>Fluorescence lifetime as a function of relative concentration of the Nd^{3+} ion.</td>
</tr>
</tbody>
</table>
Factors influencing the fluorescence of the neodymium ion in garnet crystals (especially $Y_3Al_5O_{12}$) have been investigated in order to improve the laser characteristics of these materials. In order to increase the doping levels of the active ions, the effect of compensating ions on the concentration of neodymium ions for given growth conditions has been investigated. Possible deleterious effects in the optical properties of the active ion in the presence of these compensating ions have also been studied. The major degradation of the laser characteristics is the result of the "coring" of the $Y_3Al_5O_{12}:Nd$ crystals.

The use of energy transfer to enhance the fluorescence of the neodymium ion has been considered. Energy transfer from the cerium ion and from the chromium ion to the neodymium ion has been observed. In collateral studies, the optical properties of the cerium ion and the chromium ion in garnet crystals have been extensively investigated. Methods of improving the efficiency of the energy transfer in these materials have been considered.

I. INTRODUCTION

A. Summary

During the reporting period ending 30 November 1967, studies were conducted on the factors affecting the fluorescence characteristics and the laser characteristics of the neodymium ion in garnet host materials. Compensating ions have been used to increase the concentration of active ions in $Y_3Al_5O_{12}$. It has been found that the optical properties, such as the fluorescent transition linewidth, may be influenced by the incorporation of additional ions. Energy transfer from a sensitizing ion to the active ion (i.e., Nd^{3+}) has been used to enhance the active ion fluorescence. The transfer of energy from the cerium ion to the neodymium ion has been
observed and the optical properties of the cerium ion and chromium ion have been investigated.

The use of compensating ions has been found to increase the concentration of neodymium ions in \(\text{Y}_3\text{Al}_5\text{O}_{12} \). When large concentrations of compensating ions are used, the optical properties may be altered and a broadening of the optical transition may be observed. The broadening of the optical transitions is especially prominent when a large compensating ion such as the \(\text{Gd}^{3+} \) ion in the \(Y^{3+} \) site or the \(\text{Ga}^{3+} \) ion in the \(\text{Al}^{3+} \) site is used to expand the average lattice parameters. The substitution of a smaller ion such as \(\text{Lu}^{3+} \) in \(Y^{3+} \) site to compensate for the larger \(\text{Nd}^{3+} \) ion has been shown to minimize the broadening effects.

In an effort to increase the pumping efficiency of the excitation lamp, sensitizing ions have been used. Energy transfer has been observed from the cerium ion to the \(\text{Nd}^{3+} \) ion in \(\text{Y}_3\text{Al}_5\text{O}_{12} \). The optical properties of the cerium ion in garnet hosts have been studied because of certain anomalous features of these properties. Problems which limit the usefulness of energy transfers in these materials have also been considered.

Preliminary studies have also been conducted using the chromium ion as a sensitizing ion.

B. List of Publications Related to this Contract

1. "On the Fluorescence of Cerium-Activated Garnet Crystals"
W. W. Holloway, Jr. and M. Kestigian

2. "Optical Properties of Cerium-Activated Garnet Crystals"

3. "Neodymium Ion Concentration Studies in Single Crystals of Rare-Earth Aluminum Garnets"
W. Kestigian and W. W. Holloway, Jr.
(in preparation)
II. SINGLE CRYSTAL GROWTH

Preliminary single crystal growth experiments were carried out by use of the molten salt solvent method. Rare earth size-compensating cation doped yttrium aluminum garnet single crystals were prepared by slowly cooling a high temperature saturated solution. Scandium, ytterbium and lutetium were employed as size-compensating cations in these experiments. Chemical analyses and optical measurements of single crystals that were formed revealed lutetium to be the most promising of the size-compensating cations investigated.

Single crystal growth studies utilizing the Czochralski direct melt method were begun using neodymium-lutetium aluminum garnet as the dopant in yttrium aluminum garnet. Appropriate quantities of yttrium sesquioxide, neodymium sesquioxide, lutetium sesquioxide and aluminum oxide were carefully weighed according to the general formula $Y_{(3-2x)}Nd_{x}Lu_{x}Al_{5}O_{12}$. The samples were ball-milled overnight and calcined in covered platinum vessels at 1400°C for 16 hours. The material was then transferred into an iridium crucible. The heat source in the direct melt crystal growth experiments was a 20 kW output rf generator. An rf feedback loop was used to control the growth temperature. Rotation rates of 50 to 100 rpm and withdrawal rates of 0.0625 to 0.125 inches per hour were normally employed.

