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OCEAN WAVE SIfoULATION FOR ENGINEERING DESIGN 

By Leon Enry Bergman1 

INTRODUCTION 

Randomly irregular waves are difficult to incorporate into engineering 

design.    The response of the structure is usually quite complicated and often 

involves other factors than wave action.    Thus it is frequently not possible 

to analytically determine the statistical characterization of the response 

directly from the statistical properties of the waves.    In problems of this 

type» simulation techniques have often been the only successful method for 

determining solutions*    These techniques have been used in a wide range of 

problems in physics, operations research, and other fields, wherever random 

factors were involved in a complicated interaction with other factors» 

Basically, simulation techniques are procedures whereby artificial data 

having imposed statistical properties is generated by some computational means. 

Usually this is done in a digital computer.    The artificial data is fed into 

the problem and the re^onse calculated.    By doing this with enough data, the 

equivalent of many years, or even centuries, of experience with the problem 

can be produced.    Such factors as maximum response,  or the number of times 

some critical value is attained, can be determined by inspection or by moni- 

toring the output with the computer.    Simulation techniques have the advantage 

of working for fairly complicated situations, but the disadvantage of often 

Assoc. Prof, of Engineering Geoscience, Univ. of Calif., Berkeley, Calif. 



requiring sizeable amounts of computer time. 

Simulation procedures have not been used extensively in coastal engineering 

and ocean wave problems although several of the oil companies have used the 

techniques. The following study was undertaken to make the procedures more 

available to the engineer working with ocean wave problems and to investigate 

possibls ways to increase the efficiency and the realism of the ocean wave and 

force simulations produced. 

The conventions used in defining spectral density are not standardised. 

Differences of v  and 2 show up in various papers depending on whether one- 

sided or two-sided spectral densities are used and whether frequencies are 

expressed in radians or cycles per unit time. All derivations in the following 

analysis will be based on the two-sided, cycles-per-unit-time spectral density 

relations. These will be converted to one-sided relations, where appropriate, 

by multiplying by 2 and taking the integration from zero to infinity instead 

of from minus infinity to plus infinity. The exact mathematical definitions 

are given in the table of notation at the back of the paper. 

The sea su./face elevations will be assumed to be a stationary, ergodic 

stochastic process produced by the addition of many infinitesimal wavelets 

each with a random phase. By the usual random theory of ocean waves, this 

2 3 
leads to a Gaussian process. ' 

Pi<srson, W. J., Jr., "The Representation of Ocean Surface Waves by a Thrae- 

Dimensional Stationary Gaussian Process,n New York Universitys New York, 195^. 

■^Kinsman, Blair, Wind Waves. Prentice-Hall Inc., Englewood Cliffs, N. J., 

1965. 



SIMULATION OF SEA SURFACE ELEVATIONS 

Two basic methods for simulating ocean wave processes were studied.    These 

were (a) by wave superposition and (b) by linear filters.    Each method has its 

advantages and disadvantages.    Both techniques seek to produce a mean-zero, 

Gaussian stochastic process which has an initially specified function as its 

spectral density.    This initially specified function will be called the target 

spectral density, while the spectral density estimatsd from the simulated time 

series data will be called the realized spectral density.    The target spectral 

density may be specified by a theoretical curve '   '    or by the discrete tabu- 

lation of a spectral density estimated from actual ocean wave recordings. 

Simulation by Wave Superposition. - Let the target spectral density be 

denoted by s(f) and suppose that F is a frequency in cycles per second such 

that s(f) is essentially zero if f is greater than F.    Let 

0 s fQ < f1 < f 2 < • • • < f N = F 

be a partition of the interval (0,F) and define 

Af„ = fn " fn-l (1) 

*n : <fn + fn-l>/2 (2) 

^Kitaigorodskii,  S. A., Application of the theory of similarity to the 

analysis of wind generated wave motion as a stochastic process, Izv. Akad. 

Nauk SSSR Ser. Oeofiz,. 1, 105-117; English TransL, 1, 73-80, 1962. 

*Bretschneider, C. L., A one dimensional gravity wave spectrum?    Ocean 

Wave Spectra. Prentice-Hall Inc., New York, 1963. 

"Pierson, W. J.,  Jr. and L. MoskowLtz, A proposed spectral form for fully 

developed wind seas based on the similarity theory of S. A. Kitaigorodskii: 

Jour. Geophysical Res., vol. 69, no. 2kt pp. 5181-5190, 1964. 
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The quantity    iq, (t) given by the formula 

N _____ 
n(t)s   2Z1     \/s(fn)   „f„     cos (knx- 2TTfnt+   $n) , (3) 

nrl 

where      $_, n z 1,2, •••,N, are independent random variables distributed 

uniformly over the interval (0,2n ) and kn is defined by the relation 

(2 rr fn)2   =   kng tanh knd , (4) 

will approximate a Gaussian stochastic process with zero mean and spectral 

density s(f).    The symbol, d, denotes water depth and  g  is the acceleration 

due to gravity.    A standard subroutine is available on most computers to 

generate independent uniform random numbers that may be used for   $*n»   The 

approximation improves as N increases and max   A fn decreases. 
1< n_N 

The simulation is based on the superposition of many waves, each having a 

random phase and an amplitude consistent with the energy in the target spectral 

density at that frequency.    Fundamentally it is just the finite-difference 

approximation to the psuedo-integral representation for ocean waves.^»'»ö 

*l (t) :   2 I   /s(f)df   cos (kx - 2 rr ft + $ ) (5) 

One is tempted to set    Affi equal to P/N and thus use an equal spaced 

subdivision of the interval (0,F).    However, this results in *\(t) repeating 
A 

itself exactly with period, l/fj   .    There are several ways to avoid the 

'Pierson, W. J., Jr., "Wind Generated Gravity Waves," Advances in Geophysics, 

vol. 2, pp. 93-178, Academic Press, New York, 1955. 

"Brown,  L.  J.,  "Methods for the Analysis of Non-Stationary Time Series 

with Applications to Oceanography," Hydraulic Engr. Lab. Rep. HEL 16-3. 

University of California, Berkeley, 1967. 
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periodicity. One way is to select the set of fR values with a random number 

table. Another way is based on the cumulative spectrum, defined as 

S(f) = Z sCf^df' . (6) 

^0 

The quantity, s(f ) Af   , is approximately the same as   [s(l'R)   - S(fn_^) ] /2 . 

