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SUMMARY

This report describes two computer programs devel-
oped to analyze the response of multi-cell rectangular
box-structures to external dynamic¢ loads. The first of
the two programs considers the dynamic response of the
box-structure with its material properties remaining
linear, The output consists of displacements, moments
and stresses, Also, response spectra may be generated
at equipment attachment points within the structure,
The second program calculates the dynamic response with
the added provision that when moments in any plate ex=-
ceed a predetermined yield value, that plate will not
accept any increase in loads normal to its plane,

The report applies to shallow buried, reinforced
concrete protective structures, The walls, floors,
roof and partitions of these structures are assumed to
be mutually connected at right angles. The structure
can have more than one room in the width, depth and
height., The loading is that caused by an above ground
nuclear detonation some distance from the location of
the structure,

The method of analyzing the structure is by con-
sidering it as a system of finite elements, each plate
being divided into four rectangular elements. The
finite element method is a means of approximating the
equations of equilibrium of the elastic continuum with
a set of algebraic :juilidbrium equations. The continu=-
um 13 considered as being an assemblage of discrete
structural elements inter-connected at a finite number
of nodal points, The analysis involves the evaluation
6f the element elastic properties which are represented
by the stiffness matrix expressing the relationship
tetween element nodal forces and displacements, The
nodal points are taken as the four corners of the ele-
ment,

The basic operation in the definition of an element
stiffness matrix is the choice of deformation rharacter-
istics which are to be allowed, The most impoitant
criterion to be considered is the compatability of de-
formations of adjacent elements. The elecment :itiffness
matrix has twenty-four degrees of freedom, six per nodal
point, and consists of a 12x12 bending stiffness matrix




and a 12x12 inolane stiffness matrix, The bending
stiffness is calculated from a twelve term polynomial
for the displacement. The inplane stiffness consists
of an 8x8 linear force-displacement matrix and a 4x4
moment-rotation matrix, For the purpose of this work
these were assumed to be uncoupled. At any nodal
point it 1is possible to have elements intersecting in
three mutually perpendicular planes., This makes it
necessary to convert the local coordinates for each
element into a global coordinate system for the whole
structure,

At any instant of time, the applied distributed
load on the structure can be specified. This is con-
verted into a nodal point loading equivalent to the dis-
tributed load such that the nodal deformations and the
total work done are the same in each system., By using
a process similar to that used in determining the stiff-
ness matrix for the complete structure, the load matrix
for the complete structure can be obtained by taking the
load matrices for each individual plate and expanding
them into a global coordinate system,

Through the finite element method, the structure 1s
replaced by lumped parameters at discrete nodal points,
therefore, the mass which is distributed throughout the
structure 1s assumed to be concentrated at those nodal
points, In order to get the response of the structure
for a time-~dependent load, the equilibrium of the dis-
crete mass system at time £ is exnressed by the matrix
equation

(MI(%}, + (c1(k}, + [K)x}, = (P)t

where (M] = mass matrix
(C) = damping matrix
(K]
(x},
(P},

stiffness matrix

displacement of the systenm

force acting on the systenm




The equations are solved by means of a step by step
procedure. The accelerations of the masses are assumed
to be linear in each time increment. A diagonal mass
matrix is used. Since the determination of mode shapes
and frequencies is not a part of the step by step method
of solution, modal damping cannot be used directly. The
damping matrix is assumed to be a linear function of the
mass matrix and the stiffness matrix., The solution of
the equations makes use of the Gaussian elimination tech-
nique,

An example of a dynamic analysis is given.

A synoptic review of selected literature pertaining
to the fallure modes and failure loadings of two-way
slabs 1s presented at the end of the report,




PREPACE

During the year of 1963, the Office of Civil De-
fense, Protective Structures Division, initiated the
development of a series of computer programs directed
toward providing a complete engineering analysis of
buildings considerin~ the multiple effects of nuclear
weapons, These computer codes are the backbone of the
Computer Analyais FPor Protective Structures (CAPS)
system,

The CAPS-1 program, entitled Analysis of Struoctures
for Resistance to Nuclear Blast, began with the devel-
opment of a code for determining the blast resistance
of multi-story buildings. T.Y. Lin and Associates com-

leted the computer program under Contract No,0CD=0S-63-
4, Subsequently, the programming effort to provide a
code for analysing box-structures was begun under Con-
tract No, 0CD-PS~-65-7, Subtask 1157A. The responsibility
for continuation of the orogram passed to Stanford Re-
search Institute under the provisions of Contract No,
0CD-PS-64-201 between OCD and SRI, T. Y. Lin and
Associates has performed the work contained in this re-
port under Subcontract No.B-81869(4949A-46)-US with SRI,
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Section 1
INTRODUCTION
1-1 Background

This report describes the initial development of a
computer program designed to analyze the dynamlc response
of box-type structures to ruclear blast. A box-type
structure generally carries external loads by slabs
spanning between bearing walls or shear walls, When
used as shelters, these structures may be aboveground,
located in the basement of a larger building, or buriled,

A previous report, by T. Y. Lin and Assoclatesl®
under Contract No., OCD-PS-65-7, drew together pertinent
conclusions of a large number of reasearch papers and
design manuals in order to bring them to bear on the
development of this computer program. Airblast loadings
and ground motions were reviewed, Also, the equations
for the dynamic response of lumped mass systems were
presented in detail,

Many other publications have presented design-
analysis methods apolicable to boxes2s3:%s5, In general,
an element-=by-element approach is used. That is, the
loads are applied to the primary resisting element, the
response 1s determined from a single-degree-of-freedom
idealization, and the reactions subsequently applied as
loads to the supporting members,

For purposes of this computer program, the box has
been thought of as a multi-degree-of-freedom system
consisting of plates, rigidly connected to each other
at right angles along each edge. The response analysis
is a finite element technique, utilizing rectangluar
plate elements,

Other publications have described ai:Hlast loads on
an aboveground box2?3, Loads on an underground box are
not well defined., The fundamental phenomena of the solle
structure interaction process are not completely under-
stood, However, the relative compressibility of the soil
and structure probabl{ controls the load experienced by
the buried structure,}"

#Superscripts refer to references found in Section 7,
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The computer program models the compressibility of
a box, An adequate model of the soll is still needed be-
fore an analysis of a soll-structure system can be under-
taken with any degree of confidence.,

1-2 Scope of the Report

The program development is divided into four major
phases,

Phase I Development of a static analysis for
box-type structures utilizing rectangu-
lar finite elements

Phase II Extension of the static analysis to
elastic dynamic response analysis using
a step-by-step integration procedure

Phase III Incorporate a procedure for determining
the response spectrum at each nodal
point of the elastlic system

Phase IV Incorporate non-linear definition of
plate bending property into Phase II

This report covers the complete mathematical formu-
lation of each phase, An example of an elastic multi-
cell box analysis for dynamic loads is given. An example
o® a non-linear single cell box analysis for dynamie
loads is also given, in which plates fall successively
as they exceed a given yleld capacity.

The dynamic loads are assumed to act on the exterior
surfaces of the multi-cell box. Time did not permit the
programing of a comprehensive load routine, However, a
simple formulation of loads on a shallow buried box was
added to the main program in order to carry out an example
analysis of a box responding to a time-dependent load,

The load subroutine is descrided in Appendix A,

1-2




Section 2

DEPINITION OF THE STRUCTURE
2-1 General

Many underground protective structures are bullt of
heavy concrete walls, with a concrete floor and a thick
concrete roof, The structures may have more than one
level in which case the intermediate floors are concrete
also, Thus, the whole structure can be considered as a
set of interconnecting plates mutually at right angles-
i.e., a box-type structure,

The analysis of plates at right angles presents two
major problems, The first is that two systems of coord-
inates have to be used, i.,e,, a local system for the in-
dividual plates and a global system for the whole struce
ture, Extreme care must be taken when changing from one
to the other,

The second major problem is the large number of
mutually dependent coordinates. In the case of three
dimensional frame analyses the numbering of dependent
coordinates may be arranged in such a manner that the
stiffness matrix can be formulated with a narrow band
width; thus, core space in the computer is conserved.
In the case of plates mutually connecting at right an-
gles, the band width can become very large, thereby
creating a storage problem,

An accurate method of analyzing box-type structures
and the method adopted in this work, is to define the
box as a system of finite elements. Each plate can be
considered as an element or further subdivided into a
number of elements. The essential feature of the finite
element method i3 the means by which the differential
equations of equilidbrium of the elastic continuum are
approximated by a set of algebraic ejuilibrium equatlions,
This procedure is generally looked upon as the substitu-
tion for the actual continuum of an assemblage of dis-
crete structural elements, interconnected at a finite
number of nodal points. In effect, the continuum may
be visualized as being physically cut up into the finite
element system, the material properties of the original
material being retained in the elements, The analysls
involves the evaluation of the element elastic prop-
erties, which are represented by the stiffness matrix
expressing the relationship between element nodal forces
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and displacements., The nodal points are taken as the
four corners of the element,

With this system, it 1s possible to define each
panel as an element, determine the equivalent nodal
point stiffness and load and solve for displacements.
From the displacements, the moments and shears at the
nodal points can be determined. In order to determine
the distribution of the moments and shears throughout
the panels, it 1s necessary to subdivide each panel in-
to smaller elements, The smallest number of subdivisions
to obtain the moments and shears at the center of each
panel is four elements, As the least complicated box,
i.e., a cube, has six sides, it is apparent that the
stiffness matrix can soon get impossibly large. For
this work it was decided that a four-element panel was
the least that could be used to get results for moments
and shears in the middle of the panels an¢ that larger
subdivisions would be unworkable.

It was realized that the development of the stiff-
ness matrix for the structure in the global coordinate
system would require some difficult programming, so the
preliminary work was done on a cube. A symmetrical
static load was applied about one major plane so that .
symmetrical displacements would constitute one check on
the accuracy of the stiffness matrix,

When the stiffness matrix was considered correct,
steps were taken to convert the program to a system of
plates divided into four elements. The correctness of
this change was determined by comparing the analysis of
a one=box structure using the four-element-per-panel
system with the same structure modelled as an eight-box
structure using the one-element-per-panel gsystem, In
the latter case, the stiffness of the interior elements
was set to zero,

The method of determining the nodal point loading
for a time dependent blast force was solved in the early
stages of the work. By considering this load at any given
time as a statically applied load, it was possible to get
representative moments and shears in the structure. The
procedure adopted resulted in a method of complete check-
ing as every stage was completed and provided for a
logical flow of work from a system of single-element
panels under static loads to a system of four-element
panels under dynamic loads,
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2=2 The Stiffness Matri-

The box-type structure is considered as a set of
interconnecting plates in three mutually perpendicular
planes, In order to determine the stiffness matrix for
the complete box, it is necessary to determine the
stiffness of each plate in its own local coordinate
system and then convert this to the global system, The
definition of these systems 1s shown in Figure 2«1,

The development of the system for considering four
elements per panel is essentially the same as that for
the system with one element per panel with the one dif-
ference that there will be restraining panels at right
angles on only two of the edges, For simplicity of pre-
sentation, the stiffness matrix of the structure will be
develcped as 1f each panel consists of only one element,

Since the method used is to consider each plate as
a finite element in the box, by assuming Kirchof!l plate
bending theory, the stiffness 1s determined in terms of
the 28-corner displacements of each plate, The inter-
section of the corners of the plates are the nodal points
of the complete systenm,

