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OCEAN WAVE SIMULATION FOR ENGINEERING DESIGN

By Leon Emry Borgmanl

INTRODUCTION

Randomly irregular waves are difficult to incorporate into engineering
design. The response of the structure is usually quite camplicated and often
involves other factors than wave action. Thus it is frequently not possible
tc analytically determine the statistical characterization of the response
directly from the statistical properties of the waves. In problems of this
type, similation techniques have often been the only successful method for
determining solutions. These techniques have been used in a wide range of
problems in physics, operations research, and other fields, wherever random
factors were invoived in a complicated interaction with other factors.

Basically, simlation techniques are procedures wherelby artificial data
having imposed statistical properties is generated by same computational means.
Usually this is done in a digital computer. The artificial data is fed into
the pmblem and the response calculated. By doing this with enough data, the
equivalent of many years, or even centuries, of experience with the prcblem
can be produced, Such factors as maximum response, or the number of times
some critical value is attained, can be determined by inspection or by moni-

toring the output with the computer., Simulation techniques have the advantage

of working for fairly complicated situations, but the disadvantage of often

]'Assoc. Prof. of Engineering Geoscience, Univ. of Calif,, Berkeley, Calif.
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requiring sizeable amounts of computer time.

Simulation procedures have not been used extensively in coastal engineering
and ocean wave problems although several of the oil companies have used the
techniques. The following study was undertaken to make the procedurss more
available to the engineer working with ocean wave problems and te investigate
possibl2 ways to increase the efficiency and the realism of the ocean wave and
force simulations produced.

The conventions used in defining spectral density are not standardized.
Differences of T and 2 show up in various papers depending on whether one-
sided or two-sided spectral densities are used and whether frequencies are
expressed in radians or cycles per unit time. All derivations in the following
analysis will be based on the two-sided, cycles-per-unit-time spectral density
relations. These will be converted to one-sided relations, where appropriate,
by multiplying by 2 and taking the integration from zero to infinity instead
of from minus infinity to plus infinity. The exact mathematical definitions
are given in the table of notation at the back of the paper.

The sea su.face elevations will be assumed to be a stationary, ergedic
stochastic process produced by the add:tion of many infinitesimal wavelets
each with a random phase. By the usual random theory of ocean waves, this

leads to a Gaussian process.z’3

2Piarson, W. Joy Jre, "The Representation of Ocean Suriace Waves by a Thrue-
Dimensional Stationary Gaussian Process," New York University, New York, 1954.
kinsman, Blair, Wind Waves, Prentice-Hall Inc., Englewood Cliffs, N. J.,

1965.




SIMULATION CF SEA SURFACE ELEVATIONS

Two basic methods for similating ocean wave processes were studied. %hege
were.(a) by wave superposition and (b) by linear filters. Each method has its
advantages and disadvantages. Both techniques seek to produce a mean-zero,
Gaussian stochastic process which has an initially specified function as its
spectral density. This initially specified function will be called the target
spectral density, while the spectral density estimated from the simulated time
series data will be called the realized spectral density. ‘The target spectral

4,56
density may be specified by a theoretical curve 15

or by the discrete tabu-
lation of a spectral density estimated from actual ocean wave recordings.
Simulation by Wave Superposition. - Let the target spectral density be
dencted by s(f) and suppose that F is a frequency in cycles per second such
that s(f) is essentially zero if f is greater than F. Let
0z2fy<fy<fy<eee<fy=zF
be a partition of the interval (0,F) and define

Af

n fn - fha (1)

£z (£, + £p0)/2 (2)

"Kitaigorodskii, S. A., Application of the theory of similarity to the
analysis of wind generated wave motion as a stochastic process, Izv, Akad.

Nauk SSSR Ser, Gsofiz., 1, 105-117; English Transl., 1, 73-80, 1962.

5Bretschneider, C. L., A one dimensional gravity wave spectrum: Ocean
Wave Spectra, Prentice-Hall Inc., New York, 1963.

6pierson, W. J., dJr. and L. Moskowitz, A proposed spectral form for fully
developed wind seas based on the similarity theory of S. A. Kitaigorodskii:
Jour. Geophysical Res., vol. 69, no. 24, pp. 5181-5190, 1964,

3




B

The quantity v’i(t) given by the formula
N
(L) = ZZI m cos (f(nx -2 'r'?‘nt'* @n) ! (3)
ns
where an, nz 1l,2,°*+,N, are independent random variables distributed
uniformly over the interval (0,2rm ) and f‘\n is defined by the relation
(2m £)% = kg tanh kd , (%)
will approximate a Gaussian stochastic process with zero mean and spectral
density s(f). The symbol, d, denotes water depth and g is the acceleration
due to gravity. A standard subroutine is available on most computers to
generate independent uniform random numbers that may be used for @n « The
approximation improves as N increases and max A f, decreases.
The simulation is based on the supeq]).:s;.ltign of many waves, each having a
random phase arvl an amplitude consistent with the energy in the target spectral
density at that frequency. Fundamentally it is just the finite-difference

approximation to the psuedo-integral representation for ocean waves.3’7’8

o
n(t) = 2 [ Vs(£)df cos (kx - 27 ft+ &) (5)
Jo

One is tempted to set Af_ eqal to F/N and thus use an equal spaced
subdivision of the interval (0,F). However, this results in 1 (t) repeating

A
itself exactly with period, l/fl + There are several ways to avoid the

7P:i.arson, We doy Jr., "Wind Generated Gravity Waves," Advances in Geophysics,
vol. 2, pp. 93-178, Academic Press, New York, 1955.

8Bruwn, l. J., "Methods for the Analysis of Non-Stationary Time Series
with Applications to Oceanography," Hydraulic Engr. Lab. Rep. HEL 16=3,

University of California, Berkeley, 1967,
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periodicity., One way is to select the set of fn values with a raxdom mumber

table. Another way is based on the cumulative spectrum, defined as
£
S(f) = z/ s(far' . (6)
0

The quantity, s(fn) Af , is approximately the same as [S(fn) - S(fn_l)] /2 .