Single crystals of dimensions adequate for fabrication into laser rods were prepared. In Fig. 1 rods made from these single crystals are shown.

III. ENERGY TRANSFER

The use of energy transfer to lower the threshold for stimulated emission is a well-known technique. We have previously demonstrated energy transfer from the cerium ion to the neodymium ion in $Y_{3}Al_{5}O_{12}$ crystals. Because of certain anomalous features in the optical properties of the cerium ion in $Y_{3}Al_{5}O_{12}$, these properties were studied in detail and are discussed in Appendices A and B. In addition to energy transfer from the cerium ion to the neodymium ion, the cerium ion can be used to sensitize the fluorescence of several other rare earth ions. (See Appendix B.)
FIG. 1 Photograph of Y$_3$Al$_5$O$_{12}$:Lu$_2$Nd laser rods fabricated from Czochralski-grown boules and demonstrating the optical quality. The concentration of the neodymium ion compared to the yttrium concentration in the melt varies from 7% in the upper crystal to 16% in the bottom crystal.
This energy transfer is apparently the result of radiative coupling between the fluorescent transitions of the cerium ion and the absorption transitions of the other rare earth ions. Moreover, attempts to lower the laser threshold in crystals of $Y_3Al_5O_{12}:Ce:Nd$ because of the incorporation of the cerium ion have not been successful. We attribute the failure of the sensitizing ion to lower the threshold for stimulated emission to the large size of both the fluorescent ion site and the neodymium ion with respect to the yttrium ion which is replaced. As in Sec. IV, these oversized ions tend to distribute themselves in such a manner as to maximize the distance to the nearest neighbor ions. A further indication of such an effect is that for given growth conditions the presence of the cerium ion reduces the concentration of the neodymium ions. Therefore, the sensitization of the neodymium ion is the result of the relatively inefficient radiative transfer rather than the efficient non-radiative transfer. (A similar effect has been noted by us in previous reports for the $Cr^{3+} \rightarrow Nd^{3+}$ transfer in $Y_3Al_5O_{12}$.)

Another revealing result occurred when an attempt was made to measure the excitation spectrum of the Yb^{3+} ion in $Y_3Al_5O_{12}$. Although the fluorescence of the Yb^{3+} ion (alone) was observed, the excitation spectrum was that due to Nd^{3+} ion. We concluded that impurity amounts of neodymium ions were present and provided a very efficient transfer of excitation energy from the Nd^{3+} ion to the Yb^{3+} ion. Because the Yb^{3+} ion is smaller than the Y^{3+} ion which it replaces, the Yb^{3+} ion and the Nd^{3+} ion tend to cluster, consequently providing a very efficient transfer of energy.

We conclude that these attempts to improve the laser performance characteristics of $Y_3Al_5O_{12}:Nd$ were not successful because the effects due to ionic size had not been taken into account. Therefore, the work was focused toward neutralizing these ion size effects through the use of compensating ions or through novel sensitizing ions.

We have investigated the fluorescence of the chromium ion in garnet materials. The intense "i" lines of the chromium ion are slightly dependent on the structure of the garnet host materials. However, these transitions do not overlap the absorption lines of the neodymium ion and the transfer of energy between these two ions, as reported by others, must
originate from the vibronic transitions which lie below the "R" lines. Our investigations are attempting to maximize the transfer from the chromium ion to the neodymium ion. However, the chromium ion is larger than the site which it replaces in the garnet materials, and consequently the transfer is not as efficient as could be achieved with a random distribution.

