BUCKLING OF CIRCULAR CYLINDRICAL SHELLS WITH MULTIPLE ORTHOTROPIC LAYERS and ECCENTRIC STIFFENERS

by

ROBERT M. JONES

SEPTEMBER 1967

Prepared for
SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
Air Force Unit Post Office
Los Angeles, California 90045

AEROSPACE CORPORATION
San Bernardino Operations
BUCKLING OF CIRCULAR CYLINDRICAL SHELLS
WITH MULTIPLE ORTHOTROPIC LAYERS
AND ECCENTRIC STIFFENERS

by
Robert M. Jones

San Bernardino Operations
AEROSPACE CORPORATION
San Bernardino, California

September 1967

Prepared for
SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
Air Force Unit Post Office
Los Angeles, California 90045

Distribution of this document is unlimited. It may be released
to the Clearinghouse, Department of Commerce, for sale to the
general public.
FOREWORD

This report by Aerospace Corporation, San Bernardino Operations has been done under Contract No. F04695-67-C-0158 as TR-0158(53820-10)-1. The Air Force program monitor is Major W. D. Ohlemeier, USAF (SMYAC). The dates of research for this report include the period April 1967 through August 1967. This report was submitted by the author in August 1967.

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.

This technical report has been reviewed and is approved.

M. Kamhi, Group Director
Minuteman Reentry Systems
Reentry Systems Division

W. D. Ohlemeier, Major, USAF
(SMYAC)
Chief, Minuteman Mark 17 Branch

T. A. Bergo, General Manager
Technology Division
UNCLASSIFIED ABSTRACT

BUCKLING OF CIRCULAR CYLINDRICAL SHELLS WITH MULTIPLE ORTHOTROPIC LAYERS AND ECCENTRIC STIFFENERS,
by Robert M. Jones

An exact solution is derived for the buckling of a circular cylindrical shell with multiple orthotropic layers and eccentric stiffeners under axial compression, lateral pressure, or any combination thereof. Classical stability theory (membrane prebuckled shape) is used for simply supported edge boundary conditions. The present theory enables the study of coupling between bending and extension due to the presence of different layers in the shell and to the presence of eccentric stiffeners. Previous approaches to stiffened multilayered shells are shown to be erratic in the prediction of buckling results due to neglect of coupling between bending and extension.
(Unclassified Report)
CONTENTS

I INTRODUCTION 1

II DERIVATION OF THEORY 3
 A. Orthotropic Stress-Strain Relations 3
 B. Variations of Stresses and Strains during Buckling 4
 C. Variations of Forces and Moments during Buckling 5
 D. Stability Differential Equations 8
 E. Stability Criterion 9

III NUMERICAL EXAMPLE 13

IV CONCLUDING REMARKS 17

APPENDIX A: DESCRIPTION OF COMPUTER PROGRAM 19
 A. 1 General Characteristics 19
 A. 2 Orthotropic Stiffness Layer, ØSL 20
 A. 3 Input Parameters 22
 A. 4 Output 24

APPENDIX B: EXAMPLE PROBLEM 25

APPENDIX C: FORTRAN LISTING OF COMPUTER PROGRAM 29

APPENDIX D: BONDLESS, LAYERED SHELLS 35

APPENDIX E: TWO-LAYERED, BONDLESS SHELLS WITH CIRCUMFERENTIAL CRACKS IN THE OUTER LAYER 39

REFERENCES 43
FIGURES

1. Stiffened Multilayered Shell 2
2. Cross Section of an N-Layered Shell 7
3. Hydrostatic Buckling Pressure of a Ring-Stiffened, Two-Layered Circular Cylindrical Shell 14
B-1. Example Input Form 27
B-2. Example Computer Output 28
E-1. Cutaway View of a Two-Layered Circular Cylindrical Shell with (Exaggerated) Circumferential Cracks in the Outer Layer 40

TABLES

B-1 Input Data for Example Problem 26
NOMENCLATURE

\(a \) = ring spacing (Figure 1)
\(A \) = cross-sectional area of a stiffener
\(A_{ij} \) = coefficients in stability criterion [Eq. (18)]
\(b \) = stringer spacing (Figure 1)
\(B_{ij} \) = extensional stiffness of the layered shell
\(B_{x}(B_{y}) \) = extensional stiffness of the orthotropic stiffness layer in the \(x-(y-) \) direction
\(B_{xy} \) = in-plane shearing stiffness of the orthotropic stiffness layer
\(C_{ij} \) = coupling stiffness of the layered shell
\(D_{ij} \) = bending stiffness of the layered shell
\(D_{x}(D_{y}) \) = bending stiffness of the orthotropic stiffness layer in the \(x-(y-) \) direction
\(D_{xy} \) = twisting stiffness of the orthotropic stiffness layer
\(E \) = Young's modulus of a stiffener
\(E^{k}_{xx}, E^{k}_{yy} \) = Young's moduli in \(x \) and \(y \) directions, respectively, of the \(k^{th} \) shell layer
\(G \) = shearing modulus, \(E/(2(1 + \nu)) \), of a stiffener
\(G^{k}_{xy} \) = shearing modulus of the \(k^{th} \) shell layer in \(x-y \) plane
\(I \) = moment of inertia of a stiffener about its centroid
\(J \) = torsional constant of a stiffener

1A comma indicates partial differentiation with respect to the subscript following the comma. The prefix \(\delta \) denotes the variation during buckling of the symbol which follows.
NOMENCLATURE (Continued)

- K_{ij}^k = function of material properties of the kth layer [Eq. (2)]
- L = length of circular cylindrical shell (Figure 1)
- m = number of axial buckle halfwaves
- $M_{x'}$, $M_{y'}$ = moments per unit length
- $M_{xy'}$, M_{yx}
- n = number of circumferential buckle waves
- N = number of layers
- $N_{x'}$, $N_{y'}$, N_{xy} = in-plane forces per unit length
- N_{x}, N_{y} = applied axial and circumferential forces per unit length
- p = external or hydrostatic pressure
- R = shell reference surface radius (Figures 1 and 2)
- t_k = thickness of kth shell layer
- u, v, w = axial, circumferential, and radial displacements from a membrane prebuckled shape
- x, y, z = axial, circumferential, and radial coordinates on shell reference surface (Figure 1)
- z = distance from stiffener centroid to shell reference surface (Figure 1), positive when stiffener on outside
- $\epsilon_{x'}$, $\epsilon_{y'}$, γ_{xy} = strains
- δ_1, δ_2, δ_3 = variations in reference surface strains [Eq. (5)]
- b_k = distance from inner surface of layered shell to outer surface of kth layer
- Δ = distance from inner surface of layered shell to reference surface
NOMENCLATURE (Continued)

\(\nu_{xy}^{k} (\nu_{yx}^{k}) \) = Poisson's ratio for contraction in the \(y(x) \) direction due to tension in the \(x(y) \) direction.

