NEW TECHNIQUES IN TASK ANALYSIS

Joe Silverman

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED.
NOTE: The contents of this publication do not necessarily represent the official position or policy of the Department of the Navy.
BLANK PAGES IN THIS DOCUMENT WERE NOT FILMED
NEW TECHNIQUES IN TASK ANALYSIS

by

Joe Silverman

November 1967

PF016080401
Research Memorandum SRM 68-12

Submitted by
R. V. May, Jr., Director, Personnel Systems Research Department

Approved by
E. I. Jones, Ph.D., Technical Director, Acting
G. W. Watson, Commander, USN
Commanding Officer

This document has been approved for public release and sale;
its distribution is unlimited

U. S. Naval Personnel Research Activity
San Diego, California 92152
SUMMARY AND CONCLUSIONS

Problem

This research is directed toward the investigation of recent developments in techniques of task analysis. Because of methodological problems associated with the development of training curricula, the analysis of man-machine systems, and occupational analysis, it has been proposed that a task taxonomy be developed. Such a taxonomy would indicate the inherent similarities between tasks, independent of their environment, and pave the way for improvements in training, billet structure developments, and improved manpower utilization.

Background and Requirements

There have been numerous attempts at developing task taxonomies—both quantitative and qualitative. At present, the results of these efforts have not been comprehensive enough, nor suitable for use throughout the Navy. Because of recent developments in other sciences, a small effort was devoted to investigation of the possible application of these new techniques to personnel systems problems in the Navy.

Approach

Problems of task classification can be approached more systematically through methods of numerical taxonomy than through traditional techniques. Numerical taxonomy places the procedures of task comparison and classification on an operational and quantitative basis. This makes it possible for the Navy to objectively and precisely evaluate its billet and rating structure.

Findings, Conclusions, Recommendations

Since this research was initiated a short time ago, with a modest budget, the primary effort has been devoted to an investigation of the state-of-the-art. As a result of this initial inquiry, it is concluded that the application of techniques of numerical taxonomy to problems of task analysis is warranted because of its usefulness in helping to solve problems relating to the Navy's personnel systems.
CONTENTS

INTRODUCTION 1
TASK TAXONOMY 1
NUMERICAL TAXONOMY 3
NAVAL APPLICATIONS OF NUMERICAL TAXONOMY 5
APPENDIX - Examples of Task Taxonomies 9
BIBLIOGRAPHY 19

FIGURES

1. Distance Between Billets Based on Task Similarity 4
2. Phenogram of Hypothetical Billet Structure 6
NEW TECHNIQUES IN TASK ANALYSIS

INTRODUCTION

In the course of research concerned with personnel and occupational systems, it has become increasingly clear that the foundation for future occupational analyses depends, in large part, upon developments in techniques of task analysis. The purpose of this report is to briefly examine the present state-of-the-art in task analysis and indicate some of the techniques which appear to be promising in terms of practical payoff to the Navy.

Methods of task analysis are usually tailored to the specific purpose of a research effort and, as a result, such methods of analysis cannot easily be generalized to other problems. Furthermore, although the research literature on task analysis is abundant, most of it does not focus on problems of occupational and personnel systems. Instead, research in this area has been primarily concerned with job design and job analysis, training psychology, man-machine systems, occupational reengineering, small group research, work measurement, and problems of industrial engineering. The basic analytical framework of much of the task analysis has focused on the study of elements or technical operations in a task.

TASK TAXONOMY

In recent years, human factors analysts and training psychologists have called for a taxonomy of tasks to provide a breakthrough in the state-of-the-art. The reasoning behind this is as follows. Currently, techniques of task analysis require that every task performed in a system or job be treated as a unique entity or aspect of the work. For example, two tasks that are identical in terms of the kind of work performed may still differ in the kind of equipment involved, environmental factors affecting the task, type of ship, operational conditions, and a multitude of other factors. Thus, the "alignment of a transceiver" can differ considerably from one type or model of transceiver to another, from one ship type to another, from underway conditions to in-port conditions, from one electronics technician to another, etc. As a result, task analysis of even one job or man-machine system can involve the study of an enormous number of tasks and their elements. In training personnel to operate and maintain modern weapons and support systems, the development of a curriculum based on such complex and extended task analyses becomes unusually difficult.
As a result, it has been proposed that research be performed to systematically classify tasks in terms of critical generalizable variables, characteristics, and attributes inherent in the task—independent of the setting or environment of the task. By classifying the behaviors required in performing a task, and training personnel in the basic abilities implied by those behaviors (rather than the specific technical elements in a task), it is contended that curricula may be made more realistic in terms of task demands. Also, a task analysis based on selected categories or dimensions of task behavior provides a breakthrough by eliminating the necessity for repeatedly developing and analyzing long, detailed task lists or inventories. A set of such categories of task behavior has been called a taxonomy.