IV. COMPENSATING ION EXPERIMENTS

One of the major problems associated with the inclusion of the neodymium ion in $Y_3Al_5O_{12}$ is the relatively low concentration of active ions which can be incorporated into the Czochralski-grown crystals. We have been unable to prepare crystals of Nd$_3$Al$_5$O$_{12}$ by any method. Thus, there is an intermediate solution of $Y_3Al_5O_{12} - Nd_3Al_5O_{12}$ which produces the maximum concentration of the Nd$^{3+}$ ion possible. The difficulty of the ion incorporation may be alleviated, but not solved, by extremely slow growth rates. A further difficulty arises from the appearance of core strains which are caused by or accentuated by the doping ions. The problem appears to be the result of the discrepancy in size between the Nd$^{3+}$ ion and the Y$^{3+}$ ion which it replaces in the $Y_3Al_5O_{12}$ crystal. The total effect may indeed have some advantages. The large size of neodymium ion apparently causes a repulsion between the oversized active ions, e.g., through crystal strain, and the ions tend to remain the maximum distance apart consistent with the concentration. That is, there is not a random distribution of active ions. This may serve to minimize the magnitude of the non-radiative interactions between the neodymium ions. This result would be consistent with additional effects which have been observed in the transfer of energy.

Two solutions have been considered to increase the concentration of neodymium ions and to facilitate active ion assimilation during the growth of $Y_3Al_5O_{12}$ doped with neodymium. The first solution would be to expand the average lattice parameters by the inclusion of larger ions in the yttrium site or in the gallium site. Although substitution in either site is possible, there appears to be the fundamental limitation that too large an ion or too high a concentration substituted in the Y$^{3+}$ ion site will not allow formation of crystals, (e.g., as was pointed out with
Nd₃Al₅O₁₂). On the other hand, the substitution in the aluminum site by a larger ion is more promising because it is found that crystals in the entire range of solid solutions of Y₃Al₅O₁₂ — Y₃Ga₅O₁₂ can be formed.

The second possibility for increasing the concentration of neodymium ions is to attempt to compensate for the large size of the neodymium ion by an ion smaller than the yttrium ion. The physical picture would be that the lattice strains caused by the oversized neodymium ion would be relieved by the smaller ions.

Both of these methods have been tried and indeed both appear, from samples prepared from the flux melt method, to increase the concentration. These crystals were found to contain flux ions, however, and therefore the results are not clear-cut, since the flux inclusion may act as a compensating ion. Preliminary results with pulled crystals indicate that the addition of the Lu³⁺ ion does in fact permit a larger concentration of neodymium ions to be incorporated for given growth conditions. An additional benefit which results from this type of compensation would be the diminution of the so-called "propeller"-type cores which are observed in Czochralski-grown, neodymium-doped Y₃Al₅O₁₂ crystals.

One additional effect, however, is observed with the use of compensating ions. Figures 2 and 3 show the room temperature fluorescence spectra of Y₃Al₅O₁₂:Nd and Y₃Ga₅O₁₂:Nd, respectively, for the ⁴F₃/2 — ⁴I₁₁/₂ transition. In Fig. 4, the fluorescence spectrum of this transition for mixed crystals of Y₃Al₅Ga₅O₁₂:Nd is shown. Here the linewidth of the transitions is seen to be considerably broadened. This effect is seen for other lattice-expanding, or oversized, ions. This fluorescence broadening would of course be detrimental to the characteristics for stimulated emission. Figure 5 shows the fluorescence spectra for the room temperature ⁴F₃/2 — ⁴I₁₁/₂ transition in Y₁.₅Nd₇⁵Lu₇⁵Al₅O₁₂:Nd. This broadening does not appear nearly as pronounced in the case of the smaller compensating ion. These experiments were performed with flux-grown crystals. The effects of the flux material inclusions in the lattice are still under investigation.
FIG. 2 Comparison of the Nd$^{3+}$ ion $4F_{3/2} \rightarrow 4I_{11/2}$ fluorescent transitions in crystals of $Y_3Al_5O_{12}$ at room temperature.
Fig. 3 Comparison of the Nd$^{3+}$ ion $^{4}F_{3/2} \rightarrow ^{4}I_{11/2}$ fluorescent transitions in crystals of $Y_3Ga_5O_{12}$ at room temperature.
FIG. 4 Comparison of the Nd$^{3+}$ ion $^4F_{9/2} - ^4I_{11/2}$ fluorescent transitions in crystals of $Y_3Al_5Ga_2O_{12}$ at room temperature. The broadening of the fluorescence transitions of the solid solution $Y_3Al_5O_{12}$ and $Y_3Ga_5O_{12}$ is clearly demonstrated.
FIG. 5 The fluorescence of the Nd$^{3+}$ ion $^{4}F_{3/2} \rightarrow ^{4}I_{11/2}$ fluorescence transitions in crystals of $Y_{1.5}Lu_{0.75}Nd_{0.75}Al_{5}O_{12}$ at room temperature. The fluorescence spectra are similar to the fluorescence spectra of $Y_{3}Al_{5}O_{12}$ shown in Fig. 2.
The lifetimes of several pulled crystals, not necessarily of optical quality, have been measured as a function of concentration. The results of these measurements are shown in Fig. 6. The concentration of the neodymium ion was determined from the absorption. (Samples are currently being analyzed in order to relate the measured absorption to concentration and to allow us to plot an absolute scale in this figure.) The most heavily doped crystal of Fig. 6 corresponds to a neodymium concentration on this scale of about 0.73. At this concentration there is evidence of the deterioration of the fluorescence lifetime. The decrease in lifetime is the result of non-radiative interactions between pairs of neodymium ions which cause the excitation energy to be wasted. The optimum composition for lasers will have been achieved when the increment of power increase which would result from an increase in concentration of active ion is compensated by the degradation of the neodymium fluorescence by the increasing strength of the ion pair interactions. The results of Fig. 6 suggest that an 80% increase in concentration over the amount of neodymium for which optical-quality crystals have already been obtained will yield the optimum composition. Efforts are in progress to grow laser crystals with this concentration of neodymium ions.