Hence (3) can be written as

N
N = VZ D |55 - S(Eyp cos (kx - 2mit +&) ()

ns=l

The periodicity is avoided if the set of f, values are chosen to make

s(f,) - S(fn-l) constant, say equal to a2 , for all n values. Then (7) becomes
A N % o
n() = Vza Z cos (kpx = 2L t+ ) (8)
n=l

with f; defined as the solution of
S(tn) = (n/N) 5(e°) . (9)
This corresponds to an equal subdivision of the energy coordinate axis for the

function S(f) . Eguation (9) is particularly easy to solve if the Bretschneider-

Pierson spectral density 5:6 is used as a theoretical malel. This model has
the form
s(f) = 4B e-B/fh (10)
£
and is directly integrable
f
4 bAf 4
;) x -
S(f) = ZJ/. ABe~5/s ds - & [e B/s ] - A, B/f (11)
o 85 2 0 2
Hence S(oo) = A/2 and the solution of (9) is
1/4
loge (;)
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The constants A and B can be deduced from Pierson's results although it is
necessary to be careful abmut the distinctions between one-sided and two-sided
spectral densities and between radian and cycles-per-second frequencies. The
above equations are based on a two-sided spectral density and cycles-per-second
frequency.

The function S(f) can also be computed from measured spectral densities
by numerical integration amd graphical determination of the fn values. The
list of fn frequencies is then read into the simlation computer program as
input data.

The simulation for sea surfaces having a directional spectral density,
s(f,6), is directly analogous to (3) and is just the discrete analogue to the

psuedo integral

2T o
n(xy,t) = 2/ /s(£,6)dfd6 cos(kx cos® +ky sin§ -2m £t + ) (13)
0 0
That is
B N M - "
nixyt) = 2 Z Z V 8(£n,6p) AL;86,, cos(kpx cos Op+ky sin® - 2nft+ §pp)
nzl msl
(14)
where the interval (0,2m) have been subdivided
02 6,¢8,<86,< <> <6M z2m
ard
Aem = em 'em-l (15)
A
8, = (6,+6,.1)/2 (26)

Equation (14) may be computed for more than one space location using the
same uniform (0,2m independent ramdom nunbers for each computation. If N and M

A
are large enough, the simulated values of N(xy,yj,t) , k = 1,2,3,°¢°, will
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maintain approximately the correct intercorrelations and cross-spectral

densities,

Simulation by Linear Filtering. - Let X1s Xpr Xg0 0 be any initial

sequence of numbers and let AN 8_yo10 2N,z ttt Aoy AN be any fixed
sequence of constants. Then the sequence obtained by
N
¥y = Z anX o k = N+1, N+2, N+3, *°- (17)

n=-N
is called the output obtained by applying the digital filter
{ap, n=0,21,%2, «¢s;2 N} to the initial sequence {x, n=1, 2, ++-}.
The basic problem (the design of the digital filter) is the determination of
the values of a, which yield y, having particular desired properties. The
procedure for designing a digital filter is easy to follow if certain basic

relations from Fourier transform theory are kept in mind.
Fundamental Fourier Relations. - A linear integral operatcr with kernal,

k(t), acting on the input, x(t), to produce an output, y(t), may be written

yt) = fk‘(t')x(t-'f)d‘t‘ . (18)

-00

The input and output will be assumed real; hence, the kernal function is also

real. The Fourier transfom of the kernal,
0o
K(£) = f oMY (pax (19)

- 00

is called the system function of the linear operator. By Euler's relation,

-i6
ei S cos® -1 sinf, (20)
so K(f) can be also written in terms of trignometric functions as

o0

oo
K(f) = j k(T) cos 2nfrdx - i/ k(?) sin 2mfrd<t (21)

- 0O -0

%
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Relative to the variable, f, the real part of K(f) is, thus, symmetric about
f =0, and the imaginary part of K(f) is skew symmetric. That is

R ko] = R[k-n) (22)

Mra) = - [xenl (23)

The two basic spectral density interrelationships between x(t) and the y(t)
given by (18) are °

sy 2 [K(D|? age) | | (24)

8g(f) = K(f) 8, (1) (25)

A further relation is that y(t) will have mean zero and be normally dis-
tributed if x(t) has these same properties.

The digital filter may be written as a linear integral operator if Diras
delta functions are intraduced. Suppose that y, and x, are related to y(t)
and x(t) by the following equivalence,

Yo = y(kat) , k =0,1,2,3,¢0¢ (26)
xp, = x(nAt) , n=0,1,2,3,¢ - (27)
Then the digital filter in (17) may be rewritten
N
y(t) = > ey x(t-nat)
nzN

(28)
I[E ang(‘t-nbt)] x(t- T)dT , for t = 0,8%,28¢,°°"

-0 n=N

9Bendat, Jo S. and Piersol, A. G., Me emsnt and is of ta

John Hiley, New YOl'k. 1%6. PP ”-99. Q8. (30137) and (3.138).
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4 Thus the kernal of the digital filter, which will be dencted by k(T), is

. N

K(T) = > ay 8(T - nat) (29)
n=-N

and the system function (derived in appendix I) is

o0

K(£) = f o-12"T J(1) ax
=00
N- N
T Ag+2 z A, cos (nTE/F) - 12 z B, sin (nTf/F) (30)
n=-N ns-N
where
z 1/2[ap 4 a_p] (31)
z1/2 [ap - ap] (32)
F =1/2 At (33)

Equation (30) is the key to the design of a digital filter to approximate
an arbitrary linear integral operator having a real kernal., Basically one has
A
only to make K(f) have the same shape as the system function K(f) for the

arbitrary operator. That is, the A, and B, need to be determined so that

N
R[K(f)] = Ay t2 Z A, cos (nmf/F) (34)
n=l
| N
: j[K(f)] X2 Z B, sin (nT£/F) (35)
nsl

The right hand side of thess equations have period 2F. If N is large enough,




the approximation can be made quite good between -F and +F, but outside that
interval ?((f) will be repeated with period 2F, However, if F is large enough
so that the respcnse of the filter to frequencies greater than F is of no
importance in the intendsd application, then the pericdicity of ?(\(f) will cause
no difficulty. Since F = 1/2At, making F large is equivalent to moving the
digital filter along a sequence with tighter spacing on the time axis.