A taxonomy involves the systematic differentiation, ordering, relating, and naming of type groups within a subject field. In these terms, the classification of naval ships is a kind of taxonomy wherein ships are grouped by class, type, and overall purpose (e.g., 2200 class; DD type, combatant purposes). Similarly, tasks may be ordered into groups on the basis of their relationships and distinctive names or nomenclature applied to those groups.

The taxonomic process involves the following steps:

1. Collecting samples of phenomena.
2. Describing essential features or elements.
3. Comparing phenomena for similarities and differences.
4. Developing a set of principles governing the choice and relative importance of elements.
5. Grouping phenomena on the basis of essential elements into more and more exclusive categories and naming the categories.
6. Developing keys and devices as a means of recognizing and identifying phenomena.

There have been many attempts at developing taxonomies based on the common behavioral elements in tasks. Few of these have been the result of the systematic taxonomic process described above. Some efforts have been empirical—relying on correlations of task behaviors or learning demands, and then factor analyzed to determine the behavioral categories or dimensions underlying the subject tasks. Others have employed an "arm-chair" approach based on their accumulated research experience. Perhaps, this is why there have been such a variety of taxonomies developed to date.

The Appendix contains a number of examples of task taxonomies, developed for different purposes and employing different techniques. Generally, these task classifications do not yet hold great promise for
current operational use in task analysis. Many of them cannot be repli-
cated by independent investigators, or cannot be validated, or have
serious problems regarding reliability. In short, they are either in a
rudimentary stage of development or intuitive in nature—and cannot be
evaluated scientifically. Nevertheless, there are techniques of task
analysis that do appear promising. These techniques derive from the
simultaneous publication in 1957 of several papers by biological taxon-
omists. In common, these articles advocated the use of a more scientific
approach to the problem of classifying biological organisms. It is not
surprising that the advent of the computer had an important role to play
in the development of these techniques.

NUMERICAL TAXONOMY

Problems of task classification, like those of biological classifica-
tion, can be approached more systematically through methods of numerical
taxonomy than through traditional techniques based on the judgment of
different investigators. Numerical taxonomy places the procedures of
task comparison and classification on an operational and quantitative
basis.

In developing an occupational classification, for instance, it is
necessary to compare a sample of jobs in terms of a large number of tasks
performed in those jobs. With the use of a computer, it is possible to
make these comparisons on the basis of a numerical yardstick which
measures the precise similarity of one job to another, as indicated by
the similarity of the tasks performed in each. Jobs can then be grouped
into a hierarchical arrangement of occupational categories by reference
to their numerical similarity and distance from one another. Conceptu-
ally, the procedures involved are relatively simple.*

First, all the tasks and billets to be classified are arranged in a
data matrix, and the similarities between all possible pairs of billets
are then computed based on all the tasks. One way of representing simi-
larly the distance between billets in a multidimensional space, as
shown in Figure 1.

*This discussion of the procedures involved in a numerical taxonomy
of tasks has been adapted from Sokal, R. R., "Numerical Taxonomy,"
In the example above, the similarity between all possible pairs taken from four billets (points 1, 2, 3, and 4) is estimated on the basis of three tasks, which are represented by the three coordinates (axes X, Y, and Z). The four billets are then plotted into this three-dimensional space according to their state, or value, for the three characters. Similar billets are plotted much closer to one another than dissimilar ones. In any real case there will, of course, be more than three tasks, and a multidimensional space—called a "hyperspace"—would be necessary.
After the similarities between pairs of billets are evaluated by the computer, they are printed out in a "similarity matrix," which shows the mutual similarity values of every billet. Each billet can then be grouped on the basis of its similarity to some billets and its dissimilarity with others. For more precise classifications, a variety of numerical clustering procedures have been developed, and these procedures are routinely carried out on the computer after the similarity matrix has been calculated.

The results of numerical classification can be represented by means of a "phenogram." These tree-like diagrams indicate the similarity between billets or occupational groupings containing more than one billet. Figure 2 shows a two-dimensional representation of the results of a numerical classification. Although this diagram distorts the original multidimensional relationships produced by the similarity matrix, as shown in Figure 1, it does reflect the similarity level at which different billets are grouped. Moreover, it shows the classification of billets into occupational groupings or ratings, and at what levels this grouping takes place.

NAVAL APPLICATIONS OF NUMERICAL TAXONOMY

The application of such techniques of task analysis as numerical taxonomy to problems of Navy personnel systems has great potential in a number of areas. At the present time, the Navy's rating structure is based on qualitative differences. As a result, there is no way in which billets can be compared and contrasted numerically. Also, there is at present no system to evaluate a rating for its internal similarity. Because of this, the Navy cannot objectively and precisely evaluate its rating and billet structure. Any occupational classification structure undergoes changes over time due to the impact of technological development and the requirement for new and different occupations. Numerical taxonomy provides a set of techniques which makes it possible to systematically adjust the Navy's occupational structure to reflect changes in the fleet.

