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SUMMARY

This report describes two computer programs devel-
oped to analyze the response of multi-cell rectangular
box-structures to external dynamic loads. The first of
the two programs considers the dynamic response of the
box-structure with its material properties remaining
linear. The output consists of displacements, moments
and stresses. Also, response spectra may be generated
at equipment attachment points within the structure.
The second program calculates the dynamic response with
the added provision that when moments in any plate ex-
ceed a predetermined yield value, that plate will not
accept any increase in loads normal to its plane.

The report applies to shallow buried, reinforced
concrete protective structures. The walls, floors,
roof and partitions of these structures are assumed to
be mutually connected at right angles. The structure
can have more than one room in the width, depth and
height. The loading is that caused by an above ground
nuclear detonation some distance from the location of
the structure.

The method of analyzing the structure is by con-
sidering it as a system of finite elements, each plate
being divided into four rectangular elements. The
finite element method is a means of approximating the
equations of equilibrium of the elastic conttnuum with
a set of algebraic ..4uilibrium equations. The continu-
um is considered as being an assemblage of discrete
structural elements inter-connected at a finite number
of nodal points. The analysis involves the evaluation
of the element elastic properties which are represented
by the stiffness matrix expressing the relationship
between element nodal forces and displacements. The
nodal points are taken as the four corners of the ele-
ment.

The basic operation In the definition of an element
stiffness matrix is the choice of deformation rharacter-
istics which are to be allowed. The most Impoitant
criterion to be considered Is the compatabilit) of de-
formations of adjacent elements. The element ,tiffness
matrix has twenty-four degrees of freedom, sis per nodal
point, and consists of a 12x12 bending stiffness matrix



and a 12x12 innlane stiffness matrix. The bending
stiffness is calculated from a twelve term polynomial
for the displacement. The inplane stiffness consists
of an 8x8 linear force-displacement matrix and a 4x4
moment-rotation matrix. For the purpose of this work
these were assumed to be uncoupled. At any nodal
point it is possible to have elements intersecting in
three mutually perpendicular planes. This makes it
necessary to convert the local coordinates for each
element into a global coordinate system for the whole
structure.

At any instant of time, the applied distributed
load on the structure can be specified. This is con-
verted into a nodal point loading equivalent to the dis-
tributed load such that the nodal deformations and the
total work done are the same in each system. By using
a process similar to that used in determining the stiff-
ness matrix for the complete structure, the load matrix
for the complete structure can be obtained by taking the
load matrices for each individual plate and expanding
them into a global coordinate system.

Through the finite element method, the structure is
replaced by lumped parameters at discrete nodal points,
therefore, the mass which is distributed throughout the
structure is assumed to be concentrated at those nodal
points. In order to get the response of the structure
for a time-dependent load, the equilibrium of the dis-
crete mass system at time t is expressed by the matrix
equation

C"]{M + C](ij) + (KJ(x) -(P

where CM] a mass matrix

(C] w damping matrix

(K] a stiffness matrix

W t a displacement of the system

(P) vforce acting on the system



The equations are solved by means of a step by step
procedure. The accelerations of the masses are assumed
to be linear in each time increment. A diagonal mass
matrix is used. Since the determination of mode shanes
and frequencies is not a part of the step by step method
of solution, modal damping cannot be used directly. The
damping matrix is assumed to be a linear function of the
mass matrix and the stiffness matrix. The solution of
the equations makes use of the Gaussian elimination tech-
nique.

An example of a dynamic analysis is given.

A synoptic review of selected literature pertaining
to the failure modes and failure loadings of two-way
slabs is presented at the end of the report.



PREFACE

During the year of 1963, the Office of Civil De-
fense, Protective Structures Division, initiated the
development of a series of computer programs directed
toward providing a complete engineering analysis of
buildings considerin- the multiple effects of nuclear
weapons. These computer codes are the backbone of the
Computer Analysis For Protective Structures (CAPS)
system.

The CAPS-1 program, entitled Analysei of Struoturea
for Resietaanoe to Nuolear Blasts began with the devel-
opment of a code for determining the blast resistance
of multi-story buildings. T.Y. Lin and Associates com-
leted the computer program under Contract fo.OCD-OS-63-
4. Subsequently, the programming effort to provide a
code for analysing box-structures was begun under Con-
tract No. OCD-PS-65-7, Subtask 1157A. The responsibility
for continuation of the orogram passed to Stanford Re-
search Institute under the provisions of Contract No.
OCD-PS-64-201 between OCD and SRI. T. Y. Lin and
Associates has performed the work contained in this re-
port under Subcontract No.B-81869(949A-46)-US with SRI.
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Section 1

INTRODUCTION

1-1 Background

This report describes the initial development of a
computer program designed to analyze the dynamic response
of box-type structures to ruclear blast. A box-type
structure generally carries external loads by slabs
spanning between bearing walls or shear walls. When
used as shelters, these structures may be aboveground,
located in the basement of a larger building, or buried.

A previous report, by T. Y. Lin and Associates
l*

under Contract No. OCD-PS-65-7, drew together pertinent
conclusions of a large number of reasearch papers and
design manuals in order to bring them to bear on the
development of this computer program. Airblast loadings
and ground motions were reviewed. Also, the equations
for the dynamic response of lumped mass systems were
presented in detail.

Many other publications have presented design-
analysis methods applicable to boxes 2,3,4 $5 . In general,
an element-by-element approach is used. That is, the
loads are applied to the primary resisting element, the
response is determined from a single-degree-of-freedom
idealization, and the reactions subsequently applied as
loads to the supporting members.

For purposes of this comDuter program, the box has
been thought of as a multi-degree-of-freedom system
consisting of plates, rigidly connected to each other
at right angles along each edge. The response analysis
is a finite element technique, utilizing rectangluar
plate elements.

Other publications have described ai: nlast loads on
an aboveground box 2'3. Loads on an underground box are
not well defined. The fundamental phenomena of the soil-
structure interaction process are not completely under-
stood. However, the relative compressibility of the soil
and structure probably controls the load experienced by
the buried structure.

'Superscripts refer to references found in Section 7.
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The computer program models the compressibility of
a box. An adequate model of the soil is still needed be-
fore an analysis of a soil-structure system can be under-
taken with any degree of confidence.

1-2 Scope of the Report

The program development is divided into four major
phases.

Phase I Development of a static analysis for
box-type structures utilizing rectangu-
lar finite elements

Phase II Extension of the static analysis to
elastic dynamic response analysis using
a step-by-step integration procedure

Phase III Incorporate a procedure for determining
the response spectrum at each nodal
point of the elastic system

Phase IV Incorporate non-linear definition of
plate bending property into Phase II

This report covers the complete mathematical formu-
lation of each phase. An example of an elastic multi-
cell box analysis for dynamic loads is given. An example
of a non-linear single cell box analysis for dynamic
loads is also given, in which plates fail successively
as they exceed a given yield capacity.

The dynamic loads are assumed to act on the exterior
surfaces of the multi-cell box. Time did not permit the
programing of a comprehensive load routine. However, a
simple formulation of loads on a shallow buried box was
added to the main program in order to carry out an example
analysis of a box responding to a time-dependent load.
The load subroutine is described in Appendix A.
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Section 2

DEFINITION OF THE STRUCTURE

2-1 General

Many underground protective structures are built of
heavy concrete walls, with a concrete floor and a thick
concrete roof. The structures may have more than one
level in which case the intermediate floors are concrete
also. Thus, the whole structure can be considered as a
set of interconnecting plates mutually at right angles;
i.e., a box-type structure.

The analysis of plates at right angles presents two
major problems. The first is that two systems of coord-
Inates have to be used, i.e., a local system for the in-
dividual plates and a global system for the whole struc-
ture. Extreme care must be taken when changing from one
to the other.

The second major problem is the large number of
mutually dependent coordinates. In the case of three
dimensional frame analyses the numbering of dependent
coordinates may be arranged in such a manner that the
stiffness matrix can be formulated with a narrow band
width; thus, core space in the computer is conserved.
In the case of plates mutually connecting at right an-
gles, the band width can become very large, thereby
creating a storage problem.

An accurate method of analyzing box-type structures
and the method adopted in this work, is to define the
box as a system of finite elements. Each plate can be
considered as an element or further subdivided into a
number of elements. The essential feature of the finite
element method is the means by which the differential
equations of equilibrium of the elastic continuum are
approximated by a set of algebraic e.uillibrium equations.
This procedure is generally looked upon as the substitu-
tion for the actual continuum of an assemblage of dis-
crete structural elements, interconnected at a finite
number of nodal points. In effect, the continuum may
be visualized as being physically cut up into the finite
element system, the material properties of the original
material being retained in the elements. The analysis
involves the evaluation of the element elastic prop-
erties, which are represented by the stiffness matrix
expressing the relationship between element nodal forces
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and displacements. The nodal points are taken as the
four corners of the element.

With this system, it is possible to define each
panel as an element, determine the equivalent nodal
point stiffness and load and solve for displacements.
From the displacements, the moments and shears at the
nodal points can be determined. In order to determine
the distribution of the moments and shears throughout
the panels, it is necessary to subdivide each panel in-
to smaller elements. The smallest number of subdivisions
to obtain the moments and shears at the center of each
panel is four elements. As the least complicated box,
i.e., a cube, has six sides, it is apparent that the
stiffness matrix can soon get impossibly large. For
this work it was decided that a four-element panel was
the least that could be used to get results for moments
and shears in the middle of the panels and that larger
subdivisions would be unworkable.

It was realized that the development of the stiff-
ness matrix for the structure in the global coordinate
system would require some difficult programming, so the
preliminary work was done on a cube. A symmetrical
static load was applied about one major plane so that
symmetrical displacements would constitute one check on
the accuracy of the stiffness matrix.

When the stiffness matrix was considered correct,
steps were taken to convert the program to a system of
plates divided into four elements. The correctness of
this change was determined by comparing the analysis of
a one-box structure using the four-element-per-panel
system with the same structure modelled as an eight-box
structure using the one-element-per-panel system. In
the latter case, the stiffness of the interior elements
was set to zero.

The method of determining the nodal point loading
for a time dependent blast force was solved in the early
stages of the work. By considering this load at any given
time as a statically applied load, it was possible to get
representative moments and shears in the structure. The
procedure adopted resulted in a method of complete check-
Ing as every stage was completed and provided for a
logical flow of work from a system of single-element
panels under static loads to a system of tour-element
panels under dynamic loads.

2-2
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2-2 The Stiffness Matri

The box-type structure is considered as a set of
interconnecting plates in three mutually perpendicular
planes. In order to determine the stiffness matrix for
the complete box, it is necessary to determine the
stiffness of each plate in its own local coordinate
system and then convert this to the global system. The
definition of these systems is shown in Figure 2-1.

The development of the system for considering four
elements per panel is essentially the same as that for
the system with one element per panel with the one dif-
ference that there will be restraining panels at right
angles on only two of the edges. For simplicity of pre-
sentation, the stiffness matrix of the structure will be
developed as if each panel consists of only one element.

Since the method used is to consider each plate as
a finite element in the box, by assuming Kirchoff plate
bending theory, the stiffness is determined in terms of
the 24-corner displacements of each plate. The inter-
section of the corners of the plates are the nodal points
of the complete system.

The basic operation in the definition of an element
stiffness matrix is the choice of the deformation charac-
teristics which are to be allowed. The most important
criterion to be considered in this selection is the com-
patability of deformations of adjacent elements, It can
be shown that if deformation prterns are specified which
provide internal compatability within the elements, and
at the same time achieve full compatability of displace-
ments along the element boundaries, then the strain
energy in the idealization will represent a lower bound
to the strain energy of the actual continuum.