The constants A, and B, may be determined by the usual procedures for

fitting a Fourier series

F
Rl = % [ ﬂ{[x(r)] cos (nwf/F) df (%)
0
F
By = § f Q[x(r)] sin (nT£/F) df (37)
0

(Standard subroutines are available at most digital computer installations to
make these computations quickly and easily. The new fast Fourier methods are
particularly appropriate here]'?)

Once the A, and B, are computed, the coefficients a, follow immediately

from (31) and (32)

A

%o 0

a, = Ap +3, (38)
for n = 1,2,3,°**,N

a_,:> Ay - B,

IOCooley, J. W,, and Tukey, J. W., "An Algorithm for the Machine Calculation

of Complex Fourier Series," Jour., of Math. of Computations, April, 1965,

pp. 297-301.
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Simulatinrg th) at Ore Soace location. - The ramdom input, x(t), is
called white noise if the spectral density of x(t) is unity. White noise may
be approximated by a sequence of independent normally distributed random
variables X)9Xp0Xq5° % each of which has mean zero and unit variance. Since
subroutines for generating independent normal random varizbles are available
for most computers, white noise is a convenient input for simulation by a linear
integral operator (18) or its digital approximator, (17).

Suppose it is desired to produce a simulated sea surface elevation, Q(t),
which has spectral density, s(f)., This can be produced from (18) with white

noise input if

K(f) = \Is(f) > (39)

For if rl(t) is formally identified with the y(t) produced by (18), then

(24) gives

sqq(0 = KO () = s(o) (40)

It remains only to determine the digital filter constants, a S0 that the
digital filter system function K(f) closely approximates K(f) = Vs(f) .
This is achieved by the Fourier series fitting procedure indicated by (34) to
(3). Since Ys(f) has no imaginary part, only Agshyst ety need to be
determined. The cutoff frequency, F,may be any convenient value such that
s(f) is essentially zero for higher frequencies. However computations are
simplified if F corresponds to a At interval which is an exact fraction or
multiple of the time scale unit.

The introduction of a directional spectral density, s(f, @), as the target
produces ™ ireal complications if one is interested only in one space location.

All that is necessary is to integrate out & . That is,

11




2m
s(f) = s(£,0) d6 (41)
0
and then proceed as in (39) and following.

Simulating Several Simultaneous Time Series, - The basic difficulty with

simultaneous simulation, is that the individual simulations have to produce the
intercorrelations or interspectral densities between the various series which
have been previously specified. One procedure which maintains these inter-
relationships is as follows.

Suppose M time series are to bz simulated. These will be denoted by
yl(t). yz(t), see, yM(t). The simulations will be developed from M independent
inputs, x,(t), x(t), +++, x(t). The idealized simulation for the m-th time

series will be given by

m oo
ym(t) = z [ kmj(‘r) xj(t «T)dT , for m= 1,2,009,M (42)
3=l Yo oo
(The integral operators will be replaced by digital filter approximations in
the actual computations.)

Let sm.(f) represent the cross spectral density betwsen ym(t) and yr(t).
The kernals kmj(‘t‘), or the correspording system functions ’Sﬂj(f)’ can be
selected to produce the required cross spectral densities. The key relationship
utilized in the determination of the lgnj(f) is (see appendix II)

r=l,2,eee,m

r
S0 = 2 K (6) K TD) gD B2 L2 (43)
j=1

where it is assumed that m2>r. (Note sm(r) = sm(r) ). The over bar in

the previous equations indicates complex conjugation. If (43) is expanded into

12




a system of equations, with independent white noise inputs, it becomes

a0 = iyl
8,(f) = K, (f) K,(f)
5D = 18] %+ [i0|°
szl(f) - K3l(f) Kll(f)
832(1') = K31(1") K21(f)+ K32(f) Kzz(f)
- 2 2 2
s33(f) = Ky (0] * + K, (0] + % 5(0)|

etc.,

This system of equations can be solved sementially

Kll(f) - Vsll(f)
Kzl(f) s 521(f)/¢su(f)
1/2
Kyo(f) = (322(1‘)- [x21<f)|2]
KBl(f) - 831(f)/ Vsll(f)
Kia(D) = [335(0) = Ky () Ky(£)] / Kpp(h)
1/2
. 2 2
ka0 = [a33(0 - [K (D)% - [K,(0)] ]

etc.

13
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The design of the simulation equation is completed now by determining
A
ij(f) as in (30), (34) and (35) to fit lgnj(f) as determined by (46). This
in turn determines the digital filter coefficients, A 39 needed to spproximate

the kernal associated with the system function ij(f) o Then the f'-.al sim-

lation equation reduces to

m N
Yotk 8t) = ZZ&MJ X§ . ken s M=z 1,2,000,M (46)
j=1 nzN

where x j,n for n=1,2,3,4,°* is the j-th generated sequence of independent,
mean zero, unit variance, normal random variables,

If the input xj(t) is not white noise the system of equations represented
by (43) can still be solved sequentially with only slight additional compli-

cations.

Simulating Several Sea Surface Elevations. - Let 1M,{t), M,(t),+eey My(t)

———

represent the sea surface elevations at time t at M space locations. If
ym(t) is replaced with 'lm(t) in the development in the previous section,
then (46) gives the required digital filter. The spectral densities sn(f),
szz(f), 833(f)’ etc., are all set equal to the target spectral density, s(f),
for the sea surface elevations, which is the same for all locations. The cross;
spectral densities have a slightly different formulation depending on whether
the sea surface spectrum is unidirectional (say directed along the x-axis) or
directional. In the first case, suppose the m locations are X}sXos***eXye The

11
cross-spectral density between q(xm,t) and Vl(xr,t) is

YUprown, L. J., and Borgman, L. E., "Tables of the Statistical Distribution
of Ocean Wave Forces and Methods for the Estimation of CD and CM’" Wave Research

Report AEL 9-7, Hydraulic Engineering Laboratory, University of California,

Berkeley, Calif., 1966, Appendix C.
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8,p(f) = s(9) [ cos k(xy - x;) - i sin k(x, - xm)] (47)
In the second case, let s(f, 8) be the directional spectral density for the

sea surface elevations and (xl,yl), (xz,yz), (x3,y3), coe, (xM’-VM) be the M

space locations, Then

2m
s(f) = f s(f,0) 46 (48)
0

21
Sprelf) = J s(f, ®) cos {k(xr-xm) ccsB+k(yr-ym) sinO} dé
0

2m
-1 s(f,6) sin{k(xr- Xp) 038 +k(y .- yy) sinG} dé
0

Digtortions of ﬁ (t) to Produce Skewness. - Steep waves in nature have

skewed surface elevations. That is, the crests tend to be higher above mean

(49)

sea level than the troughs are below. The simulation procedures previously
given produce Gaussian or normally-distributed sea surface elevations which
are not skewed. Obviously high wave conditions violate a number of assumptions
in the statistical theory of waves, most importantly perhaps the assumed linear
superposition. However, until a successful statistical theory of waves of finite
height is developed, the engineer is faced with doing as well as he can with the
existing theory.