In the crystals of Fig. 1, preliminary laser characteristics have been measured. These results, still incomplete, demonstrate that the advantages of the higher concentrations have not been utilized. The reason apparently is the result of the "cores" which have not been effectively eliminated. Work is continuing in an effort to minimize these "cores".

V. REMARKS ON THE TWO COLOR LASER PROBLEM

In the previous sections, it was shown that the size of the active ion relative to the ion which it replaces, and the sizes of the compensating or sensitizing ions relative to the ions which they replace, influence the properties of these materials. That is, oversize active ions, such as the Nd$^{3+}$ ion in Y$_3$Al$_5$O$_{12}$, appear not to assume a random distribution, but rather tend to remain as far apart as the equilibrium growth conditions will permit. This feature, while severely limiting the
FIG. 6 Fluorescence lifetime as a function of relative concentration of the Nd$^{3+}$ ion. The relative concentration was determined from the absorption band intensities of various single crystals.
concentration for given growth conditions, has the advantage of minimizing the ionic interactions. We speculate therefore that the host Lu₃Al₅O₁₂ would be a likely candidate in which to observe stimulated emission at two wavelengths, i.e., from two different rare earth ions, or the so-called two-color laser. The Lu³⁺ ion is the smallest of the rare earth ions and therefore any pair of rare earth ions substituted in the lattice would tend to remain as far apart as the growth conditions would permit. Even if the energy levels of the ions are such as to allow interactions through the relatively efficient non-radiative process, the radial dependence of such an interaction is proportional to \(r^{-4} \) (where \(r \) is the average distance between the interacting ions) and this interaction would be minimized in this system. We point out that the incorporation of active ions in this small lattice would be correspondingly more difficult than the similar procedures in Y₃Al₅O₁₂. In spite of potential problems, we suggest that the host Lu₃Al₅O₁₂ would be a likely candidate in which to observe stimulated emission from two ions.

VI. FUTURE INVESTIGATIONS

A. Size-compensating ions will be used to grow single crystals of YAG:Nd with Nd³⁺ concentration up to the amount where the non-radiative interactions neutralize any advantages of an increased concentration. The goal seems attainable because our results show that the concentration need be increased by less than a factor of two beyond the level which has already been achieved by this technique. Attempts will be made to reduce or completely eliminate the problem of "coring" in the doped crystals. For example, the cores will be cut from the rods, and lasers will be fabricated from regions where coring is not observed.

B. The crystals will be evaluated by optical measurements.

C. Optical-quality crystals will be prepared which incorporate the optimum concentration of neodymium ions and various concentrations of sensitizing ions. Methods of reducing the size effects of the sensitizing ions will be investigated.
D. Studies of the chromium ion and its roles as a sensitizing agent in garnet materials will be completed.
APPENDIX A

OPTICAL PROPERTIES OF CERIUM-ACTIVATED GARNET CRYSTALS

(submitted to J. Opt. Soc. Am.)
Optical Properties of Cerium-Activated Garnet Crystals

W. W. Holloway, Jr. and M. Kestigian
Sperry Rand Research Center, Sudbury, Massachusetts

Abstract

The optical properties of cerium-activated garnet crystals have been investigated. In the garnet crystals showing luminescence, a bright yellow fluorescence has been observed. This fluorescence exhibits structure at low temperatures, and wavelength maxima of the fluorescence spectrum profile are found to be host-dependent. Energy transfer has been observed from the cerium ion to the neodymium ion.