The relationship between the externally applied
forces and the resulting displacement on a plate in its
own local courdinate system can be expressed in the
form

() M-r s
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Direction of the Airblast

Local coordinate
system Type 3plates 2/2

Nodal point J
numbering 24/

is Local coordinate
system Type 2X plates

Local coordinate system
Type 1 plates

,z Z

Olobal Coordinate
System

Typical Four-
Element Panel

Figure 2-1

DEFINITION OF THE STRUCTURE
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where $b is the 12x12 bending stiffness matrix
S. is the 12x12 inplane stiffness matrix.

There is Ao coupling between these two matrices.

The simplest expression which has been used in de-

fining the rectangular element bending stiffness Sb is

the 12-term nolynominal in x and y;13

S. a+ 02 X + 03Y + a +X2 + 05" + C102 + Q7X3

+ a aX2  + a.Xy' + a +Q$ + allXV Y + a 12 X 3 (2

The two fourth degree terms which are included to
provide the required number of displacement patterns were
selected to maintain symmetry and also to satisfy the bi-
harmonic equilibrium equation. A complete 12 by 12
stiffness matrix which represents the nodal force deflec-
tion relationships is shown in Figure 2-2. This 12 by 12
matrix may be constructed from the 12 by 3 matrices asso-
ciated with each Joint. For any given Joint i. the
stiffness matrix can be represented as the sum of four 12
by 3 matrices Ka, Kbs Ke and Kd, i.e., Ki a Ka + Kb + Kc
+ Kd. These represent the energy contributions from the
(WXX)2, (Wqq)2, (u.: XQ) and (X ) 2 curvature terms, re-
spectively. The coefficients of these four stiffness
component matrices as developed by Adini? are shown In
Figure 2-3.

The 12 x 12 inplane stiffness matrix can be con-
sidered as an 8 x 8 linear force-displacement matrix S

and a 4 x 4 moment-rotation matrix Sr together with thk
corresponding coupling terms S tr and Srt

In order to determine the St. and Srt terms a rigorous
solution is required, accordinc to the theory of olasticity.

The Puthors have assumed the accuracy requirements do .ot
warrant this, and expressions for the linear and rotational
disnlncem-nts !:-ore developed as if uncoupled.

For the 8 x 8 linear stiffness matrix SL the dis-
placement pattern is as shown in Figure 2-4. The 3ides
remain straight after deformation.
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Figure 2-4

INPLANE LINEAR STRAIN OF AN ELEMENT

The geometrical compatibility condition is satisfied
by the following equations:

"x C + C x + C 0i + C xY (2-2)(xY) 1 2 3 4

"(X, , } Cs  + C6  X + C 7  + Caxy (2-3)

If Equation 2-1 is evaluated at the four corners, i, j, k
and t.,

U "  CU + C 2i

-k C1 + C3b

ut " C1  2  3b4

Solving the above equations for C,, C2 0 C3 , and C 4
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CI -" aZ

=l U
C2 = 1(aj - Ui)

= I

or in matrix form,

cab 0 0 0 aL
1C1 -b b (00.4)
:C "a 0 d 0 J

ILL

Following the same procedure for the v displacements yields

the same result, i.e.,

] - b 0 0

C7 Cb- d0 v2-5)-- 1 -1 1 V/

From the definition of strain;
6U

C -isv

6 6X

Hence, the relationship between the displacements and the
strains can be expressed in the form

Ic F-bet, b-y -y. y 0 0 0 0 U
C, 0 0 0 0 -d.X -X d-X X It.

£61i

y a*X -X d-X X -b. 9 b-f! -Y q Ufr
Ut

Vi

vk!

V.
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or symbolically

Ec] = [a 1(u

The stress-strain relationship for an isotropic elastic
material in a state of plain stress is

iT a h a 0 L

or [o] = [t][cJ (2-6)

where

E
_1-U2)

UE

G = E

2(1+u)

K * the stiffness of an infinitesimal
element of area dA.

The stiffness of a system of infinitesimal elements
is given by

ba
CS) -.ta] EK(a)] d d

00

which results in an 8 x 8 synnetrical matrix.
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The rotational stiffness matrix is difficult to de-
fine. Because of this fact, the procedure in plate and
shell theory has been to ignore it. For the box type
structure this is not possible so displacement functions
were decided on which would represent the rotation of
the corners in turn.

v

P(X'q) j 0

a

Figure 2-5

INPLANE ROTATIONAL STRAIN OF AN ELEME~NT

The displacement pattern is 3hown in Figure 2-5 where

U(X,y) - 110(y-b)2(d-X) - F I(x,q)e 27

V(X,y) * -xe (x-a)2(b-y) -F 2(X.Y)e (2-8)

a2b
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Since the assumed disolacement functions have a

linear 6 dependence, suverrosition can be used.

Hence

u (xv) u " LL=(j) W (tl/) I

v(x,y(j) + VW V (1)

or in matrix form as shown in rigure 2-6.

The relationship between the displacements and the
strains can be exnressed in the form{i

Yz' eO

or

[€] = [ {e) (2-9)

where [aa] is given in Figure 2-7.

Due to the displacement field (uv) for the set

of angle changes (e) there is a field of external self
equilibrating moments (M].

The equilibrium condition is satisfied if the set
of exteinal moments, CM), acting on the external angle
changes, () produces the same work as the set of in-
ternal stresses, (a), acting on the internal strains,
(c).

Hence O(S)T[ ,I] - f (0 (a})d(vot) (2-10)

voL

Using equations 2-.6 ana 2-9

(0)T t .)(e rla] (K](4 ](e)dxdy (2-11)
00

Since (0) is independent of "x* and "" ,

M L4j~aoI(K)[d IdxdVIM (2-12)
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e{2::2} F1(x,1J1F 1(-x~y)-FI~x,b-)-F(.-x,b-y) 18
V(XY) F (x,yIF (a-x,qI)-F (c,b-y) F (a-x~b-g)

Figure 2-6 ASSUMED DISPLACEMENT FUNCTION

(d] -F2(X,,Y), 11  F 2 (d -ZDIlq -F2(x,b-yJ,,, F2(a-x~9b-yl,y

31 d 1d32a3 34

wEhereL 3323

* 1- F I(x,, j , Y- F2 xy,

* 32 F I(a-x,y), .F 2(d-Xz,

* 33 -r FI(,b-qI, 0-F 2(x,b-y),

it3 - -F I(d-Xzb-y), * F 2(d-x,b-y),

Figure 2-7 DISPLAC-71MEAT STRAIN RELATIONSHIIP
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So that,

CS r 4f(a)T[K]£ e8 d <2-13)
00

The expansion of the integral in equation 2-13 for
the first row of the matrix S rI is shown in Figure 2-8.

It can be seen that there is a lack of equilibrium,
therefore the matrix was b ought into equilibrium by
arbitrarily subtracting F from each element. This is
numerically small compared with the other terms and
has little effect on the results.

The first row of the matrix CS I is expanded into
a consistent matrix as shown in Figure 2-9.

As plates in different planes are Joined together,
the elements of the stiffness matrices cannot be added
directly. It is necessary to convert the coordinates
from a local to a global system. This can be done by
using the coordinate transformation matrix for stiffness
as shown in Table 2-1. Once in the global system the
stiffness matrices can be combined into a single stiff-
ness matrix (K] for the complete box by keeping track of
the nodal points of the four corners of the individual
elements.
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5r1, =G 3  + ad 3  Ba8b, + 3Gab
t105a 105b 72 40

Sr 1,2 . a - ct3 - eab + Gab
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Figure 2-8

ELEMENTS OF FIRST ROW OF IS]

A BC D

B A D C 3

C DA B

D C 8BA

Figure 2-9

CONSISTENT MATRIX(S.J
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TABLE 2-1

Coordinate Transformation

for
Stiffness Coefficients

-LOCAL __ GLOBAL

I Type 1 Type 2 Type 3

1 1 3 3
2 7 9 9
3 13 15 15
4 19 21 21
5 -2 -2 -1
6 -8 -8 -7
7 -14 -14 -13
8 -20 -20 -19
9 -3 1 -2

10 5 5 4
11 4 6 6
12 -9 7 -8
13 11 11 10
14 10 12 12
15 -15 13 -14
16 17 17 16
17 16 18 18
18 -21 19 -20
19 23 23 22
20 22 1 21 24
21 -6 4 -5
22 -12 10 -11
23 -18 16 -17
24 -24 22 -23
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Section 3

NODAL POINT LOADS

At any instant of time, the applied distributed load
on the structure can be specified. This must be converted
into a nodal point loading equivalent to the distributed
load such that the nodal deformations and the total work
are the same in each system.

External Enera
due to actual - J , w dA (3-1)
distributed load A

External Energy T
due to equivalent - (L) (0) (3-2)
nodal point loads

where q is the load on the area dA and t is its displace-
ment. For one plate, (L is a 12 x 1 column matrix con-
sisting of a force and taro moments at each corner of the
plate, and () is the associated displacement.

From Equations 3-1 and 3-2,

L) {T) = f qlx,,(x,, (3-3)

Substituting the 12-term polynomial for t in Equation 2-1,

(L)T(,) a I q JX'j lEd) (adA

where (d) is a 1 x 12 matrix of the terms of the polynomial
and (a) is a 12 x 1 rittrix of the coefficients.

Substituting for [a] a [N](*)

(LrU , q X,,( [ d)( [ )dA

or

(L - (] q(),, C(d] TdA (3.)

3-1



The matrix [N] which has been introduced can be
evaluated through the polynomial in LO with this expres-
sion and by differentiating it with respect to x and q,
the values of W can be related for each displacement at
each corner for the twelve coefficients a. The develop-
ment of the inverse matrix [N] - 1 is given in Figure 3-1.

The qjX function can be expressed as:

q{, -y = C1 + CZX + C3Y + Cxy

where the coefficients C1, C2, C3, and C4 are evaluated
from the load conditions at the rodal points.

The integral f q X,,)Cd]rdA can be written as:

A{1} fcc +(l C2 y + C 3(1 + C ,q)[d] TdA

or (11 = [F(a,b)] [C1

and q [Q) IC
qi

so that M [N]TF(a ,bI]Q] (q) (3-5)

where . [I 0 0

and F(a,b) is shown in Figure 3-2.
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w cc I + 2 + 3 4X 2 +a 5X+a 6 ya x 3+a8x2y+a 9 XY2 + Dy3Ct1x 3Y+ 2 XY3

wpx= a2+2a X+a 5 y+37 X 2  + 9xy + 3a2 + y al 2y 3

8y 3+a5x+2aeY+9a 9xy+ 3loy2+12X3+3a 12X2

At joint i x 0 y 0

j x a y 0

k x 0 y b

t x a y b

*= fIN]-2{o1

w  o 0 0 0 0 0 0 0 0 0 0 Ia I
x 1 0 0 0 0 0 0 0 0 0 0 a2

y 0 0 0 0 0 0 0 0 0 0 0 0
IiJ I a 0 a? 0 0 a 3 0 0 0 0 0 3

wj , x 0 i 0 2a 0 0 3a 2 0 0 0 0 0
k, 0 0 1 0 a 0 0 a 0 0 a3  0

w 7 b 0 0 b2  0 0 0 b3  0 0
Sx 0 1 0 0 b 0 0 0 b2  0 0 b 3

It, 0 0 1 0 0 2b 0 0 0 0b2 0 0
t i a 6 a 2  ab b2 a. ab ab 2 b 3 -b a 3

x  0 1 0 2a b 0 3al 2ab b2 0 3a, b b 3

, 0 0 1 0 d 2b 0 a2  Zab 3b2 a3  3ab 2

F' t'e 3-1 DiE:V!,O:.UtNT OF M.Alrl IX [N)
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abb e.Lab2 r b2

a 2b 3b I 2b2 I 3b2

3 a3  /'' b' 4 6 z '