Hence (3) can be written as 

N  

q(t)   =     /T   ^       /SÜ„) - S(fn-1)    cos (knx- 2TTfnt+^)       (7) 
n=l 

The periodicity is avoided if the set of fn values are chosen to make 

S(fn) - S(fn-1) constant, say equal to a   , for all n values.    Then (7) becomes 

N 

flit)   z     /Ta   ^     cos (knx - 2Trfnt + $n) (8) 
n=l 

with fn defined as the solution of 

S(fn)    = (n/N) S(oo)   . (9) 

This corresponds to an equal subdivision of the energy coordinate axis for the 

function S(f) .    Equation (9) is particularly easy to solve if the Bretschneider- 

Pierson spectral density    '    is used as a theoretical model.    This model has 

the form 

8(f)    =   Me 
f5 

AB .-B/f4 
(10) 

and is directly integrable 

ABelB/s 
„5 

S(f)    =    2 a. =|[.-^1     S4.^ (ID 

Hence S(oo) z   A/2 and the solution of (9) is 

■■=[ .1 i/* 

^.(*)J 

(12) 



The constants A and B can be deduced from Pierson's results although it is 

necessary to be careful about the distinctions between one-sided and two-sided 

spectral densities and between radian and cycles-per-second frequencies.    The 

above equations are based on a two-sided spectral density and cycles-per-second 

frequency. 

The function S(f) can also be computed from measured spectral densities 

by numerical integration and graphical determination of the fn values.    The 

list of fn frequencies is then read into the simulation computer program as 

input data. 

The simulation for sea surfaces having a directional spectral density, 

s(f,6), is directly analogous to (3) and is just the discrete analogue to the 

psuedo integral 

n.(x,y,t)=2/        /     /s(f,S)dfd6  cos(kx cose + ky sin 0 -2rrft* $) (13) 

That is 

N       M    _   

n(x,y,t) = 2 Y_   H Vs(fn,§m)AfnAem cos(knx cos 0m+kny sin&n- 2 rrfnt+ $nn) 
nsl   mrl 

(14) 

where the interval (0,2T) have been subdivided 

o = e0< ex< e2 < • • • < ©M = 2TT 

and 

Aem=Öm-em-l U$> 

em = (em+ em.1)/2 d6) 

Equation (HO may be computed for mow than one space location using the 

same uniform (0,2n) independent random numbers for each computation. If N and M 
A 

are large enough, the simulated values of 7(xk»Vk»0 » k = 1,2,3»*••» will 

6 
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maintain approximately the correct intercorrelations and cross-spectral 

densities. 

Simulation by Linear Filtering. - Let Xp x2, x-,  ••• ,  be any initial 

sequence of numbers and let   a_N, a M i» a N 2'  ""* aN l' aN   be any f ixec* 

sequence of constants.    Then the sequence obtained by 
N 

s    ^T     anxk-n k:H + l, N+2.K+3,  "• (1?) 
nr-N 

*k 

is called the output obtained by applying the digital filter 

(an ,   n s 0, ±1, ±2,  •••,±N}     to the initial sequence     jx^  n = 1, 2,  •••} . 

The basic problem (the design of the digital filter) is the determination of 

the values of a^ which yield yn having particular desired properties,    The 

procedure for designing a digital filter is easy to follow if certain basic 

relations from Fourier transform theory are kept in mind. 

Fundamental Fourier Relations. - A linear integral operator with kernal, 

k(*), acting on the input, x(t), to produce an output, y(t), may be written 

JkCr)x(t- y(t)   :        |k{r)x(t-T)dT  . (18) 

The input and output will be assumed real; hence, the kernal function is also 

real. The Fcurier transform of the kernal, 

K(f)   :    I    e~i2nfTk(T)dT  , (19) 
■/•■ -00 

is called the system function of the linear operator. By Euler's relation, 

e-i  r cos 8 - i sin© , (20) 

50 K(f) can be also written in terms of trignomstric functions as 

,• 00 -.00 

K(f)   =    /   k(T) cos 2nfTdr- i   /    k(r) sin 2Trftdt (21) 

™ 00 
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Relative to the variable, f, the real part of K(f) is» thus, Symmetrie about 

f :0, and the imaginary part of K(f) is stow synmetrio.    That is 

rtJK<fl]    -     fl[K(-f)] (22) 

J[K(fJ)    r- i [K(-D] (23) 

The two basic spectral density Interrelationships between x(t) and the y(t) 
9 

given by (18) are 

Syy(f) r |«f)|2ij[X(f) (24) 

8xy(f) s K(f) 8xx(f) (25) 

A further relation is that y(t) will have mean sero and be normally dis- 

tributed if x(t) has these same properties* 

The digital filter may be written as a linear integral operator if Dirac 

delta functions are introduced. Suppose that yk and XQ are related to y(t) 

I and x(t) by the following equivalence. 

yk = y(kat)  , k s 0,1,2,3.••• (26) 

x„ = x(nit)  ,  ncO.l.U- (27) 

Then the digital filter in (17) may be rewritten 
N 

y(t) = ^T a^t-nAt) 
nr-N 

oo  N 

♦ 

[2.   anS(f-nAt)J x(t- T)dr , for t = 0,*U,2At,' 

9 
Bendat, J. S. and Piersol, A. 0., Measurement and Analysis of Random Data. 

John Wiley, New York, 1966, pp. 96-99, «qs. (3*137) and (3*138). 

8 
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Thus the kernal of the digital filter, which will be denoted by k(f), is 

N 

k(T) : 2 *n S(T - nAt) (29) 
nr-N 

and the system function (derived in appendix I) is 

K(f)   =       1    e-i2nft   k(t) dT 
J-oo 

N 

n^-N n=-N 
:   AQ+ 2   ^    An cos (ntrf/F) - i 2 ^?    Bn sin (nrrf/F) (30) 

where 

A,,   =l/2[an+a_n] (3D 

^   ; 1/2 [an - a_n] (32) 

F   : 1/2 At (33) 

Equation (30) is the key to the design of a digital filter to approximate 

an arbitrary linear integral operator having a real kernal. Basically one has 
A 

only to make K(f) have the same shape as the system function K(f) for the 

arbitrary operator.    That is, the An and B,, need to be determined so that 

N 

ft0(f)]    ~ A0 + 2 ^   An cos (nTTf/F) (Jk) 
n=l 

N 

j[l((f)]   ^  2  ^    Bn sin (nTTf/F) (35) 
nrl 

The right hand side of these equations have period 2F.    If N is large enough, 



the approximation can be made quite good between -F and + F,  but outside that 

interval K(f) will be repeated with period 2F. However, if F is large enough 

so that the response of the filter to frequencies greater than F is of no 

importance in the intended application, then the periodicity of K(f) will cause 

no difficulty. Since F z  1/2 At, making F large is equivalent to moving the 

digital filter along a sequence with tighter spacing on the time axis. 

The constants kn and Bn may be determined by the usual procedures for 

fitting a Fourier series 

F 

& [K(f)]  cos (nirf/F) df (36) A  - 1 An - p 

J [x(f)J sin (ntrf/F) df (37) 

0 

(Standard subroutines are available at most digital computer installations to 

make these computations quickly and easily. The new fa3t Fourier methods are 

10, 
particularly appropriate here .) 