Introduction

The optical spectra of the rare earth ions in garnet crystals have been extensively investigated because of the suitability of these materials in laser applications. In a previous note, we have reported preliminary data on the fluorescence of cerium-activated garnet crystals. A bright yellow fluorescence was observed in several garnet host materials. These fluorescence profiles were shown to be host-dependent, and at low temperatures the fluorescence profile was partially resolved into two components. In this paper, we report additional measurements of fluorescence spectra of the cerium ion in garnet materials. In addition, absorption data have been measured for these materials in an effort to clarify the nature of the fluorescent site.
Experimental

The crystals were prepared by the flux solvent method. The concentrations given for the crystals are those of the starting ingredients. A Czochralski-grown, cerium-doped Y₃Al₅O₁₂ crystal was prepared for comparison with the flux-grown crystals.

The absorption measurements were recorded on a Beckman DK-2 Recording Spectrometer (for the visible and ultra-violet ranges) and by a Perkin Elmer 337 Grating Infrared Spectrometer (for the infrared data).

The fluorescence data were taken with a Perkin Elmer 112 Recording Spectrometer with a CaF₂ prism. The output of the spectrometer was detected with an EMI 999ü (S-20 response) photomultiplier. No attempt was made to correct for the response of this tube.

Results

The absorption bands observed in several cerium-doped garnet crystals are shown in Figs. 1 and 2. A pair of absorption bands are observed at approximately 2.65 μ and 2.85 μ and a second pair are observed at 420 μ and 380 μ. In addition, an absorption line due to the flux inclusion is observed at 260 μ. The garnets with larger cell constants appear to assimilate the flux impurities easier than those with smaller lattice constants.

The fluorescence profiles of several garnet host materials containing cerium are shown in Figs. 3 through 7. Figure 3 shows the fluorescence profiles of several garnet materials taken at room temperature in crystals where there has been a partial substitution for the Al³⁺ ion in Y₃Al₅O₁₂:Ce. The substitution of a larger ion for the Al³⁺ shifts the
FIG. 1 Infrared absorption spectra of several cerium doped garnet crystals. Two prominent absorption transitions are observed at approximately 2.65 µ and 2.85 µ. The wavelength of the transition maxima vary slightly with host material. The absorption transitions observed at approximately 4.8 µ are also observed in undoped crystals.
FIG. 2a The uv absorption transitions of $Y_3A1_5O_{12}$:Ce (pulled), $Lu_3A1_5O_{12}$:Ce, and $Y_3A1_2Ga_3O_{12}$:Ce crystals. Two prominent absorption transitions are observed at approximately 420 mμ and 380 mμ. An absorption transition at 260 mμ, apparently due to the inclusion of flux in the crystals, is not observed in the pulled $Y_3A1_5O_{12}$:Ce sample.
FIG. 2b The uv absorption transitions of $Y_3A1_5O_{12}:Ce$ (flux), $Gd_1.5Y_1.5A1_5O_{12}:Ce$, and $Gd_3A1_5O_{12}:Ce$. Two prominent absorption transitions are observed at approximately 420 $m\mu$ and 330 $m\mu$. The absorption transition at 240 $m\mu$, apparently due to the inclusion of flux in the crystals, is also observed in the flux-grown $Y_3A1_5O_{12}:Ce$ samples.
FIG. 3 Comparison of the fluorescence of cerium doped $Y_3Al_5O_{12}$ with the fluorescences observed in cerium doped garnet crystals where the Al^{3+} ions have been replaced by Ga^{3+} or Sc^{3+} ions. These fluorescence profiles were measured at room temperature.
FIG. 4 Comparison of the low temperature fluorescence of cerium doped $Y_2Al_5O_{12}$ with the fluorescences observed in cerium doped garnet crystals where the Al^{3+} ions have been replaced by Ga^{3+} or Sc^{3+} ions. These profiles were measured at 77°K.
FIG. 5 Comparison of the fluorescence of cerium doped Y$_3$Al$_5$O$_{12}$ with the fluorescences of cerium doped garnet crystals, where the Y$^{3+}$ ions have been replaced by Lu$^{3+}$ ions, La$^{3+}$ ions or Gd$^{3+}$ ions. These fluorescence profiles were measured at room temperature.
Comparison of the low temperature fluorescence of cerium doped $Y_3Al_5O_{12}$ with the fluorescences of cerium doped garnet crystals where the Y^{3+} ions have been replaced by Lu^{3+} ions, La^{3+} ions or Gd^{3+} ions. These profiles were measured at 77°K.
FIG. 7 Effect on the room temperature fluorescences of cerium doped garnet crystals (similar to Y₃Al₅O₁₂) of substituting Ga³⁺ ions for Al³⁺ in crystals where a partial substitution for the Y³⁺ ion has already been made.
fluorescence band toward the blue. In Fig. 4 are shown fluorescence profiles of the crystals in Fig. 3 measured at low temperatures. These spectra show two partially resolved components in addition to the shift of the bands toward the blue. The fluorescence transitions are shown in Fig. 5 for crystals where a substitution for the \(Y^{3+} \) ion has taken place in \(Y_3Al_5O_{12}:Ce \). The substitution of the smaller \(Lu^{3+} \) ion shifts the bands toward the blue while the substitution of the larger \(La^{3+} \) and \(Gd^{3+} \) ions shift the bands toward the red. The fluorescence profiles of Fig. 6 show the result of measuring the fluorescence transitions of the crystals of Fig. 5 at low temperature. A partial resolution of these bands into two components is again observed for some profiles. Figure 7 shows profiles where substitutions in both the \(Y^{3+} \) and \(Al^{3+} \) sites have taken place.