\(\nu_{xyB}^{k} (\nu_{yxB}^{k}) \) = so-called extensional Poisson's ratio for contraction in the \(y-(x-) \) direction due to tension in the \(x-(y-) \) direction.

\(\nu_{xyD}^{k} (\nu_{yxD}^{k}) \) = so-called bending Poisson's ratio for curvature in the \(y-(x-) \) direction due to moment in the \(x-(y-) \) direction.

\(\sigma_{x}, \sigma_{y}, \tau_{xy} \) = stresses.

\(\chi_{1}, \chi_{2}, \chi_{3} \) = variations in reference surface curvatures [Eq. (6)].

Superscript

- \(k \) = \(k^{th} \) shell layer

Subscripts

- \(k \) = \(k^{th} \) shell layer
- \(r \) = ring
- \(s \) = stringer
SECTION I

INTRODUCTION

The first work in the area of stability of eccentrically stiffened shells was done by Van der Neut (Ref. 1) about twenty years ago. However, his conclusion that the buckling load under axial compression of an externally stiffened shell can be as high as two or three times that of an internally stiffened shell went essentially unnoticed. More recently, Baruch and Singer (Ref. 2) and Block, Card, and Mikulas (Ref. 3) presented theories which are considered basic in the field. Since 1965, work in the area of eccentrically stiffened shells has expanded so much that it is impractical to mention more than a few significant papers. McElman, Mikulas, and Stein (Ref. 4) extended the original work to include the effect of stiffeners on vibration and flutter. Correlation between theory and experiment was reported for static buckling loads by Card and Jones (Ref. 5). The effect of initial imperfections was considered by Hutchinson and Amazigo (Ref. 6). Block (Ref. 7) treated discrete ring spacing, prebuckling deformation, and load eccentricity. Finally, plastic buckling was discussed by Jones (Ref. 8).

The object of the present paper is to extend previous theories to consideration of stability of circular cylindrical shells with multiple orthotropic layers and eccentric stiffeners (see Figure 1). Classical stability theory, which implies a membrane prebuckled shape, is used for the simply supported edge boundary conditions

\[\delta N_x - v = w = \delta M_x = 0. \]

The layers have orthotropic material
properties with the principal axes of orthotropy coincident with the shell coordinate directions. In accordance with most previous theories, the stiffeners are treated as isotropic one-dimensional beam elements and are averaged or "smeared out" over the stiffener spacing. The torsional rigidity of the stiffeners is accounted for in an approximate manner. The present theory enables the study of coupling between bending and extension due to the presence of different layers in the shell and to the presence of eccentric stiffeners.
SECTION II
DERIVATION OF THEORY

Expressions are obtained for the variations of stresses during buckling in the kth layer of a multilayered shell in terms of the variations of strains during buckling. Subsequently, the variations of stresses are integrated over the shell and stiffeners in order to obtain expressions for the variations in forces and moments during buckling. Finally, the variations in forces and moments are substituted in Donnell-type stability differential equations which are then solved to yield a closed-form stability criterion in terms of the geometric and material properties of the stiffened multilayered circular cylindrical shell.

A. ORTHOTROPIC STRESS-STRAIN RELATIONS

The stress-strain relations for an orthotropic material can be written as

$$
\begin{align*}
\sigma_{kx}^k &= K_{11}^k \epsilon_x^k + K_{12}^k \epsilon_y^k \\
\sigma_{ky}^k &= K_{12}^k \epsilon_x^k + K_{22}^k \epsilon_y^k \\
\tau_{xy}^k &= K_{33}^k \gamma_{xy} \\
\end{align*}
$$

where

$$
\begin{align*}
K_{11}^k &= \frac{E_{xx}^k}{1 - \nu_{xy}^k \nu_{yx}^k} \\
K_{12}^k &= \frac{\nu_{xy}^k E_{xx}^k}{1 - \nu_{xy}^k \nu_{yx}^k} \\
K_{22}^k &= \frac{E_{yy}^k}{1 - \nu_{xy}^k \nu_{yx}^k} \\
K_{33}^k &= G_{xy}^k \\
\end{align*}
$$

wherein the superscript k denotes the kth layer. The quantity $E_{xx}^k (E_{yy}^k)$ is Young's modulus in the x (y) direction, G_{xy}^k is the...
shear modulus in the x-y plane, and ν_{xy}^{k} is the Poisson's ratio for contraction in the y (x) direction due to tension in the x (y) direction. There are apparently five material constants per layer; however, because of the reciprocal relations ($\nu_{xy}^{k} E_{xx}^{k} = \nu_{yx}^{k} E_{yy}^{k}$), there are actually only four independent constants.

B. VARIATIONS OF STRESSES AND STRAINS DURING BUCKLING

During buckling, the stresses vary from their prebuckling values. Let the variation be denoted by δ; then, from Eq. (1)

$$
\delta \sigma_x^k = K_{11}^k \delta \epsilon_x + K_{12}^k \delta \epsilon_y
$$

$$
\delta \sigma_y^k = K_{12}^k \delta \epsilon_x + K_{22}^k \delta \epsilon_y
$$

$$
\delta \tau_{xy}^k = K_{33}^k \delta \gamma_{xy}
$$

where $\delta \epsilon_x$, $\delta \epsilon_y$, and $\delta \gamma_{xy}$ denote the corresponding variations in the strains during buckling. Because of the Kirchhoff-Love hypothesis, the variations in strains during buckling are

$$
\delta \epsilon_x = \epsilon_1 + z \chi_1
$$

$$
\delta \epsilon_y = \epsilon_2 + z \chi_2
$$

$$
\delta \gamma_{xy} = \epsilon_3 + z \chi_3
$$

The z coordinate is measured from an arbitrary reference surface (see Figure 1). In Eq. (4), ϵ_1, ϵ_2, and ϵ_3 are the variations of the reference surface strains

$$
\epsilon_1 = u_x
$$

$$
\epsilon_2 = v_y + w/R
$$

$$
\epsilon_3 = u_y + v_x
$$

(5)
and X_1, X_2, and X_3 are the variations of the reference surface curvatures

$$
\begin{align*}
X_1 &= -w_{xx} \\
X_2 &= -w_{yy} \\
X_3 &= -2w_{xy}
\end{align*}
(6)
$$