Once the AJJ and ^ arc computed, the coefficients an follow immediately 

from (3D and (32) 

a0 z   A0 

an = An + Bn (38) 
for n = 1,2,3,"#.N 

a „ - A„ - B„ -n -  n   n 

Cooley, J. W., and Tukey, J. W., "An Algorithm for the Machine Calculation 

of Complex Fourier Series," Jour, of Math, of Computations, Apr4)., 19&5» 

pp. 297-301. 

10 
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Simulatipg q(t) at One Space Location. - The rarxiom input, x(t), is 

called white noise if the spectral density of x(t) is unity. White noise may 

be approximated by a sequence of independent normally distributed random 

variables XpX-jX-,,***, each of which has mean zero and unit variance. Since 

subroutines for generating independent normal random variables are available 

for most computers, white noise is a convenient input for simulation by a linear 

integral operator (18) or its digital approximator, (17). 

Suppose it is desired to produce a simulated sea surface elevation, V|(t), 

which has spectral density, s(f). This can be produced from (18) with white 
- 

noise input if 

K(f)   =    |s7fj"     . (39) 

For if  r|(t) is formally identified with the y(t) produced by (18), then 

(24) gives 

sn(f)    =     |K(f)|2    sxx(f)    =    s(f) (40) 

It remains only to determine the digital filter constants, a , so that the 

digital filter system function K(f) closely approximates K(f) = V s(f) . 

This is achieved by the Fourier series fitting procedure indicated by (34) to 

(37). Since  ys(f) has no imaginary part, only A0,A,,,,*,An need to be 

determined. The cutoff frequency, F , may be any convenient value such that 

s(f) is essentially zero for higher frequencies. However computations are 

simplified if F corresponds to a  At interval which is an exact fraction or 

multiple of the time scale unit. 

The introduction of a directional spectral density, s(f,8), as the target 

produces vo i*eal complications if one is interested only in one space location. 

All that is necessary is to integrate out 8 . That is, 

11 
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s(f)   : s(f,0) dd (41) 

Jo 

and then proceed as in (39) and following. 

Simulating Several Simultaneous Time Series. - The basic difficulty with 

simultaneous simulation, is that the individual simulations have to produce the 

intercorrelations or interspectral densities between the various series which 

have been previously specified.    One procedure which maintains these inter- 

relationships is as follows. 

Suppose M time series are to be- simulated.    These will be denoted by 

y^t)» yo^)» "•» y^t)«    Tne simulations will be developed frorc M independent 

inputs, x,(t), x^t),  •••, Xy(t).    The idealized simulation for the m-th time 

series will be given by 

y*M =  2 
m      r co 

kmj(T) Xj(t - T) dT  , for   m = 1,2,.«.,M (42) 

j=l "L oo 

(The integral operators will be replaced by digital filter approximations in 

the actual computations.) 

Let s„,(f) represent the cross spectral density between y_(t) and y (t). 

The kernals ^ -,(?), or the corresponding system functions K^,^)» can De 

selected to produce the required cross spectral densities. The key relationship 

utilized in the determination of the K_.i(f) is (see appendix II) 

smr<f> - Z Kmj^ ^ 8xjxj(f) •n--1'2'-'M (43) 

where it is assumed that   ra>r .    (Note   s^ff) = smJf) ).    The over bar in rm     mr 

the previous equations indicates complex conjugation. If (43) is expanded into 

12 
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a system of equations, with independent white noise inputs,  it becomes 

,2 
sn(f)    =    1^(01* 

s21(f)    =    Ka(f)    ^(f) 

»22(f)    --        |Ka(f)|2+   |K22(f)| 

s21(f)    :   K^Cf)   Kn(f) 

s32(f)    :    K31(f)    Ka(f) * K32(f)    K22(f) 

333(f)   .-    |K31<f)|2+   |K32(f)|
24   |K33(f)|2 

etc. 

This system of equations can be solved sequentially 

Kj^Cf)    r     ^sn(f) 

K?1(f)    =    s,1(f)//8.1(f) 2V ir 

K22(f)    =     [s22(f) - |K21(f)|2] 
1/2 

(44) 

(45) 

K31(f)    =    s31(f)/ /sn(f) 

K32(f)    =     [s32(f) - K31(f) hl(f)] I K22(f) 

K33(f)    =     [333(^)-|Vf)|2-|K32(f)|2J 
1/2 

etc. 

13 



The design of the simulation equation is completed now by determining 
A 

K„,j(f) as in (30),  (34) and (35) to fit   Vj(f)    as determined by (46).    This 

in turn determines the digital filter coefficients, ^4» needed to »pproximate 

the kernal associated with the system function   K^ff).   Then the f,<al simu- 

lation equation reduces to 
m  N 

ym(k At)    r   XZanmj xJ,k-n ■     ■ = W-.M (46) 
jsl n-.4i 

where x, _ for n r 1,2,3»4,**• is the j-th generated sequence of independent, 

mean zero, unit variance, normal random variables. 

If the input x*(t) is not white noise the system of equations represented 

by (43) can still be solved sequentially with only slight additional compli- 

cations. 

Simulating Several Sea Surface Elevations. -Let a (t), ^-(t), •••, tM(t) 

represent the sea surface elevations at time t at M space locations. If 

yn(t) is replaced with 1m(t) in the development in the previous section, 

then (46) gives the required digital filter. The spectral densities s.j(f), 

s22(f), So^(f), etc., are all set equal to the target spectral density, s(f), 

for the sea surface elevations, which is the same for all locations. The cross- 

spectral densities have a slightly different formulation depending on whether 

the sea surface spectrum is unidirectional (say directed along the x-axis) or 

directional. In the first case, suppose the m locations are xj^Xg» •"•»*M« The 

cross-spectral density between I^X-t^) ^  *7(xr»t) *
8 

T3rown, L. J., and Borgman, L. E., "Tables of the Statistical Distribution 

of Ocean Wave Forces and Methods for the Estimation of CQ and C^," Wave Research 

Report HEL 9-7. hydraulic Engineering Laboratory, University of California, 

Berkeley, Calif., 1966, Appendix C. 

14 
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8iar(f)   =   s(f) [ cos k(Xj. - xj - i sin k(xr - xj] (*7) 

In the second case, let   s(f, 6) be the directional spectral density for the 

sea surface elevations and   (x^y^),  (x2,y2),  (x-,y~),  •••,  (x^y^) be the   M 

space locations.    Then 
2TT 

s(f)   : s(f,9) d& (<*) 

smr(f)    = "mr 

2TT 

s(f, © ) cos  { k(xr -xj cos9 + k(yr -ym) sinQJ dB 

-i s(f,Ö) sin{k(xr-xm) cos8+-k(yr-yra) sin©} dB 

J n m 
Distortions of *\ (t) to Produce Skewness. - Steep waves in nature have 

skewed surface elevations. That is, the crests tend to be higher above mean 

sea level than the troughs are below. The simulation procedures previously 

given produce Gaussian or normally-distributed sea surface elevations which 

are not skewed. Obviously high wave conditions violate a number of assumptions 

in the statistical theory of waves, most importantly perhaps the assumed linear 

superposition. However, until a successful statistical theory of waves of finite 

height is developed, the engineer is faced with doing as well as he can with the 

existing theory. 