The basic operation in the definition of an element
stiffness matrix is the choice of the deformation charac-
teristics which are to be allowed, The most important
eriterion to be considered in this selection is the com-
patability of deformations of adjacent elements, It can
be shown that if deformation psiterns are specified which
provide internal compatability within the elements, and
at the same time achieve full compatability of displace-
ments along the element boundaries, then the strain
energy in the idealization w!ll represent a lower bound
to the straln energy of the actual continuum,

The relationship between the externally applied
forces and the resulting displacement on a plate in its
own local courdinate system can be expreased in the

form
{pr}) = IS {u)
b
[
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where Sb is the 12x12 bending stiffness matrix
S% 1s the 12x12 inplane stiffness matrix.
There 1is fio coupling between these two matrices,

The simplest expression which has been used in de-
fining the rectangular element bending stiffness Sb is
the 12-term nolynominal in x and ¢;B

2 3
W o= ay +oapx +oagy o b oagxy + agyt #apx

3
+ a X2 + agxy? + a4} +ayxdy +oapxy (2013

The two fourth degree terms which are included to
provide the required number of displacement patterns were
selected to maintain symmetry and also to satisfy the bi-
harmonic equilibrium equation. A complete 12 by 12
stiffness matrix which represents the nodal force deflec-
tion relationships 1s shown in Pigure 2-2, This 12 by 12
matrix may be constructed from the 12 by 3 matrices asso=-
ciated with each jJoint, For any given joint {, the
stiffness matrix can be represented as the sum of four 12
by 3 matrices Kq, Kp, Ke and Kd, 1.e., K{ = Kqg + Kp + K¢
+ K4d. These represent the energy contributions from the
(Wxx)2, (Wyy)2, (Yxx*¥yy) and (4xy)? curvature terms, re-
spectively. The coefficlents of these four stiffness
comporent matrices as developed by Adini? are shown in
Figure 2-3.

The 12 x 12 inplane stiffness matrix can be con-
sidered as an 8 x 8 linear force-displacement matrix S
and 3 4 x 4 moment-rotation matrix S, together with thé
corresponding coupling terms Slr and srl

1
ts;1 =% Ser

PR TSN

[}
sr£|sr
In order to determine the $ and Srl terms a rigorous
solution is required, according to the theory of slasticity,

The authers have assumed the accuracy requirements do aot

varrant this, and expressions for the linear and rotational
disnlacem~nts were develored as i uncoupled,

Por the 8 x 8 linear stiffness matrix S, the dis-
placement pattern is as shown in Figure 2.4,  The sides
remain straight after deformation,
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INPLANE LINEAR STRAIN OF AN ELEMENT

The geometrical compatibility condition is satisfied
by the following equations:

_“(x,yl » Cl + sz + c3u + cbxy (2-2)

Vig,g) " G t Cex ¥ Gy v Coxy (2-3)

If Equation 2-1 i3 evaluated at the four corners, 4, §, k,
and ¢,

“j = Cx + Cza

u, = Cl + C,b
u, = Cl + Cza + Csb + C~ab

Solving the above cquations for Cl, Cz, C,, and C,,
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“e

g (2-4)

ut

C: = wuy
1
¢, = -‘li-(uj - ug)
C3 = B"(uk - U.")
1
Cp = gplui - uj - uprup)
or in matrix form,
;’cl' E—ab 0 0 0
Ca| . L '-b b 0 0
fC; ab ‘-a 0 a 0
C I -1 -
S L 11

=

Lt

Following the same procedure for the v displacements yields

the same result, i.e.,

=

1
ab

ab 0 0 o] v
b b 0 01! v§
-a 0 a 0] Vi (2-5)
1 -1 -1 1] v,

From the definition of strain;

Cl =
(4 =
y

Y 2

Su

.13

Y

8y

—

Sy

§
¢ Y

§x

Hence, the relationship between
strains can be expressed in the

the displacements and the
form

oo [bwbey syy 00000 g

:cy = ;Fi 0 0 0 0 -atx -x a-x 2 f uj;

;Y ) ‘-arx -x a-x x -biy b-v -y y; up |
'utg
s
e
luz




or symbolically
[e] = [a,](u]

The stress-strain relationship for an isotropic elastiec
material in a stsate of plain stress is

( Oy a B ¥ c£
4 Y
T 0 0 G Yx@

or [e] = [K][e] (2-6)

Q
[}
©
2
S
[ ]

where

(1-v2)
vE
(1-v2)

O S
2{1+v)

K = the stiffness of an infinitesimal
element of area dA,

The stiffness of a system of infinitesimal elements
1s given by

ba T
(5,1 = ¢f[la,17(K1le,] d,d,

which results in an 8 x 8 symmetrical matrix.
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The rotational stiffness matrix is difficult to de-
fine. Because of this fact, the procedure in plate and
shell theory has been to ignore it., }or the box type
structure this is not possible so displacement functions
were decided on which would represent the rotation of
the corners in turn,

y
)
k L'_"f
v
\ L
\ «
)
/J
RV
4 = +- X
'3 - ¥
SN . -
a
Figure 2-5

INPLANE ROTATIONAL STRAIN OF AN ELEMENT

The displacement pattern is shown in Figure 2-5 where

= -b)%(a- - -
u(x,y) §§7 (y=b)?(a-x) Fl(x,y)o (2-7)
vix,y) = -x8 (x-a)2(b-y) = F (x,y)e (2-8)
ad 2
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Since the assumed disvlacement functions have a
linear 6 devendence, supernosition can be used,

Hence

u(x’y) = u(i) + U.(j’ + u(k’ + u(t)
vix,y) = Vi) + "(j) * Vip) * Vi)

or in matrix form as shown in Figure 2-6,

The relationship between the displacements and the
strains can be exnressed in the form

€y Oi‘
eyl = [ay] ¥
Y, 0y
[ %)
or
(e] = [ae]{e} (2-9)

where [aa]is given in Figure 2-7.

Due to the displacement field (u,v) for the set

of angle changes (8} there 1s a field of external self
equilibrating moments [M],

The equilibrium condition is satisfied if the set
of exteinal moments, [M], acting on the external angle
changes, {6} produces the same work as the set of in-
ternal stresses, (o}, acting on the internal stralns,
{c}

Hence k(0) T[] = % [ ic}r(a)d(voli (2-10)
Using equations 2-6 ana 2-;0
(6} (M] = t?}(G}T[ao]T{K][aGJ(e)dxdy (2-11)
Since (0} is inéfpléaent of "x" and “¢*,
M) = Ltff(GOJT[K](aOdedé](e) (2-12)
6o :
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u.(x,y)L F‘(x,y)Fl(a-x,y)-Fl(x,b-y)-Fl(a-x,b-y) 5
. J%
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vix, gl | F tx,gIF (a-x,y)-F lx,b=y} F, la-x,b-y) %
J L 2 2 e
L L
Pigure 2-6 ASSUMED DISPLACEMENT FUNCTION
r‘ —
Filz,y), Fl(a-x,y),‘ -Fl(x,b-y),x -Fl(a-x,b-y),x
(ag]=
~Fz(x,yl,y Fz(a-x,y),y -Fz(x,b-yl.y lea-x,b-y),y
% 232 %43 %3 |

#where

an- Fl(*ofl,oy'rz(xog’ox
a." Fl(a-x,y),ysz(a-x,y),x
133- -Fl(:,b-yl,y-Fz(x,b-y),x

¢J~- -Fl(a-z,b-yi.g0F2(a~l.b‘¥’-x

Figure 2-7 DISPLACSMENT STRAIN RELATIONSHIP
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So that,
ab '
[s,] = £[[la,1T(K](a,1dxdy (2-13)
0o

The expansion of the integral in equation 2-13 for
‘the first row of the matrix [sr] is shown in Figure 2.8,

It can be seen that there 1s a lack of equilibrium,
therefore the matrix wasGb ought into equilibrium by
arbitrarily subtracting-f--from each element, This 1is
numerically small compared with the other terms and

has little effect on the results,

The first row of the matrix [s_] 1s expanded into
a consistent matrix as shown in Figlire 2-9,

As plates in different planes are joined together,
the elements of the stiffness matrices cannot be added
directly., It 1s necessary to convert the coordinates
from a local to a global system, This can be done by
using the coordinate transformation matrix for stiffness
as shown in Table 2-1, Once in the global system the
stiffness matrices can be combined into a single stiff-
ness matrix [K] for the complete box by keeping track of
the ncdal points of the four corners of the individual
elements,
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TABLE 2-1

Coordinate Transformation

for

Stiffness Coefficients

| LOCAL GLOBAL
! —"’l R
! I Type 1 = Type 2 Type 3
1 1 3 3
2 7 9 9
3 13 15 15
4 19 21 21
5 -2 -2 -1
6 -8 -8 -7
7 -14 -14 -13
8 -20 -20 -19
9 -3 1 -2
i 10 5 5 i
: 11 b 6 6
1 -9 7 -8
13 11 11 10
14 10 12 12
15 ~15 13 -14
16 17 17 16
17 16 18 18
18 =21 | 19 -20
19 23 | 2 22
20 22 24 24
21 -6 ] -5
22 -12 10 -11
23 -18 16 -17
2k =24 22 i -23
- o e b e e R W
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Section 3
NODAL POINT LOADS

At any instant of time, the applied distributed load
on the structure can be specified, This nust be converted
into a nodal point loading equivalent to the distributed
load such that the nodal deformations and the total work
are the same 1in each system,

Externali Energy
due to actual = 35 ! q(l 'l w(x )dA (3_]:)
distributed load A WY Y

External Energy T

due to equivalent = %(L} (9} (3-2)

nodal point loads
where q 1s the load on the area dA and w is 1its displace=-
ment, For one plate, {L} is a 12 x 1 column matrix con-
sisting of a force and two moments at each corner of the
plate, and (¢} is the assoclated displacement.

From Equations 3-1 and 3-2,

T

Substituting the 12-term polynomial for w in Equation 2.1,

(W) = [ agy, ) dlte)dh

where [d) 43 a 1 x 12 matrix of the terms of the polynomial
and {a) 1s a 12 x 1 matrix of the coefficients,

Substituting for [a] = [N](e)

(11« { 2, ) (410N 14A

or

(y = (v17 { Qg g (41 T A (3-4)

v y)




The matrix [N] which has been introduced can be
evaluated through the polynomial in w with this expres-
sion and by differentiatine it with respect to x and vy,
the values of w can be related for each displacement at
each corner for the twelve coefficients a, The develop-
ment of the inverse matrix [N]™! is given in Figure 3-1.

