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1.    INTRODUCTION 

1.1    RELIABILITY GROWTH 

Ws are concerned with analyzing a particular model of reliability 

growth.   The "growth" occurs in the following way:   a system has some 

given value of a measure of reliability at the beginning of a length of time 

(i .e., at the start of a test period), and at the end of this period the value 

of this measure has changed — hopefully, it will be improved. 

This change may be caused by a number of factors .  We shall be con- 

cerned, however, with only those factors that are the result of a conscious 

effort on the part of an interested observer (the "experimenter") .   This 

effort is an attempt to improve or correct the system by some physical ma- 

nipulation (such as component replacement or adjustment) or perhaps even 

by possible design change.   The model considered below is similar to many 

discussed previously in the literature in that the corrections are attempted 

only after system failures have been observed, 

A comparison between the model considered here (and its implications) 

with those contained in the literature is postponed until the final sections, 

where the differences in approach should become more apparent. 

At this point we shall only mention the sort of information that should 

be, in the least, the content of any analysis of reliability growth.   This 

content falls into two categories:   inference önd projection.   In particular, 

an analysis should be able to produce statements (by necessity, probabil- 

istic ones), on the basis of the model and the failure history to date, 

related to: 
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Inference:   the present value of the reliability 

Projection:   the reliability at some future time, with or without con- 

tinued application of the correction ("growth") process . 

In order to make such statements, we shall first discuss two basic models 

which allow only a single failure mode for both discretely and continuously 

failing systems .   This condition will be relaxed inadÄtßrjsetiÜQn dealing 

with systems having many failure modes . 

A final comment about the use of the word "system" . As used in this 

paper, It shall mean simply a piece of equipment that has an assigned task 

to perform. If it does not perform It, it is said to have "failed". The sys- 

tem can be very simple, containing perhaps only one component. Or it can 

be extremely complicated. The only characteristic we shall use to distin- 

guish between those degrees of complexity is the number of different (iden- 

tifiable) ways it can stop functioning:   i.e., the number of failurj modes . 

1.2    NOTATION 

The following notation will be used in the description and analysis of 

the model discussed above: 

.Capital letters stand for events or states of nature. 

.An underlined variable, e .g .,   x,   is a random variable. 

r    /   \ J    r r Au IJ prob .   fx  ^   X  i   X +  Ax] .f (x) = p.d.f. of the r.v  x = Urn * = * 
x -      4 Ax 
- Ax—o 

.6(x) = Dirac delta function* of x. 

♦Defined most conveniently as the limit:   6(x) =  lim [h(x,€)]   where 

i i-      0 i x ^ 6 6 "^0 

h(x,c) =  \ t 

0       otherwise 
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.P(A|B) = prob, {event A given event B has occurred}. 

.f (x|A) = p.d.f. of x  given A has occurred. 

prob, {x i x ^ x + dxJA} 

Ax-*o ^x 

.E(xjA) =  jxf {y|A)dx = conditional expectation of x  given A. 

.V(x|A) = J [x - E(x|A)]2 fx(x|A)dx = conditional variance of x 

given A. 

.The letter H will be used to denote the event (state of nature) "histori- 

cal experience":   all the prior knowledge that is available concerning 

the model, values of parameters of the model, etc.   Probabilities and 

p.d.f .'s conditioned only upon H are called "a priori"f or "prior". 

.A vector is noted by an arrow over it, with the vector dimension being 

indicated in parentheses, e .g.,   tfn) = (t. ,t0 ,t0, ... t ) . 
i   l   6 n 

2 .    THE CONTINUOUS MODEL 

2.1    DESCRIPTION 

The system has a single failure mode, and the time between failures, 

t_,   is a random variable (r.v.) with probability density function (p.d.f.) 

ft(t) = re"11 0 ^ t ^ • . 

The parameter r  is commonly called the failure rate of the system (or, 

more properly, of the particular mode of failure) .   Since all relevant meas- 

ures of reliability for an exponentially failing system can be obtained from 

the failure rate, it will be sufficient to concentrate upon its characteristics 
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only.   The exponential function is not as restrictive as it may seem at first. 

Although it is certainly a simplistic assumption to make about complex sys- 

tems , it becomes more valid as the systems become more elementary and 

serve to comprise the components of an even greater system.   In addition, 

a conceptually simple (but laborious) extension of all the results of this 

paper is possible when it is postuc -ted that  r  is in fact a function of time 

öl nee last failure. 

The system is, at any time, in one of two possible states (again, with 

respect to a single failure mode): 

U s Unrepaired State 

R = Repaired State 

The numerical value of the failure rate  r  depends upon which state the 

system is in: 

If the system is in the unrepaired state U, then r = X ; 

If the system is in the repaired state R, then  r = ^ . 

The numbers   X  and ^   can be any non -negative values, and in fact 

H   .tsgoft^n zero.   On the other hand, the value of p,   might aotberxera. 

Thus, although the system is said to be "repaired*', it might still exhibit 

failures, albeit the failure rate when repaired might be quite low. 

By virtue of a test program, the system changes states in the following 

restrictive way.   After every failure, if the system is in U it   1) goes to R 

with probability  a (the "repair probability"); or   2) remains in U with prob- 

ability   (1-a) .   If the system is in R, it remains in R with probability one . 
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Thus, there can be only one transition to state R; once the system is re- 

paired , it remains so. 

This repcJr attempt happens instantaneously, after which the system 

operates until the time of the next failure (this time being again a random 

variable with failure rate depending upon whether the system has been put 

into state R or has remained in state U). 

The model may be represented by a two-state Markov process, as 

shown by the flow diagram of Figure 1.   The times between the transitions 

indicated in the diagram are the times between failures and, thus, are con- 

trolled by the failure rate of whichever state the system is in: 

(i-a) 

FIGURE 1 

Flow diagram representation of growth model 

U = Unrepaired state (failure, rate ^ X) 

R = Repaired state (failure rate = ^) 

a » repair probability 

- 5 - 



Which state the system is in, i.e., whether or not it has yet been re- 

paired, is unknown to the observer, and he can draw conclusions as to 

whether or not the system is repaired only by observing the basic data:   the 

successive failure times (or, equivalently, the times between failures). 

Finally, it is possible to allow for the system to start off in a repaired 

state by assigning 

p   = prob. (system is in R at the start of the test) . 