The present simulations can be made to appear a little more like the real
sea if skewness is introduced. One way this can be done is as follows. The
Gaussian sea surface simulation, ll’\[(t), is developed as before. Then a normal

to gamma transformation12 which maintains a zero mean and introduces the required

IZCampbell, G. A., "Probability Curves Showing Poisson's ZLxponential

Summation," Bell System Technical Journal, vol. 2, 1923, pp. 95-113.
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skewness, ) »

q = (R2-1/3
Q, = (n3-177)/3
Al n2
G = (-3n - 7n°+16)/810
Q = (97 + 25607 - 1337 /30880 (50)
Q5 = (12?16 - 243 "\11& - 923 ?LZ + 1472) /204120

A A A "
G = (3537 - 43s3R° + 289517 02 + 289717 1) /146966400
6
A A n
Nelt) = 1 +Z Q, (s, /2)
n=1
is made to introduce more peaked crests and flatter troughs. Skewness may be
introduced in other ways. The above is just one convenient and thoroughly
investigated procedure. The whole topic deserves considerable further research.
How much skewness should be introduced? If an extensive piece of actual
wave record is available for the sea surface elevations that are to be simu-

lated, one scheme of calculation wauld be: (a) Compute the skewness for the

wave record

R R 3/2
< 1 3 1 2
s = ﬁf Q (t) dt / E[ n (t) dt] (51)
0 0

(where R is the length of record)., (b) Make the gamma-to-normal transformationl3

vhich praduces an unskewed version of the wave record with the same zero mean

lBRiordan, John, "Inversion Formulas in Normal Variable Mapping," Annals

of Mathematical Statistics, vol. 20, 1949, pp. 417-425.
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i
§

e a3

Y, =z (-ni+D /3
- 3
X, = (2ng - "M, /36
4 2
Xy = (=219 ns +n + 13) /1620
- (3993rzz - 152'12 +1191,) /38880 (52)
6 b 2
Xo = (672271 ]+ 1707 n_ - 20017 - 3095) /816480
X = (1005941?'12 - 179223 nz + 271427 ng + 215827 st) /146966400

6
W = N, +D X, (5"

n=l
This system of equations gives two more term. < than were contained in Riordan's
paper and also corrects a misprint in the X, formula. Both (50) and (52) can
be truncated to fewer terms if the accuracy requirements permit, (c) Compute
the spectral density on the unskewed version and make a normal simulation,
!I‘\L(t). (d) Re-introduce the skewness calculated in (51) by making the normal-
to-gamma transformation given by (50).

The above scheme needs to be evaluated against actual experience. It
represemnts only one possible procedure. Undoubtedly further study will suggest
others. Perhaps the mode of the spectral density, the mms wave amplitude,
and the water depth could be used to get YLc/H from existing graphs.lu This,

in turn, might provide an estimate of the skewness that needs to be introduced.

14
L=an, R. G., "Stream Function Wave Theory; Validity and Application,"

Coastal Engineering Santa Barbara Specialty Conference, ASCE, October, 1965,

p. 282,
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SIMULATION OF VELOCITIES AND ACCELERATIONS

The horizontal components of the water velocity and acceleration at some
fixad elevation above the sea floor can be simulated with filters using either
white noise or the sea surface elevations as basic input. A unidirectional
spectrum and a white noise input requires the same procedures previously
developed except that the spectral densities for the horizontal velocity and

acceleration need to be introduced.

2

sw(f) = (zmn)? QMR o (1) (53)
- 4 cosh?kz

s,,(f) = (2mr) e svm(f) (54)

The cross-spectral density between the horizontal velocity and acceleration is
zero. Henoe the two digital filters can be designed separately and applied to
two independent white noise inputs.

The situation for a directional spectral density is considerably more
complicated. For one thing, there are two horizontal components for both the
velocity and the acceleration. The cross-spectral densities between these
components are not all zero. Thus the procedure for simultaneous simulations
of time series needs to be introduced (see (42) and (43)). The required cross-
dpectral densitiés are lisked by Wave Rbsereh Report 9a12. 0 o

The generation of velocities and accelerations using the sea surface

elevation as input is based on (25) and the cross-spectral densities.of velocity

1SaBorgnan, L. E., "Tables of Ocean Wuve Cross-Spectral Formulas," Wave

Research Report HEL 9-12, Hydraulic Engineering Laboratory, University of

California, Berkeley, Calif., 1967.
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1
and acceleration with n(t). The reqired spectral densities 5a are, for the

unidirectional spectrum

(f)

[(arre) SRKE (o5 kn - 5 sin kn)] s0(0)  (59)

s't(X.t). v(x+h,t) sinh kd

(£)

[(2m)? 3K (g5 10 41 cos kW] 8, () (56)

s'l(x, t), a(x+h,t) sinh kd m

Hence by (25)

lg,(f;z) = (2wf) % (cos kh - 1 sin kh) (57)

Ka(f;z) = (2'l1'f)’2 9‘;—5—2—% (sin kh - i cos kh) (58)

Thus for a unidirectional spectral density, the sysiem functions lg(f;z) and
Ka(f;z) do not depend on the particular sea surface spectral density that is
to be used. The digital filters can be determined by (34) and (35) without

references to Sqn (f) . This yields an estimator equation that may be written
N

Z a Nk At -nAt) (59)
=N

v(k At)

N
Z aanV'((k At - n At) (60)

n=-N

alk Ot)

Somewhat similar procedures were used by Reid in a study of wave forceslsb.