By bringing the rating and billet structure into closer adjustment with the work performed in the fleet, the potential for improved manpower utilization is increased considerably. In measuring the similarities and differences between billets, information is provided about the areas and extent of commonality existing among those billets. This information can be used in a number of ways.

First, training efforts can be consolidated to reflect areas of common core among different billets and different ratings. For example,
Figure 2. Phenogram of a Hypothetical Billet Structure
there is considerable similarity in the tasks performed by the Machinist's Mate and the Engineman. Yet there are schools and training manuals for training personnel in each of these ratings—and there is substantial overlap in the subjects covered between the two ratings.

Second, the data produced by a numerical task analysis of current ratings and occupational classifications, provide a specific, precise, and quantitatively valid basis for evaluating and justifying the Navy's skill requirements. In the face of competing demands for the nation's manpower resources, and the Defense Department's continuing demand that the services objectively demonstrate their respective personnel requirements, the use of techniques which can numerically support and validate skill requirements becomes imperative.

Third, the precise measurement of billet relationships would enable the Navy to man new ship types without increasing total manpower. This is made possible through improved manpower utilization in the current structure of skills employed in the fleet.

In the past two or three years, applications of numerical taxonomy to problems of classification have expanded beyond the traditional concerns of biology to many other areas of interest. It has been used to classify soils and diseases, legislative voting records and oil-bearing strata, archeological artifacts and languages, socioeconomic neighborhoods and psychological types, and even television programs. It seems clear that the potential of this technique of task analysis warrants its adaptation for use in the Navy.

As a result, this Activity plans to pursue a relatively small effort in the further investigation of the applicability of numerical taxonomy in the Navy during fiscal year 1968. Because of the size of this effort, the preparation of a report on the progress of this research is not planned until the end of fiscal year 1968.
APPENDIX

EXAMPLES OF TASK TAXONOMIES
<table>
<thead>
<tr>
<th>Things</th>
<th>Data</th>
<th>People</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observing</td>
<td>Observing</td>
<td>Observing</td>
</tr>
<tr>
<td>Learning</td>
<td>Learning</td>
<td>Learning</td>
</tr>
<tr>
<td>Handling</td>
<td>Comparing</td>
<td>Taking Instructions-Helping</td>
</tr>
<tr>
<td>Feeding-Offbearing</td>
<td>Copying</td>
<td>Serving</td>
</tr>
<tr>
<td>Tending</td>
<td>Computing</td>
<td>Speaking-Signalling</td>
</tr>
<tr>
<td>Manipulating</td>
<td>Compiling</td>
<td>Persuading, Diverting</td>
</tr>
<tr>
<td>Operating-Controlling</td>
<td>Analyzing</td>
<td>Supervising, Instructing</td>
</tr>
<tr>
<td>Driving-Controlling</td>
<td>Coordinating</td>
<td></td>
</tr>
<tr>
<td>Precision Working</td>
<td>Synthesizing</td>
<td>Negotiating</td>
</tr>
<tr>
<td>Setting Up</td>
<td></td>
<td>Mentoring</td>
</tr>
</tbody>
</table>

Task Taxonomy: Inventive Approach

Scanning function for exposing an individual's perceptive apparatus to task-inciting cues in the environment, or as generated by himself.

Identification of relevant cues function.

Interpretation of cues according to "meaning" or implication apart from the physical nature of the cue itself.

Short-term memory for holding together, during a task cycle, the fragments of information that will be acted upon as a unit of information.

Long-term memory—symbolic or automatic or a combination of both—that associate stimulus with response.

Decision-making—divergent and convergent, computational or statistical, and so on. Response selection or formulation in the absence of a sufficiently dominant association between the cue pattern, the response pattern, and the pattern of purpose.

Effect or response—outputs that do work on the environment, including symbolic work.

Basic Types of Human Functions in Systems

Sensing
Identifying
Interpreting

Compound Functions

Coding
Scanning and Detection
Monitoring
Tracking
Troubleshooting
Learning Task Characteristics

Element Characteristics (S and R)

Number and sequence
Limits
Meaning

Relational Characteristics
Pattern of linkages
Input-Output qualitative relationship

Behavior Taxonomy of Tasks: Correlational-Experimental Approach*

Psychomotor Factors
Control Precision
Multilimb Coordination
Response Orientation
Reaction Time
Speed of Arm Movement
Rate Control
Manual Dexterity
Arm-Hand Steadiness
Wrist-Finger Speed
Aiming

Physical Proficiency Factors
Extent Flexibility
Dynamic Flexibility
Static Strength
Dynamic Strength
Explosive Strength
Trunk Strength
Gross Body Coordination
Gross Body Equilibrium
Stamina