Upon substitution of Eq. (4), the variations in stresses in the k^{th} layer can be written as

$$
\begin{align*}
\delta \sigma^k_x &= K_{11}^k (\epsilon_1 + z \chi_1) + K_{12}^k (\epsilon_2 + z \chi_2) \\
\delta \sigma^k_y &= K_{12}^k (\epsilon_1 + z \chi_1) + K_{22}^k (\epsilon_2 + z \chi_2) \\
\delta \tau^k_{xy} &= K_{33}^k (\epsilon_3 + z \chi_3)
\end{align*}
(7)
$$

C. VARIATIONS OF FORCES AND MOMENTS DURING BUCKLING

The variations of forces and moments during buckling are obtained by integration of the variations of stresses over the shell layers and stiffeners. The effect of the stiffeners on the variations of forces and moments is averaged or "smeared out" over the stiffener spacing.

$$
\begin{align*}
\delta N_x &= \sum_{k=1}^{N} \int_{t_k}^{t_{k+1}} \delta \sigma^k_x dz + \frac{1}{b} \int_{A_s} \delta \sigma^k_x dA_s \\
\delta N_y &= \sum_{k=1}^{N} \int_{t_k}^{t_{k+1}} \delta \sigma^k_y dz + \frac{1}{a} \int_{A_r} \delta \sigma^k_y dA_r \\
\delta N_{xy} &= \sum_{k=1}^{N} \int_{t_k}^{t_{k+1}} \delta \tau^k_{xy} dz
\end{align*}
(8)
$$
where \(t_k \) denotes the thickness of the \(k \)th layer and \(N \) is the number of layers. The variations of stresses for the stiffeners are based on uniaxial isotropic reductions of the orthotropic stress-strain relations.

The integrations in Eqs. (8) and (9) yield

\[
\begin{align*}
\delta M_x &= \sum_{k=1}^{N} \int_{t_k} \delta \sigma_x z \, dz + \frac{1}{b} \int_{A_s} \delta \sigma_x z \, dA_s \\
\delta M_y &= \sum_{k=1}^{N} \int_{t_k} \delta \sigma_y z \, dz + \frac{1}{a} \int_{A_r} \delta \sigma_y z \, dA_r \\
\delta M_{xy} &= \sum_{k=1}^{N} \int_{t_k} \delta \tau_{xy} z \, dz - \frac{G_{s}^{1}}{2b} \chi_3 \\
\delta M_{yx} &= \sum_{k=1}^{N} \int_{t_k} \delta \tau_{xy} z \, dz + \frac{G_{r}^{2}}{2a} \chi_3
\end{align*}
\]

(9)

\[
\begin{align*}
\delta N_x &= (B_{11} + E_s A_s / b) \epsilon_1 + B_{12} \epsilon_2 + (C_{11} + \tilde{E}_s E_s A_s / b) \chi_1 \\
&\quad + C_{12} \chi_2 \\
\delta N_y &= B_{12} \epsilon_1 + (B_{22} + E_r A_r / a) \epsilon_2 + C_{12} \chi_1 \\
&\quad + (C_{22} + \tilde{E}_r E_r A_r / a) \chi_2 \\
\delta N_{xy} &= B_{33} \epsilon_3 + C_{33} \chi_3
\end{align*}
\]

(10)

\[
\begin{align*}
\delta M_x &= (C_{11} + \tilde{E}_s E_s A_s / b) \epsilon_1 + C_{12} \epsilon_2 + (D_{11} + \tilde{E}_s^2 E_s A_s / b) \\
&\quad + E_s \frac{1}{s} \chi_1 + D_{12} \chi_2 \\
\delta M_y &= C_{12} \epsilon_1 + (C_{22} + \tilde{E}_r E_r A_r / a) \epsilon_2 + D_{12} \chi_1 \\
&\quad + (D_{22} + \tilde{E}_r^2 E_r A_r / a + E_r I_r / a) \chi_2
\end{align*}
\]

(11)
\begin{align*}
\delta M_{xy} &= - C_{33} \varepsilon_3 - (D_{33} + G_{s} J_{s}/2b) x_3 \\
\delta M_{yx} &= C_{33} \varepsilon_3 + (D_{33} + G_{r} J_{r}/2a) x_3
\end{align*}

where

\begin{align*}
B_{ij} &= \sum_{k=1}^{N} K_{ij}^k \left(\delta_k - \delta_{k-1} \right) \\
C_{ij} &= \frac{1}{2} \sum_{k=1}^{N} K_{ij}^k \left[\left(\delta_k^2 - \delta_{k-1}^2 \right) - 2 \Delta (\delta_k - \delta_{k-1}) \right] \\
D_{ij} &= \frac{1}{3} \sum_{k=1}^{N} K_{ij}^k \left[\left(\delta_k^3 - \delta_{k-1}^3 \right) - 3 \Delta (\delta_k^2 - \delta_{k-1}^2) + 3 \Delta^2 (\delta_k - \delta_{k-1}) \right]
\end{align*}

(12)

The stiffnesses in Eq. (12) are due to Ambartsumyan (Ref. 9) and depend on the location of the reference surface (see Figure 2). The reference surface can be changed by varying Δ in order to study different loading and boundary conditions. Geier (Ref. 10) obtains expressions which are more simple in appearance than Eq. (10), but which are more difficult to utilize.