The present simulations can be made to appear a little more like the real 

sea if skewness is introduced. One way this can be done is as follows. The 
A 

Gaussian sea surface simulation,     1(t), is developed as before.    Then a normal 

12 
to gamma transformation     which maintains a zero mean and introduces the required 

12 Campbell, G. A.,  "Probability Curves Showing Poisson's Exponential 

Summation,'1 Bell System Technical Journal, vol. 2, 1923» pp. 95-H3» 

15 



skewness, s.   , 

Q1 = (a2. D/3 

Q2 = (a3 - 7ri)/36 

Q3 = (-3A,4 - 7^ + 16)/810 

Q4 r (9^l5+ 256I13 - k33n)/38830 (50) 

Q5 : (12T.6 - 2^3 »I4 - 923 n.2 + 1^72)/2(WL20 

Q6   =   (-3753 n? - ^353 a5 + 289517 a3 + 289717 r[)/l/*6966W0 
6 

n=l 

is made to introduce more peaked crests and flatter troughs.    Skewness may be 

introduced in other ways.    The above is just one convenient and thoroughly 

investigated procedure.    The whole topic deserves considerable further research. 

How much skewness should be introduced?   If an extensive piece of actual 

wave record is available for the sea surface elevations that are to be simu- 

lated, one scheme of calculation would be:    (a) Compute the skewness for the 

wave record 

R r    fR n 3/2 
1 /      * 3m A+ /\l -2 I       7 3(t) dt / 

0 

K£2(t) dt 
0 

(51) 

(where R is the length of record),  (b) Make the gamma-to-normal transformation 3 

which produces an unskewed version of the wave record with the same zero mean 

13 ̂Riordan, John,  "Inversion Formulas in Normal Variable Mapping," Annals 

of Mathematical Statistics, vol. 20, 19^9, pp. ^17-^25. 

16 



.^v a^;...,..     .. _       _     ^ 

X2 : (71^ -  1g) /36 

X^ : (-219 a4 + ]A^ + 13) /1620 
-/ S3 

X4 : (3993nl - 152»lI -«-119I«,) /38880 

Xc = (-67227T6+ 1707 1 - 2041 ri2 - 3095) /816480 
5 S ''s 8 

X6 : (10059417*ll - 179223rig +■ 2714271"3 4- 215827 *[ ) /146966400 

(52) 

n.ct) = a +Z xn («k/2)n 

n=l 

This system of equations gives two more ten.1; than were contained in Riordan's 

paper and also corrects a misprint in the Xi, formula.    Both (50) and (52) can 

be truncated to fewer terms if the accuracy requirements permit,    (c) Compute 

the spectral density on the unskewed version and make a normal simulation, 
A 
f\(t).    (d) Re-introduce the skewness calculated in (51) by making the normal- 

to-gamma transformation given by (50). 

The above scheue needs to be evaluated against actual experience.    It 

represents only one possible procedure.    Undoubtedly further study will suggest 

others.    Perhaps the mode of the spectral density, the   rms   wave amplitude, 

14 
and the water depth could be used to get    K| /H   from existing graphs.       This, 

c 

in turn, might provide an estimate of the skewness that needs to be introduced. 

14 
Lsan, R. G., "Stream Function Wave Theory; Validity and Application," 

Coastal Engineering Santa Barbara Specialty Conference. ASCE, October, 1965, 

p. 282. 

17 



SIMULATION OF VELOCITIES AND ACCELERATIONS 

The horizontal components of the water velocity and acceleration at some 

fix*d elevation above the sea floor can be simulated with filters using either 

white noise or the sea surface elevations as basic input. A unidirectional 

spectrum and a white noise input requires the same procedures previously 

developed except that the spectral densities for the horizontal velocity and 

acceleration need to be introduced. 

■»<" = <2*f>2 SÄ& •««> <53) 

=aa«>   --   «»«*   gSäg   V" W 

The cross-spectral density between the horizontal velocity and acceleration is 

zero. Hence the two digital filters can be designed separately and applied to 

two independent white noise inputs. 

The situation for a directional spectral density is considerably more 

complicated.    For one thing, there are two horizontal components for both the 

velocity and the acceleration.    The cross-spectral densities between these 

components are not all zero.    Thus the procedure for simultaneous simulations 

of time series needs to be introduced (see (42) and (43)).    The required cross- 
16 a 

spectral densities are listed by Wave Research Report 9-12. 

The generation of velocities and accelerations using the sea surface 

elevation as input is based on (25) arid the cross-spectral densities of velocity 

15a J Borgman, L.  E.,   "Tables of Ocean toe Cross-Spectral Formulas," Wave 

Research Report HEL 9-12. Hydraulic Engineering Laboratory, university of 

California, Berkeley, Calif., 196?. 
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15a 
and acceleration with    n(t).    The required spectral densities       are, for the 

unidirectional spectrum 

s»,    *%      /     w^(f)    =     [(2TTf) ffSk^l (c03 kh . i sin kh)l   3      (f) (55) 
1(x,t), v(x+h,t) u 8inh kd J     ^^ 

*        N      , (f)   =    f(2nf)2£°4-^ (sinkh+i coskh)]   s(f)       (56) 
*l(x,t), a(x+h,t) L sinh kd J      »11 

Hence by (25) 

yf;*)   =    (27rf) S2g jg (cos kh - i sin kh) (57) 

K (f;z)    :    (27Tf)2 £2§hkz (gin kh _ ± cog kh) (58) 
a sinh kd 

Thus for a unidirectional spectral density, the system functions   Ky.(f;z)    and 

K (f;z)    do not depend on the particular sea surface spectral density that is 

to be used.    The digital filters can be determined by (34) and (35) without 

references to   s „„ (f) .   This yields an estimator equation that may be written 
N 

v(k A t)    = ]T    a^ r[(k A t - n A t) (59) 

nr-N 

N 

a(k At)    :   ^T    a    i^(k At - n At) (60) 
n=-N 

Somewhat similar procedures were used by Reid in a study of wave forces     . 

The corresponding procedure for a directional spectral density is analogous. 
15a 

The cross-spectral densities may be obtained from Tech Report HEL 9-12. The 

system functions intrinsically depend on the directional spectral density for 

the sea surface. 

Both the unidirectional and the directional spectral density cases can be 

^ Reid, R. 0.,  "Correlation of Water Level Variations with Wave Forces on 

a Vertical Pik for Nonperiodic Waves, Proc. Sixth Conf. on Coastal Eng., pp. 7^9- 

786, The Engineering Foundation, Univ. of Calif., 1958. 
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handled -airly directly with the procedure for simulation by wave superpo'sition. 

