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PREFACE

The mathematical research presented in this Memorandum deals

with the structural properties of a certain basic type of multiperson

game. Though closely related in subject matter, this Memorandum

may be read independently of the two preceding ones in the series

(Refs. L'5 and [6}), which treated the same class of games from the

standpoint of a particular solution concept. The expected applications

of this work lie in the direcclon of organization theory.

A portion of the present research was carried out during the

author's consultantship for the Western Management Science Institute

at the UCLA Graduate School of Business Administration, and some

of the results were presented at a conferince entitled "Modern

Methodology: New Methods of Thought and Procedure," held at the

California Institute of Technology in May 1967.
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ABSTRACT£

This is an investigation of the structural properties of those

multi-person games, called "simple", in which every co4ition

either can win outright or is completely defeated. The central idea

is the concept of a "committee", which may be characterized roughly

as a set of players whose internal politics are independent of the rest

of the game. The possible relationships between different committees

in the same game are explored: co-existing committees may be

disjoint and Independent, or one committee may contain another;

but only under special circumstances can two committees overla•

without inclusion.

The principal result is to establish that every simple game can

be decomposed into a hierarchy of "prime" games (i. e. , committee-

free games), in which the player-positions are filled either by

individual players or by other prime games or sums or products

thereof, and that this decomposition is essentially unique.

. .
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COMPOUND SIMPLE GAMES, 11: ON COMMITTEES

INTRODUCTION

In this paper we offer the reader an opportunity to inspect, at

close hand, the substance and methodology of a special corner of

descriptive game theory. The "simple games" that populate this

area are finite, combinatorial structures that are not only amusing

to mathematiciani but can serve as abstract representations of

voting systems or other group-decision procedures. As such, they

have found applications in political science and organization theory,

as well as in certain branches of pure mathematics.

The substantive theme of the paper will be the analysis of the

structural role played by "committees. " The methodological theme

will be the intensive use of the language and logic of Boolean algebra

and elementary set theory----almost to the exclusion of any other-

mathematical apparatus. In this respect, the theory of simple games

provides a striking example of the trend away from the techniques of

classical analysis, as mathematical theories and mathematical model

building invade ever-wider areas of the nonphysical sciencea.

This paper is not intended as a su2 .ey of the theory of simple

games, except incidentally. Rather, it works toward a specific goal,

i1 a "unique factorization" theorem that describes how a simple game

may be decomposed into a hierarchical arrangement of committees,

S.. -~ "--..... . .....- I.-[....-.-.. -- .�....... . . .... ..... I; ......- .l J '
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subcommittees, and individual agents. Since this is a new theorem,

we give It a fully rigorous treatment, and almost half of the following

text in taken up with the someth-es complicated (but entirely elemen-

tary.1) proofs that are required to "keep us honest. " These proofs

may be skipped on first reading without loss of continuity.

The study of simple games wan initiated by von Neumann and

Mor.enstern in their epochal book on ganme theory, first published

in 1944. Since then many authors have made many contributions

not only to the descriptive theory but to various solution theories
0o

and to several domains of application.

*
Roference C8 Sat the end of this Memorandum.

The author's expository article [4) includes a bibliography
complete up to 1901. For more recent work, see e.g., rii, [2),
[31, [7].
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7, SIMPLE GAMES

The theory of simple games is prim;stOY oriented toward

problems of orgsnlzat.on anti control, rather than payoff and
strategy, Its Point of departure in the primitiv* notion of "winning

coalition. ") It makes ao attempt to treat gi)tuationa where the costs 0•

of winning are signi.¢icaut or partWa victories are possible, or where

the fruits of victory are not freely divisible within a winning coalition.

A simple game may be thought of as an idealized power structure, a

voting system, a legislature, or indeed any constituted procedure

for arriving at group decisions.

It one wishes to relate simple games to the gsme--theory models

more commonly found in economics or operations research, with

their explicit strategies and their numerical payoff functions, one

may ima&l.e theat there is a lump sum of money to be won, and that

the strategic opportunities open to the players are such that it takes

coordinated action by the members of some winning coalIitio in order

to capture and divide the prize. To relate simple games to the

numerical characteristic-function form introduced by von Neumann

and Morgenstern (see r 81 ), it suffices to assume that the charac-

teristic function takes on only two values: "I" f~or the winning

coalitions and "0" for the others.

The notation r(N, W) will be used to denote a simple game.

Here N is a finite set, the players; and W in a collection of subsets

[ I I I I I I I I I I I I I I I
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(Is) N 4T W;

(1b) 0 W W ." ti

ii --.

""C) i*SCTSN and So W, thenTt W.