Figure 2. Cross Section of an N-Layered Shell
D. STABILITY DIFFERENTIAL EQUATIONS

The Donnell-type stability differential equations for circular cylindrical shells subjected to combinations of axial compression and lateral pressure are

\[\delta N_{x,xx} + \delta N_{xy,y} = 0 \]
\[\delta N_{xy,x} + \delta N_{y,y} = 0 \]
\[- \delta M_{x,xx} + \delta M_{xy,xy} - \delta M_{yx,xy} - \delta M_{y,yy} + \frac{\delta N_y}{R} \]
\[+ \overline{N}_x w_{xx} + \overline{N}_y w_{yy} = 0 \]

and the alternative force and geometric boundary conditions at \(x = 0 \) and \(L \) are chosen from the following sixteen possibilities (any set of four alternatives in the following pairs constitutes a set of boundary conditions).

\[\delta N_x = 0 \quad \text{or} \quad u = 0 \]
\[\delta N_{xy} = 0 \quad \text{or} \quad v = 0 \]
\[\delta M_{x,x} + \delta M_{yx,y} + \overline{N}_x w_{,x} = 0 \quad \text{or} \quad w = 0 \]
\[\delta M_{x} = 0 \quad \text{or} \quad w_{,x} = 0 \]

(13)

(14)

Upon substitution of the expressions for the variations of forces and moments during buckling [Eqs. (10) and (11)] and the variations of reference surface strains and curvatures [Eqs. (5) and (6)], the
stability differential equations become

\[
\begin{align*}
(B_{11} + E_s A_s /b) u,_{xx} + B_{12} (v,_{xy} + w,_{x/R}) & \\
+ B_{33} (u,_{yy} + v,_{xy}) - (C_{11} + \bar{z} E_s A_s /b) w,_{xxx} & \\
- (C_{12} + 2C_{33}) w,_{xyy} = 0 & \\

B_1 u,_{xy} + (B_{22} + E_r A_r /a)(v,_{yy} + w,_{y/R}) & \\
+ B_{33} (u,_{xy} + v,_{xx}) - (C_{12} + 2C_{33}) w,_{xxy} & \\
- (C_{22} + \bar{z} E_r A_r /a) w,_{yyy} = 0 & \\
(B_{12} /R) u,_{x} - (C_{11} + \bar{z} E_s A_s /b) u,_{xxx} - (C_{12} + 2C_{33})(u,_{xyy} & \\
+ v,_{xxy}) + (1/R)(B_{22} + E_r A_r /a)(v,_{y} + w/R) & \\
+ (C_{22} + \bar{z} E_r A_r /a) v,_{yyy} - (2C_{12} /R) w,_{xx} & \\
+ (2/R)(C_{22} + \bar{z} E_r A_r /a) w,_{yyy} + (D_{11} + \bar{z} E_s A_s /b & \\
+ E_s I_s /b) w,_{xxxx} + (4D_{33} + 2D_{12} + G_s I_s /b & \\
+ G_r /a) w,_{xxyy} + (D_{22} + \bar{z} E_r A_r /a + E_r I_r /a) w,_{yyyy} & \\
+ \bar{N}_x w,_{xx} + \bar{N}_y w,_{yy} = 0 & \\
\end{align*}
\]

E. STABILITY CRITERION

It is desired to find the solution to the stability differential equations for the simply supported edge boundary conditions

\[
\delta N_x = \delta v = \delta w = \delta M_x = 0
\]
The following buckling displacements satisfy the boundary conditions of Eq. (16):

\[
\begin{align*}
 u &= \bar{u} \cos(m \pi x / L) \cos(ny / R) \\
 v &= \bar{v} \sin(m \pi x / L) \sin(ny / R) \\
 w &= \bar{w} \sin(m \pi x / L) \cos(ny / R)
\end{align*}
\] (17)

(\text{where } \bar{u}, \bar{v}, \text{and } \bar{w} \text{ are the amplitudes of the buckling displacements}) and are substituted in the stability differential equations [Eq. (15)]. In order to obtain a nontrivial solution to the resulting equations, the determinant of the coefficients of \(\bar{u}, \bar{v}, \text{and } \bar{w} \) must be zero, and the following stability criterion results:

\[
\begin{align*}
 \bar{w}^2 (m \pi / L)^2 + \bar{v}^2 (n \pi / R)^2 &= A_{33} + A_{23} \left(\frac{A_{13} A_{12} - A_{11} A_{23}}{A_{11} A_{22} - A_{12}^2} \right) \\
 &+ A_{13} \left(\frac{A_{12} A_{23} - A_{13} A_{22}}{A_{11} A_{22} - A_{12}^2} \right) \\
\end{align*}
\] (18)

where

\[
\begin{align*}
 A_{11} &= (B_{11} + E_s A_s / b)(m \pi / L)^2 + B_{33}(n \pi / R)^2 \\
 A_{12} &= (B_{12} + B_{33})(m \pi / L)(n \pi / R) \\
 A_{13} &= (B_{12} / R)(m \pi / L) + (C_{11} + \bar{z}_s E_s A_s / b)(m \pi / L)^3 \\
 &+ (C_{12} + 2C_{33})(m \pi / L)(n \pi / R)^2 \\
 A_{22} &= B_{33}(m \pi / L)^2 + (B_{22} + E_r A_r / a)(n \pi / R)^2 \\
 A_{23} &= (C_{12} + 2C_{33})(m \pi / L)^2(n \pi / R) + (1/R)(B_{22} + E_r A_r / a)(n \pi / R) \\
 &+ (C_{22} + \bar{z}_r E_r A_r / a)(n \pi / R)^3
\end{align*}
\] (19)
\begin{align*}
A_{33} &= (D_{11} + E_s I_s / b + \frac{2 E_s A_s}{b})(m \pi/L)^4 \\
&+ (4 D_{33} + 2 D_{12} + G_s J_s / b + G_r J_r / a)(m \pi/L)^2(n/R)^2 \\
&+ (D_{22} + E_r I_r / a + \frac{2 E_r A_r}{a})(n/R)^4 + (2 C_{12} / R)(m \pi/L)^2 \\
&+ (2/R)(C_{22} + \frac{E_r A_r}{a})(n/R)^2 + (1/R^2)(B_{22} + E_r A_r / a)
\end{align*}

The solution represented by Eq. (18) reduces to the solution of Ref. 3 for stiffened single-layered isotropic circular cylindrical shells. In addition, stiffener eccentricity is more obviously accounted for in the foregoing derivation than in the work of Geier (Ref. 10).