Task Classification for Information on Human Learning

1. Classical conditioning
 S-R association
 Simple association

2. Paired associates
 S-R association
 Simple association

3. Serial learning
 Procedural task
 Procedures

4. Absolute discrimination
 Absolute judgment
 Stimulus rating

5. Ranking

6. Simultaneous discrimination
 Relative discrimination
 Choice discrimination
 Paired comparison

7. Successive discrimination
 Relative discrimination
 Choice discrimination

8. Tracking
 Continuous adjustment

9. Skilled act
 (single criterion response)

10. Simple skill
 (multiple criterion response)

11. Concept formation

12. Problem solving
 Decision making
 Troubleshooting
 Medical diagnosis
 Thinking

Basic Activities of Tasks or Task Attributes*

Procedure Following: performing a sequence of discrete steps, each of which has an identifiable beginning point and ending point.

Continuous Perceptual Motor Activity: observing displays and operating controls continuously in order to maintain a specified relationship between an object under the operator's control and other objects, not under the operator's control.

Monitoring: observing a display, or displays, or a portion of the environment, either continuously or by means of scanning, in order to detect a specified kind of change.

Communicating: receiving information and/or sending information, in words or other sets of symbols.

Decision Making or Problem Solving: piecing together facts, opinions, and other information and arriving at a conclusion about what action to take.

Non-task-related Activity: activities which occupy the worker's attention but do not contribute directly to the accomplishment of the task.

Taxonomy of Task Demands*

Demonstrable: no demand for learning, but simply the trainee's demonstration of task performance.

Iterative: execution of demonstrable steps in appropriate sequences—typical of procedural tasks where trainee is required to retain and reproduce the order of the steps and perform each step singly.

Discriminative: includes subdemands for detection and identification which require learning.

Manipulative: trainee learns novel coordinated, time actions, which may or may not be associated with a discriminative demand.

Deductive: decision-making tasks in which trainee must learn to select specific procedures appropriate to the particular instance, on the basis of deducing them from rules, principles, and general procedures.

BIBLIOGRAPHY

Folley, J. D., Jr., Development of an Improved Method of Task Analysis and Beginnings of a Theory of Training, Port Washington, N. Y.: U. S. Naval Training Device Center, June 1964 (NAVTRADEVCEN 1218-1).

Folley, J. D., Jr., Guidelines for Task Analysis, Port Washington, N. Y.: U. S. Naval Training Device Center, June 1964 (NAVTRADEVCEN 1218-2).

Morsh, J. E., Job Types Identified with An Inventory Constructed by Electronics Engineers, Lackland Air Force Base, Texas: Personnel Research Laboratory, June 1966 (PRL-TR-66-6).

Sokal, R. R., "Distance as a Measure of Taxonomic Similarity," Systematic Zoology, 1961, 10, pp. 70-79.

NEW TECHNIQUES IN TASK ANALYSIS

A Preliminary Report

Joe Silverman

November 1967

FPO 68-12

Chiel of Naval Personnel (Pers-A3)

Navy Department

Washington, D.C. 20370

Abstract

This research is directed toward the investigation of recent developments in techniques of task analysis. Because of methodological problems associated with the development of training curricula, the analysis of man-machine systems, and occupational analysis, it has been proposed that a task taxonomy be developed. Such a taxonomy would indicate the inherent similarities between tasks, independent of their environment, and pave the way for improvements in training, billet structure developments, and improved manpower utilization.

There have been numerous attempts at developing task taxonomies—both quantitative and qualitative. At present, the results of these efforts have not been comprehensive enough, nor suitable for use throughout the Navy. Because of recent developments in other sciences, a small effort was devoted to investigation of the possible application of these new techniques to personnel systems problems in the Navy.

Problems of task classification can be approached more systematically through methods of numerical taxonomy than through traditional techniques. Numerical taxonomy places the procedures of task comparison and classification on an operational and quantitative basis. This makes it possible for the Navy to objectively and precisely evaluate its billet and rating structure.

Since this research was initiated a short time ago, with a modest budget, the primary effort has been devoted to an investigation of the state-of-the-art. As a result of this initial inquiry, it is concluded that the application of techniques of numerical taxonomy to problems of task analysis is warranted because of its usefulness in helping to solve problems relating to the Navy's personnel systems.
<table>
<thead>
<tr>
<th>Personnel Research</th>
<th>Occupational Analysis</th>
<th>Billet Reengineering</th>
<th>Task Taxonomy</th>
<th>Occupational Classification</th>
<th>Job Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK A</td>
<td>LINK B</td>
<td>LINK C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROLE</td>
<td>AT</td>
<td>ROLE</td>
<td>AT</td>
<td>ROLE</td>
<td>AT</td>
</tr>
</tbody>
</table>