The corresponding procedure for a directional spectral density is analogous.
1
The cross-spectral densities may be obtained from Tech Report HEL 9-12. 58 The
gystem functions intrinsically depend on the directiomal spectral density for

the sea surface.

Both the unidirectional and the directional spectral density cases can be

lsbReid, R. 0., "Correlation of Water Level Variations with Wave Forces on

& Vertical Pile for Nonperiodic Waves, Proc. Sixth Conf. on Coastal Eng., pp. 749-

786, The Engineering Foundation, Univ. of Calif., 1958.
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handled .'airly directly with the procedure for simulation by wave superposition.
The linear wave theory formula for the quantity to be simulated is written down

using as wave amplitude, \/ ’+s(?n) Af, in the unidirectional case, and

Vius(f,, 8,) Af, AB,, in the diractional case. For both cases a random phase
1s inserted. In the directional case, kx in the linear wave theory is
replaced with kx cos8 + ky sin®  and the whole term is multiplied by cos©

for the x component and sin & for the y component. Then the expression

L)

A
is summed over all f, (and Bm in the 2-D situation). Examples of this pro-

cedure are
linear theory:

= cosh kz
vy = a(2mf) e cos (kx - 27ft) (61)

sirmlation for unidirectional spectrum:
N A
A A
\Arx(t) = -Z- \/hs(fn)Afn (ZTrfn) E.:%:_E% cos(kyx - 2ﬁ£‘nt+ &) (62)
]
n=1 n

A
simulation for directional spectrum: vx(t) -

N M A
= 2 Z \/ Ls (fn, 5m)Aan9m (2nf‘n)£°_.“_l,:ﬂ cos émcos (fcnx cos b + fcny sin'ém- 2nf‘nt4- §mn)
n

=1 m= sinh kpd
nz1l msl (63)

The simulation by wave superposition has the one grave disadvantage of being
time consuming. However this is balanced by the fact that simultaneous simu-

lations of several quantities automatically maintain the proper intercorrelation,

SIMULATION OF WAVE FORCES

The usual formula for wave forces on a one-foot section of vertical piling
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2 ]
f%‘ = anigDvlv|+CMig". l‘ul.a (6%)

can be applied to the velocity and acceleration simulaticns developed in the
previcus section to give force simulations. This procedure could be followed
to sirmulate the total force on a structure composed of vertical cylinders.
Simlations could be made for the forces at a series of locations down each
"ile, and the forces could be numerically integrated to give total force.

Modifications to Give Better Agreement with Nature. - The statistical

theory for waves is based on linear wave theory. But linear waves have
infinitesimal amplitudes which do not extend measurably above still water
level, How does one then compute velocities and accelerations for elevations
above this level? To what elevation up the pile does the integration proceed
if it is not carried just to still water level? If the velocities and accel-
erations are simulated fram the sea surface elevations at the pile, the second
question is answered immediately. The integration is carried to the sea sur-
face., The fimst question, however, can only be answered with approximations.
A conservative approximation for velocities and accelerations above mean sea
level is to use the same formulas that hold below sea level. The forces are
computed for z>d and ignored if n(t)<z. An alternative approximation
is to "stretch" the still water level in the formula up to the sea surface.
In this procedure, the force is simulated at a series of elevations between
the sea floor and still water level. The force at elevation 2z is assumed
to act actually at elevation Z[dorl(t)]/d . That is the force displaced upward
or downward deperding on whether q(t) is positive or negative. This pro-
cedure has the advantage that the integration for total force can be carried

to 2z =d in terms of the force simulation and the total force then "stretched”
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to correct for n(t).

It is difficult to evaluate the accuracy of these approximations. They
both obviously fail if the waves get very high. Yet they, at least, provide
one approach to the problem., The ultimate answer is, of course, a statistical
theory for waves of finite heipght. Until that is available, irregular waves
of non-permanent form having a statistical nature can only be treated with a
"patched-up" linear statistical theory.

The force simulation with (64) being applied to (59) and (60) and then
numerically integrated has one grave disadvantage in computer computations.

It is time consuming. An approximate procedure which is faster would be better,
After all, (64) is known to be only an irperfect approximation of the actual
I‘orce.16 So some degree of further approximation is not particularly objec-
tionable,

Approximations to the rorce Formula. - A faster simulation w~uld result

if the total force on a vertical pile could be expressed as a single operator
acting on the sea surface elevations or, alternatively, acting on white noise.
The irertial force, the secord term on the right hand side‘ of (64), can be so
expressed. If a(t;z) is the acceleration at elevation 2z on the pile at

*ime t and ka('r;z) is the kernal for a(t;z) then

o0
a(t;z) = f ko(tsz) M(t-7)d7 (65)

=00

16
Wiegel, R, L., Beebe, K. E., and Moon, James, "Ocea: Wave Forces on

Ciraular Cylindrical Piles." Journal of the Hydraulics Division, ASCE, vol. 83,

no. HY2, Proc. Paper 1199, April, 1957.
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The total inertial force becomes then

[o -]
2
total inertial force = [( Vl(t‘+d)/d] v "D jka(f 32) N(t-7)dT dz

-00

d
[(r((t)+d‘/d]J [CM"’ L k (T ;z)dz] n(t-7)d7
0 (66)

This eliminates the vertical integration. The quantity in the bracket is the
new total kernal that must be approximated with a digital filter. The "stretching"
correction for forces above still water level has been introduced into the
equation.