The buckling load under axial compression is obtained from Eq. (18) by equating \(\bar{N}_y \) to zero and solving for \(\bar{N}_x \). Similarly, the buckling load under lateral pressure is obtained by equating \(\bar{N}_x \) to zero and solving for \(\bar{N}_y (\bar{N}_y = pR/t) \). Finally, the buckling load under hydrostatic pressure is obtained by equating \(\bar{N}_x \) to \(\bar{N}_y / 2 \) and solving for \(\bar{N}_y \). In addition, if \(\bar{N}_x (\bar{N}_y) \) is fixed, the critical value of \(\bar{N}_y (\bar{N}_x) \) can be found. In this manner, an interaction curve between axial compression and lateral pressure can be obtained.

Because of the numerous parameters in Eq. (18) and the need to investigate a large range of buckling modes to determine the lowest buckling load, it is necessary from a practical standpoint to use a digital computer for numerical work. In the computer program (see Appendixes A and C), for a given number of axial halfwaves, \(m \), and circumferential waves, \(n \), in the buckled shape, the appropriate buckling load is found. The number \(n \) is varied in an inner DO loop for a fixed \(m \) until all relative minima of the buckling load are found within a given range.
values of n. The number m is then varied in an outer DO loop so that all relative minima are found. Finally, the absolute minimum buckling load is selected from the relative minima.
SECTION III
NUMERICAL EXAMPLE

Because of the many geometrical properties in the theory, meaningful general results cannot be presented. Accordingly, a specific numerical example is given to illustrate application of the theory. The results are compared with results of previous approaches to the same problem.

For this example, the stability of a ring-stiffened circular cylindrical shell with two isotropic layers under hydrostatic pressure is considered. The properties of the layers are

\[
E_1 = 44 \times 10^6 \text{ psi} \quad E_2 = 2 \times 10^6 \text{ psi}
\]

\[
\nu_1 = 0 \quad \nu_2 = 0.4
\]

\[
t_1 = 0.04 \text{ in.} \quad t_2 = 0.3 \text{ in.}
\]

The rings are of rectangular cross section with a height of 0.25 inch and a thickness of 0.06 inch. The rings are on the inner surface of layer one and have the same material properties as layer one. The shell has a length of 12 inches and a radius of 6 inches to the middle surface of layer one (which, in this case, is also the reference surface).

The hydrostatic buckling pressure of the above configuration is shown as the solid line in Figure 3 as a function of ring spacing. The results shown are for general instability (buckling in which the rings participate). The buckling pressures for panel instability (buckling between rings) are much higher than the present results and, hence, do not govern the stability of the present configuration. Other failure criteria, e.g., yielding, are ignored for the purposes of this illustration of the present analysis technique. The dashed curve in Figure 3 represents
Figure 3. Hydrostatic Buckling Pressure of a Ring-Stiffened, Two-Layered Circular Cylindrical Shell
an orthotropic stiffness approach to the problem and is from 3 to 9 percent lower than the results from the present theory. These lower results are due to neglect of coupling between bending and extension of the layered shell and the eccentric stiffeners in the orthotropic stiffness approach. The solid curve with a single dot represents a stiffened shell with a single equivalent Poisson's ratio for bending \(\nu_D = 0.331 \) used in both layers (Ref. 11) and is from 7 to 11 percent lower than the results of the present theory. Finally, the solid curve with two dots represents a stiffened shell with a single equivalent Poisson's ratio for extension \(\nu_B = 0.115 \) used in both layers (Ref. 11) and is from 14 to 18 percent lower than the results of the present theory. The lower results for \(\nu_D \) and \(\nu_B \) are due to neglect of coupling between bending and extension of the two shell layers. Note that all approaches previous to the present theory are conservative for this example, i.e., they yield lower buckling pressures than can actually be realized by the stiffened shell. For other problems, the previous approaches can yield unconservative results (Ref. 11). Thus, the importance of coupling between bending and extension should not be overlooked.
SECTION IV
CONCLUDING REMARKS

An exact solution, within the framework of classical stability theory, is derived for the buckling of a circular cylindrical shell with multiple orthotropic layers and eccentric stiffeners under axial compression, lateral pressure, or any combination thereof. The simply supported edge boundary conditions are $\delta N_x = \nu = \omega = \delta M_x = 0$. Thus, the present solution can be regarded as a lower bound on results for practical shells if initial imperfections, prebuckling deformations, and effects of discrete stiffener spacing are ignored.

A numerical example is given to illustrate the effect of coupling between bending and extension due to the presence of different layers in the shell and to the presence of eccentric stiffeners. Comparison of the present theory is made with previous approaches such as use of a single equivalent Poisson's ratio in all layers of a layered shell and orthotropic treatment of stiffened shells. The buckling predictions of the previous approaches, in which coupling is neglected, are seen to be erratic in that they are sometimes conservative and sometimes unconservative. Thus, the importance of coupling between bending and extension should not be overlooked.
APPENDIX A
DESCRIPTION OF COMPUTER PROGRAM

A computer program was written to evaluate the closed-form stability criterion, Eq. (18), for an arbitrary range of values of the buckling mode parameters \(m \) and \(n \) and to select subsequently the lowest buckling load in the range. Program card decks are available upon request to the Aerospace Corporation, San Bernardino Operations, Mathematics and Computation Center. Specific characteristics and the usage of the program are described in the following discussion.

A.1 GENERAL CHARACTERISTICS

The basic capability of the program is represented by Eq. (18) which is valid for the stability of circular cylindrical shells with multiple orthotropic layers and eccentric stiffeners under axial compression, lateral pressure, or hydrostatic pressure. The boundary conditions at the edges are \(\delta N_x = v = w = \delta M_x = 0 \). The orthotropic material properties for each layer of thickness, \(t^k \), are \(E_{xx}^k \), \(E_{yy}^k \), \(v_{xy}^k \), \(v_{yx}^k \) (recall that because of the reciprocal relations only three are independent) and \(G_{xy}^k \). It should be noted that the principal axes of orthotropy must coincide with the shell coordinates. The geometrical properties for the stiffeners are: area (\(A \)), moment of inertia about the stiffener centroid (\(I \)), eccentricity (\(z \)), torsional constant (\(J \)), and spacing. The stiffeners are isotropic; hence, \(E \) and \(v \) are the only material properties required.

Because mainly algebraic operations are performed in the program, the execution time is very small (less than 1 second per case).
As far as is possible, mnemonic representations are used throughout the program.