The first two merely suppress curtain extreme cases, for technical

rnbons. The third condition, however, expresses a fundamental

monotonieity property, inherent in the notion of "winning": any

coalition containing a winning coalition must also win. A sort of

converse would also be a natural condition:

(Id) IfISnT aO ands S W, thenT d W,

I. e., any coalition completely disjoint from a winning coalition must

lose. But we do not impose this condition a priori. Games that

satisfy (Id) are called proper; all others, irproper. Though rarely

-found in application, improper games play an important role in the

structural theory, somewhat analogous to that of imaginary numbers

in algebra.

Our notation for simple games Is deceptively concise. The

double abstraction "W" (a set of sets) embodies in a single symbol a

possibly intricate web of voting rules. We have made exhaustive

counts of the different simple-game structures that are possible on

small sets of players. Excluding games with dummies (see Section 3

below) and games that are merely permutations of games already



counted, we found the following:

N o . of players ...... 1 2 3 4 5 ,

No. of games ...... 1 2 5 20 179 7

In the face of this explosive growth, we can hardly expect to

explore the possibilities in an effective way without the aid of patterns

and symmetries and special classes of games having "niec" properties,

It would be helpful to know how to detect and exploit substructure;..

within a game (i. e , "committees') that allow it to be decomposed

into smaller games. That this happeh~s often enough to be worthwhile

is shown by the following data:

No. of players 1 2 3 4 5 6

No. of decomposnbles --- 0 2 4 14 78 1210

No. of "primes" ......... 1 0 1 6 101

In this paper we shall achieve a complete analysis of the structural I :!

possibilities for decomposition. However, the "detection"problem

remains in an unsatisfactory state; an efficient algorithm is sorely

needed for finding committees in larger games. 1

tv
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2-. COMMITTEES .

In analyzing simple games for decomposability, the fundamental

I. idea is to identify certain subsets of individuals, called "committees",

i !that can be treated en bloc. Then we can separate the internal politics

of the committee from the external politics of the rest of the game.

4i In determining whether a given large coalition can win, in a game

where there are committees, we do not have to ask which particular

committeemen are pa-'y to the coaLition, but only whether they have

the controlling voices in their res,'.:ctive committees. Thus, an

ancillary notion of "winning" comes into play, defined inside each

committee. In fact, a committee is a simple game !n its own right,

embedded in the larger game.

Formalizing these ideas, we define a committee of the simple

game P'(N, W) to be another simple game F(C, Wc), with 0 c C C- N,

which in related to the first as follows: for every coalition S C_ N 7

such that:

(2a) SUC t W and S-C W,

J xe have:

(2b) S c W if and only if SnC j W
C'

Condition (2a) expresses that the participation of members of the

committee C is crucial to the success of S. Conditioit (2b) expresses

that the effect of t'ie.r participation is er.mirely determined by the rules

of the ccm~mittei- game r(C, W C)
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By extension, the word "committee" will also be used for the

set C, whenever a game P(C, Wc) exists that is a committee in the

sense just defined. (No confusion should result from this; see the

corollary at the end of the next section.)

A game always has certain extreme committees, namely the

"committee of the whole" and the committees consisting of single

individuals. By a proper committee we shall mean one of inter-

mediate size. Obviously, only proper committees can lead to

significant decomposition of the game structure.

I,



3. MINIMAL, SWtS AND DUMMIES

A If W is any collection of subsets of N, we shall denote by Wm

the collection of minimal elements of W-i. e., those sets in W
I.-3I

that have no proper subsets in W. If W is known to be monotonic

(condition (Ic)), then W can easily be reconstructed from a knowledge

of Wm. Accordingly, we shall often use just the minimal winning

coalitions to identify a particular game.

The abbreviation WIm(C) will be much used in the sequel,

standing for the collection of all coalitions in Wm that "meet" C,

mmi. e-, that have a nonempty intersection with C. W m C) should not

be confused with W , the set of minimal elements of Wc.

A player belonging to no minimal winning coalition is called

a dummy, since he never makes any difference to the status of a

coalition. Any set of dummy players is vacuously a committee by

our definition, since the hypothesis (2a) is never met. Such an

all-dummy committee Is called inessential; all others essential.

The internal rules of an inessential committee are quite arbit rary,

being irrelevant to the game as a whole.

A player who is a dummy in the committee game is obviously
a dummy in the full game too. Conversely, a dummy in the full

game is a dummy in any essential comr.,ittee to which he may happen

to belong. If a dummy is dropped from, or added to, any committee,

the resulting set remains a committee.



Our first theorem gives the relation between the minimal winning

coalitions of a committee and the minimal winning coalitions of the

full game.