The drag force, the first term on the right side of (64), does not simplify

this way. If

(> <]

vit;z) = fkv(‘t‘ s2) N(t - T) dT (67)

— 0o

is substituted into the expression for dragz force, one gets for the total drag

force on a vertical pile

d oo oo
[( (t)+d)/d]f ¢ ”;n fkv('r;z) n(t-7)dr l[kv('t;z)rl_(t-‘t)d't a5 r
I L

The absolute value interfers with the shuffling of integrals which simplified (66),
17
Ia an earlier paper, the term v|v] in the drag force formula was found

to be approximated very nicely,at least relative to predicting the force spestral

Borgman, L. E., "Spectral Analysis of Ocean Wave Forces on Piling,"

Journal of Waterways amd Harwvors Division, ASCE, vol. 93, no. WW2, Proc. Paper

5247, May 1967, pp. 129-156. (See p.151, eq.(74)).
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density, by

vlv] = Vrms V@M v (69)

Here, Vpo,o is the standard deviation, or root-mean-square value for the
velocity. In essence [vl has been replaced by vppg ‘/ (8/17) . The effect
of the apraximation is easier to comprehend if the linear theory versions are

introduced. From the usual formulas for velocity

T sinn kd

5 ’_8_ . TTH cosh lrz'l
msy T sinh kd ?IT

Since \/ 872rr is not tco much larger than unity, the approximation replaces

2
viv| = [ﬂ M] cosh {cos 9’ (70)

(71)

b

v|v! with a cosine uscillation whose maximum amplitude (zc 6= 0) is only
slightly greater than v[v! . Both expressions are zero at &= I7/2 .

The analytic basis for (69) becomes clear if one asks for the most accurate
linear sstimate of v|v|, assuming v is normslly distributed with mean zero

and standard deviation T - v That is, what is the vonstant ¢ which

rms °*
minimizes
)
2 2
vef20
Q = j [v|v| -cv]2 -—e_—v-i dv (72)
e Yamr T

By calculus, Q has an extremum if

oo
/20 ~v?[20%
I [sz“z oo [RET 0y gy
-on
or R4 20'2
le
ag

2L

ol




B ctekcut o 0 LA
"

Further analysis shows that this value minimizes Q. The resul! agrees exactly
with (69), hence cv is the best linear estimator for v|v| in the least-
square sense, The procedure can be extended to the cubic and quintic approxi-

mations, There, one seeks the values of the constants which minimize

(o =]

2 21,42
Q3 = [vlv\ -clv-c3v3] ﬂ_dv (75)
) o var O :
or
oo
2 2 2
3 2 e-v/ZO'

Q. = vv|-cv-cv-cv e dv (76)
5 J:J‘_:‘ 1 3 5 ] Vzm O

The solutions which minimize (75) amd (76) are determined by differentiation

with respect to the unknown constants to be

cv +c3v3 K . " CImY v+ '/(279TT) (v3/vms) (77

and

cv + c3v3+ c5v5 = V@/m) [(3Vms/‘*) v + (1/2 Vrms) V3' (1/60 vzms) VSJ (78)

A comparison of the linear, cubic, and quintic approximations with vl v| is
shown in Fig. 1. The approximations have veern 'iade dimensionless by changing

to the variable
X = ("ivrms) (79)
Then the three approximations become in terms of x

(v[v\/vf_ms) = x%‘al :::J(S;TT x (80)
~ V@ [x+0/3 2] (81)
~f@Tm [ Giwx +@/222- /60 ] (82)
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Fig. 1. Polynomial approximation to v|v|.
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An examination of Fig. 1 shows that the linear approximation does a fair job
for |x|<2; that is, if the vslccity is within plus or minus two standard

deviations. Since according to normal theory this happens 95§ of the time,

it is entirely reasonable that the linear approximation would do a good job

on estimating a aurve like the spectral density which depends on the average
behavior of the velocity values.

The cubic approximation is quite accurate out to more than three standard
deviations and the quintic is good to almost four standard deviations. The
quintic approximation is only slightly better than the cubic. The cubic
approximation, however, is quite an improvement over the linear expression,

All of the above approximations were derived under the assumption that
the mean value of v was zero (i.e., there was no steady current present).
The same analysis can be carried through if the mean of v 1is not necessarily
zero, although the mathematics is more complicated. Even powers of v must
be included and the normai density has to include the parameter for the mean.
As an example, the least-square linear estimate for a normal v with mean m

and variance 2 i3 determined by minimizing

GO ey 0-2
Q = f [v|v| - ¢ - clv] o lrn)/z dv (83)

Let 2
by = X2 (84)
Var
X
2
S = j °J_t_12 a (85)
2T
~ oo

The least square solution for (83) is
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oty = (02- 2)["@(%) ‘IJ -2n0 ¢(2)+

+{z[2d(@)-1] -vo ()} v (86)

Total Force on a Single Vertical Pile. - The filter concept in (18) can
be extended to higher orders

oo 05 99
y(t) = f ky(T) x(t- T)dT + f ky(Tp Tp) x(8=T)) x(£-7,) d 7y d T

-0 ~0o

- QO
o0 o0 oy
+
_/ / [ ky(T1s Tpo '1‘3) x(t-T,) x(t- Tz) x(t- 7-‘3) d‘z‘l d‘t‘z d 13

“00 ~00o -0O

e w4 . (87)

A second-order filter would consist of the first two terms, a third-order filter
of the first thres terms, etc. T1f the first-order approximation to the drag
force is used, the difficulty in (68) is avoided completely. The total drag

force becomes (approximately)

d
{18 +ntY/a} [ C ;_g DVooe /_.Q.; v dz

d oo
:{[dm(t)]/d} [ Cp fg'”“ma 'r%' ‘[lg,(’t';z) N(t-T) dT dz
0

-0

] d
:{[d-ul(tﬂ/d} f [CD ;—g DVoms r% / kv(‘l‘ s2)dz ) n(t-T)dT (88)
- 0o 0

Thus the quantity in the bracket is the kernal for the estimation of total

force. The system function for the total drag force will be the Fourier
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transform of the bracketed quantity or

= X Dy 8 K _(f32) d (89)
Ktotal d1(°£)g % 2g TIms }/—ﬂ—/ vifie) ds

Similarly from (66)

N
(=}
m:ﬂ
~~
e
N
~
[o R
nN

K (£) = CM""" D, (90)
total inertial g & .
and
K (f) = K (f) + K () (91)
total force total drag total inertial
The system functions within (89) and (90) are given by (57) and (58). The
integrations in (89) amd (90) are easy to make and the result is
K (¢) = ¢ X pv__ [8B (2_"_1‘) (cos kh - i sin kh) +
total force D 2¢ msy m k
ﬁDZ ﬂfz
+ Oy -:»- &~ -(Lz—k (sin kh = 1 cos kh) (92)

This system function can be approximated with a Faurier series to obtain

A
(f) and with it the digital filter which acts on the sea surface ‘o

Kt.ot.al force
simulate the total force on a single vertical pile.