A.2 ORTHOTROPIC STIFFNESS LAYER, \(OSL \)

Block, Card, and Mikulas included an orthotropic stiffness layer in their theory (Ref. 3) in order to treat corrugated shells, etc. In the present program, a similar layer can be used in place of the first layer of the multilayered shell if the reference surface is chosen to be the middle surface of the orthotropic stiffness layer. The orthotropic stiffness definitions reduce to the usual definitions for an isotropic shell, i.e.,

\[
\begin{align*}
B_x &= E_y = B = Et/(1 - \nu^2) \\
B_{xy} &= [(1 - \nu)/2] B = Et/[2(1 + \nu)] \\
D_x &= D_y = D = Et^3/[12(1 - \nu^2)] \\
D_{xy} &= [(1 - \nu)/2] D = Et^3/[24(1 + \nu)]
\end{align*}
\]

(A-1)

The orthotropic stiffnesses must satisfy the reciprocal relations

\[
\nu_{xy} B_x = \nu_{yx} B_y \quad \text{and} \quad \nu_{xy} D_x = \nu_{yx} D_y.
\]

It is important to note that \(\nu_{xy} B_x \), etc are, in some cases, not solely material properties, but are also affected by the geometry, e.g., corrugated or layered shells.

The orthotropic stiffness layer was used to describe the two-layered eccentrically stiffened shell in Section III, Numerical Example, in order to obtain the curve labeled Orthotropic Stiffness Approach in Figure 3. Note that this approach neglects coupling...
between bending and extension of the stiffeners and the layered shell and also neglects coupling between bending and extension of the layers.

Eccentric stiffeners can be added to the orthotropic stiffness layer if the eccentricity is properly accounted for. The eccentricity, ZR or ZS, is ordinarily input as the distance from the centroid to the base of the stiffener. Subsequently, the eccentricity is adjusted in the program to be the distance from the centroid of the stiffener to the arbitrary reference surface of the layered shell. However, when the orthotropic stiffness layer (OSL) is used, the reference surface is fixed at the middle surface of the OSL. In order that the stiffener bend about the middle surface of the layer to which it is attached, it is necessary to modify the input eccentricity such that, when one-half the OSL thickness is added, the eccentricity totals one-half the thickness of the layer to which it is attached plus the distance from the base to the centroid of the stiffener.
A.3 INPUT PARAMETERS

The following is a list of input parameters and their format and definitions:

*CARD 1 FORMAT(80H) - PROBLEM TITLE
*CARD 2 FORMAT(110,6F10.0)
 ML - NUMBER OF LAYERS INCLUDING ORTHOTROPIC STIFFNESS LAYER
 *RESTRICTED TO 9 IN DIMENSION LN(9) AND BY FORMAT NO.8, THE USUAL THIN SHELL LIMITATIONS MUST BE TAKEN INTO CONSIDERATION AS WELL.
 OSL - ORTHOTROPIC STIFFNESS LAYER
 IF EQUAL TO 0, NO OSL
 IF EQUAL TO 1, OSL REPLACES LAYER ONE
 LOAD - CODE NAME FOR TYPE OF LOAD
 IF EQUAL TO 1, AXIAL COMPRESSION
 IF EQUAL TO 2, LATERAL PRESSURE
 IF EQUAL TO 3, HYDROSTATIC PRESSURE
 NL - ORTHOTROPIC STIFFNESS LAYER
 IF EQUAL TO 0, NO
 IF EQUAL TO 1, OSL REPLACES LAYER ONE
 IF EQUAL TO 2, LATERAL PRESSURE
 If EQUAL TO 3, HYDROSTATIC PRESSURE
 NO,NF - INITIAL AND FINAL VALUES OF M, THE NUMBER OF AXIAL HALF-WAVES
 *NO CANNOT BE ZERO IN THE AXIAL AND HYDROSTATIC LOADING CONDITIONS.
 *IF NO ABSOLUTE MINIMUM LOAD IS FOUND OR IF THE RELATIVE MINIMA ARE DECREASING WHEN NO,NF, A MESSAGE IS PRINTED STATING THAT THE RANGE ON M IS INSUFFICIENT TO DETERMINE AN ABSOLUTE MINIMUM.
 *THE INTERVAL (NO,NF) IS EXAMINED INDEPENDENTLY FOR THE AXISYMMETRIC BUCKLING LOAD WHICH IS THEN PRINTED AND ALSO SAVED FOR COMPARISON
 WITH THE ASYMMETRIC BUCKLING LOAD.
 *THE LONGER THE SHELL, THE HIGHER NO MUST BE.
 NO,NF - INITIAL AND FINAL VALUES OF M, THE NUMBER OF CIRCUMFERENTIAL WAVES
 *THE ENTIRE INTERVAL (NO,NF) IS EXAMINED EVEN IF A RELATIVE MINIMUM IS FOUND WITHIN THE INTERVAL.
 *NO IS NORMALLY 2 BECAUSE A SEARCH FOR THE AXISYMMETRIC BUCKLING LOAD IS AUTOMATICALLY PROVIDED IN THE AXIAL AND HYDROSTATIC PRESSURE LOADING CONDITIONS.
 *NO CANNOT BE ZERO IN THE LATERAL PRESSURE LOADING CONDITION.
 *NO AND NO CANNOT BOTH BE ZERO IN THE HYDROSTATIC PRESSURE LOADING CONDITION.
 *IF NO RELATIVE MINIMUM IS FOUND OR THE LOAD IS AGAIN DECREASING AFTER ONE MINIMUM HAS BEEN FOUND WHEN NO,NF,
 A MESSAGE IS PRINTED STATING THAT THE INTERVAL IS INADEQUATE.
 *THE THINNER THE SHELL, THE HIGHER NF MUST BE.

*CARDS 3 THROUGH ML+2 - FORMAT(2E10.3) - ORTHOTROPIC LAYER PROPERTIES
 LN(I) - LAYER NUMBER
 EXX(I) - MODULUS OF ELASTICITY OF THE ITH LAYER IN THE X-DIRECTION
 EYY(I) - MODULUS OF ELASTICITY OF THE ITH LAYER IN THE Y-DIRECTION
 NUXY(I) - POISSON'S RATIO FOR CONTRACTION IN THE Y-DIRECTION DUE TO TENSION IN THE X-DIRECTION
 NUXX(I) - POISSON'S RATIO FOR CONTRACTION IN THE X-DIRECTION DUE TO TENSION IN THE Y-DIRECTION
 *NOTE THAT BY THE RECIPROCAL RELATIONS NUXY=EXX*NUXXY.
 GXY(I) - SHEAR MODULUS OF ITH LAYER FOR THE XY-PLANE.
 IT(I) - THICKNESS OF THE ITH LAYER
 *IF AN ORTHOTROPIC STIFFNESS LAYER IS USED, ALL PROPERTIES OF THE FIRST LAYER ARE ZERO.