THEOREM I. Let r(C, Wc) be a committee

of NN, W). Then for every S c Wm(C) there exists

E q W such that SnC - B. Conversely, for every
M Wm

Be W there exists S e such that SnC - B,

unless the committee Is inessential.

Proof. (a) Given S e Wrn(C), we have SUC e W by (ic) and

S-C i W by the mninimality of S. Hence (2a) applies, and SrC c WC
rn.

by (2b). Hence there exists BE SnC with Be W. Let T = (S-CWM L

(see the diagram); then (2a) holds for T, and T e W by (2b). But

TC_ S; hence T z S by the minim:lity v1 S. Hence SnC - TnC B,

as required.

(b) Unless C is inessential there is a nondummy in C, and

hence a set QlW (C). We have QUCi W by (lc) and Q-CdW by

the iniimality of Q. Given B e WC, define R - (Q-C)LB (see

diagram). Then RUC = QUC and R-C 2 Q-C; hence (2a) holds for R,

and R tW by (2b). Hence there exists SCR with S W m. By (0c)

we see that SUC c W and also S-C i W; hence SnC i WC by (2a), (2b).

But SrC GRrAC = B; hence SC- B by the minimality of B. This

completes the proof.
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Theorem 1 reveals that except for the inessentWl case thle

elements of WC are precisely the intersections of the elements of

W n(C) with C. Thus the following corollary holds, justifying our

double use of the term "comrnittee":

COROLLARY. Each committee set C,

unless It consists entirely of dummies,

correspond# to a unique committee I~me

r(C, WC)

I

I

V

' •--• -'-,m mN F

I I I i I I I I I I I I I I
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4. THE SUBSTITUTION PROPERTY

The connection between Wmn(C) and Wm proves to be even

closer than Theorem 1 would indicate. Indeedi, the next theorem

asserts that w. may take M element of WCand adjoin to it any

met of the form S-C with S a Wmn(C), and the result wll be an

]'1 + - ltment of Vim.

THEOREM 2. Let r (c, wc) be a committee

of r(N,W). Then
S'I

(4..) WimC) - BU(S-C) I B Wm and S. W'(C)

Proof. Theorem I tells us at once that " C" holds in (4a); it

remains to show that "" holds in order to establish equality. In

othar words, we must consider sat arbitrary Be W W and an arbitraryCi
S q Wm(C) and show that BU(S-C)t Wm(C). We shall do this in two

steps.

(a) Write T for BU(S-C). (See the diagram.) We have TUC t W

by (Ic); also T-C 4 W by the minimality of S. Hence (2a) holds for

T, and we have TW if and only if TnCeW. ButTnC a BeW;
C'

hence Tt W.

(b) To show that T is minimal, let SC' T with S' WM. Then

ýA Inwe must have S', W (C), since S'-C_ CT-C i W. Write B' for SnC
m

(see the diagram); by Theorem 1 we have B'I W . We can therefore
C.

-.
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T shaded T' shaded.

(a) (b)

Diagrams for Theorem 2
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repeat the argument of (e), with primed letters, and obtain T o W,

*wore TV B'U(S'-C). But T'I S; hence T' = S by the minimatity

of S. Thm we have

S'-C *Tt-C -S-C T-C.

Al~to, we h&a, SI'MC t WC by Theorem I. But S'VC R B; hence

SSAC - B a TnC,

by the minimality of B. The two displayed equations established

that S' u T, and hence that T 4 W m. Finally, since T 2 B 0, we

have T4 WeU(C). This completes the proof.

Theorem 2 enables us to "substitute" the portion of any S £ Wm

that lies within a committee for the portion of any other S' e W

that lies within that committee (provided that both portions are

nonempty), with the assurance that the resulting coalition is also

minimal wtnning. According to the next theorem, this doesn't work

for any set that is not a committee. In other words, the substitution

property is a sufficient as well as a necessary condition for

committeehood.

THEOREM 3. Let r(N,W) be a simple

game, and let C SN. Then C is a committee

if and only if, for every S, S' i W (C),

~m(4b) (SflC)U(S,-C) W



Proof. If C is a committee, the result Is immediate from

Theorem 2. Conversely, suppose that (4b) holds for all S9, S' W (C).

Possibly Wm(C) is empty; in that caue the players in C are all dummies,

and C is a committee (inseoential). Otherwise, let Q be a fixed element

of Wm(C) aind d*fine the collectioti to consist of all sets B Sj C

such that BU(Q-C) t W. Clearly r(C, Wc) is a simple game, In the

sense of (la), (1b), (I1); we must verify that it is a committee of

r (N, W).