The above development was based on a unidirectional wave spectrum and a
linear approximation to drag force. The cubic approximation would lead to a
third-order filter. The analysis would be parallel to the above but somewhat
more complicated.

The complications can be avoided by a slightly different approach which
involves, hovever, many more Fourier fits to determine digital filters. Suppose

the digital filters for veloacity and acceleration are computed at a series of
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points up the pile between the sea floor and still water level.

Then the force at the k-th position is (using the cubic approximation),

N
fmat) = > a %) q(mat - nat)

ns=N
N N N (2)
Z H
+> 'l % i e (@8- 1AL (nAL- 1A t) g (nBt -n7AL)
n’z-N n"z-N n"z-N (93)
with
(k) ,— (k) a2 ()
D
a'i‘n - D Zg (vms) &n +CM ra " a'a.n (%)
(k) a(k) a(k)
() - v p/Z 30 e yn -
f;n’ ,n”,n'” D Zg 9"- vms
(k) (k) : : o Ao :
and an ard a are the digital filter coefficients at the elevation for
an

the k-th position on the pile. The total force may be computed by numerical

integration of (93) to provide a cubic digital filter for total force.

N
Ftotal(mAt) = z af,:) Yl(mAt - nAt)+
n=-N
& & @
+5— }_ 7 N lrl,,,'z(m At-n'At) N(mbt- n'At) fl(mAt- n"'at)
n’z-N n’z-N n"=N = (96)
with
(T) (k)
8n = % a, Bz (97)
(T) (k) (k) (k)
af“;n’,n”,n"’ s Zk arnl afn” afnm Azk (98)
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where A z, is the appropriate vertical increment for the k-th position on
the pile,
The total force can be "stretched" to correct for sea surface elevation

variations by multiplying Ftotal(mAt) by ["L(mAt) + d] /d .

Total Force on a QGroup of Piles. - One procedure for simulating the total

force on a group of vertical piles would be as follows. The sea surface
elevations are first simulated for some central position within the group of
piles. This is used as a common input for the digital filter simulation of
the force on each of the piles. That is, each pile would have a different h
value in (57), (58), and (92), which wauld be the x-direction spacing between
the central position and the pile. If desired, the sea surface elevation at
each pile could also be simulated from the sea surface elevations at the central
position. All these together could then be used to detirmine the time series
for total force. Of course, if the total force on each pile is not going to
be corrected for sea surface elevations a® that pile, the sea surface sim-
lations can be dispensed with. In this case, the force digital filter coeffi-
cients for each pile can be added to give a single digital filter which acts
on the sea surface elevations at the central position to provide as output the

simulation for total force on the group of piles,
AN APPLICATION

Wave forces were measured near Davenpart, California in 1953.16 The values
of CD am CM were determined ‘'or a nurber of waves by the following procedure.
The sea surface elevations were scanned and "well.defined" waves were selected.
The wave force was read {rom the recard at the crest and at the still water

level crossing of each wave profile, The height and period for each wave was
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used, with linear wave theory, to campute the water velocity and acceleration
in the vicinity of the force sensing instrument at the crest and zero crossing
phases of the wave, These theoretical velocities and accelerations were used
with the measured forces to determine G and G“ The procedure is consid-
erably simplified by the theoretical relation that the inertial force is zero
beneath the crest and the drag force is zero beneath the zero-crossing.
The values of CD amd CM so computed showed a very large scatter. There

are a number of possible reasons why this might happen. The forces might be

inherently random so that C. and Cy actually do vary. Vibrations or other

D
recording difficulties may have introduced inaccuracies, Perhaps the irregu.
larities in the wave profiles were sufficient to invalidate the theoretical
computations. And there are other possibilities,

As a means of estimating the effect of profile irregulsrity on the CD
and CM computations, a time history of sea surface elevation and water velocity
and acceleration was simulated by the method of (7) and (62). The spectral
density for the recorded waves on roll 10 of the Davenport data was used in the
similation. The agreement of the spectral denmsity of the simulated sea surface
and the Davenpart spectral deasity is shown in Fig. 2. The velocities and accel-
erations were sirmlated at the same elevation above the sea floor as was used in
the roll 10 measurements. The force at the instrument level was computed from
the simulated velocities and accelerations using (64) and a Cp value of 1.0
and CH of 2,0. Hence the simulations provided a sea surface time history and
the force record which would result if the usual force formula, (64), were to
hold exactly with the specified values of CD and Cy.

Now the same analysis procedure used for the Davenport data was applied

to this sea surface and force record. Well defined waves were selected from
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Fig. 2. Simulated and actual spectral densities for Davenport data, roll 10,
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the sea surface elevations. The forces were read from the simulation beneath
each wave crest and wave zero-crossing. Linear theory was used to compute the
velocity beneath the crest and the acceleration beneath the profile zero-crossing.
These values were combined to estimate CD and CH. If the method were accurate,
CD = 1.0 and CH = 2.0 would be the result.

The scatter diagram for the camputed C. and CH values is shown in Fig.3.

D
There is considerable scatter. Fig. 4 provides a plot of Cp versus Reynolds
nurber and Fig. 5 gives a ranked plot of CM on normal probability paper. The
figures are strikingly similar to the corresponding results for the Davenport
data and suggests that the wave profile irregnlarities contributed considerably

to the Cp and Cy scatter in the Davenport results.
CONCLUSIONS

1. Techniques for simulating ocean waves are most applicable when the
response of the structure is complicated and perhaps involves other random
environmental factors that may be introduced by concurrent simulations.

2. The accuracy of the wave simulation is greatest for low amplitude
waves and decreases for large steep waves. The degree of loss in accuracy
for the higher and steeper waves dsserves further research.

3. Simulation techniquas have the disadvarcage of being time consuming
and usually requiring the use of computers. Analytic solutions are to be
preferred if feasible. Sometimes part of a problem can be solved analytically
and then the intractable parts processed by simulation. A detailed search for
shortcuts and approximations before proceeding with the actual simulation will
often result in sizeable savings of computer time.

4. The engineer will usually be forced to simulate with one-dimensional

spectrel densities because there are so few reliably measured two-dimensional
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spectral densities. The formulas for 2.D spectra were included in the hope
that satisfactory directional data will soon be available.