Except for one situation to be considered later, however, we shall always 

assume that  p   = 0 . o 

In the above model, it is easy to see that since the system ultimately* 

will go to state R, if ^ < x ,   the failure rate of the system will eventually 

decrease, and thus the reliability will grow.   On the other hand, if (for 

some unforeseen reason)   ^ > X ,   it is possible to degrade the system re- 

liability by such a test routine. 

2 .2    SOME BAYESIAN CONSIDERATIONS 

If the numerical values of the parameters   a,   ^   and   X , defined above, 

are known, then, as will be shown, it becomes a straightforward problem to 

make probabilistic statements about the failure rate  r,   at any time, on the 

basis of any amount of failure information.   This is essentially because the 

value of r  depends only upon the state of nature (U or R), and the transition 

from U to R is the extremely simple process shown in Figure 1,   If the values 

*As long as   a ^ 0 . 
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of these parametevs are unknown, however, then various methods must be 

used in order to obtain estimates of them and then, in turn, to make state- 

ments about  r.   This quest is, of course, within the purview of classical 

statistics, and much has been written concerning the estim ation of param- 

eters of models similar to the one treated here and associated confidence 

intervals (see for example [1] ) . 

The classical approach is, in essence, to   1) define some estimator 

(of r in this case), examine it for unbiasedness, efficiency, sufficiency, 

etc.; and then to  2) define an interval, the end points of which are random 

variables derived from the observed data, which will contain the true value 

of the parameter with some pre-determined probability. 

The approach we choose to take is a purely inferential one.  We state 

that before any experimentation is done the failure rates associated with 

states U and R are, respectively, the random variables   \ and ^.   (The 

sampling process associated with them, if one finds it necessary to imagine 

such, is the process of selecting a system to test from a batch of systems, 

the resultant picked system having associated failure rates that are thus 

random variables selected from the population consisting of all possible 

systems to be tested.) 

We shall also assume that the repair probability  a   is known.   (An ob- 

vious extension of the model results if  a   is also assumed to be a random 

variable.) 
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The joint probability density function of the random variables  .X  and ^, 

before experimentation begins, must be given, and it is assumed that this is 

in fact known.   This (most iikeiy subjective) prior density function is defined 

to be 

After some experimentation and possible correction has gone on and a 

series of failure times T(n) = (t, ,t0, ..., t )   has been noted, then use of 
1    Z ft 

the definition of conditional probability allows one to determine the 

"posteriori" density function. 

f,   (X,n|H,T(n) ). 

Since the failure rate of the system at any time is a function of both ^X  and 

1^,   it is itself a random variable x.»   with its own conditional p.d.f. 

The purpose of this study is to in fact determine this density function 

for x > both at th6 outset of a test period and as a function of a given set 

of subsequent failure times.   In addition, we shall make statements con- 

cerning the density function, and its moments, for the failure rate x at any 

given time in the future. 

2.3    KNOWN   X  AND  ^:   RELIABILITY PROJECTION 

Let us first suppose that   X  and  p.   are deterministic and their exact 

numerical values are known.   The failure rate x  is still a random variable, 

however, since it depends upon whether the state of nature is U or R, and 

that is itself probabilistically determined.   The p.d.f. for x  is easily 

determined, 
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With a total test time of   T ,   the p.d.f. for i is   f (r;T) 

f (r;T) - 6(r-X)P(U )  + 6(r-li)P(R ) (1) 
i, T T 

v/here 

P(U  ) = prob, (system is in U after total test time   T] 

P(R ) * prob, (system is in P after total test time   T} 

The delta function notation is used as a t ^nvenient way to write a p.d.f. 

for the (at this point) discrete random variable £. 

In what follows we assume that the system starts out in the unrepaired 

state P, so that  P0 = 0 .   (The development can be easily extended when 

p   ^ 0 #   and this will be done in a later section, where the start of the 

corrective testing period,   1 = 0,   occurs after some previous amount of 

testing.) 

In order to calculate  P(U ) = 1 - P(R ),   we note that the event  (Ü ) 
T T T 

can be decomposed into a union of the mutually exclusive events   (U   ,F.) 
T       1 

where 

(F ) = event (the transition from U to R takes place on the i    failure] 

so that 

(UT) «U^VFj). (2) 

i=l 

Since the  F.   are mutually exclusive events, we have 

P(U  ) =    rp(u     F.)=   I P(U   |Fi)P(F.) (3) 
1=1 1=1 
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The number of the failure at which the transition from U to R takes place is 

geometrically distributed wuh parameter  a,   so that 

P{F1) = a(l -a)1'1 . (4) 

Furthermore, we see that 

th 
P(U  (P.) - prob, {system is in U at   T given it goes to R at i    failure} 

= proh. [less than  i  failures in time   T while in U} 

/j1  llll!e-VT (s) 

which all combine, to give 

P(ü ) -   Z     I   iilLe_XTa(l -a)1'1 (6) 
T        1=1   j=0    ) * 

Changing the order of the summation gives 

CD 00 1 

P(U) »   I       Z    i^L e"XTa(l - a)1'1 

T       j=0   i=J+l   j ' 

=   i  i^ e"XT(l - a)j = e-aXT (7) 
1=0   j' 

This result can be verified by noting that the rat3 of transition from U to R 

is   aX,   since 

prob, {transition from U to R in   AT) 

= prob, {failure in   AT|U}    prob, {repair] 

=  XA ra 

and, thus, the probability of no transition in time  t  is, from the Poisson 
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distribution,   e       T,   The longer derivation is useful, however, in that it 

indicates a technique to be used again below. 

The above equations thus show that the p.d.f. of the failure rate x at 

time   T  after start of testing is 

fr(r;T) = 6(r-X)e"dXT+ 6(r-u) (1 - e"aXT) (8) 

Note that this expression reflects a probability statement made before 

the process starts .   In other words, we can interpret the quantities 

E(r;T)  S fWrfr(r;T) = Xe'aXT + w (1 - e"aXT) 
Jo    L 

= H+ {X-^)e'aXT (9) 

and 

V(I:;T)  =  r"[r-E(r;T)]2fr(r;T) 
Jo L 

= (X-u)2e'aXT(l-e"aXT) (10) 

to be the present projection of what the mean and variance of the failure rate 

X will be at time   T   (in the future) after corrective testing. 