The ¢ function can be expressed as:
(x,y)

Q(x,y) = Cp + Cax + Cyy + Cyxy

where the coefficients ¢,, ¢,, C,, and €, are evaluated
from the load conditions at “the’rodal points,

The integral [ q ,[d]TdA car be written as:
A XY

(I} = [(C, * Cpr *+ Cou *+ Cuxy)[d]TdA
A

or {1} = [Fla,b)] ¢,
¢,
C,
Cy
21
and , Qi {Q] %;
Q. ¢
<. 13
% C,
\QL \c'y
so that (L) = [N]T[F(a,b)][Q] {q} (3-5)
where 1 0 o 0
EHIER
I a b ab

and Fla,b) 1s shown in Figure 3-2,
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By using a pnrocedure simllar to that used in deter-
nining the stiffness matrix for the complete structure,
the load natrix for the complete structure can be obtain-
ed by taking the load matrices for each individual plate
and expanding them into a2 global coordinate system by us-
ing a coordinate transformation matrix and inserting the
elements of the submatrices in the large matrix at the
desired location , The load coordinate transformation
natrix is shown in Table 3-1,




TABLE 3-1

Coordinate Transformation for Nodal Loads
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Section 4
DYNAMIC RESPONSE ANALYSIS - ELASTIC

4.1 Equation of Equilibrium

Through the finite element method, the box structure
1s replaced by lumped parameters at discrete nodal points,
The mass, which 1s distributed throughout the structure,
1s assumed to he concentrated at the nodal points. The
deformation-resistance characteristics of the box are de=-
fined for relative disovlacement of the mass coordinates by
the stiffness matrix described in Section 2,

The equllibrium of the discrete mass system at time
2 1s expressed by the following matrix equation:

(M) (X}, + [CI(X), + (K] (X}, = (P}, (4-1)

where {I}t a acceleration of the system

{i}t = velocity of the system

{X}t = displacement of the system

(P)t a force acting on the system

[M] = the diamonal mass matrix

{C] = the damping matrix

[K] = the stiffness matrix

h-2 Mass Matrix

A lumped mass approach is used to calculate the dynam-
i¢ response, with the disnlacement of each mass directly
represented by a single coordinate, The advantage of this
simple mass idealization i3 that it climinates any mass
coupling, Thus, a diagonal mass matrix is used in enuation
n‘lu

h-1




The mass at each nodal point of the structure con-
tains a contribution from each plate element attached to
the node, Referring to Figure 4-1, this typical mass
contribution at a node from a single element is expressed

as,
(H, (210 ) (0
210 0
My !
Mz 210 !
< } . Ppabt }_* po-teﬁ)_ b, } (4-2)
Mo s40g | a2 4 |0
Moy b2 0
2,p2
gMOZJ G +b ) kOJ

where p and ¢ are, respectively, the density and thick-
ness of the plate element. Similarly, Pa and g are,
respectively, the density and thickness “of soil layer
assumed acting with the plate element.

In equation 4-2, the distributed mass of each plate
element is assumed lumped at its corners, one-fourth of
the total mass to each, Figure 4-1 illustrates this
physical lumping of mass., The mass at each corner, or
nodal point, can be put into motion in the local x, y and
Z directions, Mass quantities assoclated with these move-
ments are expressed by the first term of the right-hand
side of the equation. This mass matrix in its dlagonal-
1zed form is an extension of the work by Archer on con-
sistent mass matrices for distributed mass systens,!?

Since the structure is in contact with soll, many
exterior plate moticons will be coupled with the novement
of a certaln mass of soil., The sccond term of Equation
-2 assipgns a2 mess quantity to the local z direction of
element displacement only. In othér words, =20il inertia
forces are considered cnly for rotions perpondicular to
each clement's plane, The thickness of so!l,. Z,, 18 an
arbitrary quantity. For the roof of a shallow buried
box, ts equals the depth of soill cover.

§.2




Figure 4-1

MASS CONCENTRATION AT A TYPICAL NODE

* . Typical Element, thickness = £

b/2

Position associated
with node 4

TABLE 4-1
LOCAL ]
GLOBAL "~ =~ .
Type 1 Type 2 Type 3
1 1 3 3
2 2 2 1
3 3 1 2
4 b 6 6
5 5 5 4
6 6 L] 5

COORDINATE TRANSFORMATION FOR MASSES
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The mass matrix for the whole structure is obtained
by expanding the mass matrix for each individual element
into the global coordinate system by means of a coordi-
nate transformation, and superposing the expansions.,

A generalized mass approach, based on assumed dis-
placement functions, could be used, However, this would
lead to coupled (i.e., off-diagonal) mass matrix terms
which complicate the storage problems in the computer,
Furthermore, assumed shape functions will not necessari-
ly lead to improved accuracy in the results, The most
severe approximation is the number of degrees of freedom
allowed. It is believed that the physical lumping of
mass 1s a satisfactory approximation for this particular
system,

4~-3 Damping Matrix

The exact form of the damping matrix 1s unknown for
box-structures, as 1s the case for most structural systems,
However, in most instances, its effect on the mode of vi-
bration will be small, Therefore, it 1s reasonable to
repla%e the [C] matrix by the following matrix relation-
ship:

(€] = a,(n] + a (K] (4-3)

By assuming the damping matrix to be a linear combination

of the mass matrix and the stiffness matrix, computations

are simplified and computer storage requirements are mini-
mized.

The significant test experience in determining energy
losses due to structural damping has related these losses
to the frequencies and mode shapes of particular systems,
Since the determination of frequencies and mode shapes is
not a part of the step-by-step method of solution, modal
damping cannot be used directly. However, a, and a,. may
be interpreted in terms of equivalent modal damping 1if
the significant frequency range of response is known or
can be estimated, . )

The modal damping ratio 1. for the &
in terms of a, and a‘ by, L

mode is given

a a w,
x.'—-—o- *—l-—-

(4-h)
L
2n£ ?
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th

where wg is the circular frequency of the 4 mode,

The frequency w, which ylelds a minimum value of
the damping ratio X, is given by

w s [2 (4-5)

If the minimum damping ratio X and its assoclated
frequency » are given, the damping coefficients a, and a,

are calculated from the following equations:

a = o (4-6a)
o
a * Mw (4-6b)

Equation U-4 can now be rewritten:

li -(E + %“-) X- (4=-7)
wg w 4

Usually, the numerical value of the minimum damping
ratio will be established from judgement regarding past
structural tests. It may vary through a range of 2 per-
cent to 30 percent of critical (.02< ¥ <,30). Having
estimated a minimum damping, however, does not fully de-
fine the coefficlents a and a,. The assoclated frequency
w must be established,

If the significant frequency range of response 1s

between the values v, and w,, Such that;

wy < ; < u“ (a'a) .

it is convenient to select the frequency @ as a multiple

of the lowest frequency = and, 1in turn, such_that the
highest frequency ° . i3 the same multiple of u.
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That is;
W m o, (4-9a)

wn - pmw = mzml (4-9b)

where m i3 any positive constant, Now, the frequency ®
can be calculated simply from the established frequency
range, as follows:

P W, w (4-10)

The values of a, and a, are, as given previously;

a, = ) ) (4-6a)
&, = /s (4-6b)

The damping ratio for the first mode, i, and the
highest mode of interest, xn, becomes (rewriting equation

4-7);
+ -
\. = A = 21 m") A (4-11)

As an example calculation, assume the minimum damp-
ing ratio to be 5 percent of critical. -Further, assume
that thn fundamental period of vibration 1s associated
with the flexural response of thick slabs and is
w; = 3i.6 rad/sec. Also, assume that the highest fre-
quency of interest is that due to inplane response of the
slab elements and is equal to 316 rad/sec:




w = /3!.6 x 316 = 100 rad/sec

A= .05

A, - xn - (31,6 +# 316 ) .05 = 087
100 4

a, * .05 x 100 = 5,0

a. = ,05 %+ 100 = 0,0005

h-4 Response Calculations

It 1s assumed that the acceleration of each dis-
crete mass varies linearly within a time interval AZ.
This assumption, which is illustrated in Figure 4-2,
leads to a parabolic variation of velocity and a cuble
variation of displacement within the time interval,

A direct integration over the interval gives the
following equations for acceleration and velocity at the
end of the time interval:

Py 6 [
X, ®= — x, - A
t ag2 L t (4-12a)
i: - 3 X, - 8, (4-12b)
At
s + 6 X Y
where A, » — X — (4-12¢)
£ 7 77 Nteat 3, teat £-82¢
B, » -3 Xeoae * Xewar YA Xeae (Ho120)
Y ?
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Xt Acceleration

X¢-at |
. kt Velocity
Xt-a2

'——*————""—"/;”’////// X Displacement
Xe-azt .

Figure 4-2
ASSUMED BEHAVIOR OF TYPICAL DISPLACEMENT CONPONENT

h-8




Substituting Equations U4-3, U4-12a and 4-12b into the
dynamic equilibrium relation 4-1 yilelds the following
set ¢f linear equatious in terms of some unknown
"effective" displacement,

[K] (X1, = [P, (4-13)
where
[K] = [K] + C,[M] (4-142)
[Ple = [Ples [H]EA]t'r C“[BJJ (4=14p)
(x1,= Lx1, -2 (s (4-1kc)
L TR ¢
i which
(] 3a
C a — %0 4.1
R Ve = (4-15a)
¢, = 1 (4-15b)
1 + 32,
-
C; = CoC (4-15¢)
¢, = C,a, {4~154d)
¢, = a - c, (4-15e)

The dynamic response ~f the structure s obtained
from the above relationships by using the following step
by step procecdure,

1. Initialization

a. Form stiffness matrix [K] and mass matrix [Aa]

h, Torm "effecctive" stiffness matrix

(K] = (K] + ¢, (K]

¢. Trianpularize (K)

4-9




2, Fnr Each Time Increment
a. Fornm [A]tand [B]t

(A1, = & DXQpper & [XTe et HIXDepe
a2 AL

(83, = -fz [XJe-agt 7[i]t-At+%§ [X1gpt

b, Form "effective" load
- r
(Fly = (PDe + Cn) [TALe + ¢, 081
c. Solve for "effective" displacements
1 . el (3
(X1, = (K17! (P],

d. Calculate Displacements, Velocities and
Accelerations at time ¢,

(X1, = € [X3, +Ciay(8]

(X), = 3 [x3, - (8],
at

(X]. = 6 [X], - {A)
t oot t

e. Repeat for next time increment
it 43 {mportant to note that for elastic structures,

the matrix (K] nesd only be formed onsce since it 1s in-
dependent of time,
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4.5 Solution of the Equilibrium Equation

Equation U4-13 expresses the dynamic equilibrium of
the system in an equation of the form, [A] [X] = [8].

The method used for the solution of these equations
is the Gaussian Elimination method,

4.5,1 Gaussian Elimination

The equilibrium equations for a system of finite
elements may be written in the following form:

A X + A X +A X ,i000e* A X =B 416
11 1 12 2 13 3 INTN 1 (4-16a)
A x A x A x R X A x d (u'16b)
a Tt T Mty * Aty B
A X + A X ¢ eseces* A X = B -
31 1 32 2 Aaaxa T 3 (4-16¢)
Alel + Aﬁzxz L4 ANsxa......* ANNXN L4 BN

The first step in the solution of the above set of
equations 1s to solve equation 4-l6a for x], or

X = Bl/Al

. - 'sz/Axx’xz°(A:3,All’xa“"(AxN/All’xN (4-17)

|

I1f equation 4-17 is substituted into equations (i-16a,
§-16b, ..., N) a modified set of N-1 equations 1s de-
termined,

) 1 1 1
Azzxz + Az’xs sessresecsscact AZNXN . 81 (nﬁlaa)

§-11




1 1 1 « Bl -
A32x2 ’ A33x3 O'..O...’ A3~x~ 82 (u 18b)

A; X o+ AV X coioi ot A x . B}

2 2 N33 NNTN N
where
A‘:-j = AL! 4" l /A A(-,’j - 2,...0' N (l'_lga)
l I
B“- = BL-AL-lBl/All VA - 2'....’ N (u-lgb)

A similar procedure 1s used to eliminate X, from equation
4-18a, ete.

A general algorithm for the elimination of X may be
written as

n-1,,m-1 -1 n-l .
X, = (8, "JA ) - j{}A 1A, )X jeon+ 1, .00.,N (4=20)

FER IR Tty B O A PO S
8 - 8 '- Az;‘(8z°‘/A:;‘) Lom e d, 000 N (4222)

Equations 4-20, 4-21, and 4-22 may be rewritten in compact
form:

X« 0D, - };cnjxj fem e 1, N (4-23)
n n‘l n-1 + .