4 v 3 6
3b 4b la b2

3 4 4 b

La2b2 i-a3b2 .L2b3 -zb

Fig;re 3-0

Mla2b3 Fab )
3 6 3 4 20

lab asb 14'4b2 I10b

.la3b2 la'4b2 I 3b3 1 40. b
6 8 9 I

263 13b3 1 20'
6a 9 f T14 30'

lb 4 Yab'. Lbs 2b S
4 8 51

I 4.b2 ~I Sb2 L4b3
8~ 1034 12 15 b

.La26' ~7-04b 7-4 b

Figure 3-2

MATRIX F(a,b)
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By using a procedure similar to that used in deter-
mining the stiffness matrix for the complete structure,
the load matrix for the complete structure can be obtain-
ed by taking the load matrices for each individual plate
and expanding them into a global coordinate system by us-
ing a coordinate transformation matrix and inserting the
elements of the submatrices in the large matrix at the
desired location The load coordinate transformation
matrix is shown in Table 3-1.
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TABLE 3-1

Coordinate Transformation for Nodal Loads

GLOBAL
LOCAL

Type 1 Type 2 Type 3

1 -3 1 -2

2 5 5 4

3 4 6 6

4 -9 7 -8

5 11 11 10

6 10 12 12

7 -15 13 -14

8 17 17 16

9 16 18 18

10 -21 19 -20

11 23 23 22

12 22 24 24

3-6



Section 4

DYNAMIC RESPONSE ANALYSIS - ELASTIC

4-1 Equation of Equilibrium

Through the finite element method, the box structure
is replaced by lumped parameters at discrete nodal points.
The mass, which is distributed throughout the structure,
is assumed to be concentrated at the nodal points. The
deformation-resistance characteristics of the box are de-
fined for relative displacement of the mass coordinates by
the stiffness matrix described in Section 2.

The equilibrium of the discrete mass system at time
t is expressed by the following matrix equation:

[M] { +}t + [CJ(X1) + [K) (X} t  (Prt (4-1)

where (it a acceleration of the system

{X)t M velocity of the system

{X} = displacement of the system

(P)t = force acting on the system

PQ = the diagonal mass matrix

(C) = the damping matrix

(K] - the stiffness matrix

4-2 Mass Matrix

A lumped mass approach i3 used to calculate the dynam-
ic response, with the disnlacement of each mass directly
represented by a single coordinate. The advantage of this
simple masi Idealization is that it eliminates any mass
coupling. Thus, a diatonal mass matr x is used in equation

t--1



The mass at each nodal point of the structure con-
tains a contribution from each plate element attached to
the node. Referring to Figure 4-l, this typical mass
contribution at a node from a single element is expressed
as,

M210 0

M210 0

M z Pd210 a1(4 2

M x 8409 d2  4L, M z d,6.1 °

N6 , a2.b2  0

where p and t are, respectively, the density and thick-
ness of the plate element. Similarly, p8 and te are,
respectively, the density and thickness of soil layer
assumed acting with the plate element.

In equation 4-2, the distributed mass of each plate
element is assumed lumped at its corners, one-fourth of
the total mass to each. Figure 4-1 illustrates this
physical lumping of mass. The mass at each corner, or
nodal point, can be put into motion in the local z, y and
z directions. Plass quantities associated with these move-
ments are expressed by the first term of the right-hand
side of the equation. This mass matrix in its diagonal-
ized form is an extension of the work by Archer on con-
sistent mass matrices for distributed nass systems.

12

Since the structure is in contact with soil, many
exterior plate motions will be coupled !iith the novement
of a certain mass of soil. The second term of Equation
4-2 assigns a mass quantity to the local z direction of
element displacement only. In other words, soil inertia
forces are considered only for motions perpzndicular to
each element's plane. The thickness of sell, *, is an
arbitrary quantity. For the roof of a shallow buried
box, t 8equals the depth of soil cover.



Figure 4-1

MASS CONCENTRATION AT A TYPICAL NODE

y

Typical Element, thickness t

Pstnaocte

with ode !6

Typeit noTy e 2 yp

11 3 3

2 2 2 1

3 3 1 2

4 4 6 6

5 5 5 4

6 6 45

COORDINATE TRANSFORIATION FOR MASSES
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The mass matrix for the whole structure is obtained
by expanding the mass matrix for each individual element
into the global coordinate system by means of a coordi-.
nate transformation, and superposing the expansions.

A generalized mass approach, based on assumed dis-
placement functions, could be used. However, this would
lead to coupled (i.e., off-diagonal) mass matrix terms
which complicate the storage problems in the computer.
Furthermore, assumed shape functions will not necessari-
ly lead to improved accuracy in the results. The most
severe approximation is the number of degrees of freedom
allowed. It is believed that the physical lumping of
mass is a satisfactory approximation for this particular
system.

4-3 Damping Matrix

The exact form of the damping matrix is unknown for
box-structures, as is the case for most structural systems.
However, in most instances, its effect on the mode of vi-
bration will be small. Therefore, it is reasonable to
replace the CC] matrix by the following matrix relation-
ship: 1

CC) - a (1t] + a CK] (4-3)

By assuming the damping matrix to be a linear combination
of the mass matrix and the stiffness matrix, computations
are simplified and computer storage requirements are mini-
mized.

The significant test experience in determining energy
losses due to structural damping has related these losses
to the frequencies and mode shapes of particular systems.
Since the determination of frequencies and mode shapes is
not a part of the step-by-step method of solution, modal
damping cannot be used directly. However, a. and a|V may
be interpreted in terms of equivalent modal damping if
the significant frequency range of response is known or
can be estimated.

The modal damping ratio A i for the ith mode is given
in terms of a 0 and a by,

o a

a + 4.( . )
lot i
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where wi is the circular frequency of the ith mode.

The frequency , which yields a minimum value of
the damping ratio t, is given by

Z7. / .o' (4-5)
a'

If the minimum damping ratio T and its associated
frequency ; are given, the damping coefficients a. and a,
are calculated from the following equations:

a (4-6a)

d,- (4-6h)

Equation 4-4 can now be rewritten:

1 (4-7)

Usually, the numerical value of the minimum damping
ratio will be established from Judgement regarding past
structural tests. It may vary through a range of 2 per-
cent to 30 percent of critical (.Of< T <.30). Having
estimated a minimum damping, however, does not fully de-
fine the coefficients d and al. The associated frequency
must be established.

If the significant frequency range of response is
between the values w, and w,' such that;

(4-8)

it is convenient to select the frequency 7 as a multiple
of the lowest frequency ol and, in turn, such that the
highest frequency is the same multiple of 'W.
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That is;

- m 'Wi (4-9a)

w - m W- mZw (4-9b)

where m is any positive constant. ,Now, the frequency
can be calculated simply from the established frequency
range, as fm!lows:

- (4-10)

The values of 0 and a, are, as given previously;

d0  tw (4-6a)

a, (4I-6b)

The damping ratio for the first mode, X1, and the
highest mode of interest, A., becomes (rewriting equation
4-7);

4. W

I n

As an example calculation, assume the minimum damp-
ing ratio to be 5 percent of critical. -Further, assume
that thp fundamental period of vibration is associated
with the flexural response of thick slabs and is
wi - 3i.6 rad/sec. Also, assume that the highest fre-
quency of interest is that due to inplane response of the
slab elements and is equal to 316 rad/sec:

4.6



- /31.6 x 516 - 100 rad/sec

"a- .05

W (31.6 + 316 ) .05 *.01
1' X 00 2

ao- .05 x 100 - 5.00

a I .05 * 100 . 0.0005

4-4 Response Calculations

It is assumed that the acceleration of each dis-
crete mass varies linearly within a time interval &t.
This assumption, which is illustrated in Figure 4-2.
leads to a parabolic variation of velocity and a cubic
variation of displacement within the time interval.

A direct integration over the interval gives the
following equations for acceleration and velocity at the
end of the time interval:

a -

x a At (4-..12a)

Xt -- X -B t Q4-12b)
At

where A - 6 Xi _Aat + - tX (4-12c)
Atz at-d

*3 x + 1itt + At xA (i.2d

at t



xt Acceleration

it- t it Velocity

x y Displacement

Figure 4-2

ASSUME'D B3EHAVIOR OF TYPICAL DISPLACEMENT CON~PONENT



Substituting Equations 4-3. 41-2a and 4I-12b into the
dynamic equilibrium relation 4-1 yields the following
set cf linear equations in terms of some unknown
"effective" displacement.

where

[K] - [K] + C2['4] (4-14a)

[x) = I C3 [8]t (4-14c)
C1 C2

in which

CO 0 6.. + 3 (4-15a)
At2  A

+,

C2  =C 0C1  (4-15c)

C3=C2 (4-15d)

C4a a - C3  (4-15e)

The dynamic response -,f the structure is obtained
from the above relaionships by using the following step
by step procedure.

1. Initialization

A. Form stiffness matrix (K] and mass mAtrix [A)

b. Form "effective" stiffness matrix

(~ K] + C2 [M )

c. T'ringularize [K]

4-9



2. Ftr Each Time Increment

a. Form (A]tand [8]t

(Alt a 6 [XI t-At + 6 X-A + 2[x,-AtAt2  At

E 3 [X]t-at+ 7[]tAt+a [xlt-At

At =2

b. Form "effective" load

c. Solve for "effective" displacements

[.'it = [r]-1 [g]Z

d. Calculate Displacements, Velocities and
Accelerations at time t.

[× z =t C [x t  + Cia[8]

[ 3 £[X] -[8It
At

EX] t 6 [X]- (A]t
t:

e. Repeat for next time increment

It is important to note that for elastic structures,
the matrix (K] need only be formed once since It is In-
dependent of time.
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4-5 Solution of the Equilibrium Equation

Equation 4-13 expresses the dynamic equilibrium of
the system in an equation of the form, (A] [X] - (8].

The method used for the solution of these equations

is the Gaussian Elimination method.

4-5.1 Gaussian Elimination

The equilibrium equations for a system of finite
elements may be written in the following form:

AIIXI + A12X2 + A13 X ..... . AINX - 8 1 (4-16a)

A X + A X + A X 3...... # A 2X N a 82  (4-16b)
21 1 22 2 23 32NA 2

A X I A32X 2 + A X ....... A NXN a 53  (4-16c)
31 1 32 33 3 " 3N 3

A IXI + A ,2X2 . AN3X3 ...... *+ ANNXN .8N

The first step in the solution of the above set of
equations is to solve equation 4-16a for X], or

X I 8 1/A1 1 " (A- 1 /A11 X2-(A 13 /A 11 )X3.*(AIN/A I N (4 -17)

If equation 4-17 is substituted into equations (4-16a,
4-16b, ,.., N) a modified set of N-1 equations is de-
termined.

AI X * AXI 3  A INXN a (4-18a)
22 2 2 -11
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Al X +. Al, ' ....... * Al X,, 81 (4-18b,)
32 2 33 3 3N N.... A2K

N22 M 3 .... N M

where

A j Ajj-AjjA j/AI ij - 206, 0 ... H (4-19a)

81 8 8A 8 B/A! .i. - 2,...., M (4-19b)

A similar procedure is used to eliminate X2 from equation4-18a, etc.

A general algorithm for the elimination of X nmay be
writ ten as

XR s ', .  A"'( An-,/';. n- # • i, ... . , (4-20)

-1 813 01 xS- /A,* (412

Equations 4-20, 4-21, and 4-22 may be rewritten in compact
fo rm:

A! A. 0-C j . i.. N (4-24a)

51 " 81 'A8-/A 1  . . • A!-'*, 0. fn (4-24b)

.a-e2



where
Dn 8 n- I/A n_1- (4-25a)

n ,nn

C An-'/A"-' (4-25b)
nj"

After the above procedure is applied N-I times the original
set of equations is reduced to the following single equa-
tion

which is solved directly for X.