These projections are useful in themselves as aids to reliability pre- 

diction .   That is, if we know the values of the unrepaired and repaired 

failure rates and the value of the repair probability  a, then equation (9) 

gives an estimate* of what the reliability will be at some time   T  after 

testing begins, and equation (10) (actually, the square root of V(r;T) )   gives 

an indication of the preciseness of that estimate .   The behavior of these 

* 
Optimal (i.e., cost-minimizing) for a quadratic loss function. 
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quantities satisfy intuition:   the expectation of the failure rate starts off at 

\  and approaches  ^ .   The variance starts at zero (we know r = X  at   T ^ 0), 

and returns to zero as   T —- •   (r will certainly be equal to y,  by that time, 

as long as   a ^ 0), with an interesting maximum occurring at   T = — . 
a A 

2.4    KNOWN   X  AND  p:   RELIABILITY INFERENCE 

All of the above analysis has been made under the consideration that 

the test was yet to be done.   The analysis is extended now to the situation 

where testing has been going on for a time   T,   and  n  failures have been 

observed at times  t,, tn/  ..., t   =T(n), where  t   s; T < t  ., .   (For ease 
l     ^ n n n+l 

in notation we shall now let  t*s i[r\),   with the understanding that the vec- 

tor is of dimension  n.) 

Again, assuming still that  ^   and   X  are deterministic and known, we 

would like to calculate the appropriate conditional p .d .f. for the failure 

rate:   f (r|T, T) .   To do so we shall need to calculate  P(R |T).   This is 

shown by extending equation (1) of the preceding section, 

f (r|T; T) = 6(r-X)P{U  |T) + 6(r-ljL)P(R iT) (11) 

We again make use of the events   F^   to write 

P(U  |T) =   L   P(U   ,F |T) 
T i=l        T 

=   L   P(U   |F. , t )P(F.|t ) (12) 
i=l        T    * 
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But now we see that 

P(U  |F. , t ) = prob, {the system is in U at   T given it goes to R at 
T1    1 

the iu   failure, and failures are observed at 

V^ 'n ^ tn^T<tn+l' 

fO      if i ^ n 

i      if i> n (13) 

so that equation (12) becomes 

P(U  |T) =     L   P(F|T). (14) 
i=n+l 

Using Bayes' rule 

PÜlF^PCF.)       PCTlFjad-a)1'1 

P(F.| t ) =  -^ *- *—  (15) 
P( t ) P( t ) 

Under the condluun that  i > n   (i ,e., for all terms in the sum in equation (14) ), 

and in fact the i    fc'lure is observed to lie between t   and t + dt 

_ -xt,    -\(t,-t)      .   -x(t-t    ) -X(T-t ) 
P(t:|F.) ■= Xe   ^Xe      *       .;:Xe      n   ""^e ndt,dt,...dt   (16) 

=   xVXTdT (17) 

since the times between the first  n  failures, given that transition to R 

occurs at some failure after the n   , are identically distributed exponential 

r.v.'s with common para me er   \.   The last term in equation (17),   e V , 

is due to the fact that no failures are observed in the interval   (t  , T) . n 

Combining this result with equations (14) and (15) yields 

- 13 - 
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p(u |T) =   2   xe   a(1-a)   dt 

'r i=n+l P( t) 

_ X e      (1 -a) d t 

P(T) 
(18) 

We now turn our attention to calculating   P(R |T)  in much the *aiftß fashion: 
T 

ea 

P(R |T) =    E   P(R   ,F.|T) 
i=l       T    1 

=    Z   P(RT|FrT)P(F.|T) 
1=1       T    1 1 

Here we see that 

_       (l     if isn 
P(RT|F    t)   =j 

(0     if i>n 

so that 

P(RT|T) =    L  P(FjT) 
i=l 

(19) 

(20) 

n 
.1-1 n   P(T|P)P(FJ        ^/(tlF^ad-a) 

- i       i    K  i^l  

i=i     p{T) p(T) 

By the same arguments that lead to equation (17) we find that, when  1 « n 

(21) 

-\:x{t2V   ,.^VW .-^VrV P(f IF,) = Xe     ^e      '  ' ... xe ne 

lie 
-'VW   r^v 

... e dt-dt.»..^ 
i& n 

i -Xti n-i -^T-V^ 
=   X e       n      e dt (22) 
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Using this in equation (9) gives 

1 ,1 ""I  n-l  ^^'V   „     ,i-l^r i, h e       p      e a(l -a)      dt 

P(R |T) =   ^  (23) 
P(T) 

In order to evaluate  P(t) #   the common denominator in equations! (IB) 

and (23), we finally note that since  (R )   and   (U )   are exhaustive and 
T T 

mutually exclusive 

P(RT|T) + P(UT|T) = 1 

which, by use of equations (Id) and (23) gives 

P(U  |T) = 1 -P(R |T) 
T' T 

(24) 
.n   -XT..     vn 

-.   X  e      (1 -a) 

L("t; X , w) 

where the function  L(t ; X # n)   is defined to be 

t/T  ^     x        1 J  "Xti  n-1   "^'V   ,,      ,1-1      ,n  -XT,,     ,n      .    , L(t; X,»*)  s    r X e       ^      e a(l-a)       +Xe      (1-a) 
1=1 

=  P(T)/dT (25) 

Combining all this with equation (11) gives, for the density function of the 

failure rate jr,   having observed failures at  t  # t2,  ..., t    during a test 

period of length   T : 

n    i  ~Xt        .   -ji(T-t) .  1 

Kr^ZXe     \a'e a(l-a)1'1 + 6(r-X) Xne'AT(l-a)n 

f(r|T;T) =  ^   (26) 
L(t;\,u,) 

-IS - 

bD^*<---V j y^TÜffilyd 



Equations (24), (25), and (26) are the only ones necessary to make 

inferential statements about the reliability at time T , given failures at 

times  ti / to'  • • •' t *   and Sflven the values of  \ , y, and  a, 

/or example, let us suppose that ^ = 0   (a repaired system never 

fails).   Since 

E(L|7;T) = J rfr(r|T;T)dr 
0 

we find that 

Xe H(l-a) .  Xe. 
B(X| t; T) =      ,x7     *   "   ;     -        ^     -x(T-t) «7> 

ae        + (1 -a)e *:— + Xe 1-a 

and 

-X(T-tn) 

P(UT|T) = i-pogt) =     e    .x(T.t ) (28) 

In this case it becomes apparent that inferential statements can be made 

with only the information consisting of the length of time since the last 

failure   (T-t ).   This, of course, Is intuitively clear, since, if u Ä0, at n ^ 

the time of the last failure the system couldn't possibly have been repaired. 