Ai.j. A(..j - A‘(..n an ‘(-,! LI B ',onon." (u"ZQa)
87 » 82" - A:;‘ 0 Lwmed, i N (4-24p)

A-12
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where

p, = BRl/AN (4-25a)

cnj' Aﬁ}‘/A:;‘ (4=25b)

After the above procedure is applied N-I! times the original

set of equations is reduced to the following single equa-
tion

N-1 N-1

Aun Xy = By

which is solved directly for x"

N-1,,N-1
Xy = By /Ay

In terms of the previous notation, this is

Xy * Dy (4-26)

The remaining unknowns are determined in reverse order
by the repeated application of equation 4-23,

4.5,2 Simplification for Band Matrices

The stiffness matrix was placed in a "band" form which
resulted in the concentration of the elements of the stiff-
ness matrix along the main diagonal. Thereflore, the fol-
lowing simplifications in the general algorithm (equations
4.23, 4-24a, and 4-24b) were possible:

] - \_1 { = * +* - ('i-2)
X, Dn {anxj f R l,....,n ¢ M- 7
42j . Az}‘- AR Coj Lod = me i, e t-1 (4-28)
87 « 817'-all o Leme b, i, e Hep (8229)
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where M is the band width of the matrix.

The number of numericai operations can further be
reduced by recosnizing that the reduced matrix at any
stage of procedure is symmetric. Accordingly, equation

4-28 may be replaced by the following equation:

A’}. E ] A’.l‘.l- A'}_lc . ‘é' n+ 'poooo,ﬂ’“"

44 T I R B St o
since

n n

Yoo Ay

The number of numerical operations required for the
solution of a band matrix is proportional to NM? as com-
pared to N3 which is required for the solution of a full
matrix, Also, the computer storage required by the bdand
matrix procedure 1s NM as compared to N2 required by a
set of N arbitrary equations.

4-5,3 Stresses

Once the nodal displacements are known, it is pos-
sible to determine the stresses at these points, For
design purposes the following forces are required:

M‘ = Moment per unit length in the x direction

My = Moment per unit length in the y direction

M = Twisting moment at the point

Q. - S?ear force per unit length in the x direc-
tion

@, = Shear force per unit length in the y direc-
Y  tion ‘

a_ = Inplane stress in the x direction
a = Inplane stress in the y direction

¢ = Inplane shear stress at the point

414




The moments are obtalned from Equation U4-31

er -"D. 'UD 0 -w'xx
%My a |-vD  -D 0 W gy (4-31)
&M‘y 0 0 (1-v})D sz'xy
- EL3
where 7 -’—2—(-—,-:;-2—’-
The shear forces are obtained from Equation 4.32,
() (2_(y2u)
% f - _p<ax (4=32)
Q —(v2w)
LY 3y

Since the displacement W at any point 1s represented
by the 1l2-term polynomial (Equation 2.1), we can say

wix,y) = [1]x]o]x?]xu}e2]x3|x2e]xu?jx3|x3g|xv?}IIN](s}
or {w} = ([dllN](e} (4-33)

The matrix [N]~! is as shown in Figure 3.5,

From Equation 4-31, U-32 and 4-33, we get

My ) (1 v 0 0 o]l d xx ]

My v 10 0 0| dyy

Megr = =00 0 w-l 0 0]} 2d ., | (VIC4)

lQx 0 0 0 1 o0 a/axvgd i 3
ay 0 0 0 0 1||asa,v (4-34)
v JL .
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Multiplying the derivatives of the second matrix
by the first and assuming v = 0.2, we get

(Mx 0002, 0 .4 sx 2y J4x 1.2y 6xy 1.2xy]
| My 0009 .4 0 21.2x .4y 2x 6y 1l.2xy éxy
{Myyp = |000 0-1.60 0 -3.2x-3.2y 0 -4.8x2-4,8y2 1.
!Q" 0000 0 0 6 0 2 0 by by
9y 000 0 0 0 0 2 0 6 bx  6x

ny Txy
or Le) = (Kl¢} (4=35)
E vE E
h 2 = N = ; = .
where e (1-02)° 8 (1-u2) 6 2(1+0)’
but[gl [(<bey) (b-g) -y g 0 0 0 0”1‘-
;Eg =2 0 0 0 0 (‘&'l, -X (a-x’ ‘l\aj}._lb_
(YW h-mx} -x  {a-x) x (-b+y) (b-y] -y yJ up| @
i ug
vi
vy
i“'h
L.vza
or (¢} = ([75l{u} (4~ 36)




From Equations 4-35 and 4-36, we get
{s} = (KI[fHu} (h-37)

These moments, shears and stresses are in the glo-
bal system, Therefore, for proper identification, it is
necessary to convert them to the local coordinates of
the plates. The coordinate transformation matrix 1s
shown in Table i-2,

GLOBAL LOCAL SYSTEM
I Type 1 Type 2 { Typ. 3
1 1 9 p)
2 -5 -5 -9
3 -9 1 1
y 11 0 10
5 10 10 0
6 o# 11 11
1 2 12 -6
8 -6 -6 -12
9 -12 2 2
10 14 0 13
11 13 13 0
12 0 14 14
13 3 15 -7
14 -7 -7 L =15
15 b =15 3 3
16 17 0 16
17 16 16 0
18 : 0 17 17
19 4 18 -8
20 , -8 -8 -18
21 : -18 4 b4
22 : 20 0 19
23 { 19 19 0
24 0 20 ; 20

®*This and all zeros appearing here are
computer controls just to avold the ¢
local coordinate transformation.

Table 4-2

COORDINATE TRANSFORMATION COEFFICIENTS
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4-6 Response Sp2ctra For Sheltered Fquipment

6,1 General

Equipment sheltered within the structure will be
subjected to both vertical and horizontal movement at
its point of attachment. If these movements cause se=-
rious damage to the equinment, 1t may matter 1little
that the structure successfully withstood the blast
loading.

Equipment and utilities may be attached to the
structure by means of a flexible support system (Fig-
ure 4-3),

——

wlz)

Steel

|
Channels Equipment

!

L 1 J

o R
a0 S 8

g
o N >

tlqure 4-3 EXAMPLE OF A
YLEXIBLE HORIZONTAL
OUNTING

Often, this is doiue in order to isclate the item from
large accelrrations or may result simply from convention-
al attachre... proccdures, 3ecause the mass-spring system,
composed of ~~uinment and mounting, can vibrate reclative
to {ts attac.ment pelnt, its peak displacement and accel-
cration may di7fer anpraciably from that of the supporte-
In3 structure. For desiegn purposes, it is desirable to
have A zraph ¢ maximum responses at an attachment point,
for a wide ranre of mount stiffness-cquipment weight
ratics. This rraph i3 called a response spectrum,

A snectrun requires that the reactlon, delivered to
the supnortineg structure throush the mounting, does not
alier the timeiise movernent of the sunport point, Thus,
the velsht of the equlipment must be snill compared to the
suppo~ting membor, usually less than 10 percent,
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4-6,2 Definition of the Response Spectrum

The single~derree-of-recdom system considered con-
sists of a rigld mass, m, connected to the point of at-
tachment by both a welpghtless spring and a dashpot (Fir-
ure 4-4),

¢
-
\ ,
\
N—" N\~ o
N\ S
Q 7'/9/7;7/7’/7;
N7y wegtx

Figure 4-4 SIMPLE
ELASTIC SYSTEX

The spring and dashpot exert restralning forces nropor-
tional, respectively, to the relative disclacement anc
relative velocity of the mass and attachment, The dis-
placement of the attachment 1s denoted y and the sprincg
Jdeformation by «x.

The equation of motion for the system (Fipure 4-4)
may be written, i

my ¢+ ck + kx = 0 (4~38)

'

Noting that # = y + x, Equatlon 4-33 is rewritten,

m¥ + ex + kx = -my (4-39)
Or, rewritinre 4n terms of the dampline ratio,
mx ¢ Zaumx + kx = -m§ (4-49)

Por a8 snecific excltation, mi#, of 1 simole system with 4
a particular nerconta~e of eritical darpine, A, the ?
maximun sprine dlsnliacenent, x, is a functicn only of the 1
circular frequoncy of vibration of the systen, w. !
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A plot of the maximum simple system response,
whether relative displacement x, absolute displacement
w, acceleration %, or spring force kx, agalnst the
circular frequency of vibration w, or the natural fre-
quency of vibration f, is a response spectrum., The
most useful spectrum is that of relative displacement,
x. In the followinr, the spectral valuc of displace-
ment relative to the point of attachment will be desipg-
nated as U,

Maximum values of spectral pseudo-veloclty, V, and
pseudo-acceleration, A, may be conveniently defined as,

V = wl

2nflU (4-41a)

A= ol = 42212 (4=41b)

These quantities are alternate measures of the maximum
spring deformation U, If one is known, the other two are
calculated easily, When the deformavion spectrum 1s plot-
ted on a logarithmic scale as shouwn in Flgure 4-17, all
three quantities are represented, (See Page U-36)

Figure 4-17 shows the response spectra for one of
the joints in the sample structure. The time-dependent
acceleration of this joint is calculated by the pro-
cedure outlined in Section l-ll, This acceleration ve-
comes the forcing function, ¢, of Equation 4-bQ, The
calculated resronse spectrum is sirply the maxinun
spring displacenent x of the simple clastlc system of
Figure -8, The genersl characteristics of the spectra
arec as follows:

1. The spectra show marked reaks at a fre-
quency of 20 cps, corresponding to the
predoninant box-structure freguency of
response,

2. Pecak values decrease as the damping
increcases.

3. For low frequencies, tnhe maxinum spectral
displacements {eguipment rattle-space)
appreacin the peax attachrent pelint dis-
placeront,




4~7 Sample Dynamic Analysis
4-7.,1 Orientation of the Structure and Loading

In order to analyze a structure in the most ef-
ficlent manner with respect to computer time it is neces-
sary to orient the structure in such a way that the num-
ber of plates in the x direction (see Figure 2-1) is
equal to or less than the y plates and, the number of ¢
plates is equal to or less than t“e 2z plates, The Joint
coordinates are Cartesian and follow the right-hand rule,

When the structure has been oriented to satisfy the
mechanics of solution, it then becomes necessary to orient
the blast pressures and ground motion to be compatible
with the concept of the problem, There are six possible
cases of orientation of the loadine which are numbered
in accordance with Figure 4-5. The Figure depicts the
six cases, each of which is a combination of joint co-
ordinates and load coordinates, All permissible condil-
tions can be satisfied with one of the six cases., In the
case of a model not oriented in its natural position for
mathematical reasons, there may be more than one way in
which it can be turned but at least one way will be sat-
isfied by one of the cases of Fipgure 4-5,

4-7.2 Numbering Sequence

Each plate of the model 1s divided into four rec-
tangular elements, The division should be visualized as
being accomplished by cutting planes entirely through the
model, Wherever “hree planes (plates or cutting planes)
intersect there 1s a Joint, V¥hcre all three planes are
cutting planes, the joint is a dummy joint, Each Joint
is given a number by the computer, These numbers are in
sequence wilthout regard to whether the joint 1s actual
or dummy,

The joints are numbered in x, y, z sequence, (Fig-
ure 2-1), The computer starts on the xy plane with the
smallest value of 2z, The numberines 1s row-wise sequenced
downward and continuing through the z planes in ascend-
ing order.
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The elements are numbered in a manner similar to the
Joints, 1In each planc they are numbered left to right,
top to bottom. The numbering starts with the elements in
the xy plane, startinm at the smallest value of z, and
working to the largest value of z, It then continues in
the yz plane starting with the smallest value of x and
working throuph to the largest value of x, Finally, it
takes the zx planes from the lowest to the highest value
of y. No differentiation 1s made between the real and
dummy elements., The exploded box (Figure U4-6) demon-
strates the numbering sequence,

The order of recognition of the plates, e.g., for
inputting the plate thicknesses, 1s the same as for the
elements, however, the dummy plates which are introduced
in the analysis are ignored.