XN 8N /AH-1

In terms of the previous notation, this is

X- 0 (4-26)

The remaining unknowns are determined in reverse order
by the repeated application of equation 4-23,

4-5.2 Simplification for Band Matrices

The stiffness matrix was placed in a "band" form which
resulted in the concentration of the elements of the stiff-
ness matrix along the main diagonal. Therefore, the fol-
lowing simplifications in the general algorithm (equations
4-23, 4-24a, and 4-24b) were possible:

S on C J P # 1# 0....,n # M-1 (4-27)

. A .'- A!- C j.j a R ,..,* 0 mJ-1 (4-28)
4.j 4.1 A" ftj

-' - '- A!-' P . - Ri * 104.40"., # M-1 (4-29)
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where M is the band width of the matrix.

The number of numerical operations can further be
reduced by recognizing that the reduced matrix at any
sta e of procedure is symmetric. Accordingly, equation
4-28 may be replaced by the following equation:

A! A!-'- A!4 C i 1,.., M-1
"' '-j in j j • z, .... ,n + M-1 (4-30)

since

The number of numerical operations required for the
solution of a band matrix is proportional to NM2 as com-
pared to N3 which is required for the solution of a full
matrix. Also, the computer storage required by the band
matrix procedure is NP as compared to N2 required by a
set of H arbitrary equations.

4-5.3 Stresses

Once the nodal displacements are known, it is pos-
sible to determine the stresses at these points. For
design purposes the following forces are required:

M = Moment per unit length in the x direction

m W Moment per unit length in the y direction

M X a Twisting moment at the point

QX a Shear force per unit length in the x direc-
tion

qY a Shear force per unit length in the V direc-
tion

"X = Inplane stress in the x direction

d a Inplane stress in the y direction

T X U Inplane shear stress at the point

4-14



The moments are obtained from Equation 4-31

M 9 1 = -D 0 {Wiy } (4-31)

where V 
Et3

12(1-u)
The shear forces are obtained from Equation 4-32.

a -D (4-32)
QY L(v~w

Since the displacement W at any point is represented

by the 12-term polynomial (Equation 2-1), we can say

WIx,y) - [IXIfIX21Xlf. 2 lX3IX2lXU2 1lX3 X3JylX+3: ]E]{,)

or (w) - d]l+](*) (4-33)

The matrix [N,)" Is as shown in Figure 3-5.

From Equation 1I-31, 4-32 and 4-33, we getX, U, 0 0 d X
M 0 0 0 0 d)
QVj 0 0  1 a/ayy2d (1-34)
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Multiplying the derivatives of the second matrix
by the first and assuming u * 0.2, we get

oM 0 0 2. 0 .4 ;x 2y .4x 1.2y 6xy 1.2xyl
' 0 0 0 .4 0 2 1.2 A4y 2x 6y 1.Zxy 6xy

M 00 0 0 -1.6 0 0 -3.2x-3.2y 0 -4.8x -4.8y2

IX 0 0 00 0 06 0 2 0 6Y 6y
QY Lo 00 0 00 2 0 6 6x 6x j

[f]{*1(. Et3 )
11.52

For the normal and shearing stresses, we have

CrB iL Y'
T 00 GJCyJ

or L *] j K(c) (4-35)

where a E uE E
I-u2)' (1-u2) 2 (l~uJ

'outf~' ~(b~q) (b-Y) -Y Y 0 0 0 01fLi1
Y 0 0 0 0 ~(-a~x) -x (a-x) x j a

YcY -dfX -X (a-X) X (-b.~j) (b-yJ -Yi Y U

i

or (c) - (f)(u) (4-36)
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From Equations 4-35 and 4-36, we get

(a = [K][f)(u) (11-37)

These moments, shears and stresses are in the glo-
bal system. Therefore, for proper identification, it is
necessary to convert them to the local coordinates of
the plates. The coordinate transformation matrix is
shown in Table 4-2.

GLOBAL LOCAL SY'STEM

IType 1 Typ _p 3

1 1 1 9
2 -5 -5 .93 -911
4 11 0 10
5 10 10 0
6 0 11 11
7 2 12 -6
8 -6 -6 -12
9 -12 2 2

10 14 0 13
11 13 13 0
12 0 14 14
13 3 15 -7
14 -7 -7 -15
15 -15 3 3
16 I 17 0 16
17 16 16 0
18 0 17 17

19 4 18 -8
20 .8 .8 -18
21 -18 4 4
22 20 0 19
23 19 19 0
24 0 20 20

*This and all zeros appearing here are
computer controls Just to avoid the 4Z
local coordinate transformation.

Table 4-2

COORDINJATE TRA.'ISFOR:.MATION CO6FHICIENTS
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4-6 Response Sp ctra For Sheltered Equipment

4-6.1 General

Equipment sheltered within the structure will be
subjected to both vertical and horizontal movement at
its point of attachment. If these movements cause se-
rious damage to the equipment, it may matter little
that the structure successfully withstood the blast
loading.

Equipment and utilities may be attached to the
structure by means of a flexible support system (Fig-
ure 4-3).

Steel
Channels Equipment

Svirure 4-3 EXAMPLE OF A
FLEXIBLE HORIZON1TAL

MO UNT ING

Often, thts Is do:.e in order to isolate the item from
large accelrations or may result simply from convention-
al attachr&_.. procedures. 3ecause the mass-spring system,
cow:oosed of -quipmc-t and mounting, can vibrate relative
to its ittac..r'ent point, its peak displacement and accel-
eration may differ appreciably from that of the support-
lnr -tructure. ror d-2ign purposes, it Is desirable to
have a graph : maximum responses at an attachment point,
for a -aide ranre of mount -stiffnes-equipment weight
ratis. This 'raph is called a response spectrum.

A snectrun requires that the reaction, delivered to
the ,unnortinp. structure throurgh the mountlng, does not
l~er the timc:;e movenent of the support point. Thus,

the .,i,ht of the equipment must be smnll conpared to the
3uppo-ting membc:r, usually less than 10 percent.
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4-6.2 Definition of the Response Spectrum

The sitngle-derree-of-freedom system considered con-
sists of a rigid mass, r,, connected to the point of at-
tachment by both a weightless spring and a dashpot (Fi,-
ure 4-4).

Y Cos Y+ X

Figure 4-4 SIPLE
ELASTIC SYSTEM

The spring and dashpot exert restraining forces propor-
tional, respectively, to the relative dis'lacement an-.
relative velocity of the mass and attachment. The dis-
placement of the attachment is denoted y and the sprin-
,ieformtion by x.

The equation of motion for the system (Figure 4-11)
may be written,

*. + c i + X - 0 (4-33)

Noting that " * + X, Equation 4-33 Is rearitten,

X + ci + x " (4-39)

Or, rewritinr In terms of the danplnr ratio,

nft + ?A1jnd+ IzX -mq (t4-40)

For a 3neciaic excit-tion. , W, of a simnle system with
a particular nerconta-e oP critical darpinr, A, the
mium "1a"-)lice-!^nt, z, Is a functien only of the

c. .....eu t v3f v1iration of the system, W,
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A plot of the maximum simple system response,
whether relative displacement x, absolute displacement
w, acceleration "U, or spring force kx, against the
circular frequency of vibration w. or the natural fre-
quency of vibration f, is a response spectrum. The
most useful spectrum Is that of relative displacement,
x. In the followaing, the spectral value of displace-
ment relative to the point of attachment will be desig-
nated as U.

Maximum values of spectral pseudo-velocity, V, and
pseudo-acceleration, A, may be conveniently defined as,

V = wU = 2wfU (4-41a)

A = w2 U = 4 2 f 2U (4-41b)

These quantities are alternate measures of the maximum
sprint deformation U. If one is known, the other two are
calculated easily. When the deforma'ion spectrum is plot-
ted on a logarithmic scale as shon in Figure 4-17, all
three quantities are represented. (See Pare 4-36)

FIgure 11-17 shows the response spectra for one of
the Joints in the sample structure. The time-dependent
acceleration of this Joint is calculated by the pro-
cedure outlined in Section 4-11. This acceleration be-
cones the forcing function, Y, of Equation 4-1j.I The
calculated response spectrum Is sir~ply the maxinum
sprint: displaccment x of the slmple clastic syster of
Figure 4-4. The general. characteristics of the spectra
are as follows:

1. The spectra show marked reaks at a fre-
quency of 20 cps, correspondiv-t to the
predominant box-structure freqkiency of
response.

2. Peak values decrease as the damping
increases.

3. For low frequcncles, the riax!' um spectral
divplacements (equipment rattle-space)
appronch the pea: attachrent point dls-
place-ont.
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4-7 Sample Dynamic Analysis

4-7.1 Orientation of the Structure and Loading

In order to analyze a structure in the most ef-
ficient manner with respect to computer time it is neces-
sary to orient the structure in such a way that the num-
ber of plates in the x direction (see Figure 2-1) is
equal to or less than the y plates and, the number of y
plates is equal to or less than f'-e z plates. The Joint
coordinates are Cartesian and follow the right-hand rule.

When the structure has been oriented to satisfy the
mechanics of solution, it then becomes necessary to orient
the blast pressures and ground motion to be compatible
with the concept of the problem. There are six possible
cases of orientation of the loading which are numbered
in accordance with Figure 4-5. The Figure depicts the
six cases, each of which is a combination of joint co-
ordinates and load coordinates. All permissible condi-
tions can be satisfied with one of the six cases. In the
case of a model not oriented in its natural position for
mathematical reasons, there may be more than one way in
which it can be turned but at least one way will be sat-
isfied by one of the cases of Figure 4-5.

4-7.2 Numbering Sequence

Each plate of the model is divided into four rec-
tangular elements. The division should be visualized as
being accomplished by cutting planes entirely through the
model. Wherever Three planes (plates or cutting planes)
intersect there is a joint. Where all three planes are
cutting planes, the joint is a dummy joint. Each joint
is given a number by the computer. These numbers are in
sequence without regard to whether the joint is actual
or dummy.

The joints are numbered in x, y, z sequence. (Fig-
ure 2-1). The computer starts on the xy plane with the
smallest value of z. The numbering is row-wise sequenced
downward and continuing through the z Dlanes in ascend-
ing order.
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The elements are numbered in a manner similar to the
joints. In each plane they are numbered left to right,
top to bottom. The numbering starts with the elements in
the xy plane, starting at the smallest value of z, and
working to the largest value of z. It then continues in
the yz plane starting with the smallest value of x and
working through to the largest value of x. Finally, it
takes the zx planes from the lowest to the highest value
of y. No differentiation is made between the real and
dummy elements. The exploded box (Figure A-6) demon-
strates the numbering sequence.

The order of recognition of the plates, e.g., for
inputting the plate thicknesses, is the same as for the
elements, however, the dummy plates which are introduced
in the analysis are ignored.

4-7.3 Listing of the Data on the Input Forms

This Sub-section should be read in conjunction with
input sheets 1 and 2 (Figures 4-9 and 4-10).

Job identification is an alphameric heading, occupy-
ing not more than 72 spaces.

In the second line nx,ny and nz are fixed point
digital entries equal to the number of cross walls in the
x,y and z directions respectively. If a calculation of
response spectra is required, a digit is placed under the
heading "Response Spectra." If this is left blank, no
spectra will be calculated and input sheet No. 2 will not
be required. The Case Number refers to the orientation
of the structure and loads as described in sub-section
4-7.1 and Figure 4-5.

The following three lines are for the lengths of the
plates in the x,y and z directions. In the following
lines, the thicknesses of the plates are entered in se-
quence as described in Sub-,ection 4-7.2.

In line 9 are entered the modulus of elasticity and

density of the material of the structure, and the density
and thickness of the soil layer.