2.5    UNKNOWN   X  AND \x:   RELIABILITY PROJECTION 

We come now to the more interesting and practical situation:   that 

where the parameters   X  and it   of the process are unknown at the start of 

the testing.   Inferential statements about the values of these will come In 
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the next section.   Here we will be concerned with only deriving predictive 

statements analagous to those implied by equations (9) and (10). 

The basic technique used here is to simply consider  X and it  to be 

random variables  i and ^  with respective p.d.f.'s  f (XlH)   and 
A 

fjM-lH), or possibly   a Joint p.d.f.   f    (X,n|H).   These a priori density 

functions are, at least at the start of experimentation, most probably sub- 

jective ones .   That is, they represent all information available, at the time, 

relevant co the failure rates in question and expressed in terms of an appro- 

priate density function* .   If some quantitative information is available, 

from previous tests, etc., then of course these density functions should be 

conditioned not only upon the event H, but all other observed relevant data. 

As a first step, we re-write equation (8) with the notation expanded to 

emphasize the fact that \ and ^ are, in that equation, deterministic and 

have known values   X and ^respectively.   In other words, 

fr(r;T,X,u) s fr{r;T,A= \,±= n) 

so that 

fr(r;T,X,^) =   6(r-X)e"aXT+ 6{r^) (l-e'aXT) {23) 

We now use the well-known fact that for any probability that is itself 

conditioned so that it is a function of a realization of a r ,v., i.e.. 

*The best techniques for producing such subjective functions are, and will 
probably always be, subject to a great deal of controversy.  We side-step 
these philosophical issues here.   The interested reader is referred to the 
copious literature on the subject, for example [7] . 
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P(A|x = x),   the unconditioned probability is simply the expectation of the 

conditioned one, i.e., 

OB 

P(A) = J P(A|x = x) fx(x) dx * (30) 

-09 

Using this relation, we may write in place of equation (8) 

OB 09 

fr(r;T) - J    J f^r^X^f    (X^jH)dXd^ - 
0     (T 

In all that follows we shall assume that   \ and ^ are independent, 

for ease of notation, so that we may write 

The discussion, however, can be easily extended to the case when they are 

dependent variables .  We shall, for convenience, also drop the conditioning 

event H, since all statements that can be made are all eventually conditioned 

upon prior experience. 

Performing the indicated integration, we find 

09 09 

fr(r;T) = |   J .[6(r-X)e'aXT+ 6(r^) (1-e"aXT)] f^X) f^dX d^ 

0     0 

09 

=  f(r)e"arT+ f (r) 
A, ü 

0 

(l-e"a?T)fx{§)cI? (31) 

from which we may derive 

09 09 

E(r;T)  = J§fx(§)e"a§Td5+ E(ti) J(l-e'a§T)fx($) d5 (32) 

* For example, see Parzen [11] p. 336. 
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An expression for V(r;T)   may also be derived, but the specific form is 

complicated and does not provide any easy interpretation. 

As an example of the use of equation (32), consider the case where, 

again,   ^  is known and Is *n fact equal fcero (or, equivalently, it is a r.v. 

with p.d.f.   f (rf * 6(|i) ).   Then  E(r;T)   becomes, from (32) 

E(X;T) = ? fx(?)eÄa5Td? (33) 

The behavior of this expected value of failure rate at a time   T into the 

future (under the corrective test program) can be explored by selecting an 

appropriate form for the prior p.d.f, on   \ .   For convenience, we select 

for this prior density function the conjugate form[12] gamma distribution 

fA(X) =  j W (34) 

( 0 otherwise 

which has the moments 

E(X) « J 

v(x) = -■ 
tr 

This distribution thus has enough freedom for the fitting of a desired mean 

and variance by appropriate selection of the constants   a and   0. 

Putting equation (34) into (32) yields 
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E(r.T) = J1       r(a+l)      =   a (      j     ^+1 

= E(X)(I+ fr^ 

2.6    UNKNOWN   X  AND pi   RELIABILITY INFERENCE 

The problem of inferring the value of £ after the observation of a data 

vector t = t(n}   is, of course, complicated by the fact that now ^ and ^ 

are also random variables:  A complete solution must also make inferential 

statements about the posterior distributions for these rates as well as for x • 

These statements, via the appropriate posterior density functions, may 

be easily made, however, by the judicial use of equation (30).   For example, 

we note that equation (24) now should be written 

n "XT,.     »n 
P(U |T; X-X^-ji) = ^ U^- (35) 

T L(7; X »IA) 

The unconditional probability that the system is still in the unrepaired state 

becomes, using Bayes' Rule twice, and all limits of integration from 0 to • . 

P(uTiT) - J J P(ujT;x =x,ii = ^)f^(x,^|T)dxdiA 

L(T;X,n)fx (X,^ dXdn 
= J J  P(UT|T;X= X,ü = n) 

J jL(T;X,n)f    (X,n) dXdu 

J J  P(UT,T|X= X,ü=^)fxi|(X,n) dXd^ 

J J L(T;X,^fx^(XlA) dXd^ 
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f   f Kne"XT(l-a)nfXuU,n) dXdü 
- H  <36» 

In addition,   P(R I t)   may be obtained by noting that 
T* 

=   1 -P(R IT) (37) 
T' 

Similarly, it may be shown that the appropriate posterior density func- 

tions for the rates   X. and JA   are 

P(T|i=X)fx(\) 
f.(X|t;T) => -—^ =  
A Jp(t |i= x)f1(x)dx 

f L(T;n , X) f,(X) f u(ti) dJi 
= * A ^  (38) 

J J L(T;^ . X) f (X) yii) dX du 

und 

_ fL(T;it,X)fx(X)f.(lt) dX 
tM t.'T) = J

r   .    ^      A     ^  (39) 
* | J L(t^,X)f.(X)f di) dxdw 

where we have let  f    (X , |i) = t (X) f (a)   for ease of notation. 
Ai^ A       Ik. 