4.7.3 Listing of the Data on the Input Forms

This Sub-section should be read in conjunction with
input sheets 1 and 2 (Fipgures U4=9 and 4-10),

Job identification is an alphameric heading occupy-
ing not more than 72 spaces.

In the second line nx,ny and nz are fixed point
digital entries equal to the number of cross walls in the
x,if and z directions respectively. If a calculation of
response spectra 1s required, a digit is placed under the
heading "Response Spectra.,™ If thls 1s left blank, no
spectra will be calculated and input sheet No. 2 will not
be required. The Case Number refers to the orientation
of the structure and loads as described in sub-section
4~-7,.1 and Figure 4-5,

The following three lines are for the lengths of the
plates in the x,y and z directions., In the following
lines, the thicknesses of the plates are entered in se-
quence as described in Sub-.ection U4-7,2,

In 1line 9 are entered the modulus of elasticity and
density of the material of the structure, and the density
and thickness of the soll layer,

The next two lines contaln the data required to de-

fine the loads due to the blast and ground motion, which
are explained In Appendix A,
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In line 12 are entered the viscous damping factors
and the num2rical Intersratlon controls, l.e., the time
interval A{ and the number of time intervals.,

The next four lines are used to identify the Joints,
if any, at which time dependent nrint out of the displace-
rents, velocitlies and acceleratlons are required, and
also wnhich coordinate direction these resnconses are re-
quired, The coordinates are indicated numerically, 1.e.,

x =1, y=2, z= 3, Because of the large amount of
printed data that this computer program is capable of
producing, it was declded to limit the time dependent print
t> three nodal polints per run,

If response spectra are required, 1nput sheet No, 2
must be used. Spectral velocltles can be obtalned for any
twenty nodal point translational displacements, Four
different damping factors may be used, The frequenciles
at which the spectral velocitles are required are listed
row-wise in sequence to a maximum of twenty-flve,

4-7.4 Sample Analysis

The modeling of a structure, numbering of elements,
reorientation of loading coordinates and entry of data on-
to the input forms 1s demonstrated in the sample analysis,
The structure 1s shown in its natural position in Fig-
ure U-7 and reoriented with reoriented loading in Fig-
ure 4-8, The numbering of the elements 1s identical with
the sample of Figure 4-6, The data input forms are shown
in Figures 4-9 and 4-10. A printing of the input is shown
in Ficure 4<11, A sample nage from the output of load
deflection history for two points 1is shown in Filgure l-12,
Figures 4-13, U4-14 and 4-15 show the maximum displacements,
velocitles and acclerations, After each of these list-
ings, the time at which these maxima occured is also print-
ed, Fi ure 4-16 shows the maximum positive stresses in
the elenents in local coordinates., The complete printout
lists the moments M , M and M, » the forces Q and 9,
and the stresses o_y © { and Tx?. This 1isting is follow-

ed by a listing ofxéheutimcs at “which these maxima oc-
cured, a listing of the maximum negative stresses and the
times at which the maximum nersative stresses occured.
Pirure =17 shows response spectra for the midpolint of
the base slab 1In the vertical direction,
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Sectiovn 5
DYNAMIC RESPO!ISE ANALYSIS - HON-LINEAR
5-1 General Procedure

The non~linear dynamic analysis is carried out by

.a step-by-step procedure in which the structure is as-

sumed to respond linearly during each short time in-
terval. The elastic properties may be changed, however,
from one interval to the next; thus, the non-linear
response 1s obtained as a sequence of linear responses
of successively differing systems.

The analysis procedure involves the repeated appli-
cation of the following steps for each successive time
interval:

First: the stiffness matrix appropriate to the time
interval is evaluated, based on the forces
existing in the plate elements at the begin-
ning of the time interval.

Second: changes in displacements of the elastic struc-
ture are computed, assuming the accelerations
to vary linearly during the interval.

Third: these incremental displacements are added to
the deformation state existing at the begin-
ning of the interval, to obtain tctal element
deformations.

Finally: based on these element deformations, plate
forces are computed from which the stiffness
matrix appropriate to the next time interval
may be determined.

5-2 Failure Criterion
5-2.1 Method of Failure

There is no well established theory of failure of
plates under the combined effect of bending and inpiane
forces. Therefore,in this study an assumption was made
that the plates would fall in bending first, and once
having failed, a plate could not recover its bending
dtiffness. Also, a plate 1s assumed to continue to

5-1




contrihute elastically to the overall stiffness of the
structure thrcugh its inplane stiffness after losing
its bending stiffness,

Each element can lose its bending stiffness in-
dependent of any other element, The whole structure is
considered to have failed when the annlication of load
Is such that a sufficlent number of elements have failed,
so that the stiffness of the structure becomes singular.

The stiffness matrix will become singular when all
the elements coinciding at a node point will not provide
aditional flexural constraint thereby permitting infi-

nite displacements at that node.

5-2.2 Fallure Assumption
Figure 5-1 shows the Johansen's yleld line theoryll

applied to a uniformly loaded rectangular plate clamped
on all four edges.

negative lines —
e T

S o

L\

vositive lines-;

Pigure 5«1
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Based uvon vield line theory, a kinematically com-
patible system of forces rlves an upper bound to the
solution whereas using any statically admissible system
will cive a lover bound. Investications have shown
that the difference between the two methods of solution

53 3nzll, and that the yield line theory glves conserv-
ative answers., (See Section 6)

The angle ¢ 1s determined so that a ninimum value
of load p 1s obtained which will cause the plate to
reach its yield capacity Hn.

Assunming the moment capacity is the same for pos-
itive ana nensctive merments in both the X and VY directions
"1t can be sald,

(1) =xternal Work

W = nbztﬁn¢ + ub2t1n¢ + 2p b (a-bt3n¢) U
‘e T g % 7g e Pr ‘ 7 (5.1)
2 5-1
= p% tang + pg (a-btan¢)
(2) 1Internal Work
wo= 20 L w2 Lieze Laan 2
» htang b b btane
(5-2)
=g L 42
“ tané b

quatine we and ”L and taking the derivative rives

52 52 2
0 b4 .02 b : -
‘UT‘E-O-';Z" ¢ ")3- ting - ‘,7-0032‘3 - ")? tdn¢ + 8 ‘,’32 = 0
s5Ln“ ¢
Since =0
9 o= 48 (5“3)
¢ p

b2tang¢?

Innce fronm Raquatlons 5-2 and -3 substitutinz for AN




Y a b [ al
431p Toans' Tbtan2eé Ttang] - Sip £ang * b, - 0
pe | -
or tang = % +;/%2 + 3 (5-4)

5=-2.,3 Failure Condition

Since the finite elements are equilibrated to nodal
noints at the four corners, it 1s necessary to make
sone assumntlion as to the development of the yileld
moment. The method elected was to averacse the moments
i, the ¢ direction at all four corners and compare the
avirare fo ronent capacity of the element,

Using wlohr's circle, the moment at a peint which
makes an angle ¢ with the V axis 1s,

e = ycos2¢ - ‘Uxysin?y + xsin?¢ (5-5)
and the fallure condition is,

[} 1 4: 4 j [] k ] C
Jp <7 (M¢ + J@ + J¢ + Jo ) (5-~6)

5-3 Samnle Non-linear Analysis

A sinrmle cell box structure was defined as shown in
?{eoure 5-2,

The structure was N0 feet sauare hy 20 feet deep
with walls 0,3 fret thick, DNDlf%arent moment canaclties
were assirned to each nlate so that the e”fect of suc-
cesslve “atlures could he demonstrated,

Figure 5-3 shows the input form and Figure 54
shows a orinting of the input,
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SATIPLT It eRannt D SMRUCTURE

Fioures 5-5, 5-6, and 5-7 are selected sheets fron
the output, Firmre 5-5 shows the Load Deflection History,
After each increrment of time the moments In each plate
are compared to the assurmed average morent capaclity of
each plate, ‘hen any plate has failed, thc plate nunber
13 printed on the output, The process continues until a
sufficient number of plates have failed to produce an
unstable structure, at which point the computer halts any
further analysis and prints out maximum displaccrnents
(Firure 5-6), velocities and accelerations, The maximunm
positive rorments and naxinunm nerative nonents (Ficure 5-7)
are also printed out, The ti~mes at which these rnaxima
occur are also printed,




[¥1'0+(i1°2 = (0] :a30y on ! Sovet  seceeot el
e FR g0 dRCUON e 39 e %]
- i.!..mti 0T €8¢ "CCLIT ~ *000LT “uofg *00seT
a BT mmmrn Nw\xmbu:ichcv qa Amrcviqz dwcv aV . (3e) & M
I»I;I;S:.‘o T on'g .wm..tm;: - gce  foocsT  tsT T "ty
Y m 5 o 1 (03s),%g  (sus) 0 - (3s4) Y ¢ Aucv o
, ge 69°2 *cel vety
1 oy TTTIFes LT (LO/UTD) T A iﬂ.mm;v? ]
T *00G .oSm a1 .md e "3
M A»MM»M|xv sousnboy U] S93ETa 40O muﬂomc T) 3LUOWO,, DLEIIAY
.”. £ e A S S
T (8 Vi,w,mﬁmﬂw_..ﬂ,wmu«ﬁa S0 SsouNOTuL
SIXy=-2 ! | ; *CY
L T T
SIXY-X : - M, ‘o
(34) S@3E]g 40 LU3eLI]
S93BUIDIOOD L0 d3Gwn} N T2 o N )
STXy~2 [ SIXYea STy
90 /21/01 GSUOUSey JTBOUTT~UOl, JTWEUA( X0y oTwuUiy |liFoHrctc G by
T UOT3EDT,TIUSPI Gor I
¥6/21/01 238U
2u=T=SLr] WBJIZOJdg SET Ag snuuz

STSATEUYy JE3UTT—-UOj,
$3ANJONI3S X0g puncd.JIapuf)

™ =ure $5-3

NeuT

AR PROCRAY -

-
il

TONSLLNE

5-6




e

OYNAMIC NON-LINEAR ANALYSIS OF BOX STRUCTURES
SAMPLE PRUBLEM so4 SINGLE BOX DYNAMIC NON=LINEAR RESPONSE +es 10/12/66°

NOe OF JOINTS

X OIRECTION = 2
Y DIRECTION = 2
2 OIRECTION =2 2

MODULUS OF ELASTICITY
STRUCTURE = 432000,00 KSF

SOIL  =1255444472 KSF
RO =" 7150400 LB/CUGFTs
KO 3 0,33

LENGTHS OF PLATES

X DIRECTION = 40,00
y DIRECTION = 20,00
Z VIRECTION = 40400

PLATE THICKNESSES

0,30 0030 0036 0.30 0030
MOMENT CAPACITY (KoFT/FT)
20,00 20000 15.00 15400 100+00

BLAST AND GROUND MOTION CHARACTERISTICS

WMT) = 20400

PSO(PSI)= 15000

ALOHA = 1,36

BETA = 8e¢40

A 8 067
DP*(SEC) = 40 TIME INCpEMENTS

3 008
UIFPS) = 15000400
R(FT) = 12500,00
DELR(FT)2 8300400
VLIFPS)2 17000400 TIME INCREMENT =
VLPLFPS)= 11700400 ‘
TM/T2 = 0,83
SPoGRAV ¢ = 2069
P FACTOR=2 4400