22
CARD OSL(NL+3) - FORMAT(5E10.3) - ORTHOTROPIC STIFFNESS LAYER PROPERTIES

BX - EXTENSIONAL STIFFNESS IN X-DIRECTION

BY - EXTENSIONAL STIFFNESS IN Y-DIRECTION

BXY - SHEAR STIFFNESS IN XY-PLANE

NUXB - EXTENSIONAL POISSON'S RATIO FOR CONTRACTION IN THE X-DIRECTION DUE TO TENSION IN THE X-DIRECTION.

TOSL - MAXIMUM THICKNESS OF OSL (USED AS T(1) IN STIFFNESS EQUATIONS FOR LAYERED CYLINDER)

CARD OSL(NL+4) - FORMAT(4E10.3) - OSL PROPERTIES, CONTINUED

BX - BENDING STIFFNESS IN X-DIRECTION

BY - BENDING STIFFNESS IN Y-DIRECTION

BXY - TWISTING STIFFNESS OF XY-PLANE

NUXB - BENDING POISSON'S RATIO FOR CURVATURE IN THE Y-DIRECTION DUE TO MOMENT IN THE X-DIRECTION

*CARD NL,2*OSL*3 - FORMAT(6EI0.3) - RING PROPERTIES

ER - MODULUS OF ELASTICITY

AR - CROSS-SECTIONAL AREA

IZ - ECCENTRICITY (MEASURED NEGATIVELY INWARD FROM INNER SURFACE OF COMPOSITE SHELL TO RING CENTROID IF RINGS ARE INTERNAL - POSITIVELY OUTWARD FROM OUTER SURFACE IF RINGS ARE EXTERNAL)

IR - MOMENT OF INERTIA OF RING ABOUT ITS OWN CENTROID

GJR - SHEAR MODULUS*TORISON CONSTANT OF CROSS SECTION

A - SPACING OF RINGS

*CARD NL,2*OSL*4 - FORMAT(6EI0.3) - STRINGER PROPERTIES

ES, **AS**, **JS**, **GS**, **JR** - CORRESPOND TO ABOVE RING PROPERTIES

*CARD NL,2*OSL*5 - FORMAT(3E10.3) - BASIC GEOMETRY

L - LENGTH OF CIRCULAR CYLINDRICAL SHELL

R - RADIUS TO REFERENCE SURFACE

DELTA - DISTANCE FROM INNER SURFACE OF LAYERED CYLINDER TO REFERENCE SURFACE

DELTA - MUST BE 1/2*OSL THICKNESS IF AN OSL PRESENT.

**SHOUL GET DIFFERENT AXIAL BUCKLING LOADS WHEN DELTA VARIED.
The output for each case is printed on one page if the sum of the number of layers, \(LN \), and the number of axial buckle halfwaves, \(M \), does not exceed 25 and, if, in addition, there is no more than one relative minimum buckling load per value of \(M \). If these conditions are not met, additional pages are used as needed.

First, a user-specified case identification is printed. Next, the input quantities are printed so that input errors can be identified. The orthotropic layer properties are printed and are followed by the orthotropic stiffness layer (\(\Phi SL \)) properties, if any. Next, the ring and stringer properties are printed. Finally, the basic geometry quantities, shell length, radius, and reference surface location, are printed.

After execution of the program, the buckling load for axisymmetric deformation (absolute minimum in the range from \(M = 1 \) to \(M = 4 \ast MF \)) is printed along with the value of \(M \) at which it occurs. Subsequently, the asymmetric buckling loads (relative minima for each value of \(M \) for the range from \(N = 2 \) to \(N = NF \)) are printed. The final result is the absolute minimum (axisymmetric or asymmetric) buckling load for the entire range of \(M \) and \(N \).

A typical output page is shown in Appendix B.
APPENDIX B
EXAMPLE PROBLEM

The example chosen here is the configuration discussed in Section III, Numerical Example, in the main body of the report, i.e., a ring-stiffened circular cylindrical shell with two isotropic layers under hydrostatic pressure. Pertinent geometrical and material properties are given in Section III. Ring spacing for this example is 3 inches. The input data are shown in Table B-I. Figure B-1 illustrates the input form, and the computer output is shown in Figure B-2.
Table B-I

INPUT DATA FOR EXAMPLE PROBLEM

CASE IDENTIFICATION:

CONFIGURATION OF FIGURE 3 - ACTUAL NUI

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL</td>
<td>2</td>
<td>LN (2)</td>
<td>2</td>
</tr>
<tr>
<td>ØSL</td>
<td>0</td>
<td>EXX(2)</td>
<td>2×10^6</td>
</tr>
<tr>
<td>LOAD</td>
<td>3</td>
<td>EYY(2)</td>
<td>2×10^6</td>
</tr>
<tr>
<td>MØ</td>
<td>1</td>
<td>NUXY(2)</td>
<td>0.4</td>
</tr>
<tr>
<td>MF</td>
<td>10</td>
<td>NUYX(2)</td>
<td>0.4</td>
</tr>
<tr>
<td>NØ</td>
<td>2</td>
<td>GXY(2)</td>
<td>0.7179×10^6</td>
</tr>
<tr>
<td>NF</td>
<td>20</td>
<td>T(2)</td>
<td>0.3</td>
</tr>
<tr>
<td>LN(1)</td>
<td>1</td>
<td>ER</td>
<td>44×10^6</td>
</tr>
<tr>
<td>EXX(1)</td>
<td>44×10^6</td>
<td>AR</td>
<td>0.015</td>
</tr>
<tr>
<td>EYY(1)</td>
<td>44×10^6</td>
<td>ZR</td>
<td>-0.125</td>
</tr>
<tr>
<td>NUXY(1)</td>
<td>0</td>
<td>IR</td>
<td>0.7812×10^{-4}</td>
</tr>
<tr>
<td>NUYX(1)</td>
<td>0</td>
<td>GRJR</td>
<td>396</td>
</tr>
<tr>
<td>GXY(1)</td>
<td>22×10^6</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>T(1)</td>
<td>0.04</td>
<td>L</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELTA</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Figure B-1. Example Input Form

<table>
<thead>
<tr>
<th>Programmed</th>
<th>Keypunched</th>
<th>Verified</th>
<th>Date</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONFIGURATION OF FIGURE 3 - ACTUAL NUI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>44.6</td>
<td>44.6</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>44.6</td>
<td>44.6</td>
<td>0</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>2.6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>44.6</td>
<td>0.15</td>
<td>-12.5</td>
<td>7.812</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONFIGURATION OF FIGURE 3 - ACTUAL WI
ELASTIC BUCKLING OF SIMPLY SUPPORTED, ECCENTRICALY STIFFENED CIRCULAR CYLINDRICAL SHELLS
WITH MULTIPLE ANISOTROPIC LAYERS UNDER HYDROSTATIC PRESSURE

NO= 1. NF= 10. NO= 2. NF= 20.