Finally, the same sort of manipulation leads to 

r " ,i "Xti n-1   'r^"ti) i-i n -rr,,    .n 
J   IXe       r      e a(l-a)      f(x)dx + re     (l-a) 

f (r|T;T) =     1=1  —-Z      m 
L jLrt;X^)f (X)^) dXdpi 

Although these equations seem formidable, they are extremely useful 

and valuable and provide all the information necessary for inferential state- 

ments about the system reliability, given an observed set of failure times . 
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In particular, knowledge of the expected values of the random variables 

/A* ü and L' given  t,   gives the experimenter good estimates of the value 

of 

a) the failure rate before testing began:   equation (38) 

b) the eventual value of the failure rate after unlimited correctional 

testing:   equation (39) 

c) the present value of the failure rate:   equation (4Q) 

Additionally, the probability  P(R |T)   that the system has in fact been re- 
T' 

paired is given directly by equation (37) . 

As is common in all Bayesian inference schemes, the foregoing develop- 

ment is liable, with some Justification, to the criticism that the results are 

dependent upon the particular prior distributions used:   f (X)   and  f (M-). 

This is indeed so, but the real concern should be with the sensitivity of the 

results to variations and/or extremes in the selection of prior functions .   In 

particular, it is certainly possible to select the prior distributions with suf- 

ficiently large variances, so that the result of the analysis becomes rela- 

tively independent of the prior expectations . 

On the other hand, if the failure rates in question are to any degree 

known in advance, it seems unreasonable not to allow the analyst to make 

use of his knowledge — particularly for the making of projections . 
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3 .    THE DISCRETE MODEL 

3 .1    MODEL DESCRIPTION 

A model similar to the one discussed above Is now developed for the 

case where a system exhibits "discrete" failure behavior.   That Is, the sys- 

temiundergoes "trials", and at each trial the system either succeeds or falls. 

We assume that these trials are Independent (the equivalent of the assump- 

tion of exponential behavior for the continuous model).  A convenient and 

appropriate measure of reliability of the system at any time is simply 

p = 1 - q,  where 

p =  probcibility  {success on the next trial} 

q =  probability  (failure on the next trial] 

In order to model a reliability growth effect, we again consider the sys- 

tem to atari in state U, from which it has probability a  of making a transi- 

tion to state R after every failure.   We then define the probabilities 

u =  probability  {system fails on a trial given in state U) 

v =  probability   {system fails on a trial given in state R} 

The analysis now proceeds exactly as in the preceding sections, and 

requires only some obvious notatlonal changes (to account for the discrete 

character of the failure data) and additions . 

Let: 

x =   {x , x^,  *.. x } = the observed data vector after n trials, 

where  x  = 0 or 1   as the 1    trial results in a failure or 

success, respectively 
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1 
y   =    L x    (1 = 1,2,  ... n) =  the cumulative number of successes 

k=l ~ 

up to and Including the i    trial 

z  = n - y   =  the cumulative number of failures up to and including 

the ith trial 

3.2    KNOWN   u   AND   v:   RELL^BILITY PROJECTION 

We first consider the case where the failure probabilities u and v are 

deterministic and known. At the end of N trials, the system failure proba- 

bility is the random variable  cj.,   with p .d .f.   f (q; N)   given by 

yq.-N)  =   6(q-u)P(UN) + 6(q-v) P^) (42) 

in direct analogy with equation (1), where 

P(UN) =  probability   [system is in U after N trials] 

POO   =  probability   {system is in R after N trials} 

The value of  P(UM)   is readily calculated: 

N PdO  -   [probability   {system not repaired afcer one trial}] 

N «   [1 - probability {system is repaired after one trial}] 

■iN 

=   [1 -au] 

since all the N trials are in the U state, are independent, and a failure 

(with probability  u) is necessary before a repair (probability  a) is made. 

Equation (42) then becomes 

f£(q;N)  =   6(q»u)(l-au)N + 6(q-v)[l - (l-au)N] (43) 
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The expectation of the system failure probability at the end of N trials is 

F(a;N)#  where 

E(SL;N) = 
1 

q yq; N) dq 

= u(l-au)N+ v[l - (l-au)N] 

= v+ (u-v)(l-au)N (44) 

3.3    KNOWN  u  AND v:   RELIABILITY INFERENCE 

In order to make inferential statements about the random variable £ 

(and hence jg) given some data has been observed, we proceed again in a 

fashion si nilar to that used in the analysis of the continuous model.   In 

particular, we may write for the conditional p .d .f. of £ #   given the ob- 

served failure data vector x*: 

yq| 7) =   6(q-u) P(Un| x) + 6(q-v) PfRj 7) (45) 

By defining the event G. 

(G.) «  event  (the transition from state U to state R takes place 

immediately after the i    failure] 

we may first of all write 

HVjx) =    I  P(Unl GjT) 

«    L  P(ür%|G4,x)p(G.|3?) (46) 
1=1       n    i * 
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since 

eo 

Ü^.GJT) = (uJIT) . 

The definition of  G.   allows us to write 

WJGJ.X) 
!0 i £ z 

1 i>zn 

since   2    is the total number of failures observed in the first  n  trials . n 

Thus, if i i z   ,   the transition from U to R has taken place at or before n 

the n  - trial, and the system cannot be in state U at the n    trial. 

Equation (46) can now be written 

P(Un|x) =      L    P{Gi|5r) (47) 
1=Zn+l 

and, using Bayes' Rule, 

E    P(3r|G,)P(G1) 
-, 1=Zn4.1 

P(Un|x) = —^  
PC?) 

The value of  P(G.)   is determined from the underlying geometric process 

with parameter  a,   so that 

L    PU lOad-a)1"1 

i=2 1 

?{\j\x)  =  —Q±i  (48) 
Pix) 
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We now note that when the transition from U to R takes place at some trial 

after the n    [i .e. # for all terms In the summation in equation (48) ], we 

may write 

P(x [G^ = u* ^(l-urV "2(l-u"2...u* ^n(l-iO 
1-x, x,   1-x«       xrt 1-x X n.,    v n 

z y 
Ä u    (1-u) 

since all  n  trials take place while the system is in the U state.   Com- 

bining this result with equation (48) gives 

•       z y 
I    u n(l-u)  "ad-a)1'1 

PttJjx) = —^  
P(x) 

z y z 

= u    t1'»)    t1'3? (49) 
P(x) 

The calculation of P(R | x)   Is also accomplished by use of the ex- 

haustive and exclusive character of the event  (G )   1-1,2, ... ■ . 