The next two lines contain the data required to de-
fine the loads due to the blast and ground motion, which
are explained in Appendix A.
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In line 12 are entered the viscous damping factors
and the numerical intenratIon controls, I.e., the time
interval At and the number of time intervals.

The next four lines are used to identify the joints,
if any, at which time dependent print out of the displace-
ments, velocities and accelerations are required, and
also which coordinate direction these responses are re-
quired. The coordinates are indicated numerically, i.e.,
X - 1, y z 2, z a 3. Because of the large amount of
printed data that this computer program is capable of
producing, it was decided to limit the time dependent print
to three nodal points per run.

If response spectra are required, input sheet No. 2
must be used. Spectral velocities can be obtained for any
twenty nodal point translational displacements. Four
different damping factors may be used. The frequencies
at which the spectral velocities are required are listed
row-wise in sequence to a maximum of twenty-five.

4-7.4 Sample Analysis

The modeling of a structure, numbering of elements,
reorientation of loading coordinates and entry of data on-
to the input forms is demonstrated in the sample analysis.
The structure is shown in its natural position in Fig-
ure 11-7 az~d v oriented with reoriented loading in Fig-
ure 1-8. The numbering of the elements is identical with
the sample of Figure 4-6. The data input forms are shown
in Figures 4-9 and 4-I0. A printing of the input is shown
in Figure 4I-11. A sample page from the output of load
deflection history for two points is shown in Figure 4-12.
Figures 4-13, 4I-14 and 4-15 show the maximum displacements,
velocities and acclerations. After each of these list-
ings, the time at which these maxima occured is also print-
ed. Fi ure 4-16 shows the maximum positive stresses in
the eleikents in local coordinates. The complete printout
lists the moments M X, I and M X  the forces Q and Q
and the stresses 0 , and X. This listin is follow-

ed by a listing of thetimes at'which these maxima oc-
cured, a listing of the maximum negative stresses and the
times at which the maximum negative stresses occured.

Figure 1I-17 shows response spectra for the midpoint of
the base slab in the vertical direction.
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Section 5

DYNAMIIC RESPCISE ANALYSIS - HOH-LINEAR

5-1 General Procedure

The non-linear dynamic analysis is carried out by
a step-by-step procedure in which the structure is as-
sumed to respond linearly during each short time in-
terval. The elastic properties may be changed, however,
from one interval to the next; thus, the non-linear
response is obtained as a sequence of linear responses
of successively differing systems.

The analysis procedure involves the repeated appli-
cation of the following steps for each successive time
interval:

First: the stiffness matrix appropriate to the time
interval is evaluated, based on the forces
existing in the plate elements at the begin-
ning of the time interval.

Second: changes in displacements of the elastic struc-
ture are computed, assuming the accelerations
to vary linearly during the interval.

Third: these incremental displacements are added to
the deformation state existing at the begin-
ning of the interval, to obtain total element
deformations.

Finally: based on these element deformations, plate
forces are computed from which the stiffness
matrix appropriate to the next time interval
may be determined.

5-2 Failure Criterion

5-2.1 Method of Failure

There is no well established theory of failure of
plates under the combined effect of bending and inp'ane
forces. Thereforein this study an assumption was made
that the plates would fail in bending first, and once
having failed, a plate could not recover its bending
stiffness. Also, a plate is assumed to continue to

5-1



contribute elastically to the overall stiffness of the
structure through its inplane stiffness after losing
its bending stiffness.

Each element can lose its bending stiffness in-
dependent of any other element. The whole structure is
considered to have failed when the application of load
is such that a sufficient number of elements have failed,
so that the stiffness of the structure becomes singular.

The stiffness matrix will become singular when all
the elements coinciding at a node point will not provide
additional flexural constraint thereby permitting infi-
nite displacements at that node.

5-2.2 Failure Assumption

Figure 5-1 shows the Johansen's yield line theoryl!

applied to a uniformly loaded rectangular plate clamped
on all four edges.

negative lines-

positive lines--,-

03iX 4
Figure 5-1
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Based unon yield line theory, a kinematically com-
patible sy!stem of forces gives an upper bound to the
solution whereas u:in-c any statically admissible system
will cive a looser bound. Investications have shown
that the diff'orence bet,;een the two methods of solution
is small, and that the yield line theory gives conserv-
ative answers. (See Section 6)

The angle is determined so that a minimum value
of load p is obtained which will cause the plate to
reach its yield capacity A P.

Assurning the moent capacity is tie same for pos-
itiv anr ....- ve mc:nts in both the X and V direct!ons
it can be said,

(1) TExternal 1.Work

= ,-11T t a n + p t t a n € + 2 p T ( a - b t a n ) T

b2  b (a-btan€) (51)= p-3  tan + py

(2) Internal Work

W. =A ?b . + 2a + 2a 2 +Zb 2

P btano b b btan€

(5-2)

=81 + + 1
p tano b

::quatin!L W and :1J and takin- the derivative riiese 
I,.62. z, ti.n - ,,.6 + 8 = 0' ) - tan + 8' 0

snF2

,1 e 1 (5-3)

b2 tan¢ 2

!Qnce 'ro', rquat.on., 5-2 and 5-3 substitutin ror ,;
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. t btan - tanj - sy n +

o+r an+ /L2 + 3  
(5-4)

11 a2

5-2.3 Failure Condition

Since the finite elem:ents are equilibrated to nodal
points at the four corners, it is necessary to make
somne assu n1tion as to the development of the yield
moment. The method elected was to aver-ve the moments
it. the direction at all four corners and compare the
av .ra!e to roment capacity of' the element.

U:ing l.ohr's circle, the -oment at a point which
makes an angle * t..th the V axis is,

"4 = Ifcos 2 o - Ixjsin 2 o + .Ixsin 2 o (5-5)

and the failure condition is,

' <- (M + A j + Ik +- I) (5-6)

5-3 Samnle !lon-MInear Analysis

A sinle cell box structure was defined as shown in
"'vture 5-2.

The structure was 110 Peet niquare by 20 Pce t deen
with walls 0.3 "net thick. D-noreit soent canacities
were asst!nerd to each nlate so that the e"'ect of suc-
cessive Oatlures could be dlemonstrated,

Figure 5-3 shows the input form and Figure 5-4
shows a printing of the input.

5-.4



"tr' ction o" the Blaq't
-~- round rine

,, ' " ' "

1 \2. 21

¢ 27
2 3 18,i

1-

'''io-" -, %

I

"thoiurr . 5-2

,2A'!T[T !UP[ 2]R7.r)l'l~D' S' UCTtJRE

Fi7,ures 5-5, 5-6, and 5-7 are selected sheets from
the output, Pirire 5-5 shows the Load Deflection History.
After each increment of time the moments In each plate
are compared to the assumed average moment capacity of
each plate, '-hen any plate has railed, the plate number
is printed on the output. The process continues until a
sufficient number of' plates have failed to produce an
unstable structure, at which point the computer halts any
further analysis and prints out maximum displacements
(Fifnre 5-6), velocities and accelerations. The maxirum
positive moments and maxtimum nerative moments (Firure 5-7)
are also printed out. The tines at which these maxima
occur are also printed.
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DYNAMIC NON-LINEAR ANALYSIS OF BOX STRUCTURES

SAMPLE PROBLEM se SINGLE BOX DYNAMIC NON-LINEAR RESPONSE to 10/12/661

NO* OF JOINTS

X DIRECTION 3 2
Y DIRECTION a 2
Z L)IRECTION A 2
MODULUS OF ELASTICITY
STRUCTURE c 432000.00 KSF

SOIL =1255444972 KSF
HO 150,00 LB/CUFT,

KO 0933

LENGTHS OF PLATES

X DIRECTION = 40900
Y DIRECTION 2 20.00
Z UIRECTION 2 40.00

PLATE THICKNESSES

0.30 0.30 0.30 0.30 0.30 0.30

MOMENT CAPACITY (K*FV/FT)

20900 20o00 15,i 5.00 100.00 500.00

BLAST AND GROUND MOTION CHARACTERISTICS

W(MT) 2 20,O0
PSO(PSI) =  15.00
ALHA a 1.36
BETA 2 8.40
A 0.67

DP+(SEC) =  0.08 40 TIME INCPEMENTS
U(FPS) a 15000.00
R(FT) a 1?500.00

OEL.(FT)s 8300.00
VL(FPS) =  17000.00 TI4E INCREMENT a 0.0005

VLWFPS) =  1170000
TM/T2 = 0983

SPGRAV,=  2.69
P FACTOR* 4.00
PHASING -0.000000

UAMPING FACTORS
ALPHA loo o OOno0 tETA = 0,000025

Figure 5-4

PRINTING OF INPUT
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LOAD.EFLECTION HISTORy

LOAD IN KIPS, DEFLECTION IN FT9 TIME IN SEC

.z i-Y i3-X

TIME LOAD DEFLECTION LOAD DEFLECTION LOAD DEFLECTION

000050 5,3 .0.00000 55,9 6.000011 71.1 0.000001
NEW FAILED PLATESO* NONE
0,00100 21s4 0.000000 31i,7 0.000090 140,6 0,000005
NEW FAILED PLATES,* NONE
0,00150 47,4 0.000002 463.6 0.000301 136,6 0.000014
NEW FAILED PLATES4 NONE
0.00200 72.6 0,000005 607.9 0.000703 13298 99000022
NEW FAILED PLATES** NONE
0,00250 97.1 0.000009 752.7 0.001352 129,1 0,000024
NEW FAILED PLATES* NONE
000300 120.1 0.000013 786.1 0,002290 125.6 0.000019
NEW FAILED PLATES** NONE

o.0o350 130.3 .0.000016 764.6 0.003522 122.2 0,000011
NEW FAILED PLATES** NONE
0.00400 128.1 0.000018 743.8 0,005031 119.0 04000006
NEW FAILED PLATES** NONE
0,00450 124.6 .0,000018 723,9 0.006793 115,8 0,000007
NEW FAILED PLATES"*

is 16

0,00500 121,2 0,000017 704.7 0.008790 112,8 09000015
NEW FAILED PLATES44 3 11

0,00550 118,0 .0.000018 686.3 0.011003 1,)9,9 0.000019
NEW FAILED PLATES*"

4 12 23 24
0,00600 11489 0,000017 66806 0.013415 107,2 0.000017
NEw FAILED PLATES4* NONE
0.00650 112.0 0.000012 651.6 0,016012 104.5 0.000009
NjjW FAILED PLATES** NONE
Oo00700 109,1 0.000005 635.1 0,018779 101.9 -0.000000
NEW FAILED PLATES*4

13 14 21 22

FAILED PLATES PRODUCE SINGULAR STIFFNESS MATRIX#

STRUCTURE BECOMES UNSTABLE

Figure 5-5

LOAD-DEFLECTION HISTORY
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MAXIMUM NEGATIVE STRESSES IN LOCAL COORDINATES

ELEMENT * TYPE * JOINT * MOMENT-X MOMENT-Y MOMENT-XY

1 1 4 -55221+000 -2.9776#001 -2.7428-002
1 1 5 -8,5711-001 -2,2518+000 -8,4298-003
1 1 I o.6ooo.ooo o.oooo.ooo -3.2826-001

1 2 0,0000.000 0.0000"000 -3.4805-001
2 15 V1o471-001 -2.1077+000 -3.7118.000
2 6 -4.1761.000 -1,9107+001 -3:5308+000
2 1 2 000000000 060000+000 -508600.001
2 1 3 -3,3463-003 -1.7338-004 -4,0493.001
3 1 7 .3,9758,000 -1.9922 001 -4.8388#000
3 1 8 .8 0417#000 .4,0164+001 -.47730+000
3 1 4 0,0000+000 0.0000+000 0.0000+000
3 1 4 o6388002 0 .0000000 oo000.ooo
4 18 .12862+001 .6.4319.001 00000000