A number of other experiments have been performed on these materials. The lifetime of the fluorescence decay has been determined to be less than 1 \(\mu \)sec. Crystals of \(Y_3Ga_5O_{12}:Ce \) do not exhibit fluorescence, and the intensity of the fluorescence appears to diminish for concentration of gallium greater than \(Y_3Al_2Ga_3O_{12}:Ce \). In addition, crystals of \(Y_3Al_2Ga_3O_{12}:Ce \) and \(Y_3Al_1.5Ga_3.5O_{12}:Ce \) exhibit phosphorescence which persists for several seconds after the removal of the ultraviolet excitation source.

Powder samples of these materials yield results identical to those reported above for the crystal samples when the compounds are prepared under oxidizing conditions. When the powder samples are prepared under reducing conditions, a blue fluorescence is observed, usually in addition to the yellow fluorescence. Unsuccessful attempts were made to observe structure at low temperature in this blue fluorescence component. It was not clear
whether this structure was absent or masked by other effects, such as interference from the yellow fluorescence component.

A broadband yellow fluorescence component of the cerium ion in these garnet materials overlaps absorption bands of several rare earth ions of interest in laser applications, (e.g., the Nd$^{3+}$ shown in Fig. 8). This result suggests that energy may be transferred from cerium ions to other rare earth ions. Such a transfer is indeed found for the cerium-neodymium as is shown by the excitation spectrum in Fig. 9. The transfer appears to be principally composed of (the relatively inefficient) radiative transfer, i.e., the emission of a real photon by the cerium ion and the absorption of that photon by the neodymium ion. Because of the overlap, however, non-radiative transfer may also take place.

Discussion

The observed fluorescence does not appear to originate from the Ce$^{3+}$ site. Although the low temperature structure shown in Figs. 4 and 6 is reminiscent of the results of Krüger and Bakker, and attributed by them to the Ce$^{3+}$ ion fluorescence, both the absorption and fluorescence transitions of the garnet crystals are shifted far toward the red. In addition, the infrared absorption band of the Ce$^{3+}$ ion ($^2F_{7/2} - ^2F_{5/2}$), which should be present at approximately 2200 cm$^{-1}$, is not observed. The absorption band which is observed in this region is also found in undoped crystals and therefore does not result from a transition of the Ce$^{3+}$ ion. The two absorption bands, which are observed in the infrared at 3500 cm$^{-1}$ and 3800 cm$^{-1}$, cannot be identified on the basis of the Ce$^{3+}$ energy levels. Our results with powder samples, however, do show that the cerium-doped garnet
FIG. 8 The comparison of the fluorescence spectra of $Y_3Al_5O_{12}:Ce$ (dotted line) with $Y_3Al_5O_{12}:Ce:Nd$ (solid line). The difference between the spectra in each case can be attributed to a known Nd$^{3+}$ absorption line, thereby establishing the radiative coupling between the neodymium ion and the fluorescent cerium and manganese ions.
FIG. 9 Sensitization of the Nd$^{3+}$ fluorescence by the presence of Ce ion in Y$_3$Al$_5$O$_{12}$.