RIeferring to the definition of committee, we see that we must

show that "T ' W" is equivalent to "TnC , WC", for every T with

TUC i Wand T-C dW. Thus, suppose T W. Then we can find

S IW with S _T. S must meet C, mince S-C T-CiW. Applying

(4b), we substitute S for Q in C and obtain (S nC)L{Q-C) , W . Hence

(TMC) U(.•-C) W. Hence, by the definition of W we have TO C W W.4

For the other direction, suppose T n C i WC. Then (TnC)U(Q-C) W,

and we can find S. Wm with SE_(TOC)U(Q-C). Since Q is minimal,

mS must meet C. Similarly, since TUCe W, we can find S' tW such

that S' CTIJC; and since S'-C E-T-C i W, S' must meet C. Applying

the substitution (4a), we obtain (SfC)U(S'-C) m. But

(SnC)U(S,-C) 2 (C (TnC)U(Q-C)J clC) U CTU-C)-C)

- (TnC)U(T-C)

*T.

Hence T i W. This completes the proof.

I I I I I I I l •
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Note that Theorem 3 makes no mention of the committee game

fC, WC). This eliminatee much of the clumsiness involved in
!C

testing committeehood directly from the defuiition.

, H

II
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S. SUBCOMMITTEE$

THEOREM 4. Let C be an essential committee

of r'(N, W) with winning sets p and let DE CEN.

Then D is a committee of F(N,w) if and only if D

is a committee of N(C, WC).

Proof. (a) Suppose D is a committee of F(N, W). Take any

B, B1 v 'ký with BnD 0 0, B'nD 0 0. By Theorem I there are

S, S', aWM with SnC a B, S'nfC - BH and we have S, St e Wm(D).

Let T - (SfD)U(SI-D). By Theorem 3 we have T i Wm. By Theorem I

we have TAC 4 v, ". But TnC - (BWD)U(B-D). (See the diagram.)
C

By Theorem 3, D is a committee of P(C, M.•).

(b) Conversely, suppose D is a committee of (C, 'C).

Take any S, S' iV'm(D) and define B - SNC, B' - S'fC. By Theolem I,
.m B , .

B t M' C and B C " By Theorem 3, (BnD)U(B'-D) d W . By

Theorem 1, there is T t Wm(C) with TAC, (B-lD)(Bt-D). By

Theorem 3, we have (TnC)U(S'-C) i WM . But

(Tlc)U( S'-C) a (Bn D)U( B'-D)U(S '-C)

C (snc)ln D)U [ (S'nC)-D]U (S'--C)

2 (SOD)U(S'-D)

(same diagram illustrates). A final application of Theorem 3 shows

that D is a committee of r(N, M').

tI
D%
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6. CONTRACTIONS I
By the "contraction" of a game on one of its committees; we

Sshall mean the game obtained by coalescing the committee into a

single player. More specifically: (a) the members of the committee

are dropped from the game; (b) a single new player is introduced;

60.) coalitions containing the new player win if and only if, with

that player replaced by the whole committee, they won in the

original game; and (d) coalitions not containing the new player win

if and only if they won in the original game.

The next two theorems describe a contraction's effect on I

committees that either are disjoint from or include the committee !

on which the contraction takes place. (See the figure.) We omit

the simple proofs,

THEOREM 5. Let C be a committee of

r (N, W) and let DQ N-C. Then D is a committee

of r(N, W) if and only if D is a cominittee of the

contraction of r(N, W) on C.

THEOREM 6. Let C be a committee of

r(N, W) and let CDS N. Let D(C) denote I;
the set (D--COU(i c, where i is the new player

C C

introduced by contracting on C. Then D is a

committee of r(N, VI) if and only if D(C) is a

cormmittee of the contraction of r(N, W) on C.

1".
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N N(C)

D c

(D

Dc)

N cN (

Diagrams for Theorems 5 and 6



If D) C C, then of coreDwould disappear in any contraction I

on C, and we can infer nothing about D's committeehood. There i

remains the case where D and C "overlap", 1. e., where the sets I .

C n D, C-D, and D-C are all three norempty. This is a more J
complex situation, since contraction on C now violates the integrity

of D-some of the players in D are eliminated, others remain. It

is not clear intuitively how the committeehood of D is related, if

at all, to the committeehood (in the contracted game) of either D-C

or (D-C)U ( i the two most likely candidates for comparison.C'

It might be hored that the problem does not really arise, i. e., I
that the committees of a simple game can never overlap (at least

if we ignore dummy players). Then the committees, ordered by

inclusion, would form a tree-like hierarchy, and we could determine

the "prime" game played by any committee by contracting on all of

its proper subcommittees. With no overlapping present, Theorems 5

and 6 would assure that the result would be independent of the order

in which the contractions were carried out.