4 9 .2,2483+000 -1,1246+001 .4,7270-007
4 15 ,0000+000 0.0000+000 -8.3182-001
4 6 .6,2172-002 -9,5414.004 .9.8023-001

5 1 13 0,0000.000 00000000 031
5 1 14 0.0000.000 0.0000+000 0.0000+0005 10 o.eooo.ooo o.0ooo.oo0 0,0ooo.0oo

11 0.0000,000 0.0000.000 0.0000.000
6 1 11 0,0000.000 000000 000006 1 14 0,0000.000 0.00004000 0.0000+000
6 1 11 0,0000.000 0.0000.000 00000+600
6 1 12 0.0000.000 0.0000.000 0,0000+000
6 1 16 0.6000000 0.0000.000 0.0000#000

7 1 17 0,0000,000 0.0000.000 0,000,00
7 1 13 0.0000.000 0.0000.000 0.0000+000
7 1 14 00000,000 0,0000,000 0,0000.000
8 1 17 0.0000#000 0.0000+000 0,0000.000
8 1 18 o0600040oo 0,0000.000 0,0000.000
8 1 14 0,0000.000 0,00004000 0.0000.000
8 1 15 o000,00 o000000 00000000
9 1 Z2 .2,5286.002 0,0000000 .4.6697#000
9 1 23 0,0000.000 00000.000 .4.5583,00
9 1 19 .5,6850,000 .2.8536.001 .1,3760,000
9 1 20 .1,6973,000 .8,3749,000 -1,2646+000

10 1 23 .1 8730-001 0.0000.000 .7,9570.004
10 1 24 0.0000+000 0.00004000 -.23633.002
10 1 20 -1.6542'000 -8.36624000 -5.3776"001
10 1 21 -3.6424'000 "1.8131'001 "6*7632"001

Figure 5-7

MAXIMUM NEGATIVE STRESSES
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Section 6

SYNOPTIC REVIEW OF SELECTED LITERATURE PERTAINING TO THE

FAILURE MODES AND FAILURE LOADINGS OF TWO-WAY SLABS

6-1 Introduction

In the search for, and review of publications, emphasis
was placed on reports of the results of load tests to
failure and comparisons of test results with predict-
ions calculated by analytical methods. The region of
interest, in the load-deflection history of slabs,
starts at the beginning of yield in the reinforcement
and ends at collapse of the slabs. Slabs are assumed
to have less than balanced reinforcement.

All of the tests, of which reports were examined, were
made with static loads. Where the location of the test
was reported, it is given in this review. Generally,
locations are not reported but inasmuch as the tests
were made in laboratories, it is assumed that they were
facilities of the activity with which the author was
connected.

In the listing of references, those publications which
were considered to be significant contributors of know-
ledge in the region of interest are abstracted. Many
other reports were examined and those addressed to ob-
jectives which bear to some lesser extent on the region
of interest are listed but not abstracted.

6-2 Synoptic Review of Selected Literature

The pertinent phenomena reported in the region of
interest are:

1) The yielding of the reinforcing steel.
2) The arching action of the slab.
3) The improvement of the plastic deformability

of the concrete in the triaxially compressed
zone.

4) The mobilization of tensile membrane forces
in the suspended net of steel.

The excitation of interest in the post-yield history
of overloaded slabs appears to have been triggered by
Ocklestonsl*report of his load tests to destruction of

*References designated by superscript in this Section 6
are found on pages 6-6 to 6-12.
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some two-way slab floor panels in a reinforced concrete
building in Johannesburg, South Africa, which was avail-'-
able because it was scheduled for demolition.Ockleston
reported cracking patterns agreeing with the Johansen
Yield Line Theory, but that he obtained failure loads
over 2 times analytical predictions according to the
theory. Approximately 2 years later (June 1958) he
reported2 his re-examination of his test results and
his success, with a simple theory which he produced,
in rationalizing the high failure loadings as result-
ing from the superposition of plastic hinge moments and
the resisting moment produced by arching action of
compressive axial force induced in the slab by large
deflections associated with the functioning of plastic
hinges.

A somewhat idealized version of arching action in a
slab is depicted in Figure 6-1. It is assumed that
the slab is under-reinforced, as is normally true,
so that the concrete behaves elastically above the
yield moment of the steel.

Relatively large deflection of the slab after the form-
ation of plastic hinges imposes compressive strains for
the simple reason that the diagonal distance, d, between
compressive stress block centroids, is greater than
the horizontal distance, t/2.

It is readily apparent.that these compressive strains
will not be imposed unless the structure surrounding
the yielding slab is stiff enough to function as an
effective abutment. It is also apparent that the
limit of arching action is reached when the lever arm
reaches zero and that, with small additional deflection,
the lever arm becomes negative and the stored inplane
strain energy performs work contributing to plastic
hinge rotation. This produces additional deflection
with rapidly diminishing load, transforming work already
done into tensile membrane strain energy in the steel,
which is already past its yield point. With sustained
load, the rupture stress in the steel Is likely to be
reached, particularly with large depth span ratios and
very stiff abutting structure. With impulse loads,
the work of which is quickly transformed to kinetic
energy, the kinetic energy remaining when the steel
becomes the sole survivor may be within the capacity of
the steel to accept it below the rupture stress. The
worth of the suspended steel net depends considerably
on the stress-strain properties of the steel above its
yield point stress.

6-2



Figure 6-1

ARCHING ACTION IN A YIELDING SLAB

The characteristic load deflection curve is shown in
Figure 6-2.

Arch Loading rch Unloading

Elastic Loading v, 'e

0

Deflection

Figure 6-2

CIIARACTERISTTC LOAD DEFLECTION CURVE OF REINFORCED SLAB
WITH ARCHING ACTEON MOB[LIZED BY LATHRAL BOUNDARY

STI FFNESS
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The foregoing synopsis of load-deflection history is a
syllabus, to a large extent, of the findings from ex-
amination of References 1-12, inclusive. Tests re-
ported by Park3 and by Christiansen4 manifested the
existence of arching action and emphasized its de-
pendence on lateral boundary stiffness. Christiansen's
results with two quite widely differing cube strengths
pointed up the sensitivity of arching action to the
inplane stress-strain relation. Self5 reported tests
with cold-rolled and hot-rolled steel which suggested
the effect of strain hardening on the plastic hinge
resisting moment. Gamble and Sozen7 reviewed the lit-
erature and studied the results of five scale model
tests made at the University of Illinois by Seiss7 , and
advanced five reasons for the calculation of failure
loads significantly less than test results. These are:

1) Incorrect determination of steel strength
2) Strain hardening of steel
3) Erroneous location of yield line
4) Arching Action
5) Effects of deformation of the structure

Undoubtedly, the increase in load capacity above the
yield point in the steel is a superposition of strain
hardening and arching effects. Hodge and Perrone',
Hillerborg8 9, Crawfordland Kemp 1 report finding by
means of theory that the yield line method gives an
upper bound and that there is a lower bound that can
be determined by finding a distribution of moments
which satisfies the boundary conditions and the equi-
librium equation 9 . Kemp found the lower bound to be
only slightly less than the upper bound, but found the
yield lines to be an infinite set of curves. These
theoretical findings regarding the failure load are
not borne out by the tests reported upon, in which test
results were higher than calculated values. Gamble and
Sozenl found this to be true in the literature they re-
viewed and the results of scale model tests they stud-
ied. Relative to their advancement of incorrect de-
termination of steel strength as one of the reasons for
low calculated failure loads, the authors of the publi-
cations which have been examined, in which analytically
predicted and experimental results were compared, did
not report whether or not they had determined, by test,
the yield point of the specific reinforcement earmarked
for use in experimental loadings. The yield point
stresses specified, according to steel grades, are the
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producers' guaranteed minima, which are exceeded approxi-
mately 15 percent by the mean value.

Brotchic, Jacobson and Okubo 12 report the results of
the comprehensive tests and investigation made at the
Massachusetts Institute of Technology under contract
with the U. S. Naval Civil Engineering Laboratory,
Port Hueneme, California. This recent (August 1965)
supported work in the field appears to have been a
well integrated, comprehensive experimental investi-
gation of the behavior of two way square slabs, sup-
ported around the four edges, with and without moment
restraint. They were restrained against lateral dis-
placement, but with strain gauge cells which permitted
the restrainiig forces to be measured. The report
rresents straightforward analytical equations which,
with a few exceptions, agree reasonably well with the
results of the experiments. A feature of the report,
not found in other literature examined, deals with the
effect on concrete strength of the triaxial compression
in the positive moment hinge area, comprised of axial
forces in two directions and the vertical force of
applied load. The authors conclude that, "The com-
bination of increased load capacity and improved
behavior produced by arching action is sufficiently large
and sufficiently predictable, to warrant its serious
consideration in design." They suggest its application
to the roof and walls of reinforced protective structures
of various kinds, eg. shelters, block houses, etc.,
particularly subt:rranean. They caution that, "tensile
membrane action may be considered only in situations where
excessive deflections are tolerable and reuse Is not
necessary: such as, protective slabs under debris loadina."

Regarding the predictability of the increased load capacity
produced by arching action, the authors did not address
themselves to the problem of determining the lateral
stiffness of the boundary of the loaded slab in an exist-
ing structure. Arching action is sensitive to lateral
stiffness at the boundary and this parpneter needs to be
estimated rather closely. A structu:e may be designed
with boundary lateral stiffness provided in such way that
Its effectiveness may be reliably verified by analytical
methods, but such design may not be found In existing
structures.

The capability of the tensile membrane to provide pro-
tection against catastrophic failure under destructive
dynamic loading of buried structures Is subject to certain
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reservations which demand thorough consideration. Tensile
membranes which are the surviving intact components of
external horizontal slabs will be subjected to the sus-
tained gravity load of earth overburden and residual
kinetic forces. Cracked external walls with relatively
large deflections will be axially loaded with the
gravity reaction of earth overburden. If the concrete
is not too badly crushed, this force will provide some
resistance against the lateral forces. If the concrete
toward the outside face is ineffective in compression, the
line of force may be so far toward the inside face that
the gravity reaction will contribute to collapse of the
walls. The tensile membrane has no capability to resist
collapse from such cause. The lateral force will be
comprised of residual kinetic force and lateral pressure
of disturbed soil. The tensile membrane has capacity
within its strength limitation to resist these forces,
provided the vertical force does not cause collapse.

6-3 Selected References with Abstracts
of More Pertinent Publications

1. Ockleston, A. J., Load Tests on a Three Story
Reinforced Concrete Building in Johannesburg, The
Structural Engineer (London) October 1955, P.30U

Full scale static loading tests to failure were run
on two 16ft.by 13ft.6in. reinforced concrete slab panels
which were part of a beam and slab floor system 27ft.
wide by over 100ft. long. Slabs were bounded by
transverse main beams spaced 16ft. apart and sec-
ondary longitudInal beams spaced 13ft. 61n. apart.
Cracking pattern agreed with Johansen Yield Line
Theory but failure loads were over 2 times the
analytical predictions.

2. Ockleston, A. J., Arching Action in Reinforced Con-
crete Slabs, The Structural Engineer (London)
June 1958, P.191.

Ockleston re-examined the results of his erlier
tests (ref. 1) and succeeded, with a simple theory
he produced, in rati'nalizing the high failure
loads as resulting from the superposition of plastic
hinge resistance and the resisting moments afforded
by compressive membrane forces.
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3. Park, R., The Lateral Stiffness and Strength Re-
quired to Ensure A.embrane Action at the Ultimate
Load of a Reinforced Concrete Slab and Deam Floor,
Ma~zine of Concrete Research (London) Vol. 17,
No. 50, March 1965, PP.29-35.