PHASING = =0000000

DAMPING FACTORS . _
ALPHA = 1004000000 BETA = 04000025

Figure 54
PRINTING OF INPUT

5-17
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500400
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LOAD-UEFLECTION HISTORY

LOAD IN KIPSs DEFLECTION IN FTs TIME IN SEC

5«2

TIME LOAD QEFLECTION

5¢3 .0.000000
PLATES»® NONE
21,4 0000000
PLATES s NONE
47,46 04000002
PLATES## NONE
1246 _QOOOOOOS
PLATES®## NONE
971 0.000009
NEW FAILED PLATES®= NONE
0400300 _ 120,) 0.000013
NEW FAILED PLATESao NONE
000350 13043 _.0.000016
NEN PAILhD PLAYEsaa NONE
0.00400 128.1 0.000018
NEW FAILED PLATESO% NONE
000450 124.6 01000018
NEW FAILED PLATES%#

0,00050
NEW FAILED
0.00100
NEW FAILED
0400150
NEW FAILED
0400200
NEW FAILED
0400250

15
0,00500 121,2 0.,000017
NEW FATLED PLATES#é

3
0000550 118,0 0+000018
NEW FAILED PLAT&S»n

6
0,00600 114,9 0.000017
NEw FAILED PLATES#a NONE
0400650 112,90 0+000012
NEW FAILED PLATES## NONE
000700 109,1 0000005
NEW FAILED PLATESH#

13

11=Y

LOAD DEFLECTION

155,9 0.000011
311,7 0,000090
463,6  0,000301
607.9 0,000703
75247 04001352
78641  0,002290
T6446 04003522
743.8  0,005031
7239 0.006793
70413 0.,00R790

11
686,3 0.011003
66812 0.5?3415 24
6516 0,016012
635.1 0,018779

14 21 22

FAILED PLATES PRODUCE SINGULAR STIFFNESS MATRIX,

STRUCTURE BECOMES UNSTABLE

Figure 5«5
LOAD-DEFLECTION HISTORY

5-8

734K

LOAD DEFLECTION

71.1  0.,000001
14046 'o.ooooos
13606 04000014
132.8 © 7,000022
129.1  0.000024
1256  0,000019
122»2 0,000011
119.0 04000006
11548 04000007
112,8  0,000015
10949 04000019
107,2  0,000017
104,5 04000009
101.9 =0.000000
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Section 6

SYNOPTIC REVIEW OF SELECTED LITERATURE PERTAINING TO THE
FAILURE MODES AND FAILURE LOADINGS OF TWO-WAY SLABS

6-1 Introduction

. In the search for, and review of publications, emphasis
was placed on reports of the results of load tests to
failure and comparisons of test results with predict-
ions calculated by analytical methods. The region of
interest, in the load-deflection history of slabs,
starts at the beginning of yield in the reinforcement
and ends at collapse of the slabs. Slabs are assumed
to have less than balanced reinforcement.

All of the tests, of which reports were examincd, were
made with static loads. Where the location of the test
was reported, it is given in this review. Generally,
locations are not reported but inasmuch as the tests
were made in laboratories, it is assumed that they were
facilities of the activity with which the author was
connected.

In the listing of references, those publications which
were considered to be significant contributors of know-
ledge in the region of interest are abstracted. Many
other reports were examined and those addressed to ob-
jectives which bear to some lesser extent on the region
of interest are listed but not abstracted.

6-2 Synoptic Review of Selected Literature

The pertinent phenomena reported in the region of
interest are: :

1) The yielding of the reinforcing steel.

2) The arching action of the slab.

3) The improvement of the plastic deformability
of the concrete in the triaxially compressed
zone.

4) The mobilization of tensile membrane forces
in the suspended net of steel.

The excitation of interest in the post-yleld history
of overloaded slabs appears to have been triggered by
Ocklestons!*report of his load tests to destruction of

¥ReTerences designated by superscript in this Section 6
are found on pages 6-6 to 6-12,




some two-way slab floor panels in a reinforced concrete
building in Johannesburg, South Africa, which was avail-~ -
able because 1t was scheduled for demolition, Ockleston
reported cracking patterns agreeing with the Johansen
Yield Line Theory, but that he obtained failure loads
over 2% times analytical predictions according to the
theory. Approximately 2% years later (June 1958) he
reported? his re-examination of his test results and
his success, with a simple theory which he produced,

in rationalizing the high fallure loadings as result-
ing from the superposition of plastic hinge moments and
the resisting moment produced by arching action of
compressive axial force induced in the slab by large
deflections associated with the functioning of plastie
hinges.

A somewhat idealized version of arching action in a
slab is depicted in Figure 6-1. It is assumed that
the slab 1s under-reinforced, as is normally true,
so that the concrete behaves elastically above the
yield moment of the steel.

Relatively large deflection of the slab after the form-

ation of plastic hinges imposes compressive strains for

the simple reason that the diagonal distance, d, between
compressive stress block centroids, is greater than

the horizontal distance, £/2.

It is readily apparent.that these compressive strains
will not be imposed unless the structure surrounding
the ylelding slab 1s stiff enough to function as an
effective abutment. It 1is also apparent that the

limit of arching action is reached when the lever arm
reaches zero and that, with small additional deflection,
the lever arm becomes negative and the stored inplane
strain energy performs work contributing to plastic
hinge rotation. Thils produces additional deflection
with rapidly diminishing load, transforming work already
done into tensile membrane strain energy in the steel,
which 1s already past its yield point. With sustailned
load, the rupture stress in the steel 1s llkely to be
reached, particularly with large depth span ratios and
very stiff abutting structure. With impulse loads,

the work of which is quickly transformed to kinetic
energy, the kinetic energy remaining when the steel
becomes the sole survivor may be within the capacity of
the steel to accept it below the rupture stress. The
worth of the suspended steel net depends considerably
on the stress-strain properties of the steel above 1its
yield point stress.
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Figure 6-1

ARCHING ACTION IN A YIELDING SLAB

The characteristic load deflection curve is shown in

Figure 6-2.
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CHARACTERISTIC LOAD DEFLECTION CURVE OF REINFORCED SLAB

WITH ARCHING ACTION MOBILIZED BY LATERAL BOUNDARY
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The foregoing synopsis of load-deflection history is a
syllabus, to a large extent, of the findings from ex-
amination of Relerences 1-12, inclusive, Tes%ts re-
ported by Park?® and by Christiansen® manifested the
existence of arching action and emphasized its de-
pendence on lateral boundary stiffness. Christiansen’s
results with two quite widely differing cube strengths
pointed up the sensitivity of arching action to the
inplane stress-strain relation. SelfS reported tests
with cold=rolled and hot-rolled steel which suggested
the effect of strain hardening on the plastic hinge
resisting moment. Gamble and Sozen’ reviewed the 1it-
erature and studied the results of five scale model
tests made at the University of Illinoils by Seiss?, and
advanced five reasons for the calculation of failure
loads significantly less than test results, These are:

1) Incorrect determination of steel strength
2) Strain hardening of steel

3) Erroneous location of yield line

) Arching Action

5) Effects of deformation of the structure

Undoubtedly, the increase in load capacity above the
yield point in the steel 1s a superposition of strain
hardening and arching effects. Hodge and Perrone‘,
Hillerborg® 9, Crawford!®and Kemp!! report finding by
means of theory that the yield line method gives an
upper bound and that there 1s a lower bound that can

be determined by finding a distribution of moments
which satisfies the boundary conditions and the equi-
1ibrium equation®, Kemp found the lower bound to be
only slightly less than the upper bound, but found the
yield lines to be an infinite set of curves. These
theoretical findings regarding the failure load are

not borne out by the tests reported upon, in which test
results were higher than calculated values, Gamble and
Sozen? found this to be true in the literature they re-
viewed and the results of scale model tests they stud-
ied. Relative to their advancement of incorrect de-
termination of steel strength as one ¢f the reasons for
low calculated failure loads, the authors of the publi-
cations which have been examined, in which analytically
predicted and experimental results were compared, did
not report whether or not they had determined, by test,
the yield point of the specific reinforcement earmarked
for use in experimental loadings. The yleld point
stresses specified, according to steel grades, are the
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producers' guaranteed minima, which are exceeded approxi-
mately 15 percent by the mean value.

Brotchic, Jacobson and Okubo!2 report the results of
the comprehensive tests and investigation made at the
Massachusetts Institute of Technology under contract
with the U. S. Naval Civil Engineering Laboratory,

Port Hueneme, California. This recent (August 1965)
supported work in the field appears to have been a
well integrated, comprehensive experimental 1lnvesti-
gation of the behavior of two way square slabs, sup-
ported around the four edges, with and without moment
restraint. They were restrained against lateral dis-
placement, but with strain gauge cells which permitted
the restrainiug forces to be measured. The report
presents straightforward analytical equations which,
with a few exceptions, agree reasonably well with the
results of the experiments. A feature of the report,
not found in other literature examined, deals with the
effect on concrete strength of the triaxial compression
in the positlve moment hinge area, comprised of axial

forces 1In two directions and the vertical force of

applied load. The authors conclude that, "The com- 1
bination of increased load capacity and improved

behavior produced by arching action is sufficiently large
and sufficiently predictable, to wurrant its serious
consideration in design." They suggest 1its application

to the roof and walls of reinforced protective structures
of various kinds, eg. shelters, block houses, etc.,
particularly subt :rranean. They caution that, "tensile
membrane action may be considered only in situations where
excessive deflections are tolerable and reuse is not
necessary: such as, protective slabs under debris loadine."

Regarding the predictability of the increased load capacity
produced by arching action, the authors did not address
themselves to the problem of determining the lateral
stiffness of the boundary of the loaded slab in an exist-
ing structure. Arching action is sensitive to lateral
stiffness at the boundary and this pareineter needs to be
estimated rather closely. A structu:e may be designed
with boundary lateral stiffness provided in such way that
its effectiveness may be reliably verified by analytical
methods, but such design may not be found in existing
structures. ~

The capability of the tensile membrane to provide pro-

tection agalnst catastrophic failure under destructive
dynamic loading of buried structures is subject to certain
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reservations which demand thorough consideration. Tensile
membranes which are the surviving intact components of
external horizontal slabs will be subjected to the sus-
tained gravity load of earth overburden and residual
kinetic forces. Cracked external walls with relatively
large deflections will be axially lcaded with the

gravity reaction of earth overburden. If the concrete

is not too badly crushed, this force will provide some
resistance against the lateral forces. If the concrete
toward the outside face 1s ineffective in compression, the
line of force may be so far toward the inside face that
the gravity reaction will contribute to collapse of the
walls. The tensile membrane has no capability to resist
collapse from such cause. The lateral force will be
comprised of residual kinetic force and lateral pressure
of disturbed soil. The tensile membrane has capacity
within its strength limitation to resist these forces,
provided the vertical force does not cause collapse.

6-3 Seclected References with Abstracts
of More Pertinent Publications

1. Ockleston, A. J., Load Tegts on a Three Story
Reinforced Concrete Building in Johannesburg, The
Structural Engineer (London) October 1955, P.307.