5. The linearization of the drag force, or its approximation by poly-
nomials, is particularly useful in many problems. However, in some applications,

it is just as easy to work with the v|v| term directly.
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APPENDIX I. - FOURIER TRANSFORM OF A WEIGHTED DIRAC COMB

mi."_f N
/e'z v Z a §(T - nat) dv

= nz.N

N
Z a e-12771‘nA1:
n
nz-N

A
K(£f)

N
-inmf(2At
Z [%(an+a_n)+%(an-a_n)] einm(zAat)

n=-N

N
Z [An"' Bn] o-in rf/F (99)

n=-N
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where

s o}
"

F =

% (a,+ a_)

% (ay - a_)

1/

24t

This definition results in the symmetries

Since

cos 6

sin 6

-inmwf/F _ inwf/F
AO + Z An (e + e )
nsl
N

<
+4. Bn
n=l

(e-inﬂf/F_ einﬂf/F)

N
A+ 2 Z A (ein TTf/F+ e-in‘l‘rf'/l"')/2
nsl

N
inwf/F <inmf[F
-2 Z B (e =6 ) /21
n=1l

(ej'e + e'j'e )/2

(28 _ 10 y/24

The previous equation reduces to

N N
l?(f) = M+2 Z A, cos(nmrf/F) - 2i z B sin(nw£/F)
n=1

n=1
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APPENDIX II. - INPUT-OUTPUT RELATIONS FOR MULTIPLE SIMULATIONS

Using the notation of eq. (42) and follawing

n oo

ym(t) s Z [ kmj(y) Xj(t -y) dy (109)
31 “-~oo

Let m2r. Then

CuelT) = E[y(t) yp(t+7)]
n oo r oo
= E[ Z kg (¥)xy(t = y)dy 2 [ kpyr (2)x40 (2 +1:-z)dz]
J=l —o° J'=sl oo
m r 0% ~ oo
! = Z Z f f kn 30k 51 (2) E[xj(t- y)xj.(tﬁ-‘ -Z)J dy ds
J=1 J'=1 “oeV-0e
r . 0o
o Z f J kmj(y)krj(z) ijxj (T -2z +y) dy dz (110)

2l Zoe-00

One summation is eliminated by the independence of the inputs. The summand is

zero unless Jj = j' . By definition

o0
Sxgxy() = [ ;'iz”f"cxjxj (7) av (111)
and
©0
Cege,(T) 2 j:o: RSB o x () Af (112)

If (112) is substituted into (110) and it is assumed the functions involved

permit interchange of integration order, then
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o0

Cope(T) = z j f mj(y)krj(z) fe i2me(T - z+y)stxJ(f) df dy dz
- 0o

j=1 00 - 00

S = > i2rf ooiZTTf Pl 5 & 4
Z j [f kmj(y) e ydy fe' zkrj(z)dz stxJ(f)] e daf

J2l “ oo oo - oo

127

f Rl Kg(6) oy ()] o at (113)

(The over bar indicates complex conjugation.)

Again, by definition of C_ .(7), analogously to (112)
m s
Cur(T) = f onp(f) e 22T ET gp (114)

- 0o

If (114) is compared with (113), it can be seen that

(0) = Z Kng(£) KorkD) 25, ©) (115)
J=1

If the inputs are white noise, the input spectral densities are unity and

(D) Z ny(0) K6 (126)

Since

spp(f) = Spp(D) (117)

(116) determines amr(f) forall m and r between 1 and M,
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APPENDIX III., - NOTATION

The following symbols are used in this paper:

Al

1}

horizontal component of acceleration;

weighting coefficient in a digital filter (see eq.(17));
increment in S(f) (see eq.(7) f£f.);

a constant in the Bretschneider-Pierson spectral density formula
(see eq.(10));

coefficients in Fourier transform of a digital filter (see eq.(30);
a constant in the Bretschneider-Pierson spectral density formula
(see eq.(10));

coefficients in Fourier transform of a digital filter;
coefficient in optimal linear appraximation of drag force

(see eq.(72));

coefficients in optimal polynomial fitting to drag force;

drag coefficient;

inertial coefficient;

water depth;

pile diametery

frequency in cycles per unit time

midpoint of the n-th increment of frequency (see eq.(2));

cutoff frequency - the highest frequency important in the response
or a frequency such that s(f) =0 for f >F;

gravity;

space lag in x direction (see eq.(55));

imaginary part of =z
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(X}

wave number;

kernal in a linear operator (see eq.(18));

wave number in radians per unit length corresponding to freguency
£ (see eq. (4));

Fourier transform of k(7 ), K(f) is called the system function;
mean velocity in eq.(83);

number of increments in simulation by superposition;

quantity to be minimized in least-square fitting (see eq.(72));
coefficients in the normal-to-gamma transformation (see eq.(50);
real part of 23

skewness;

spectral density;

spectral density of x(t);

cross-gspectral density of x(t) and y(t);

cross-spectral density between y,(t) and y.(t) in the
development following eq.(42);

Cumnulative spectrum (see eq.(6));

time;

horizontal component of velocity;

root-nmean-square velocity, or standard deviation of the velocity;
specific weigh. of water;

one of the horizontal coordinates;

V/Vemg (see eq.(79) f£f.);

variate in standard normal formulas (eqs.(84) and (85));

general input for linear operators;

n-th element in input sequence for a digital filter (see eq.(17));
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3 (t)
Afy
At
A6,
N(t)
A
Ns(t)
V"\((t)

coefficients in the gamma-to-narmal transformation (eq.(52));
one of the horizontal coordinates;

k-th elerent in the output sequence of a digital filter

(see eq.(17));

coordinate measured vertically upward from sea floor;

Dirac delta function;

n-th increment of frequency (see eq.(1));

time increment in application of a digital filter;

m-th increment of O ;

sea surface elevation above still water level;

skewed version of ﬁ(t);

simulated sea surface elevation above still water level at time t;
direction variable in a directional spectrum;

wave phase angle in eqs.(70) and (71);

midpoint of the m-th increment of 8 ;

standard deviation of velocity = Vs

wave force;

standard normal probability density (eq.(84));

random phase; and

distribution function for a standard normal variate (eq.(85)).