Sand-cement mortar models of a nine panel slab
and beam floor were tested to failure under static
uniform load on the interior panel. Tests were
made at the University of Bristol. Panels were 12in.
square and varied in depth from about 3/8in. to
about ll/16in. Twenty slabs were tested, varying
in ages from 9 to 14 days. High abutment stresses
were manifested by diagonal cracks across a corner
of the surround, 2onsisting of the eight exterior
panels. The ultimate loads of the interior panels
of slabs with continuous tee reinforcement showed
good agreement with theory which includes compressive
membrane strains in the panel, and lateral edge
displacements once the concrete had cracked, but
did not reach the results of theory which ignored
these strains and displacements. Results emphasize
the importance of' abutment stiffness in the mobili-
zation of arching forces.

4. ChristiansenK. P., The Effect of Membrane Stresses
on the Ultimate Strength of rnterior Panel in a
Reinforced Concrete Slab, The Structural Engineer
(London) Vol. 41, No. 8, August f9-T7

Christiansen, a Civil Engineer in Copenhagen, per-
formed the reported work and wrote the paper while
a lecturer at the University of Witwatcrsrand,
Johannesburg, South Africa. The author presents
his theory for evaluation of arching action in slabs
and reports results of tests of 4 identical pairs
of simply supported beams, with one of each pair
axially restrained by a welded steel frame and the
other, unrestrained; all beams were 6 Inches wide
and spans and depths were 60 x 3.5 inches, 60 x 3
inches and 7? x 3 inches. Load carried by arching
in the axially restratned beams was 30 - 35% of
the total In three cases with cube strengths from
1090 to 11975 nsi, and 70% of the total In a 60 x 3.5
Inch beam with cube strength of 5660 psi. Author
concludes that althouLh loads supported by arching
can be predicted with some accuracy, more research
i required to make arching action a reliable and
useful part of design.



5. Self, W. M., Ultimate Strength of Reinforced Concrete
Flat Slabs, Journal, Structural Division, ASCE
Vol. 90, No. St4L, August 1964, P.205. Three
reinforced concrete slab models were tested. Slabs
were 10 feet square by 2 inches thick, and supported
by four interior columns producing an interior
panel 5'- feet square. Overhang balanced moments
over columns, thus eliminating influence of column
stiffness.

Yield line pattern conformed to predictions in
accordance with Johansen theory. Ultimate strength
of slab No. 1, reinforced with cold.-rolled steel,
was 9% above prediction; slab No. 2, reinforced with
hot-rolled steel, reached an ultimate strength 17%
above orediction. (Slab No. 3 failed in shear before
flexural yield). The variation is indicative of
strain hardening of steel. The slabs lacked sur-
rounding confinement necessary to mobilize compres-
sive membrane forces.

6. Hodge, P. G., Jr. and Perrone, N., Yield Load of
Slabs with Reinforced Cutouts, Journal of Applied
Mechanics, Vol. 24, March 1957, PP.85-92.

Presents a method of computing the upper and lower
bounds on the capacity of a plane slab with a
reinforced cutout to carry uniaxial tensile loads
which are either uniform or applied by means of a
perfectly rigid clamp. Results are applied to
several examples and found to agree quite well
with experimental values.

7. Gamble, W. L., Sozen, M. A., and, Sless, C. P.,
Measured and Theoretical Bending M-oments in Rein-
forced Concrete Floor Slabs, University of Illinois
Civil Engineering Studies, Structural Research
Series No. 2116, June 1962.

Test results of two-way slabs reporteI! in the lit-
erature and results of five tests of Jiffering 1/4-
scale slab models, performed at the University of
Illinols, were reviewed with the objective of
developing a slab design procedure.

Slab strengths were calculated according to yield
line theory, Moe's formula for shear strength,
Elstner and Ilognestad punching shear equations or
the equation from ACT committee 326.
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In nearly all of the tests reported in the lit-
erature, the specimens failed at loadings higher
than cal ilated according to yield line theory.

Some reasons advanced for the low calculated values
are:

1. Incorrect determination of steel strength.
2. Strain hardening of reinforcement.
3. Errors in establishing location of yield

line.
4. Arching of compressive membrane forces.
5. Effects of defor!7'ation of the structure.

In most of the five University of Illinois tests,
the flexural mode of failure was complicated by
other distress (shear failure, beam-column distress,
etc.). The test results indicated that if flexural
failure had been allowed to occur, the failure
load would have exceeded the results obtained by
yield line analysis.

8. Hillerborg, A., A Plastic Theory for the Design of
Reinforced Concrete Slabs, Preliminary Publication,
International Association for Bridge and Structural
Engineering, Sixth Congress, Stockholm, 1960.

Conclusion is reached that althoucrh the yield line
theory will reveal the magnitude of a load great
enough to cause failure through the formation of
plastic hinges, the load is theoretically unsafe
since other yield lines may form at a lower level.

The equilibrium theory states that if a distribu-
tion of moments can be found which satisfies the
equilibrium equation and the boundary conditions,
under the action of a given load, and these moments
do nou exceed the yield moments at any section of
the slab, the slab is capable of carrying that load.
This is a lower bound and the exact ultimate load is
somewhere between the results of the yield line and
equilibrium theories.

9. Hillerborg, A., Theory of Equilibrium for Rein-
forcul Concrete Slabs, Department of Scientific
and Tndustrial Research, Building Research Station,
Library Communication No. 1082, Great Britain.

6-9



If, for a certain external load, q(x,y), a moment
distribution can be found which satisfies the
equation,

a 2 m
- + ----- -- = -q (x,y)
3X2 ay2 axaq

and the edge conditions, and if the slab can take
up these moments at each point, q(x,y) is a lower
limiting value for the bearing capacity of the slab.
The moments are not coupled and therefore, two
may be selected arbitrarily and the remaining one
solved.

A practical solution is advanced, involving the di-
vision of the slab into strips, in which the load
in one strip is carried in one direction only.

10. Crawford, Robert E., Limited Design of Reinforced
Concrete Slabs, Journal of the Engineering Mechanics
Division, American Society of Civil Engineers,
Vol. 90, No. EMS, October, 1964.

The yield line theory is considered in terms of
limit analysis and is shown to give an upper bound
on the collapse load. Similarly, the equilibrim
theory is reviewed and shown to give a lower bound.

Ill. Kemp, K. 0., A Lower Bound Solution to the Collapse
of an Orthotropioally Reinforced Slab on Simple
Supports, Magazine of Concrete Research (London)
July, 1962.

A lower bound solution to the collapse of a simply
supported, rectangular slab, orthotropically rein-
forced and carrying a uniformly distributed load is
developed. The lower bound collapse loads, cal-
culated fox, a range of coefficients of orthotropy
and ratio of width to length of slab, agree closely
with the upper bound values derived from the yield
line theory. The yield lines, however, are quite
different; they are found to be an infinite set of
curves in the lower bound solution. With the solu-
tion, the negative reinforcement required in the
corners of the slab and the loads transmitted to
the supporting edges were determined.
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12. Brotchie, John F., Jacobson, Amnon and Okubo, Sadaji,
Effect of Membrane Action on Stab Behavior, Report,
Department of Civil Engineering, M.I.T., U.S. Naval
Civil Engineering Laboratory, Port Hueneme, Calif-
ornia, August, 1965.

Forty-five square slabs of plain and reinforced
concrete were tested under uniform loading. All
spans were 15" x 15". Thicknesses were 0.75",
1.5" and 3.0", resulting in span/depths ratios of
20, 10 and 5.

Lower reinforcement only was used, distributed
uniformly and equally in each direction. Reinforce-
ment ratios were 0%, 0.5%, 1%, 2% and 3%.

Five sets of boundary conditions were used:

1. Restrained at edges against axial elonga-
tion only, at approximate level of rein-
forcement, by 24 cells.

2. Same as 1, with added resistance to internal
shear in the slab at the support.

3. Same as 1, but with level of restraining
force raised to the middle of the edge
surface of the slab.

4. Slab clamped at the supports by top plate
and base plate and restrained at the
edges by epoxy resin fill.

5. Simply supported on 0.75" diameter roller
bearings.

The steel restraining frame was designed for essen-
tially complete lateral and vertical rigidity. Twelve
of the 24 restraining cells, uniformly distributed
along two adjacent edges, were wired with electrical
resistance strain gauges for measuring the restraining
force.

The effect of arching was found to be significant in
slabs with span/depth ratios of 20; equivalent in load
capacity to approximately 2% of conventional rein-
forcernent. The effect of arching is greater for thick
,;labs and, for span/depth ratios of 5, is equivalent
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to over 3% of conventional reinforcement. External
restraint, mobilizing arching action, increases stiff-
rss and reduces cracking. When maximum arching -

supported load is reached, however, load capacity drops
while deflection increases, allowing sudden failure if
the slab is lightly reinforced and the applied loading
is sustained.

The magnitude and distribution of the restraining force
indicate3 that essentially the full capacity of the
concretc. in compression is utilized, when the slab is
restrained.

For thin slabs, essentially full edge restiaint is
necessary to mobilize the full increase in load capa-
city. For thicker slabs, additional edge displacement
may be tolerated, without significantly reducing the
load capacity.
The effect of direct normal stress due to the uniform

load, in combination with two-way inplane stresses,
is to produce a triaxially compressed zone. In the
case of very thick slabs, that is, span/depth ratios
of 5, the effect is apparently significant; the plastic
deformability of the concrete in the compressive zone
is notably increased.

Tensile membrane action is significant only at deflec-
tions which are too large for use in resisting service
loads. The tensile membrane action may have some
appeal, however, to provide protection against col-
lapse in the case of a single catastrophic loading,
particularly in view of the energy absorption which
precedes in this range.

Simple theoretical expressions are presented which
were found to predict, with some exceptions, the ranges
of behavior described.

6-12



Section 7

7-1 REFERENCES

1. Lin, T. Y. and Associates, Computer Analysis of
Protective Structures For Protection From Nuclear
Blast, Office of Civil Defense, Contract No.
OCD-PS-65-7, June 1965

2. Principles and Practices For Design of Hardened
Structures, Air Force Design Manual, Report Number
AFSWC-TDR-62-138, December, 1962.

3. Design of Structures to Resist Nuclear Weapons
Effects, ASCE Manual of Engineering Practice, No.
42, 1961.

4. Norris, C. H., et al, Structural Design for Dynamic

Loads, McGraw-Hill Book Company, 1959.

5. White, M., Design and Review of Structures For
Protection From Nuclear Blast, Protective Struc-
tures Division, Office of Civil Defense, PM-100-4,
1963.

6: Clough, R. W., The Finite Element Method in Struc-
tural Nechanics, Stress Analysis, Edited by O.C.
Zienkiewicz and G. S. Holister, John Wiley and
Sons, L"d., London, 1965.

7. Adini, A. and Clough, R. W., Analysis of Plate Bend-
ing By The Finite Element Method, Report submitted
to the National Science Foundation Grant G7337, 1960.

8. Stanford Research Institute, Nuclear Geoplosics,
Part 1V, D.A.S.A.-1285, May, 1964.

9. Stanford Research Institute, Nuclear Geoplosics,
Part V, D.A.S.A.-1285, May, 1964.

10. Berg, G. V., The Analysis of Structural Response To
Earthquake Forces, University of Michigan Industry
Program of the College of Engineering, Report No.
IP-291.

7-1



11. Johansen, K. W., Yield Line Theory, Cement and
Concrete Association, 1962.

12. Archer, J. S., Consistent Pass Matrix for Dis-
tributed Mass Systems, Journal of the Structural
Division, ASCE, August 1963.