Unfortunately, overlapping does occur, without the aid of

dummies, and we have a real problem. A unique decomposition

based solely on the contraction principle is not attainable, since we

would sometimes be forced to decide whether to contract on C and

For example, in the game N(N, (N) every subset of N
(except 0) is a committee.

I.
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i I ~~concepts must be lntrod,.ced before we can cope with this difficulty. "

41

~11

I

- 1I I

I

II

"1'
'1'

Ii



-23-

7, COMPOUND SIMPLE GAMES

A new notational devicr will be useful at this point. Let

Hi, ... , H1,1 be simple games having disjoint sets of players, and

let K be another simple game having exactly m players, indexed by

the numbers from I to m. Then we shall let the symbol

K(HIP ... I Hm ]
represent the compound game, defined by taking as players all the

players of the component games Hi, and by taking as winning

coalitions all sets that include winning contingents from enough of

the components to spell out, by their indices, a winning coalition

of the quotient game K.

Repeating this definition more formally, let M 1 1 ,, . , m);

let tN I i. M) be a collection of disjoint sets with union N; let
I4

H I r(N , Wi), all it M; and let K a r(M, U). Then K [H, ... ,Hm

is a compound representation of the game r(N, W), where W is

defined as the collection of all SS N such that [i ISlN 4 WO e U.

If the quotient is a one-person game, or if all of the components

are one-person games, then "compounding" Is a trivial operation.

The compound is the same as the lone component in the first came,

and the same as the quotient in the second case. We say that a

game is decomposable only if it possesses a nontrivial compound

representation. We say that a game is prim if and only if it is not

decomposable.

II,
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Whast is the connection between compounds and committees ?

Clearly, each component in a compound representation is a

committee of the compound game. Conversely, any committee of

a simple game can be made a component of sor"e compound

representation of the game, In fact, we can use the contraction

on the committee for a quotient, and let all the other components

be one-person games. Of course, if we start with a trivial

committee (one--player or all-player), then we get the trivial

compound representations just described. Thus, the decomposable

games are exactly those that possess proMr committees.

In the case of a one-person component, we shall often write

the name of the player rather than the name of the game in the

compound-representation symbol. This will give us, in particular,

a way of displaying the names of the players in any game, thus:

SG[ p1, ... P PM]"

Subcommittees can be displayed by using compound represen-

tations as components. For example, the symbol

KCHIEG 1, G 2, p, q], H2, H3 , r, a)

reveals that G and G2 are committees of H a ,
1 2 1 1 CG2$ P1q)P

which is in turn a committee of the full game.

For a further example, let us consider the following five-person

compound simple game:



-2 + I+

M tp, MIt•q, ra , t •,

Here "M " denotes the simple majority game on three players. "1

The reader will verify that there are exactly seven minimal

Swinning coa ittons, nam el : W

pqr, pqs, pro, pt, qrt, qst, rst.

This is of course a decomposable game, since qrs is a proper
committee. But raight there be other proper committees, not,

revealed by the given compound representation? The game M

is prime, but how can we be sure that there Lre nit other compound

representations, in this and zimilor situatlons, that distribute the

players into cornponenta in a comrpletely different way?

This is the question Utat motivated the present study. Compound

simple games were introduced many years ago, and their solutions

have been extensively studied. But the question of the uniqueness

of a compound representation with prime quotients has been elusive,

and can apparently be resolved only by going to the more fundamental

notion of "committee" that we have introduced in this paper.

*References will be found in the papers cited at the end of this j
Memorandum.

AI
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8. SUMS AND PRODUCTS

As our notation indicates, a quotient is essentially a function.

Since both the arguments -nd the • fluei are games, however, it

can also be regarded as an operation, acting on games in much

the same way as Boolean operations act on sets, or as logical

operations act on truth values. Two extreme cases, among the

possible quotients, play a special part in the theory, and it will

be convenient to represent them as operations rather than functions.

The first, denoted by I , corresponds to quotients having the i
maximum possible number of winning coalitions; the second,

denoted by corresponds to quotients having the least possible

number of winning coalitions.

Specifically, we define the sum of m games:

H .. 9 H, m> 2

to be the compound game KH, Hm] where K "

r(M, (S GM IS 401. That is, a coalition wins in a sum of games

whenever it contains a winning contingent from at least one of them. 1

In similar fashion, we define the product of m games:

I,

H1 O... GHm, m >2,

to be the compound game L[H1 , ... , Hm 3where L *r(M, m .

That is, a coalition wins in a product of games only if it contains

winning contingents from all of them.

1 
6

- . . - -- . r
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These operations are obviously associative and commutative,

provided that we properly identify the players after any re-ordering.