1. FLUORESCENCE (Y$_3$Al$_5$O$_{12}$: 4% Nd)
2. FLUORESCENCE (Y$_3$Al$_5$O$_{12}$: 4% Nd: 0.12% Ce)
3. Ce FLUORESCENCE (Y$_3$Al$_5$O$_{12}$: 0.05% Ce)
4. WAVELENGTH DEPENDENCE OF EXCITATION SOURCE INTENSITY

APPROXIMATE LINEWIDTH OF EXCITATION RADIATION

WAVELENGTH OF EXCITATION RADIATION (Å)
materials have a blue fluorescence when prepared under reducing conditions. We attribute this to the Ce3+ ion. The yellow fluorescence, observed when the samples are prepared under oxidizing conditions, is identical to that reported above for garnet crystals, and we believe this fluorescence is due to the presence of the Ce4+ ion. Similarly, the yellow fluorescence observed in the garnet crystal samples is the result of the presence of the Ce4+ ion. The actual fluorescence, however, may originate from associated lattice sites needed to compensate for the valence of the Ce4+ ion in the lattice.

The structure, which is observed in the low temperature spectrum, can be assigned to fluorescence transitions leaving the level at \(\sim 420\,\text{nm}\) and terminating at the levels at \(\sim 2.6\,\text{nm}\) and \(2.8\,\text{nm}\). The differences between these transition energies and the observed fluorescence transition energies can be identified with the Stokes shift of the fluorescence. Therefore, the replacement of Al3+ or Fe3+ ions changing the lattice parameters determining the amount of the Stokes shift and accounts for the shifts of the fluorescence profiles observed in Figs. 3 through 7.

Acknowledgment

It is a pleasure to acknowledge the capable assistance of G. F. Sullivan and F. Garabedian with these experiments.
This work, supported by the U.S. Office of Naval Research Contract NO0014-67-C-0266, is part of Project DEFENDER under the joint sponsorship of the Advanced Research Projects Agency, the U.S. Office of Naval Research and the Department of Defense.

REFERENCES

2. W. W. Holloway, Jr. and M. Kestigian (to be published).

APPENDIX B

ON THE FLUORESCENCE OF CERIUM-ACTIVATED GARNET CRYSTALS

On the Fluorescence of Cerium-Activated Garnet Crystals

W. W. Holloway, Jr. and M. Kestigian
Sperry Rand Research Center, Sudbury, Massachusetts

The optical properties of rare-earth doped garnet materials have been extensively investigated because of the importance of these hosts in laser applications. In this note we report measurements of the fluorescence of crystals of $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$, $\text{Lu}_3\text{Al}_5\text{O}_{12}:\text{Ce}$ and $\text{Y}_3\text{Al}_2\text{Ga}_3\text{O}_{12}:\text{Ce}$. In these cerium doped garnets, a bright broadband fluorescence has been observed which exhibits doublet structure at low temperature. This structure is reminiscent of the spectra reported by Kroger and Bakker except the fluorescence is shifted toward the red. The fluorescence profile varies with the garnet host material and this change may be easily observed by the luminescence color under uv excitation. This fluorescence does not appear to originate from the Ce^{3+} ion incorporated in these hosts.

The fluorescence spectra of $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$, $\text{Lu}_3\text{Al}_5\text{O}_{12}:\text{Ce}$ and $\text{Y}_3\text{Al}_2\text{Ga}_3\text{O}_{12}:\text{Ce}$ (taken at room temperature) are shown in Fig. 1. In this figure the difference between the fluorescence spectra of the samples is clearly seen. Under uv excitation, the fluorescence of $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$ appears yellow while the fluorescence of $\text{Y}_3\text{Al}_2\text{Ga}_3\text{O}_{12}:\text{Ce}$ appears green.