P(Rn|r) =    LP(Rn,G1|r) 

=    LP(R |G   r)P(G.|r) (50) 
1=1     n    * * 

The value of  P(R |G. ,x)   is determined by the same arguments that led to n'   1 

equation (47): 

(l 1 < z 
P(Rn|G. ,?) =) n (51) 

(o 
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so that equation (50) becomes 

z 

mn\*) = E PCGJJT) 
n 

i=l 

i-1 and, using Bayes:' Rule and  PiG.) = a(l-a)       , 

z 
n     - i-1 I P{x iG^ad-a)1 i 

PiRlT)«^1  

where the summation is defined to be zero when  z   = 0 . 
n 

Finally, we note that when  i * z 

_ r  1"xi xi   l~xo        xo l'xi        xi 
PUlG^  =    u      ^l-u)     u      Z(l-u)  ^...u      la-u)  \ 

1-x... x_. 1-x X i+1..    x  i+1 n,.    .  n v (1-v)        ... v        (1-v) 

so that 

z 

(52) 

i-Vi y.   n-i-y +y y -y 
=  u     l(l-u)  \ n     V-v)  n     i 

Z
i yi    2n"Zi yn"^ 

=  u W'v11     ^l-v)  n     i (53) 

n   z, y.   z -z. y -y, ,   , 

P(R I?) = ^ (54) 
P(x) 

Complete inferential statements about the fahure probability  q ,   given the 

observed data   x ,   may now be readily made using the posterior p.d.f. 

f (q  x") .   This has been obtained, essentially, since we now need to 
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simply substitute the expressions for P(U  I x)   and  P(R I x )   (from equa- n1 n* 

tions (49) and (54) f respectively) into equation (45). Note that the common 

term of ?{x) in the denominators of equations (49) and (54) can be evalu- 

ated by means of 

P(UN|x) +  P(Rn\x) =  1 

3.4    UNKNOWN  u  AND  v:   RELIABILITY PROJECTION 

When the failure probabilities  u  and  v  are unknown, we proceed as 

in section 2.5 by treating these parameters as random variables JJ  and v , 

with Joint p.d.f.   f    (u,v) = f    (u#v(H).  Again, we shall (for ease in 

development) assume that  u  and  v are independent, so that 

f    (u,v) =  f (u)f (v) 
UV ü       v 

Use of the technique illustrated by equation (30) gives the following 

results.   (Intermediate steps have been left out.  The development parallels 

that of section 2 .5) 

f (q;N) = J J{6(q-u)(l-au)N+ 6(q-v)[l - (l-au)!jj} fuv(u,v)dudv 

0   0 

=   (l-aq)11^ + fv(q) J [1 - (1-^)N] ^(5) dj (55) 

The projected expectation of the failure probability at the end of N trials is 

E(q;N) =   fqf (q;N)dq 
J0    ä 

-   f 5M?)(l-a5)V+ E(y) f [1-(l-a|)]Nf (5)d? (56) 
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3.6    UNKNOV/N  u  AND  v:   RELIABILITY INFERENCE 

When a data vector xT has been observed, and u  and  v are random 

variables with prior p.d.f.   f    (u,v),   conditional density functions on u , 

v  and g, can be derived in a manner parallel to that used for thecsDnbinuoue 

case in section 2.6. 

To keep the expressions concise, we define the following terms: 

2 y z 
P(UN,r;u)  =  u n(l-u)  n{l-a)  n (57) 

Zn   z. y    z -z y -y 
P(R ,x;utv) -    L u '(l-u)    v n    ^l-v) n      ad-a)1 1 (58) n . i=i 

PU;u,v)  =  P(U   ,x;u) + P(R ,?;u,v) (59) n n 

1J     _ 
P(x;u,v) f.Ju,v)dudv (60) 

0 
PU) =   f   f 

The px)sterior density functions of interest then become (after intermediate 

steps similar to those in section 2 ,6) 

r1   - i  P(x;u,v)fuv(u,v)dv 

f (ul^)  = ~ —  (61) 
.      - P(x) 

r1   - P(x;u,v)f    (u.vWu 

f (v| x ) = -^  (62) 
- P(x) 

r1       - P(R .x.-u.q)^(u)du+ P(U„;x,q) Jn      n u n 
f (q|x)   =  -^  (63) 
ä P(x) 
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and the posterior probability that the system has been repaired is 

i        P(R,x;u,v)f    (u,v)cludv 

P(R|x)--2-ö (64) 
P(x) 

4.    NUMERICAL EXAMPLES 

4.1    CONTINUOUS MODEL 

A numerical example is now presented to illustrate the use of the 

results of the previous sections . 

The first task is the assignment of appropriate prior probability density 

functions for the failure rates   A.  (before repair) and g. (after repair) •   In 

order to facilitate calculations it Is convenient to assume that these random 

variables are independent and have prior density functions of the Gamma 

family, so that 

9 or -1   -B X 

Furthermore, we suppose that estimates are available for the moments 

of u  and  v.   A particular set of such estimates is 

EiX) » 1 E(ii) -  .5 
(67) 

all) =1 a{&)  =  .5 

- 3a - 

•■w<*.,; ;... ^i^S^M^k 



I 1 
where        E{,X) =   j   X f. (X) dX = expected value of   \ 

V(X) ^ a2{X) =   f[X-E(X)]2f,(X) dX =  variance of 1 

This set of estimates # in conjunction with equations (65) and (66) give 

«j - i «2 = i 

*l'   X e2 =   2 

The repair probability is assumed known and to have value  a = .25 

These figures are selected not with a physical example in mind, but 

with the intention of displaying the underlying features of the model.   Thus 

we at this point have assumed the following, 

. At the start of testing, the system has a constant failure rate   X  that 

is unknown, but is estimated to be about 1 (per unit time) .   The precision 

of this estimate is indicated by a standard deviation of 1 (per unit time) . 