A distributive law relating them cannot even be stated, however,

so long as we require the player sets of different components In a

compound to be disjoint. But there is a duality that can be developed

between 0 and ®, analogous to the Boole*n duality between U and

n and the logical duality between Itoro and "and".

It is worth noting that one-person games are not trivial

building blocks in the formation of uums and products. In fact,

there is an interesting class of games that is generated by repeated j
applications of the operations 1 and @, in which all the components

are one-person games.

IiA sum is distinguished by the fact that its minimal winning

coalitions are precisely the minimal winning coalitions of its

components. No minimal winning coalition meets more than one

component. Conversely, any game whose minimal winning

coalitions "fit" within a partition in this manner is decomposable

as a sum. It is easy to see that such a game has a unique

representation as a sum of games that are not themselves sums-

we merely take the finest partition that does not split any minimal

winning coalition.

It follows that a sum is always an improper game. I.

- __ ____ ___ ____ ___ ___ ",
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A similar unique decompouitlon holds for products. (This

holds from the duality between the two operations, mentioned

above, or can be proved directly.) Since no game can be both a

sum and a product, there is even a unique decomposition of any

gamo into a polynomial expression in & and 0, the components

of which are indecomposable with respect to both operations.

For later reference, we note that there is a simple test that

tells whether a given committee gives rise to a product decomposition

of its parent game, that is, whether r(N, W) has a compound

representation of the form r (C, W ) 0 H for some H, where C isC
the given committee. In fact, such a decomposition exists if and

only if wW(C) • Wm and there is a nondummy in N-C, The proof
*L

is a simple application of Theorem 2. A committee that passes

this test will be called a factoring committee. If C is a factoring

committee, then obviously so is its complement N-C.

For sums, the corresponding condition is Wm(C) andCa nondummy outside C; or, more succinctly, Wm n Wm (note the

strict inclusion).



-2D--

9. OVEERLAPPING COMMITTEES

The seeming digression of the last two sections has equipped

us to deal with the problem of overlapping committees. In fact,

the next theorem reveals that when committees overlap it Is either £

due to the presence of "floating" dummy players1 who can safely

be disregarded, or it is due to the associativity of the operations

9 and 0, since when three or more components are added or

multiplied together the partial sums or products will involve

overlapping sets of players. Except for these cases, committees

do not overlap.

We shall say that C and D "overlap essentially" if each of the

sets C A D, C-D, and D-C contains a nondummy.

THEOREM 7. Let C and D be committees of

r(N, W) that overlap essentially. Write E for

CUD, and write E , E 2, E 3 for CnD, C-D, and

D-C respectively (see the diagram). Then E is

also a committee of NN, W), and the committee

game r(E, W ) is either the sum or the product
E

of the games r(Ei, W ), i- 1, 2, 3, where W

der. tes the set of nonempty .ntersections of W

with E .

I I I I I
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Proof. (a) Assume first that no element of Wm meets more

than one ofE E 2, E3. To show that E i!a a committee we must

show that (SA E) U(S--E) t Wm for alU S, S'I Wn(E). Without loss of

generality, SI meets C.

Subcase i: If S also meets C, then we can substitute S for

S' in C and obtain

(snc)u(S'-C) ew*

But by our initial assumption S and S' cannot meet E 3; hence

SAC = SWE and S'-C m S'-E, and we have (SAE)}IS'-E) Wm .1I

Subcase ii: If S does not meet C then S must meet D. Find

a T Wm that meets EI (such a set exists because EI contains a

nondummy). Then T meets C, and we can substitute T for S' in

C AMd obtain
II

But this set-call it R-meets EI and hence D, and so we can

substitute S for R in D and obtain

(SnD)U(R-D) . Wm.

But SAD a SfE and R-D * S'-C - S'-E, and we again have

(SAE)(S'-E) i WVm. This shows thF.t E is a committee. Moreover,

by our initial assumption, the minimal winning coalitions of

r(E, WE) "fit" within the partition CE , E 2 , E 3 1, so that by the

I I I I I I I I I I I I I I I I I
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remarks in Section 8 we have

r. r(E, W E) r(El,,WE (D r(E 2 f (DA r(E 3 1 WEQ

2.1

(b) Now suppose that the Initial assumption of (a) is not I
satisfied, so that there exists a set Q 4 WM that meets at least

two of El, E 2 , E 3 . Without loss of generality, Q meets E and

also meets C. Let SII Wn(E 1 ), S 2 1 Wn(EE2 ) (such sets exist by

the nondummy assumption). Substituting S2 for Q in C, we obtain

(S nc)u(Q-c) wm .w

Substituting S1 for this set in D, we obtain

(SI fEI)U(S2 flE2 )U(S 1fE 3 )U(Q-E), Wm.