The linear wave theory formula for the quantity to be simulated is written down 

using as wave amplitude, Jks(?n) Afn in the unidirectional case, and 

V^s(?n, 0^ Afn A0m in the directional case. For both oases a random phase 

is inserted. In the directional case, kx in the linear wave theory is 

replaced with kx cos 0 + ky sin 0  and the whole term is multiplied by cos O 

for the x component and sin &     for the y component. Then the expression 
A * 

is summed over all   fn (and   &m in the 2-D situation).    Examples of this pro- 

cedure are 

linear theory: 

v   = a(2TTf) co^ kz cos (kx - 2*ft) (6l) x sinh kd 

simulation for unidirectional spectrum? 

N 

t(t) sT ^M?n)Af_ (27rf ) C03h )nz cos(knx-2Trfnt-f f n) (62) vx> 
*n7i' "     " 3inhknd 

A 

simulation for directional spectrum: v (t) : 
x 

A N      M 

S"Z lM^^m(2'V^ cos0mcos(knx cosi^krfr sini^2rfnt**^ 
_ i _ -i sinn Kfiu n.1 m-1 (63) 

The simulation by wave superposition has the one grave disadvantage of being 

time consuming. However this is balanced by the fact that simultaneous simu- 

lations of several quantities automatically maintain the proper intercorrelation. 

SIMULATION OF WAVE FORCES 

The usual formula for wave forces on a one-foot section of vertical piling 
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0\ 

<£   =   C    " Dvlvl + o. *L   2ID_ a (64) 
' u 2g M  g      4 

can be applied to the velocity and acceleration simulations developed in the 

previous section to give force simulations.    This procedure could be followed 

to simulate the total force on a structure composed of vertical cylinders. 

Simulations could be made for the forces at a series of locations down each 

pile» and the forces could be numerically integrated to give total force. 

Modifications to Give Better Agreement with Nature. - The statistical 

theory for waves is based on linear wave theory.      But   linear waves have 

infinitesimal amplitudes which do not extend measurably above still water 

level.    How does one then compute velocities and accelerations for elevations 

above this level?    To what elevation up the pile does the integration proceed 

if it is not carried just to still water level?    If the velocities and accel- 

erations are simulated from the sea surface elevations at the pile,  the second 

question is answered immediately.    The integration is carried to the sea sur- 

face.    The fiist question,  however, can only be answered with approximations. 

A conservative approximation for velocities and accelerations above mean sea 

level is to use the same formulas that hold below sea level.    The forces are 

computed for    z>d   and ignored if     i^(t)<z.   An alternative approximation 

is to  "stretch" the still water level in the formula up to the sea surface. 

In this procedure,  the force is simulated at a series of elevations between 

the sea floor and still water level.   The force at elevation   z    is assumed 

to act actually at elevation z|d+i^(t)J/d .   That is the force displaced upward 

or downward depending on whether    *^(t)    is positive or negative.    This pro- 

cedure has the advantage that the integration for total force can be carried 

to    z = d    in terms of the force simulation and the total force then "stretched" 
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to correct for     rt(t) . 

It is difficult to evaluate the accuracy of these approximations. They 

both obviously fail if the waves get very high. Yet they, at least, provide 

one approach to the problem. The ultimate answer is, of course, a statistical 

theory for waves of finite height. Until that is available, irregular waves 

of non-permanent form having a statistical nature can only be treated with a 

"patched-up" linear statistical theory. 

The force simulation with (64) being applied to (59) and (60) and then 

numerically integrated has one grava disadvantage in computer computations. 

It is time consuming.    An approximate procedure which is faster would be better. 

After all,   (64) is known to be only an imperfect approximation of the actual 
16 

force.        So some degree of further approximation is not particularly objec- 

tionable. 

Approximations to the Force Formula. - A faster simulation vmld result 

if the total force on a vertical pile could be expressed as a single operator 

acting on the sea surface elevations or, alternatively, acting on white noise. 

The inertial force, the second term on the right hand side of (64), can be so 

expressed.    If   a(t;z)  is the acceleration at elevation   z    on the pile at 

time   t   and   k_(r ;z)    is the kernal for    a(t;z)      then 
fit 

a(t;z)   r    /     ka(r ;z)   »[(t-T)dT (65) 
-00 

16 
Wiegel,  R. L., 3eebe,  K. E., and Moon, James,   'Oceau Wave Forces on 

Circular Cylindrical Piles." Journal of the Hydraulics Division, ASCE, vol. 83, 

no. HY2, Proc. Paper 1199, April, 1957. 
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The total inertial foroe becomes then 

rd     2 
total inertial force : [( l^(t) + d)/d]   I      C^ .ILP- 

Jo 

o* 

ka(T;z)1(t-T)dr dz 

-oa 

= [(^(t)+d)/d]J     [CM^^ ka(r ;z)dt]  tft T)d* 
(66) 

This eliminates the vertical integration.    The quantity in the bracket is the 

new total kernal that must be approximated with a digital filter.    The "stretching" 

correction for forces abo^e still water level has been introduced into the 

equation. 

The drag force, the first term on the right side of (6k), does not simplify 

this way.    If 

v(t ;z)   =    J kv(r;z)^(t - r) dr 
-Oo 

(67) 

is substituted into the expression for drag force, one gets for the total drag 

force on a vertical pile 

■ d 

kv(r ;z)^(t-x)dT [(irjU)-t-d)/d]  CD^D  kv(r;z)^(t.r)dT 

0 -oo -OO 

dz 
(68) 

The absolute value interfers with the shuffling of integrals which simplified (fcfc). 

17 ■ i In an earlier paper,  the term vjv) in the drag force formula was found 

to be approximated very nicely,at least relative to predicting the force spectral 

17 
Borgman, L. S., "Spectral Analysis of Ocean Wave Forces on Piling," 

Journal of Waterways and Harbors Division. ASCE, vol. 93» no. WW2, Proc. Paper 

52^7, May 1967, pp. 129-156. (See p.151, eq.(7*0). 
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density, by 

v v     :   v. rms \[W^) (69) 

Here, v^g   is the standard deviation, or root-mean-square value for the 

velocity.    In essence    jvj    has been replaced by   v^g  y(8/rr)  .    The effect 

of the approximation is easier to comprehend if the linear theory versions are 

introduced.    From the usual formulas for velocity 

,2 
v|v|    =      pyi 22§h_M]     cos9 /cos Q\ 11            [ T sinn kd J                I            ' 

/X" v    - flL£   cosh kz"|2   /   8 ' 
V TT         " I  T     sinh kdj    y  Z TT 

v       ;-s-   v rms 1/ rr cos 0 

(70) 

(71) 

Since    ^ 8/2 TT    is not too much larger than unity, the approximation replaces 

vjvj    with a cosine oscillation whose maximum amplitude (ac   9 z. 0) is only 

slightly greater than   vjvj   .    Both expressions are zero at   6 s 77"/2 . 