13. Clough, R. W., and Tocher, J. L., Finite Element
Stiffness Matrices for Analysis of Plate Bending,
Proceedings of the Conference on Matrix Methods
in Structural Mechanics, October 1965,
AFFDL-TR-66-80, Air Force Flight Dynamics
Laboratory, Wright Patterson APB.

14. Wiehle, C. K., Soil-Structure Interaction Under
Dynamic Load, Part I, Analysis and Correlation,
DA-49-146-XZ-288, URS Corporation for the Defense
Atomic Support Agency, November 1965.

15. Brode, H. L., A Review of Nuclear Explosion
Phenomena Pertinent to Protective Construction,
The Rand Corporation, R-425-PR, May 1964.

16. Stanford Research Institute, Behavior of Equipment
Platform Under Blast Loading, Prepared for the
Ralph M. Parsons Company, February 1963.

7-2



Appendix A

COMPUTER SUBROUTINE FOR CALCULATING LOADS
ON AN UNDERGROUND BOX

The formulation of the load subroutine contained in
the computer nrogram is described in this appendix.
Pressures felt by a shallow buried box are calculated
using the engineering approach of' Reference 2 (Chaoter 4).
Soil-structure inteiaction has not been considered, ner
se, The loading formulation assumes that the overpressure
of interest are less than 100 psi. Also megaton yield
weapons are assumed,

A-i Airblast Characteristics

This section is a brief statement of the airblast
characteristics, as recorded by Brode in A Re.iew of
Nuclear Explosion Phcno.,zena Pertinent to Protective
Construction 15 . This reference should be consulted for
a complete review of the nhysical phenomena pertinent to
protective construction.

Figure A-1 shows the shock arrival time ts and the
shock radius Rs for the overpressures resultinv,
from the detonation of a 20 tT bor~b. These values
depend upon the energy of the explosion and mny be
scaled by the cube root of the yield ratio in mega-
tons for yields other than 20 MT. This figure also
illustrates the shock velocity as a function of the
neak overpressure which is independent of weapon
yield.

The time history of the overprcssure is described
quite well at all pressure levels under 100 psi by
the sum of two decreasing exponential functions of
t Ime :

AP - AP (deC T + be. 1)(1-T) (A-1)

where T Is the tim , after shock arrival measured
in units of positive phase duration. To force this
curve to go to zero overnressure at the end of the
positive phase, a linear factor has be,., included
that bccoivs zero at a tine equal to the duration
of the positive phase (T-I when t-t -V#).
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Figure A-2 gives the values of all shock parameters
and coefficients necessary to obtain the pressure-
time curve for a given peak overpressure.

Curves showing the pressure time relations based on
this analytical expression are given in Figure A-3.

A-2 General Characteristics of the
Soil Pressure Wave

The alteration in free-field form of the vertical
pressure wave as it progresses into the soil is illus-
trated in Figure A-4I. The surface soil pressure has a
very rayid rise, an exponential decay, and a duration
time, D . similar. to that of the airblast pressure wave.
At greater denths a reduced soil pressure neak and a
somewhat lengthened duration are Dresent. Also, a
lengthen d rise time to peak soil pressure takes place.
The impulse -- total area under the curve -- is nearly
constant.

The attenuation of stress with depth is generally
attributed to two causes, energy absorotior by the soil
and by three dimensional dispersion of the energy. In-
formation regardinr energy absorptiorn is not available
in a form useful for calculating loads. Three-dimension-
al or spatial attenuation can be aonroximated by the
following expression proposed by Newmark2 :

PVr =  a p 8 (A-2)

I
-U-4 (A-3)

L,

1300f ,/3 ft, (A-)

where AP* a peak overpressuee at the
surface, psi

p i -maximum vertical soil stress
VP? at depth i1 (ft), psi

a - geometric attenuation factor

N yield in megatons
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The above approximation does not permit soil stress
higher than the peak overpressure, a condition that can
truly apply only when the airblast velocity is low com-
pared to the seismic velocity.5

At the 100 psi range of a 20 MT surface burst, the
geometric attenuation factor (Equation A-3) for 100 feet
of depth is 0.86. For lower overpressures, higher yields
or less depth, the attenuation factor approaches 1.0.

Referring again to Figure A-4, it is obvious that
t, the time required for the vertical soil pressure to
reach its peak value, can never be less than the air-
blast rise time. Figure 2-2.3 of Reference 3 gives an
indication of the magnitude of this airblast rise time,
as it varies with ov-rpressure. However, the value of
rise time is not well defined.

Reference 2 expresses the rise time in soil as;

t trab + L _ - (A-5)
a C.p

where trab = airblast rise time

y= depth of interest

= seismic velocity consistent with
P the loading modulus oi' the soil

C. = seismic velocity consistent with
the initial tangent modulus of
the soil.

When the values of Cp and ci are not well defined,
an approximate evaluation of the rise time must be made.
In view of the many uncertainties regarding airblast
rise time and soil properties, Reference 2 suggests an
approximation; that the rise time be taken as one-half
the time required for the peak stress to reach the depth
of interest.

t _(A-6)r C2p

This exoression (Equation A-6) has been used within
the computer program.
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Horizontal stress in the soil, Ph, is taken as some

constant times the vertical soil stress.

Ph = K p (A-7)

The value of the constant K, depends upon the soil prop-
erties, the degree of saturation, the stress level, and
the condition of lateral restraint at the depth of in-
terest.

A-3 Loads on the Box

Each finite element of the box-structure's exterior
roof and walls is assigned a load-time history. Figure
A-5 shows a roof element, a side wall element, and a
front wall element. This figure gives each dimension
used in calculating the idealized pressures on the box.
Table A-1 lists the formulas used in calculating the
form of the pressure on each finite element, expressed
as an average uniform pressure over the element.

A-3.1 Roof Pressure

The vertical Dressure on a roof element initiates
with the arr.val of the shock front at the leading edge
and builds up to a maximum as the shock front reaches
the trailing edge. The average pressure is assumed to
increase linearly from zero to its maximum value during
the time required for the shock front to travel across
the element (see Table A-l).

Since the box roof is divided into a number of
finite elements for analysis purposes, the average pres-
sure is considered element-by-element in the direction
of the shock travel.

Arching of the soil above the roof is not considered.
Also, spatial attenuation of the peak pressure with depth
of cover is not considered.

A-3.2 Wall Pressure

The horizontal pressures in the soil are calculated
empirically by multiplying the vertical pressures by the
coefficient of earth Dressure at rest, KO, The analyst
choses the value of Ko believed appropriate for the
added increment of airblast induced horizontal stress.
Suggested values are given in Table A-2.
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"~~ 0'& Ph ( o t2}

0 Co

2

Time

Location Time in Seconds
of Element*

Roof d /U b/U

Wall:
Front d /Cp t**+ (b/c}

Rear (./U)+(dt/0. p tr + io/p

Side (d/U (dt/Cp) t r + (b/e)

t d t + b12 ft

See Figure A-5 for definiti-o of
box dimensions

TABLE A-i

AVERAGE PRESSURE ON AN ELEMENT
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No spatial attenuation of the peak horizontal soil
pressure has been included in the programed calcula-
tions. Very little spatial attenuation is predicted by
Equation A-3 for depths less than 100-ft., located
within the 100 psi range of megaton weapons. The co-
efficients of lateral earth pressure at rest (Table
A-2) are too crude to be modified further by a depth
attenuation factor.

The horizontal pressure on a wall element is as-
sumed to initiate with the arrival of a vertical com-
pression wave at the top edge, which is induced by the
shock front as it arrives directly overhead. The
average pressure is assumed to increase linearly from
zero at initial arrival to a maximum value of 0AP8
during the time required for the soil pressure pulse to
travel across the element plus the rise time calculated
from Equation A-6. (See Table A-1.)

Since the box is divided into a number of finite
elements, the average pressure is considered element-
by-element with increasing depth and in the direction
of shock travel.

A-3.3 Boundary Conditions

As the shock front passes over the box, the sur-
rounding ground surface displaces vertically (Figure
A-6). Overpressure loads are transmitted vertically
through the box to the foundation material immediately
below. A distributed elastic spring is used to repre-
sent the penetration compliance of the foundation. Thus,
the vertical force system is one of overpressure forces
driving the box into the foundation below. Frictional
forces on the walls are ignored. The value of the found-
ation's penetration stiffness, KV, is chosen by the ana-
lyst.

Horizontal pressures act concurrently with the verti-
cal pressures. A horizontal soil spring value of stiff-
ness, K., is chosen by the analyst. The program converts
the average element pressures into displacements at the
far end of this horizontal soil spring by dividing the
pressures by the spring stiffness (see Figure A-7). The
resulting time-dependent displacement is treated as the
horizontal forcing function.
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TABLE A-2

Ratio of Horizontal to Vertical Soil Pressures
(Reference 2)

Kos For Stresses Up to 1,000 psi

Soil Description Dynamic Static

Undrained Undrained Drained

Cohesionless Soils, 1/3-dense 1/3-dense
Damp or Dry 1/4 1/2-loose 1/2-loose

Unsaturated Cohesive
Soils of Very Stiff to
Hard Consistency 1/3 1/2 1/2

Unsaturated Cohesive
Soils of Medium to
Stiff Consistency 1/2 1/2 1/2

Unsaturated Cohesive
Soils of Soft
Consistency -3/4 1/2 to 3/4 1/2 to 3/4

Saturated Soils of
Very Soft to Hard Con-
sistency and Cohesion- 1/2-stiff
less Soils 1 1 3/4-soft

Saturated Soils of Hard
Consistency.
qu a 4 tsf to 20 tsf. 3/4 to 1 1 1/2

Saturated Soils of Very
Hard Consistency.
qu a 20 tsf. 3/4 1 1/2

Rock Obtain from tests on rock
cores and correlate with
seismic data.
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A-3.4 Outrunnin- Ground 'ctions

Many structures, which are designed for overpres-
sures less than 100 psi, will be in the region of out-
running ground motion. The phasing between outrunning
ground motions and airblast arrival can be calculated
by the procedure described in Reference 8 and need not
be repeated here. The phasing time is part of the in-
put data furnished by the analyst.

This section is a statement of ground motion pre-
diction as given by Sauer. The equations used in the
computer program to describe the amplitude of outrun-
ning ground motion are presented. In addition, the
particle velocity waveform is presented for both verti-
cal and horizontal motion.

The vertical velocity waveform (Figure A-8) is
completely identified by:

V2 , the amplitude of the third
velocity peak

t2 , the period of the first

three half waves

These variables are calculated from the following
relationships:

V2 41 Iw -58--- (ft/sec) (A8

t2(msec) 1 100 + AR14 (A-9)

where,
APB Peak overpressure (psi)

Range from ground zero (ft.)
AR Distance from site to point of initial out-

running (ft.)
8 - In situ specific gravity
V1 a Adjusted seismic velocity.

Vt V for soils and incompetent rock;

Vt w VL for competent rock.

VL  w Seismic velocity (ft/sec)

u a Weapon yield (megatons).
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The displacement waveform of Figure A-8, Dv(t), is

stored in the program. This free-field displacement is

applied through the foundation springs (Figure A-6)
when the analyst enters the above data on the input
forms. For computational purposes the equation

UM ax- V2(A- 10)

K max I a

S ) .5 t

2 
2M

2.5 t2] f.5 t 2

is adopted to represent the horizontal waveform shown in
Figure A-9.

For t - 0 and t - 2.5 t2, U2 (0) - 0.

2.5 t2 is the duration of the wave, K fixes the ampli-
tude, and m and p are constants responsible for the shape
of the curve. Quantity m is related to p by

I - (A-f1)( t2
2. 5 t'J)

The program integrates Equation A-1O giving the free
field horizontal soil displacements, VP ti. The wall load-
ing used In the computer program assumhs that the free-
field displacements P (C), are applied through the effec-
tive soil springs (Figtre A-7).
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