In the committee C - EE 2 , we therefore have

-1 22 C(S n E 1)MS2n E2 W ,

as well as

S1 flC (Sfl E1 )U(SilE2 )p Wm

and

S 2 f C (S 2n EM)U(S 2 nE 2 W ,

all by Theorem 1. Consider these three element e of WC. Since

both S n E 1 and S2n E 2 are nonempty, we must also have S 2 n E1

i__________________I ______ __________I_________________I________
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and SI nE2 nonempty, to avoid contradicting minimality. Thus

we have shown that every Si Wm that meets E 1 also meets E 2,

and vice versa.

Q wao chosen unsymmetrically, as between C and D, but we

now know that there are sets in Wm, for example S2 0 that meet

both E2 and D. Using such a set in place of Q, we can repeat the

above argument and establish that every Se W m that meets EI

also meets E 3, and vice versa. In other words, every element

of Wm(E) meets all three of El, E 2, E 3 .

It is now easily shown by a substitution argument that E is a

committee. C is therefore a committee of r(E, WE), by Theorem 4.

Applying the test at the end of Section 8 we find that C is a factoring

committee of I(E, WE). Hence the complementary set E-C - E3

is also a factoring committee. Similarly E 2, the complement of

D in E, is a factoring committee; hence also E 2 UE3 and finally

E-(E UE E are factoring committees. Thus we have

l(E, WE) r(E1EWE ) r(E 2, WE2) 4D r(E , WE3). This
12 3

completes the proof.

COROLLARY. Let G be a simple game

without dummies. Then either G is a sum or

product, or the maximal proper committees

of G are disjoint.
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Pro. Let C and b b.ý r-kximal proper committees, C D,
andasIumLthW=DCfD iO. We have CqtD and D' ¢by maxitnlity.
Hence C and D overlap espentiaUy5 there being no dummies. Hence

E - CUD in a committee. But since E strictly contains the maxitmal

proper committees C and D, it car, only be an improper committee,
i. e., the all-player set of G. But this means that G itself is a sum

d

17



10. THE UNIQUE PXRIME DECOMPOSITION

Theorem 7 and Its corlUary pave the way for a systematic

determination of the entire decomposition pattern of a simple game)

once the committees are known. The process starts with the

full game G (from which we shall assume the dummies have been

eliminated), and works down the hierarchy of committees until

the individual players are reached.

At the first step there are four mutually exclusive possibilities:

G is a sum; 0 is a product; G is decomposable but not a sum or

product; G is prime.

(a) G is a sum. Then in the next level we install the components

(G . ... ,_m ) of the finest- sumdecomposition of G. Thus,

none of the GI's are themselves sums.

It is necessary to prove here that we have not chopped too fine,

L. e., that no committee of G overlaps any of the player-sets (Ni N

of the (Gt ]. Suppose therefore that C is a committee that over-

laps N1 , and hence also overlaps the set N2U... UNm. By

Theorem 7, the set E a CU(N2 U... UN ) is a committee. Applying

the theorem again to N1 and E, we see that the whole game G is the

In principle this is no problem, since the number of potential
committee games to be checked out is finite. However, it would be
desirable to have an efficient combinatorial algorithm that would
discover committees, given a list of the minimal winning coalitions
or other description of the game. At present, this can only be done
for sums and products.
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sum or product of games on the three sets N1 nC, N1 -C, and

N U... U N . In fact it A the sum, :inc no gam* is both a sum
and a product. But this means that the component G 1 decomposes

Into a sum, contrary to hypothesis. Hence an overlapping committee

-like i is impossible, and we can assert that every committee of G
that is not a G or a sum of GIs is actually a subcommittee of one

of them.

(b) G is a product. Then the components of the finest product

decomposition comprise the next level. As above, we can assert

that the committees of C that are not products of these components

must be committees of the individual components.

(c) G Is decomposable, but not a sum or product. Then the

corollary to Theorem 7 tells us that the maximal proper committees

_ _ are-disjoint, to-we-can install them at the next level of the

hierarchy, along with any "unaffiliated" individual players that

belong to no proper committee of G. Again we can assert that all

committees of G not yet represented are subcommittees of the

components we have Just Installed.

(d) G is prime. Then all players are "unaffiliated", so we

list them in the next level and stop.,

The process then continues by analyzing in the same way each

game that appears on the second level, and so on until every branch

of the tree has terminated with an individual player.

___________ L
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I
ii

'I G
G G G3

II •

to t

Committee decomposition diagram:

G=(A [a, b, c, d,, e] E)1 B J'f, g,, h] ) C[i] )

E D(E[i, k, 1), m, n, o]

(D F [Gap, q, r, s, (Hit] Ql ful)eCJ, w, K [, Z]].
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The accompanying diagram is virtually Self-explanatory. The

gameS G i a sum of three components 0 1 G 2 G G3 ; the first of

S•these is a product of two components GI 1 G12; the second happens

to be a six-person game having a three-person committee; and so on.