The analytic basis for (69) becomes clear if one asks for the most accurate 

linear estimate of   v(v|, assuming   v   is normally distributed with mean zero 

and standard deviation    C r vmg .    That is, what is the constant    c   which 

minimizes 

Q   = 

-Co 

v| - cv]' 
r2l2(T2 

rZrr <T 
dv (72) 

By calculus,    Q   has an extremum if 

0 

or 

Y.--*l 
2/   ,  e-v

2/2(72 
v I v| dv ~ c 

fZTT  V 
-oo 

■°%i   ,   -v2/2<T' 
(v2h\- 
■oo izw <r 

dv 

r°°    o,    2 
2 «V/2J  av] 

-oo 
/I/r 0" 

<r/(8/7T) 

(73) 

(74) 
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Further analysis shows that this value minimizes Q . The result agrees exactly 

with (69), hence cv is the best linear estimator for v|vj in the least- 

square sense. The procedure can be extended to the cubic and quintic approxi- 

mations. There, one seeks the values of the constants which minimize 

Q3 [vlvl - c,v - c.v3l      «~V /2(T   dv (75) 
_L * 3    J       /2TT C 

or 
< 

-Oo 

OO 

3 512    „-v2/20"2 

Q5   =    I    |_v|v|  -c.v- 03^-0/]      *L__ 
- 00 

r 1 R"lc      -V I2M 
rv|v|  - C;Lv - c-jv^ - c5v5J      S—1 dv (76) 

The solutions which minimize (75) and (76) are determined by differentiation 

with respect to the unknown constants to be 

C;Lv + 03V3   =   v^g ^JR)   v + / (2/9 77")    (v3/^) (77) 

and 

Clv + c3v3 4- 05V5   =     /te7^7 [<>„,/*> v + (1/2 vra3) v3- (1/60 v^s) v5] 
V/o; 

A comparison of the linear, cubic, and quintic approximations with v|v| is 

shown in Fig. 1. The approximations have been Made dimensionless by changing 

to the variable 

x = (y/vrm) (79) 

Then the three approximations become in terms of x 

(vM/v^)   :   x!xj    ^ JW^J   x (80) 

xfttFn)    [x +(1/3) x3] (81) 

^{(zTn)   [ (3/^)x + (l/2)x3- (1/60X5]      (82) 
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/ /i^Best quintic fit 

Fig. 1. Polynomial approximation to v|v|. 
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An examination of Fig. 1 shows that the linear approximation does a fair job 

for |x|<2 ; that is, if the velocity is within plus or minus two standard 

deviations. Since according to normal theory this happens 95# of the time, 

it is entirely reasonable that the linear approximation would do a good job 

on estimating a curve like the spectral density which depends on the average 

behavior of the velocity values. 

The cubic approximation is quite accurate out to more than three standard 

deviations and the quintic is good to almost four standard deviations. The 

quintic approximation is only slightly better than the cubic. The cubic 

approximation, however, is quite an improvement over the linear expression. 

All of the above approximations were derived under the assumption that 

the mean value of v was zero (i.e., there was no steady current present). 

The same analysis can be carried through if the mean of v is not necessarily 

zero, although the mathematics is more complicated. Even powers of v must 

be included and the normal density has to include the parameter for the mean. 

As an example, the least-square linear estimate for a normal v with mean m 

and variance 0"  is determined by minimizing 

Q = 
j 

-(v-m)2/2CT2 

-oo 

fv(v| - cn - c.v] €l—l  dv (83) 

Let 
-x2/2 

CJ>(x) = €111 (84) 

X 

r^/2 dt 

l~  /27T 
(85) 

The least square solution for (83) is 
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c0+-Clv   =    (0-2-m2)[2§(^) -lj  - 2 m <T f(i) + 

+ {2m[2$(i.) - l]    -4<T<j>(JL)J   v (86) 

Total Force on a Single Vertical Pile. - The filter concept in (18) can 

be extended to higher orders 

Oo ^«o 

=   J kx(r) x(t- r)dr  +  / J k2(rp ty xft-ry x(t-r2) d^d r2 y(t) 
"- Oo -Oo ~-Oo 

OO   f oo r oo /"" /-oo /- oo 

J   J k3(T1, r2, T3) x(t.r1) X(t.r2) x(t-*3) d^d^d^ 
-OO   -Oo    -oo 

+    .  . . (8?) 

A second-order filter would consist of the first two terras, a third-order filter 

of the first three terms, etc.    If the first-order approximation to the drag 

force is used, the difficulty in (68) is avoided completely.    The total drag 

force becomes (approximately) 

{ [i n(t)J/d} J      CD JL Dvras JT   v dz   = 

r d r °° 
={td + »l(t3/d} j      CD JLDr^ ß.     J ^(Tjz) ri(t-T) dT dz 

'o --oo 

= (Wn(tH    I   [^iDv^ri    /     kv(r;z)dz]  «t-T>dr       (88) 
-Loo '0 

Thus the quantity in the bracket is the kernal for the estimation of total 

force. The system function for the total drag force will be the Fourier 
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transform of the bracketed quantity or 

K (f)    r   Cn   JL   Dv        JA /       K (f;z) dz (89) 
total drag D   2g       rms  |f IT \ v 

Similarly from (66) 

f d 

K (f)     s   O. JL   iüL    /        K (f;z) dz (90) 
total inertial        « g      *       / a 

and 

K (f)   ;   K (f) + K (f) (91) 
total force total drag total inertial 

The system functions within (89) and (90) are given by (57) and (58).    The 

integrations in (89) and (90) are easy to make and the result is 

K (f)   :   c     i.   Dv       f£ /2j7f)    (cos kh - i sin kh) + 
total force D   2S      ras K  n  [   k / 

+   C»,   JL   iUL I2£IL   (8in kh - i cos kh) (92) n    g      4 k 

This system function can be approximated with a Fourier series to obtain 
A 

K      (f) and with it the digital filter which acts on the sea surface to 
total force 

simulate the total force on a single vertical pile. 

The above development was based on a unidirectional wave spectrum and a 

linear approximation to drag force. The cubic approximation would lead to a 

third-order filter. The analysis would be parallel to the above but somewhat 

more complicated. 

The complications can be avoided by a slightly different approach which 

involves, however, many more Fourier fits to determine digital filters. Suppose 

the digital filters for velocity and acceleration are computed at a series of 
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points up the pile between the sea floor and still water level. 