. After every failure an attempt at repair is niade.   This attempt has 

probability  a = .25  of succeeding, i.e., putting the system in the "repaired" 

state, 

. When the system has been repaired, the failure rate decreases to a 

constant value y,  which is unknown, but which (from experience or judicial 

guessing) can be estimated to be .5 (per unit time) with a standard deviation 

also of .5 (per unit time) . 

We now proceed to make statements about:   the failure rate nfter some 

length of future test time (projection); updated estimates of   X  end  ^   on 
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the basis of failure data gathered during the experiment (inference); the sys- 

tem failure rate r  after observation of failure data. 

Projection; 

Using the values given above, the p.d.f. for the failure rate j; at some 

time   T after the start of the growth program is, from equation (31) 

-2r 
x,     . -r(l+.25T)        .Sre /cov fr(r:T) = e + TT^TT (68) 

and so the expected value of the failure rate after time   T is, from (32) 

From this expression we see that the expected failure rate will drop 

halfway between its unrepaired and repaired values after a length of approxi- 

mately  T ■ 12  units . 

Inference; 

In order to make inferential statements about   \ , £ and x •   a data 

vector is needed. 

Suppose that failures are observed, after the start of testing, at times 

1, 2, 3, 4, 6.2, 8.2, 10 .2, so that  n = number of failures ■ 7  and 

r«  (1,2,3,4,6.2,8.2,10.2) 

[This data vector was chosen to intentionally — and crudely — simulate a 

"repair" at  t = 4  and a decrease in failure rate from 1 to .5] 

For any time   T,   equations (38), (39) and (40) give the p.d.f, for X* 

ü  and x# respectively; equation (36) gives the probability that the system 
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has been repaired at or before that time.   In our numerical example, we can 

examine these posterior density functions by finding their means and stand- 

ard deviations .   For the prior parameters and data vector given above, these 

have been calculated and are shown in Table 1 for values of   T  from 0 to 

10 .2 by increments of  A T =  .2   time units . 

Projection after Inference: 

At this point it is possible to extend the development to describe the 

following situation. 

Suppose that prior parameters have been selected,as above, and the 

Inferential calculations carried out.  At time   T - 10.2, after having seen 

the 7 failures described by t ,   what can we say about the expectation of 

the failure rate at some time   T'   after time   T = 10 .2? 

In order to answer this question we note that at tima   T = 10 .2  we 

have (see Table 1) 

E(X)  =   .917 E(ii)  =   .543 

a(X) =   .522 a(ü) =   .322 (70) 

P(R12|T) =   .846 

We are now faced with the situation described in the discussion fol- 

lowing equation (1).   For we may consider the situation to be such that the 

values of equation (70) describe our total knowledge about   X. and ^  up to 

that point; i.e., they can serve to define a new "prior" density function, 

with parameters   er', ß', a*   and   6'. 
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TABLE 1 
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Doing so, we find that 

«j' =   1.75 

Pj' =   1..92 

a2=   K68 

B^ =   3.10 

In addition, we now have the situation where the value of 

p    =  prob   {system is in R at time 0} 

= PfR^lO =  •846 

A simple argument leads to the modification of equation (8) for the case 

when   p   ^ 0: o 

fr(r;T) = 6(r-X)(l-po)e"iiXT+ 6(r-ui)[l-(l-Po)e'aXT] (71) 

and, consequently, equation (31) becomes 

fr(r;T)  = (I-P )Mr)e"arT+ f (r) ffl-d-p )e"a§T]f (e)d§ (72) 

Taking the expectation of equation (72) , ur1r,q +^^ primed prior parameters, 

we get 

E(x| tir')  = expected value of failure rate time   T7   after   T = 12, 

given   t 

o   B1 \ R^at | B2 

.     543   .     .485(.72 -  .ISST7) 

(1.92 + ,2ST')*'   0 

/_ 
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Sensitivity; 

The model has not been fully evaluated with regard to the sensitivity of 

results to values of the prior parameters, errors in estimation of a,   etc. 

However, examples for various cases have been calculated. 

Tables 3 through 6 show  E(X), a(X), Eft*), oM , P(R ), E(r) and a(r) 
T 

all conditioned upon the data vector T= (1,2,3,4,6.2 #8,2,10 .2)   and evalu- 

ated at   T = 0  to 10 .2 by increments of AT =  .2  time units .   These calcu- 

lations contain the prior parameters as shown in Table 2. 

Table *1 ei a2 02 E(X) a(X) EftO aW a 

1 1 1 1 2 1 1 .5 .5 .25 

3 4 4 4 8 1 .5 .5 ..25 .25 

4 1 2 1 4 .5 .5 .25 .25 .25 

5 4 4 4 8 1 .5 .5 .25 .12 

6 '  4 4 4 8 1 .5 .5 .25 .50 

TABLE 2 

Prior Parameters Used in Calculations of Tables 3-6 

4.2    DISCRETE MODEL 

For the discrete model, numerical calculations become simplified when 

the prior probability density functions for the failure probabilities ji and v 

are of the Beta family of p.d.f .'s, where 

B(x;a,ß) = ML 
rwna-or) x^d-x)8"*"1 (73) 
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The moments of this function are 

E(x) =   a/B 

V(x)  =  a2(x)  =  fU-f)^ ™ 

Unfortunately, even this usually "conjugate prior" form does not allow 

a closed form solution of the projection problem, as exemplified in equations 

(55) and (56) .   This is not to say that specific projections cannot be made — 

the associated numerical integrations are straightforward, but have not been 

attempt-..' here. 

The more interesting inferential problem may be easily evaluated, how- 

ever, and is illustrated in Tables 8 through 12. 

The data vector is assv-ned to be 

r=   (0,1,0,1,0,1,0,1,1,1,0,1,1,1,0,1,1,1,0,1.1,1.0) 

where a "0" represents a failure, a "1" represents a success.   Again, 

this "observed" data vector has been pre-selected to simulate an overly 

typical result that might appear ifu=.5    v=.25   and repair took place 

on the 7th trial (the 4th failure) ,   Numerical results now simply require a 

set of pricr parameters and the determination of the first and second mow 

ments of equations (61) , (62) and (63) . 