Pull scale statlic loading tests to fallure were run

on two 16ft,by 13rt,.6in, reinforced concrete slab panels
which were part of a beam and slab floor system 27ft.
wide by over 100ft. long. Slabs were bounded by
transverse main beams spaced 16ft. apart and scc-
ondary longitudinal beams spaced 13ft. 6in. apart.
Crackling pattern agreed with Johansen Yield Line

Theory but fajlure loads were over 2% times the
analytical predictions.

2. Ockleston, A, J., Arching Action in Reinforced Con-
crete Slabs, The Structural Engineer (lLondon)
June 1958, P.197.

Ockleston re-examined the results of his earlier
tests (ref. 1) and succeecded, with a simple theory
he produced, in rati nalizing the high failure

loads as resulting from the superposition of plastie
hinge resistance and the resisting moments afforded
by compressive membrane forces.




Park, R., The Lateral Stiffness and Strength Re-
quired to Ensure !Membrane Action at the Ultimate
Load of a Reinforced Concrete Slab and 2eam Floor,
Magazine of Concrete Research (London) Vol. 17,
No. 50, March 1965, PP.29-35.

Sand-cement mortar models of a nine panel slab

and beam floor were tested to failure under static
uniform load on the interior panel. Tests were

made at the University of Bristol. Panels were 12in.
square and varied in depth from about 3/8in. to

about 11/16in. Twenty slabs were tested, varying

in ages from 9 to 14 days. High abutment stresses
were manifested by dlagonal cracks across a corner
of the surround, consisting of the eight exterior
panels. The ultimate loads of the interior panels
of slabs with continuous tee reinforcement showed
good agreement with theory which includes compressive
membrane strains in the panel, and lateral edge
displacements once the concrete had cracked, but

did not reach the results of theory which ignored
these strains and displacements. Results emphasize
the importance oi abutment stiffness in the mobili-
zation of arching forces.

Christiansen,K. P., The Effect of Membrane Stresses
on the Ultimate Strength of Interior Panel in a
Reinforced Concrete Slab, The Structural Engineer
(London) Vol. 41, No. 8, August 1963.

Christiansen, a Civil Englneer in Copenhagen, per-
formed the reported work and wrote the paper while

a lecturer at the University of Witwatersrand,
Johannesburg, South Africa. The author presents

his theory for cvaluation of arching actlion in slabs
and reports results of tests of 4 ldentical pairs

of simply supported beams, with one of each pair
axially restrained by a welded steel frame and the
other, unrestratned; all beams were 6 inches wide
and spans and depths were 60 x 3.5 inches, 60 x 3
inches and 72 x 3 inches. Load carrled by arching
In the axially restratned bcams was 30 - 3%% of

the total {n three cases with cube ctrengths from
h090 te 4975 pst, and 70% of the total in a 60 x 3.5
tnch beam with cube strength of 5660 psi. Author
concludes that although loads supported by arching
can be predicted with some accuracy, more research
15 required to make arching action a reliable and
uscful part of design.




Self, W, M., Ultimate Strength of Reinforced Concrete
Flat Slabs, Journal, Structural Division, ASCE

Vol. 90, No. Sth4, August 1964, P.205. Three
reinforced concrete slab models were tested. Slabs
were 10 feet square by 2 inches thick, and supported
by four interior columns producing an interior

panel 5% feet square. Overhang balanced moments

over columns, thus eliminating influence of column
stiffness,

Yield line pattern conformed to predictions in
accordance with Johansen theory. Ultimate strength
of slab No. 1, reinforced with cold--rolled steel,
was 9% above prediction; slah No. 2, reinforced with
hot-rolled steel, reached an ultimate strength 17%
above prediction. (Slab No. 3 failed in shear before
flexural yield). The variation is indicative of
strain hardening of steel. The slabs lacked sur-
rounding confinement necessary to mobilize compres-
sive membrane forces.

Hodge, P. G., Jr. and Perrcne, N., Yield Load of
Slabs with Reinforced Cutouts, Journal of Applied
Mechanics, Vol. 24, March 1957, PP.8%-92.

Presents a method of computing the upper and lower
bounds on the capacity of a plane slab with a
reinforced cutout to carry unliaxial tensile loads
which are elther uniform or anolied by means of a
rerfectly rigid clamp. Results are applied to
scveral examples and found to agree quite well
with experimental values.

Gamble, W. L., Sozen, M. A., and, Siess, C. P.,
Measured and Theoretical Bending Moments in Rein-
forced Concrete Floor Slabs, University of Il1llnols
Civil Enginecring Studles, Structural Research
Series No. 246, June 1962.

Test results of two-way slabs reportetl in the 1it-
erature and results of five tests of Jdiffering 1/4-
scale slab models, performed at the University of
Illinoils, were reviewed with the objective of
developing a slab design procedure.

Slab strengths were calculated according to yleld
line thecory, Moe's formula for shear strength,
Elstner and lognestad punching shear equations or
the equation from ACI committee 326,
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In nearly all of the tests reported in the 1it-
erature, the specimens falled at loadings higher
than cal ilated according to yield line theory.

Some reasons advanced for the low calculated values
are:

Incorrect determination of steel strength.
Strain hardening of reinforcement.

Errors in establishing location of yield
line.

Arching of compressive membrane forces.

. Effects of deforrmation of the structure.

o= w o=

In most of the five University of Illinois tests,
the flexural mode of fallure was complicated by
other distress (shear failure, beam-column distress,
etc.). The test results indicated that if flexural
failure had been allowed to occur, the failure

load would have exceeded the results obtained by
yield line analysis.

Hillerborg, A., A Plastic Theory for the Design of
Reinforced Concrete Slabs, Preliminary Publication,
International Association for Bridge and Structural
Fngineering, Sixth Congress, Stockholm, 1960.

Conclusion is reached that although the yield lire
theory will rcveal the magnitude of a load great
enough to cause fallure through the formation of
plastic hinges, the load i1s theoretically unsafe
since other yield lines may form at a lower level.

The equilibrium theory states that if a distribu-
tion of moments can be found which satisfies the
equilibrium equation and the boundary conditions,
under the action of a given load, and these moments
do not exceed the yield moments at any section of ,
the slab, the slab 1s capable of carrying that load.
This 1s a lower bound and the exact ultimate load is
somewherce between the results of the yield line and
equilibrium theories.

Hillerborg, A., Theory of Equilibrium for Rein-
forec 1 Conerete Slabs, Department of Scientific

and Tndustrial Research, Building Research Station,
Library Communication No. 1082, Great Britain.
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10.

111,

If, for a certain external locad, g(x,y/), a moment
distribution can be found which satisfies the
equation,

82m 32m 32?’1
X Y 4 X
- = -'Q‘xig)

ax2  ay?  axdy

and the edge conditions, and if the slab can take
up these moments at each point, g(x,y) is a lower
limiting value for the bearing capacity of the slab.
The moments are not ccupled and therefore, two

may be selected arbitrarily and the remaining one
solved.

A practical solution 1is advanced, involving the di-
vision of the slab into strips, in which the load
in one strip is carried in one direction only.

Crawford, Robert E., Limited Design of Reinforced
Concrete Slabs, Journal of the Engineering Mechanics
Division, American Society of Civil Engineers,

Vol. 90, No. EMS, October, 1964,

The yield line theory is considered in terms of
limit analysis and is shown to give an upper bound
on the collapse load. Similarly, the equilibrim
theory is reviewed and shown to give a lower bound.

Kemp, K. 0., A Lower Bound Solution to the Ccllapse
of an Orthotropioally Reinforced Slab on Simple
Supports, Magazine of Concrete Research (London)
July, 1962.

A lower bound solution to the collapse of a simply
supported, rectangular slab, orthotropically rein-
forced and carrying a uniformly distributed load is
developed. The lower bound collapse loads, cal-
culated for a range of coefficients of orthotropy
and ratio of width to length of slab, agree closely
with the upper bound values derived from the yield
line theory. The yield lines, however, are quite
different; they are found to be an infinite set of
curves in the lower bound solution. With the solu-
tion, the negative reinforcement required in the
corners of the slab and the loads transmitted to
the supporting edges were determined.
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12.

Brotchie, John F., Jacobson, Amnon and Okubo, Sadaji,
Effect of Membrane Action on Slab Behavior, Report,
Department of Civil Engineering, M.I.T., U.S. Naval
Civil Engineering Laboratory, Port Hueneme, Calif-
ornia, August, 1965.

Forty-five square slabs of plain and reinforced
concrete were tested under uniform loading. All
spans were 15" x 15". Thicknesses were 0.75",
1.5" and 3.0", resulting in span/depths ratios of
20, 10 and 5.

Lower reinforcement only was used, distributed
uniformly and equally in each direction. Reinforce-
ment ratios were 0%, 0.5%, 1%, 2% and 3%.

Five sets of boundary conditions were used:

1. Restrained at edges against axlal elonga-
tion only, at approximate level of rein-
forcement, by 24 cells.

2. Same as 1, with added resistance to internal
shear in the slab at the support.

3. Same as 1, but with level of restraining
force raised to the middle of the edge
surface of the slab.

i, Slab clamped at the supports by top piate
and base plate and restrained at the
edges by epoxy resin fill,

5. Simply supported on 0.75" diameter roller
bearings.

The steel restraining frame was desligned for essen-
tially complete lateral and vertical rigidity. Twelve
of the 24 restraining cells, uniformly distributed
along two adjacent edges, were wired with electrical
resistance strain gauges for measuring the restraining
force,

The effceet of arching was found to be significant in
_slabs with span/depth ratios of 20; equivalent in load
capaclty to approximately 2% of conventional rein-
forcement. The effect of arching 1is greater for thick
slabs and, for span/depth ratios of 5, 1s equivalent
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to over 3% of conventional reinforcement. External
restraint, mobilizing arching action, increases gtiff-
néss and reduces cracking. When maximum arching -
supported load is reached, however, load capacity drops
while deflection increases, allowing sudden failure if
the slab is lightly reinforced and the applied loading
is sustained.

The magnitude and distribution of %the restraining force
indicates that essentizlly the full capacity of the
concrete in compression i1s utilized, when the slab is
restrzined.

For thin slabs, essentially full edge restiaint is
necessary to mobilize the full increase in load capa-
city. For thicker slabs, additional edge displacement
may be tolerated, without significantly reducing the
load capacity.

The effect of direct normal stress due to the uniform
load, in combination with two-way inplane stresses,

is to produce a triaxially compressed zone. In the
case of very thick slabs, that is, span/depth ratios

of 5, the effect is apparently significant; the plastic
deformability of the concrete in the compressive zone
is notably increased.

Tensile membrane action is significant only at deflec-
tions which are too large for use in resisting service
loads. The tensiie membrane action may have some
appeal, however, to provide protection against col-
lapse in the case of a single catastrophic loading,
particularly in view of the energy absorption which
precedes in this range.

Simple theoretical expressions are presented which

were found to predict, with some exceptions, the ranges
of behavlor described.
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Appendix A

COMPUTER SUBROUTINE TOR CALCULATING LOADS
ON AN UNDERGROUND BROX

The formulation of the load subroutine contained in
the computer nrogram 1s described in this anpendix,
Pressures felt by a shallow buried box are calculated
using the enginecring annroach of Refercnce 2 (Chavter U4),
Soil-structure interaction has not been considered, ner
se, The loading formulation assumes that the overpressure
of interest are less than 100 psi., Also mepgaton yield
weapons are assumed,

A-1 Airblast Characteristics

This section is a brief statement of the airblast
characteristices, as recorded by Brode in A Review of
Nuclear Explosion Phenomnena Pertinent to Protective
Constructionl>, This reference should be consulted for
a complete review of the nhysical phenowcna pertinent to
protective construction,

Figure A-l shows the shock arrival time £; and the
shock radius Rg for the overoressures resultine
from the detonation of a 20 INT bouwd, These values
depend upon the enerpgy of the exnloslon and may be
scaled by the cube root of the yleld ratio in mega-
tons for yilelds other than 20 MP, This fimure also
1llustrates the shock velocity as a function of the
neak overpressure which 1s independent of weavpon
yield.