Then the force at the k-th position is (using the cubic approximation), 

N 
(*) 

e 

n—N 
fk(nAt)    :   ^~   SifJ   r[(mAt-nAt) 

N N N 
+ ^>~    y     ^~     a      ,    u    ^^(mAt-n'At) l7(mAt-n"A t)M (mM-n*At) 

n'=-N n =-N n  =-N (93) 

with 

Cnf   oil  (vj a^ + C„   JL   ZU?   a(k) (<*) 
D   2g       V 7T       ras   ^"       TJ    g      k        an 

GO 
afn D   2g       y 7T    "*■»'  ~™   '   "M    g 

(k)    (k)    (k) 

i(k) -   C   JL   D ,/X   !inl%n- *vn'" 
f;n\n",n'" ~     D 2g       V9TT 7 
a-.    ..    ...5   n   JL   DTX   J«L-2lJ2r (95) 

D 2K       v 9TT v rms 

(k) (k) 
and   a and   a are the digital filter coefficients at the elevation for 

™ an 
the k-th position on the pile.    The total force may be computed by numerical 

integration of (93) to provide a cubic digital filter for total force. 

N 

W"At)    =   X     afn}    1<»At-n*t)-H 
n=-N 

N N N 

+ y~    y~    y    ajy,    „   „^(mAt-n'At^OnAt-n'AtJrjOiiAt-n'"^) 

n'r-N n":-N n"=-N     "    * * ' (96) 

with 
(T) y       (k) 

afn     =     V afn Azk                                                                          <*> 

(T) ^ (k)    (k)      (k) 
af;n',n",n'"   = ^ V &fn"   *fn'"  *\                                             (98) 
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where A z,  is the appropriate vertical increment for the k-th position on 

the pile. 

The total force can be "stretched" to correct for sea surface elevation 

variations by multiplying   F (mAt)   by      [n(mAt) + d]/d . 
total *• 

Total Force on a Croup of Piles» - One procedure for simulating the total 

force on a group of vertical piles would be as follows. The sea surface 

elevations are first simulated for some central position within the group of 

piles. This is used as a common input for the digital filter simulation of 

the force on each of the piles. That is, each pile would have a different h 

value in (57),  (58), and (92), which would be the x-direction spacing between 

the central position and the pile. If desired, the sea surface elevation at 

each pile could also be simulated from the sea surface elevations at the central 

position. All these together could then be used to determine the time series 

for total force. Of course, if the total force on each pile is not going to 

be corrected for sea surface elevations at that pile, the sea surface simu- 

lations can be dispensed with. In this case, the force digital filter coeffi- 

cients for each pile can be added to give a single digital filter which acts 

on the sea surface elevations at the central position to provide as output the 

simulation for total force on the group of piles. 

AN APPLICATION 

16 
Wave forces were measured near Davenport, California in 1953.   The values 

of CD and Cw were determined Vor a number of waves by the following procedure. 

The sea surface elevations were scanned and "well-defined" waves were selected. 

The wave force was read from the record at the crest and at the still water 

level crossing of each wave profile. The height and period for each wave was 
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used, with linear wave theory, to compute the water velocity and acceleration 

in the vicinity of the force sensing instrument at the crest and zero crossing 

phases of the wave. These theoretical velocities and accelerations were used 

with the measured forces to determine Cj, and Cy. The procedure is consid- 

erably simplified by the theoretical relation that the inertial force is zero 

beneath the crest and the drag force is zero beneath the zero-crossing. 

The values of CD and Cj. so computed showed a very large scatter. There 

are a number of possible reasons why this might happen. The forces might be 

inherently random so that (L and C" actually do vary. Vibrations or other 

recording difficulties may have introduced inaccuracies. Perhaps the irregu- 

larities in the wave profiles were sufficient to invalidate the theoretical 

confutations. And there are other possibilities. 

As a means of estimating the effect of profile irregularity on the Cp 

and Cw computations, a time history of sea surface elevation and water velocity 

and acceleration was simulated by the method of (7) and (62). The spectral 

density for the recorded waves on roll 10 of the Davenport data was used in the 

simulation. The agreement of the spectral density of the simulated sea surface 

and the Davenport spectral density is shown in Fig. 2. The velocities and accel- 

erations were simulated at the same elevation above the sea floor as was used in 

the roll 10 measurements. The force at the instrument level was computed from 

the simulated velocities and accelerations using (64) and a C« value of 1.0 

and Cw of 2.0 . Hence the simulations provided a sea surface time history and 

the force record which would result if the usual force formula, (64), were to 

hold exactly with the specified values of C« and Cw. 

Now the same analysis procedure used for the Davenport data was applied 

to this sea surface and force record. Well defined waves were selected from 

32 



Roll 10   Actual 
Roll 10   Stimulated 

d = 49 Feet 

0 

Fig. 2. 

0.04 0.28 
FREQUENCY  (cycles/sec.) 

Simulated and actual spectral densities for Davenport data, roll 10« 
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the sea surface elevations.    The forces were read from the simulation beneath 

each wave crest and wave zero-crossing.    Linear theory was used to compute the 

velocity beneath the crest and the acceleration beneath the profile zero-crossing. 

These values were combined to estimate   CD   and   C^.    If the method were accurate, 

CD = 1.0    and   (\, z 2.0    would be the result. 

The scatter diagram for the canputed   CQ   and   CL,   values is shown in Fig. 3» 

There is considerable scatter.    Fig. k provides a plot of   Cp   versus Reynolds 

nunber and Fig. 5 gives a ranked plot of   CJJ   on normal probability paper.    The 

figures are strikingly similar to the corresponding results for the Davenport 

data and suggests that the wave profile irregularities contributed considerably 

to the Cp and C^ scatter in the Davenport results. 

CONCLUSIONS 

3.    Techniques for simulating ocean waves are most applicable when the 

response of the structure is complicated and perhaps involves other random 

environmental factors that may be introduced by concurrent simulations. 

2. The accuracy of the wave simulation is greatest for low amplitude 

waves and decreases for large steep waves. The degree of loss in accuracy 

for the higher and steeper waves deserves further research. 

3. Simulation techniques have the disadvantage of being time consuming 

and usually requiring the use of computers.    Analytic solutions are to be 

preferred if feaaiblo.    Sometimes part of a problem can be solved analytically 

and then the intractable parts processed by simulation.    A detailed search for 

shortcuts and approximations before proceeding with the actual simulation will 

often result in sizeable savings of computer time0 

4. The engineer will usually be forced to simulate with one-dimensional 

spectral densities because there are so few reliably measured two-dimensional 
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spectral densities.    The formulas for   2-D   spectra were included in the hope 

that satisfactory directional data will soon be available. 