In the calculation of a number of cases for various values of prior 

parameters, U becomes convenient to work with the success probabilities 

l-u   and   l-v,   rather than   u   and   v  directly.   Table 7 shows the selection 

of values of the prior parameters for   l-u   and   1-v,   and for the repair 

probability   a , 
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Table E(l-u) a(l-u) E(l-v) ad-v) a 

8 .5 ,2887 .75 .3660 .25 

9 .5 .3536 .75 .3953 .25 

10 .4 .2619 .6 .4 .25 

11 * .5 .3536 .75 .3953 .125 

12 .5 .3536 .75 .3953 .5 

TABLE 7 

Prior Parameters Used in Calculation of Tables 8-12 

5 .    MANY FAILURE MODES 

5 .1    NOTATIONAL EXTENSION 

In order to treat the more realistic case of systems with multiple failure 

modes, we introduce a simple extended model and notation, and then show 

that this case is solved forir ally by a simple extension of previously ob- 

tained solutions .   The development will be only for the continuous model, 

although a similar one for the discrete case can be directly obtained by 

means of a parallel analysis . 

We now assume that a system can exhibit a total of  M  independent 

failure modes (characterized, by definition, by their distinguisliability), 

We also assume that a repair of a mode is possible only at a repair attempt 

made after an observed failure of that mode. 

We then define, for mode  i   (i = 1, 2 ,  ... M), 
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X. ■  failure rate when i    mode is unrepaired 

? th n. = failure rate when i    mode is repaired 
i * 

j a   =  probability of repairing the i    mode given an attempt is made 

The entire system will have an overall failure rate r,  which, by virtue 

of the exponential failure behavior of each component, is 

M 
j r «   I r. 

i=l 

where 

X. i    mode is unrepaired 

H i    mode is repaired 

This last expression serves to recall that,according;to our previous analysis, 

the failure rates are in themselves random variables. 

If, then, the failure rate for each mode is a random variable .r^  with 

known p.d.f.   f   (r )   [and thus known moments], we have in particular for 
-1 i 

the overall system 

f (r) = f   (r.) * f   (rj * ...f     (rj (75) 1 X1   1       J2  2 rM  M 

where the * indicates the convolution operation. 

Because of the independence of the failure modes, and since the repair 

of any one mode is independent of the state of the others, we see that each 

of the  f   (r )   of equation (75) is available from expressions such as (31) 
^i 

[for projection] or (40) [for inference].   In these expressions we must only 
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replace the parameters   (r, X, n, a)   by  (r , X., ^^ a ), and note that T 

now represents the times of occurrences of i    mode failures. 

To make matters even simpler for practical purposes, we note that since 

X ■ Lr^ , and the r.  are independent, we can immediately write for the 

expectation and variances: 

M 
E(rJ =    L E(r.) 

i=l 

2 M   2 

i«l 

6.    CONCLUSION 

6 • 1    OTHER MODELS OF RELIABILITY GROV/TH 
I 

Discussion of the literature on reliability growth models has been 
j 

intentionally postponed to this final section in order to facilitate compari- 
| 
j son with this paper. 

♦' The subject of reliability improvement by means of conscious efforts on 

the part of designers, test engineers, customers, etc. has been of interest 

I from the beginnings of reliability analysis ,   The modelling of such growth 

processes has followed, for the most part, a common procedure:   formalae 

are presented that are intended to represent the growth of reliability (or the 

decrease in failure rate, etc) as a function of time.   These formulae con- 

tain unknown parameters, and it becomes a statistical problem to find appro- 

priate estimates (and confidence statements) for these parameters as a 

- 50 - 



mqpmmmmi****1* nwpwgppww ^miP 

function of observed failure data .   Such methods are found, for example, in 

references [10], [3], [15] and.[8].  Sherman [14], for example, finds 

Maximum Likelihood Estimates for the repair probability a and the unre- 

paired failure probability u when it is assumed that the repaired failure 

probability v is zero. 

Another approach is to assume that little is known about the underlying 

failure behavior of the system, and what amounts to "almost" non-parametric 

analysis is made upon eventual failure rates (or probabilities).   This is 

summarized in [1]. 

Bayeaian techniques have been used only recently.  A non-parametric 

Bayesian analysis of a failure probability, constrained to be only non- 
I 

increasing in time, may be modelled by the technique shown in Samuels [13] . 

| Larson [9] has extended an earlier analysis [8] to produce Bayesian esti- 

mates of parameters of a growth model, using prior distributions suggested 

by Earnest [5] .   Finally, Cozzolino [4] has presented a Bayesian approach 

i 

to a general class of growth models with regard to making minimum-cost 

decisions about length of tests and bum-in procedures . 

All of the above analyses, however, start with a basic assumption: 

that the reliability will grow (or, at least, will not decrease) in time.   If 

the techniques derived previously were to be used for a system that was 

actually deteriorating (naturally^ or because of well-intentioned intervention), 

the results would be meaningless.   In practice, unfortunately, there is often 

- 51 - 

mmm 



■"IT""1    ■!'*"■'*■ 

a need to have an inferential technique that would spot such deterioration, 

as well as one equally good at determining appropriate growth character- 

istics . 

6.2    CONCLUSION 

This paper has attempted to model a process that simply considers a 

system (with regard to each failure mode) to be in either a repaired or un- 

repaired state.  The failure rates in each state are known to any desired 

degree of confidence« and accumulation of failure data serves, in a natural 

way, to update the knowledge of these state parameters ► The obaervaHon 

of failure data also determines the probability that the system is repaired 

(with respect to each mode). 

The weakest points of the model seem to be the assumptions that 

. The repair probability a is known 

• Repair attempts occur only after the observation of a failure 

The first point can be overcome (at the expense of additional com- 

plexity) by considering a  to be a random variable  a with appropriate 

prior p.d.f.  f (alH).  All analysis would then include a posterior infer- a 

entlal p.d.f. for a,   given a data vector. 

The second point is unfortunately too much at the heart of the model. 

For many realistic systems , the assumption seems to be valid, however, 

as the tendency is no; to "ruin a good thing". 
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It should be pointed out that the model considered here Is a specific 

example of a process which Howard [6] calls "Dynamic Inference" ,   This 

general concept is quite useful in modelling a stochastic process in which 

the underlying parameters are allowed to change according to yet another 

stochastic process.   The interested reader is referred to reference [6], 

where (as becomes apparent upon studying the Tables 2-6 and 8-12) the 

statement is made, "The numerical results indicate a complexity of behavior 

that challenges intuition". 
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