The time history of the overprussure is described

quite well at all pressure levels under 100 psi by
the sum of two decreasing cexponential functions of
time:

8P = 8P (ae™®" 4 be 8N (1-1) (A=1)

where v is the time after shock arrival measured

in units of positive phase duration, To force this
curve to ro to zero overnressurc at the end of the
positive ohase, a linecar factor has bec. included
that becours zero at a time equal to the duration
of the positive phase (r=] when r-xs-v;).
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Fipure A-2 gives the values of all shock parameters
and coefficients necessary to obtain the pressure-
time curve for a piven peak overpressure,

Curves showlnp the pressure time relations based on
this analytical expression are siven in Fipgure A-3,

A-2 Gencral Characterlstics of the
So0ill Pressure VWave

The alteration in free-ficld form of the vertical
pressure vave as it propresses into the soll is illus-
trated in FPigurc A-4, The surface soll pressure has a
very ragid rise, an exponential decay, and a duration
time, Dp, similar to that of the airblast oressurec wave,
At greater denths a reduced soll pressure veak and a
somewhat lenpthened duration are oresent, Also, a
lenpthenad rise time to peak soil pressure takes place,
The impulse -~ total area under the curve -~ 1s nearly
constant,

The attenuation of stress with deoth 1s generally
attributed to two causes, enersy absorotior by the soil
and by three dimensional dispersion of the enermy. Ine
formation rerarding enerey absorption is not available
in a form useful for calculating loads. Three-dimension-
al or spatial attenuation can be aooroxiinated by the
followinsg exoression proposed by Newmark?:

Pom = %y aP, (A=2)

ay = — (A-3)

’ ¢ —

L
1
w (Apa)l/;

where °P, = peak overprecssuee at the
surface, psi

« maximum vertical soil stress
VM at depth v (ft), psi

a, = preonmctric attenuation factor

2 =
n

yield in mepmatons
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= peak or shock overpressure
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a = Depth Attcnuation Factor (Equation A-3)
b 4
r

= Time to Maximum Pressure (Equations A-5,A-6)

Figurc A-A
VERTICAL SOIL PRESSURE WAVE
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The above approximation does not permilt soll stress
hipgher than the peak overpressure, a condition that can
truly apply only when the alrblast velocity 1s low com-
pared to the seismic velocity,!®

At the 100 psi range of a 20 MT surface burst, the’
geometric attenuation factor {Equation A=-3) for 100 feet
of depth is 0,86, For lower overpressures, higher yields
or less depth, the attenuation factor apprcaches 1.0,

Referring apgain to Figure A~l, it is obvious that
1,, the time required for the vertical soil pressure to
- reach its peak value, can never be less than the alr-
blast rise time, Figure 2-2.3 of Referznce 3 gives an
indication of the maghitude of this airblast rise time,
as it varies with ov-~rpressure., However, the value of
rise time 1s not well defined.

Reference 2 expresses the rise time in soil as;

+ L4 (A-5)

c C.
p £

tr = trab

where z = airblast rise time

depth of interest

A~
n

¢ = seismic velocity consistent with
! P the loading modulus oi the soll

¢, = seismic veloclty consistent with
the initial tangent modulus of
the soill,

When the values of G¢p and ¢{ are not well defined,
an approxlmate evaluation of the rise time must be made.
In view of the many uncertainties regarding airblast
rise time and soll properties, Reference 2 suggests an
approximation; that the rise time be taken as one-half
the time required for the peak stress to reach the depth
of interest.

t (A=6)

=14
r c
t%p
This expression (Equation A-6) has been used within
the computer program,




Horizontal stress in the soll, Pj, is taken as some
constant times the vertical soil stress,

p, = K Py (A-T7)

The value of the constant K, depends upon the soil prop=-
erties, the degree of saturation, the stress level, and
the condition of lateral restraint at the depth of in-
terest,

A-3 Loads on the Box

Each finite element of the box-~structure's exterior
roof and walls 1is assigned a load-~time history. Figure
A-5 shows a roof element, a side wall element, and a
front wall element, This figure gives each dimension
used in calculating the 1dealized pressures on the box,
Table A-1 1lists the formulas used in calculating the
form of the pressure on each finite element, expressed
as an average uniform pressure over the element,

A-3.1 Roof Pressure

The vertical oressure on a roof element initlates
with the arrival of the shock front at the leading edsge
and builds up to a maximum as the shock front reaches
the trailing edge. The average pressure is assumed to
increase linearly from zZero to its maximum value during
the time required for the shock front to travel across
the element (see Table A-1),

Since the box roof is divided into a number of
finite elements for analysis purposes, the average pres-
sure is consldered element-by-element in the direction
of the shock travel,

Arching of the soil above the roof is not considered.
Also, spatlal attenuation of the peak nressure with denth
of cover is not considered,

A=3,2 Wall Pressure

The horizontal pressures 1n the soil are calculated
empirically by multiplying the vertical pressures by the
coefficient of earth pressure at rest, Ko, The analyst
choses the value of Ko believed appropriate for the
added increment of airblast induced horizontal stress,
Suggested values are given 1in Table A-2,
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Pressure
(roof)

AP

fosm.

PP = AP(tz)

“ P, = K,aP(t,)

S 1

3 t2 = otl+-2-t3
w

(=%

<

[»]

193

|
|

_ D+
%~12 p —
Time
I,ocation Time in Seconds
of Element¥*
4 1,
Roof dn/u b/u
Wall: e
Front dt/cp tr + (b/cp)
, ,
Rear (L/u)+(dt/rp, tr + lo/cp)
Side (dn/u (dt/cp) tr + (b/cp)
d
] t + b/2
[ X = e oo ——
tr 7 cp

¥ See Figure A-5 for definiti-. of
box dimensions

TABLE A=l
AVERAGE PRESSURE ON AN ELEMENT
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No spatial attenuation of the peak horizontal soil
pressure has been included in the programed calcula-
tions, Very little spatial attenuation is predicted by
Equation A-3 for depths less than 100-ft,, located -
within the 100 psi range of megaton weapons, The co-
efficients of lateral earth pressure at rest (Table
A-2) are too crude to be modified further by a depth
attenuation factor,

The horlizontal pressure on a wall element 1s as-
sumed to initiate with the arrival of a vertical com-
pression wave at the top edge, which is induced by the
shock front as it arrives directly overhead., The
average pressure is assumed to lncrease linear’'y from
zero at initlal arrival to a maximum value of K,AP,
during the time required for the souill pressure pulse to
travel across the element plus the rise time calculated
from Equation A-6, (See Table A-1,)

Since the box is divided into a number of finite
elements, the average pressure is considered element-
by-element with increasing depth and in the direction
of shock travel,

A-3.3 Boundary Conditions

. As the shock front passes over the box, the sur-
rounding ground surface displaces vertically (Figure
A-6), Overpressure loads are transmitted vertically
through the box to the foundation material immediately
below, A distributed elastic spring is used to repre-
sent the penetration compliance of the foundation. Thus,
the vertical force system 1s one of overpressure forces
driving the box into the foundation below. Frictional
forces on the walls are ignored, The value of the found-
ation's penetration stiffness, Kv, is chosen by the ana-
lysto

Horizontal pressures act concurrently with the verti-
cal pressures. A horizontal soil spring value of stiff-
ness, K , 1s chosen by the analyst, The program converts
the averape element pressures into displacements at the
far end of this horizontal soil spring by dividing the
pressures by the spring stiffness (see Figure A-7). The
resulting time-devendent displacement 1s treated as the
horizontal forcing function,

A-11
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TABLE A-2

Ratio of Horizontal to Vertical Soil Pressures
(Reference 2)

Ko, For Stresses Up to 1,000 psi

Soll Description Dynamic Static

Undrained Undrained Drained

Cohesionless Soils, 1/3-dense 1/3-dense
Damp or Dry 1/4 1/2-loose 1l/2-loose

Unsaturated Cohesive
Soils of Very Stiff to
Hard Consistency 1/3 1/72 1/72

Unsaturated Coheslive
Soils of Medium to
Stiff Consistency 1/2 1l/2 1/2

Unsaturated Cohesive
Soils of Soft
Consistency -3/4 1/2 to 3/4 1/2 to 3/4

Saturated Soils of
Very Soft to Hard Con- )
sistency and Cohesion- 1/2-stiff

less Soils 1 1 3/4=-soft
Saturated Soils of Hard

Consistency.

Qu = 4 tsf to 20 tsf. 3/4 to 1l 1 1/2

Saturated Soils of Very
Hard Consistency.
q, = 20 tsf. 3/4 1 1/2

Rock Obtain from tests on rock
* cores and correlate with
gseismic data.
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A-3.4 Outrunning Ground Mctions

Many structures, which are designed for overpres-
sures less than 100 psi, will be in the region of out-
running ground motion., The phasing between outrunning
ground motions and airblast arrival can be calculated
by the procedure described in Reference 8 and need not
be repeated here., The phasing time is part of the in-
put data furnished by the analyst.

This section is a stagement of ground motion pre-
diction as given by Sauer, The equations used in the
computer program to describe the amplitude of outrun-
ning ground motion are presented., In addition, the
particle velocity waveform is presented for both verti-
cal and horizontal motion.

. The vertical velocity waveform (Figure A-8) is
completely identified by:

V2, the amplitude of the third
velocity peak

42, the period of the first
three half waves

These variables are calculated from the following
relationships:

1/3

! 7
= ni|Y -
Vz s, vt 4x10 Ra 7SAP8 -.---(f‘t/sec) (A-B)
2,(msec) = 100 + AR/4 (A-9)
where,

AP, = Peak overpressure (psi)

R = Range from ground zero (ft,)

sap = Distance from site to point of initial out-
running (ft,)

8 = In situ specific gravity

Vt w Adjusted seismic velocity,

Vz - %UL for soils and incormpetent rock;
Vt = (/I for competent rock,

Vg = Seismic velocity (ft/sec)

W = Weapon yleld (megatons).
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The displacement waveform of Figure A-8, Dy(%), 1is
stored in the program, This free-fleld displacement is
applied through the foundation springs (Figure A-6)
when the analyst enters the above data on the input
forms, For computational purposes the equation

p m
—t | |-t
7.5 %, 2.5 £

u(t) = = (A-10)
p z m
Imax 1 . _max
2,5 ¢, 2.5 tz

1s adopted to represent the horizontal waveform shown in
Figure A-9,

For £ = 0 and £t = 2.5 t,, U,(0) = 0.

2.5 t, 1s the duration of the wave, K fixes the ampli-
tude, and m and p are constants responsible for the shape
of the curve, Quantity m is related to p by

! - tmax

2.5 ¢
mep 2 (A-11)

‘tmax

2.5 t.?.

The program integrates Equation A-10, giving the free
field horizontal soil displacements, D (t‘. The wall load-
ing used in the computer program assum@a that the free-
field displacements, D (t]), are applied through the effec-
tive s0il snrings (Figbre A-7).,
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