At low temperatures the fluorescence in these materials shows evidence of structure. In Fig. 2 the fluorescence spectra of $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$, $\text{Lu}_3\text{Al}_5\text{O}_{12}:\text{Ce}$ and $\text{Y}_3\text{Al}_2\text{Ga}_3\text{O}_{12}:\text{Ce}$ are shown to be partially resolved into two components at 77^0K. The positions of the two lines are found to vary with the host.

Several additional experiments have been performed on these materials. The lifetime of the fluorescence of $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$ has been
FIG. 1 Fluorescence profiles of cerium activated $Y_3Al_5O_{12}$, $Lu_3Al_5O_{12}$ and $Y_3Ga_5Al_5O_{12}$. These measurements were taken at room temperature and have not been corrected for the photomultiplier response.
FIG. 2 Fluorescence profiles of cerium activated $Y_3Al_2O_3$ and $Lu_3Al_2O_3$ measured at 77°K. These profiles have not been corrected for the photomultiplier response.
found to be less than 1 \mu sec. Fluorescence was not observed in crystals of $Y_3Ga_2O_{12}:Ce$ and the fluorescence intensity in mixed crystals of the type $Y_{3-n}Al_nGa_2O_{12}:Ce$ diminished markedly for $n>3$. In addition, the crystals of $Y_3Al_2Ga_2O_{12}:Ce$ exhibit a phosphorescence which persists for several seconds. The role of impurities taken up by the crystals from the flux has not been determined.

The absorption spectrum of $Y_3Al_5O_{12}:Ce$ obtained from Czochralski-grown crystals shows two absorption bands at approximately 440 \mu m and 340 \mu m. The flux-grown crystals of $Y_3Al_5O_{12}:Ce$ showed an additional absorption band at approximately 265 \mu m, apparently due to the inclusion of some of the flux solvent material in the lattice. Absorption bands have been observed in the infrared at 2.6 \mu m and 2.8 \mu m.

The samples used in the experiments described above were prepared by the flux solvent method.3 The concentrations are those of the starting materials. Crystals of $Y_3Al_5O_{12}:Ce$ were also prepared by the Czochralski technique3 for comparison. The fluorescence of the crystals was excited by commercial long-wavelength uv sources. The fluorescence profiles were recorded on a Perkin Elmer Type 112 recording spectrometer. An S-20 response photomultiplier tube was used to detect the emission of the spectrometer.

The rapid decay time and large linewidth of this fluorescence suggest that these bands are not the $f-f$ transitions observed in rare earth ions. The infrared absorption bands cannot be assigned to the Ce$^{3+}$ ion, which should have one group of lines corresponding to the $^2F_{5/2} - ^2F_{7/2}$ transitions at approximately 4.5 \mu m. The two components observed in the low temperature fluorescence spectra of these materials may be due to the two...
absorption lines showing a Stokes shift. (These results are similar to those of Kröger and Bakker except that the apparent Stokes shift in our materials is much larger than for the materials which they measure.) The optical spectra do not appear to originate from the Ce$^{3+}$ ion and instead may be due to cerium ion pairs or to a cerium ion of a different valence or its associated compensating site. The interpretation of these data is still incomplete and further experiments are in progress to clarify these results.

This work, supported by the U.S. Office of Naval Research Contract N00014-67-C-0266, is part of Project DEFENDER under the joint sponsorship of the Advanced Research Projects Agency, the U.S. Office of Naval Research and the Department of Defense.

REFERENCES

Factors influencing the fluorescence of the neodymium ion in garnet crystals (especially Y₃Al₅O₁₂) have been investigated in order to improve the laser characteristics of these materials. In order to increase the doping levels of the active ions, the effect of compensating ions on the concentration of neodymium ions for given growth conditions has been investigated. Possible deleterious effects in the optical properties of the active ion in the presence of these compensating ions have also been studied. The major degradation of the laser characteristics is the result of the "coring" of the Y₃Al₅O₁₂:Nd crystals.

The use of energy transfer to enhance the fluorescence of the neodymium ion has been considered. Energy transfer from the cerium ion and from the chromium ion to the neodymium ion has been observed. In collateral studies, the optical properties of the cerium ion and the chromium ion in garnet crystals have been extensively investigated. Methods of improving the efficiency of the energy transfer in these materials have been considered.
1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 9a, 9b. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, sub-project number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY, IMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this report from DDC."

(2) "Foreign announcement and dissemination of this report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"

(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

(5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document, represented as (T1), (S2), (C3), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

UNCLASSIFIED
Security Classification