5.    The linearization of the drag force, or its approximation by poly- 

nomials,  is particularly useful in many problems.    However, in some applications, 

it is just as easy to work with the   v|v|    term directly. 
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APPENDIX I. - FOURIER TRANSFORM OF A WEIfflTED DIRAC COMB 

roo N 
/     -i2TTfr    <s- 

oo N 

K(f) 
*-oo 

n=-N 

= 1  % -i2 7TfnAt 

n=-N 

=   Z   [l(VaJ^K".n)] -in7Tf(2M) e 
n=-N 

N 
=   I  j> Bn]  .-

1»«/' (99) 
ns-N 
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where 

A« = - (*„ + a J n 2  n  "n 

B„ = i (* - a ) 
n " 2  "   -n 

F = 1/2 At 

This definition results in the symmetries 

n -n 

B     --B n   "     -n 

Hence 

N 

K(f)   =   A0   +£    An(e-inirf/F-hein7rf/F) 
nrl 

+ J~    B    (e-inTTf/F- einTff/F) 

(100) 

(101) 

(102) 

(103) 

(1(A) 

n«l 

s   A0+zf_    An(ein7rf/F
+e-inlTf/F)/2 

n=l 

N 

I 
n=l 

-2if    Bn(einrrf/F- e-in77f/F)/2i 

Since 

cos0     :    (ei9+ e-i8)/2 

sin 6     :    (ei6 - e"i8 )/2i 

The previous equation reduces to 

N N 

K(f)   ;   AQ + 2   2.    *n   cos(n7rf/F) -21^1    Bn   sin(n7rf/F) 
nsl nzl 

(105) 

(106) 

(107) 

(108) 
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APPENDIX II. - INPUT-OUTPUT RELATIONS FOR MULTIPLE SIMULATIONS 

Using the notation of eq.  (k2) and following 

m       r oo 
ym(t)    =   Z_     I    Kfo) Xj(t - y) dy (109) 

jrl     -00 

Let   m > r.   Then 

Cmr(r)    =   BfyB<t) yr(t + T)J 

2.   J    'S.jMxjCt-y)*r   2.    I    krjl(z)Xjl(t+T-z)dt] 
jrl   "~ ji-1   -00 

-   2.   Z_   J    j    "Sij<y)krji(») E[xj(t-y)xj,(t + -r - z)J dy 
jsl      j   Sl    -00-00 

ds 

r       _©o 

=   2   J   J    kmj<y)krj(z) C
XjXj (r-.+y) dyd. (110) 

jzl     -Oe   -OO 

One summation is eliminated by the independence of the inputs.    The sumnand is 

zero unless    j : j'  .    By definition 

Vj(f) -" I2'i2'nr%*i(T) iV (m) 
MM 

and 

00 

VJ(T) -' J^'V/"" (U2) 

If (112) is substituted into (110) and it is assumed the functions involved 

permit interchange of integration order, then 
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j=l    -oo J-Oo J-Oo 

KT                r I ,   v        i27Tfy f     -i2TTfZ -1       i2 7Tfir 

*„-\     J J   -oo J   J      " 

= [ Z    ^ *rJ<f> Vi<f)J   •* 
i27Tfr df 

(The over bar indicates complex conjugation.) 

Again, by definition of   C    (T), analogously to (U2) 

(113) 

Wt)   =        |7nr(f) e-i27rf^ 
-oo 

df (1H) 

If (114) is compared with (113)» it can be seen that 

8mr<f>   =   Z    Wf> Vtt) «Xjx/f> 
M 

(115) 

If the inputs are white noise, the input spectral densities are unity and 

r 

J=l 

(116) 

Since 

<W<f>    =   srm<f> (117) 

(116) determines   s (f)   for all   m   and   r   between   1   and   M. nir 
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APPENDIX III. - NOTATION 

The following symbols are used in this paper: 

a r horizontal component of acceleration; 

an z   weighting coefficient in a digital filter (see eq.(l?)); 
2 

a  r increment in S(f) (see eq.(7) ff.); 

A z   a constant in the Bretschneider-Pierson spectral density formula 

(see eq.(10)); 

An = coefficients in Fourier transform of a digital filter (see eq.(30); 

B z   a constant in the Bretschneider-Pierson spectral density formula 

(see eq.(10)); 

Bn z   coefficients in Fourier transform of a digital filter; 

c .- coefficient in optimal linear approximation of drag force 

(see eq.(?2)); 

cn z   coefficients in optimal polynomial fitting to drag force; 

CQ : drag coefficient; 

CM x inertial coefficient; 

d s water depth; 

D = pile diameter; 

f z   frequency in cycles per unit time 
A 

fn   z   midpoint of the n-th increment of frequency (see eq.(2)); 

F   :   cutoff frequency - the highest frequency important in the response 

or a frequency such that   s (f) 5; 0   for     f > F ; 

g   =   gravity; 

h   =   space lag in   x   direction (see eq.(55)){ 

^lz~j   z   imaginary part of   z; 
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k = wave number; 

k(f) ; kernal in a linear operator (see eq.(l8)); 

k : wave nunber in radians per unit length corresponding to frequency 

A 

f    (see eq. (**)); 

K(f) : Fourier transform of   k(r), K(f) is called the system function; 

m = mean velocity in eq.(83); 

N : nunber of increments in simulation by superposition; 

Q ; quantity to be minimized in least-square fitting (see eq.(?2)){ 

Qn = coefficients in the normal-to-gamma transformation (see eq.(50); 

^[z] z real part of   z; 

s^ ; skewness; 

s(f) z spectral density; 

8    (f) z spectral density of   x(t); 

s    (f) : cross-spectral density of   x(t)    and   y(t); 

Spjptf) z cross-spectral density between   ym(t)    and   yr(t)    in the 

development following eq„(^2); 

S(f) : Cumnulative spectrum (see eq.(6)); 

t r time; 

v = horizontal component of velocity; 

v z root-mean-square velocity, or standard deviation of the velocity; 

w = specific weigh - of water; 

x = one of the horizontal coordinates; 

x r v/vra8 (see eq.(79) ff.)j 

x : variate in standard normal formulas (eqs.(84) and (85)); 

x(t) = general input for linear operators; 

XJJ s n-th element in input sequence for a digital filter (see eq.(17)); 



Xn z coefficients in the gamma-to-normal transformation (eq.(52)); 

y z one of the horizontal coordinates; 

yjj : k-th eleuent in the output sequence of a digital filter 

(see eq.(17)); 

z z coordinate measured vertically upward from sea floor; 

S(t) = Dirac delta function; 

Afn s n-th increment of frequency (see eq.(l)); 

At s time increment in application of a digital filter; 

A0m z m-th increment of 0 ; 

^(t) z sea surface elevation above still water level; 
A A 
l^s(t) r skewed version of P|(t); 

*|(t) s simulated sea surface elevation above still water level at time t; 

B z direction variable in a directional spectrum; 

9 s wave phase angle in eqs.(?0) and (71); 
A 

6m z midpoint of the m-th increment öf 0 ; 

<T z standard deviation of velocity z   vm8; 

Y " wave force; 

<p(x) z standard normal probability density (eq.(84)); 

<p s random phase; and 

<p(x) z distribution function for a standard normal variate (eq.(85)). 
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