-T1rOdy committees not represented dircctly in the diagram are

th partial sums G1 G G 21 G3' and G 2  03.

The compound representation of G written beneath the diagram

is more cncise, and in its own way just as descriptive. Note that

only quotients and individual players are named. "A" is some five-

person game, "D", "F", and "G" are four-person games, and so

on. (A minor notational change would save us the trouble of writing

down the one-person games.)

The important point is that the quotients that appear in the

representation are all prime. For when a quotient has a proper

committee, then players in the corresponding components of the

compound form a proper committee of that game, which necessarily

includes the players of at least two components in the representation.

In the present case, however, the components are maximal proper

committees (or unaffiliated players), so that this cannot happen.

We have thus established our final result:

THEOREM 8. Every simple game has a

compound representation that uses nothing but

prime quotients and the associative operations

I I I II . I_ _I_ _II I1
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and 0 and that is unique except for the

arbitrariness in the ordering of p1eyers

and components and in the disposition of

dummy players,

Bp

I I i I ~U U I l u, m



-40--

REFERENCES

I. sbeUl, J. R., 'Homogetaus games II," in Advances in Game
Thory: Anials rd Mathematics Study, No. 52, Princeton
University Pro**, 1964, 265-265.

2. Owen, Glullermno, "Tensor composition of nonnegative games,
in Advnzes in Gome nthry: Annals of Mathcmatics Study
No. 5, Princeton University Press, 1964, 307-326.

3. Riker, W. H., and L. S. Shapley, Weighted Voting: A Mathe-
matical Analysis for Instrumental Judgments, The RAND
Corporation, P-3318, March 1966. (To appear in Nomos X:
Reprementatlon (Yearbook of the Amerlccn Society for Political
and Legal Philosophy), Atherton Press, New York..)

4. Shapley, L. S., Simple Games: An Outline of the Descriptive 1
Theory, The RAND Corporation, P-2277, April 1961. (Also
published without bibliography in Behavioral Science, 7 (1962),

5. Shapley, L. S., Compound Simple Games 1: Solutions of Sums
and Products, The HAND Corporation, RM-3192, June 1962.

6. Shapley, L. S., Compound Simple Games 11: Some General
Composition Theorems, The RAND Corporation, RM-3643,
July 1963.

7-. Shapleyl-L. S., '-%olutions of compound simple games," in
Advances in Game Theory: Annals of Mathematics Study
No. 52, Princeton University Press, 1964, 267-305.(Includes most of the contents of C5] and C6).)

8. von Neumann, J., and 0. Morgenstern, Theory of Games and
Economic Behavior, Princeton University Press, 1944, 1947,
1953.

!I

__|~



DOCUMENT CONTROL DATAIOR~IGNATINGa ACIVTY~ ~ 2& R"~T •SECRTY C.,LJASBFCINo

,INWCLASSIFIED
THE RAND CORPORATION 21. GROUP1. 00"ONT TITLE

COMUNwD SINFLE GAMES, IllI: ON G*IITTUES

ShApley, Lloyd S.

[ 47 1fr No. OF HElFS.
5, REPORT DATE G a. TOTAL t4. Of PAMES bN.ORE.

October 1967 47

7. CONTRACT ON GRANT NMeS. ONIGINAIORS REPORT No.

F44620-67-C-0045 RM-5438-PR

9o AVAILANILITY/ LIMITATION NOTICLS ft SPONSOING AGENCY

DDC-1 United Stcaes Air Force
Project RAND

10. ABSTRACT It. KEY WORDS

An investigation of the structural proper- Mathemativ
ties of "simple" multi-personu gamen in Game theory
which every coalition can either win out-
right or is completely defeated. The cen-
tral idea is the concept of a "committee,"
whicn may be characterized as a set of
players whose internal politics are inde-
pendent of the rest of the game. The
possible relationships between different
committees in the same game -are explored:
co-existing cornitteca may be disjoint and
independent, or one committee may contain
another; but only under special circum-
stances can two committees overlap without
inclunion. A new theorem--the "unique
factorization" theorem--describes how a
simple game may be decomposed into a hier-
urchical arrangement of committees, sub-
committees, and individual agents. The
principal object is to establish, as s
final result, that every gume can be de-
composed into a hierarchy of "prime" games
-- i.e., committee-free games--in which the
player-positions are filled either by
individual players or by other prime gamen
or sums or products thereof, and that this
decomposition is essentially unique.

S. .. •. . r -a. . . . . .