PROPERTIES OF 2 ORTHOTROPIC LAYERS

<table>
<thead>
<tr>
<th>LAYER</th>
<th>E11</th>
<th>E12</th>
<th>G12</th>
<th>N12</th>
<th>N11</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.440000E 08</td>
<td>0.440000E 08</td>
<td>0.</td>
<td>0.</td>
<td>0.220000E 08</td>
<td>0.400000E-01</td>
</tr>
<tr>
<td>2</td>
<td>0.200000E 07</td>
<td>0.200000E 07</td>
<td>0.400000E 00</td>
<td>0.400000E 00</td>
<td>0.717400E 06</td>
<td>0.300000E 00</td>
</tr>
</tbody>
</table>

RING PROPERTIES

| ER= 0.4400E 08 | IR= 0.7812E-04 |
| 2.1= 0.1500E-01 | 3.1= 0.3940E 03 |

STRINGER PROPERTIES

| ES= 0. | IT= 0. |
| 2.5= 0.1250E 00 | 3.5= 0.3000E 01 |

BASIC GEOMETRY

| L= 0.1200E 02 | R= 0.620000E 01 | DELTA= 0.200000E-01 |

MINIMUM P FOR N=0 IS 0.178153E 06 AT M= 5.

<table>
<thead>
<tr>
<th>M</th>
<th>RELATIVE MINIMA OF P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.312903E 04</td>
</tr>
<tr>
<td>3.</td>
<td>0.425714E 04</td>
</tr>
<tr>
<td>5.</td>
<td>0.568085E 04</td>
</tr>
<tr>
<td>10</td>
<td>0.359502E 05</td>
</tr>
<tr>
<td>20</td>
<td>0.179734E 05</td>
</tr>
<tr>
<td>50</td>
<td>0.239467E 05</td>
</tr>
<tr>
<td>50</td>
<td>0.289914E 05</td>
</tr>
<tr>
<td>50</td>
<td>0.387352E 05</td>
</tr>
<tr>
<td>100</td>
<td>0.433762E 05</td>
</tr>
<tr>
<td>100</td>
<td>0.519408E 05</td>
</tr>
</tbody>
</table>

ABSOLUTE MINIMUM P= 0.312903E 04 M= 1. N= 4.

Figure B-2. Example Computer Output
APPENDIX C

FORTRAN LISTING OF COMPUTER PROGRAM

C ELASTIC BUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STIFFENED CIRCULAR CYLINDRICAL SHELLS WITH MULTIPLE ORTHOTROPIC LAYERS UNDER AXIAL COMPRESSION,
C LATERAL PRESSURE OR HYDROSTATIC PRESSURE
C
C
C READ STATEMENT FORMATS — —
1 FORMAT(10E16.8)
2 FORMAT(10I7,10.0)
3 FORMAT(8E16.3)

C WRITE STATEMENT FORMATS — —
4 FORMAT(400N ELASTIC BUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STIFFENED CYLINDRICAL SHELLS WITH MULTIPLE ORTHOTROPIC LAYERS UNDER AXIAL COMPRESSION)
5 FORMAT(400N ELASTIC BUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STIFFENED CYLINDRICAL SHELLS WITH MULTIPLE ORTHOTROPIC LAYERS UNDER LATERAL PRESSURE)
6 FORMAT(400N ELASTIC BUCKLING OF SIMPLY SUPPORTED, ECCENTRICALLY STIFFENED CYLINDRICAL SHELLS WITH MULTIPLE ORTHOTROPIC LAYERS UNDER HYDROSTATIC PRESSURE)
7 FORMAT(4H MC=E14.0,5X3HNF=E14.0,5X3HNO=E14.0,5X3HM=E14.0)
8 FORMAT(15H PROPERTIES OF ORTHOTROPIC LAYERS/6H LAYER#=1X3H)
9 FORMAT(4E11.4,15X3H)
10 FORMAT(15H ORTHOTROPIC STIFFNESS LAYER PROPERTIES/5H GR=E11.4,6X3H)
11 FORMAT(15H RING PROPERTIES, STRINGER PROPERTIES/5H GR=E11.4,15X3H)
12 FORMAT(15H BASIC GEOMETRY/5H L=E11.4,7X3)
13 FORMAT(15H MINIMUM NX FOR NXC IS 15, E14.0,6X3)

29
ILATIVE MINIMA OF UX97X1IMI
30
14 [FORMAT /XI4.6,6H AT M=F4.0] JX97X1IMDOLS
31
ILATIVE MINIMA OF UX97X1IMI
32
15 [FORMAT /XI4.6,6H AT M=F4.0] JX97X1IMDOLS
33
16 [FORMAT /XI4.6,6H AT M=F4.0] JX97X1IMDOLS
34
17 [FORMAT /XI4.6,6H AT M=F4.0] JX97X1IMDOLS
35
C ERROR MESSAGE FORMATS
36
19 FORMAT(109H THE RELATIVE MINIMA ARE STILL DECREASING SO THE RANGES
37
ION SMALL INSUFFICIENT TO DETERMINE AN ABSOLUTE MINIMUM AT THE LAST
38
VALUE IS=E14.6,6H AT M=F4.0)
39
21 FORMAT(30H EQUAL OR NEAR EQUAL ORDIKATES/XF409,N ORDNE1.6,10XF4.O)
40
C DIMENSION
41
K11 I9),9KIZ(9),#922(9) K3319)
42
I'DIMENSION
43
REAL IR, ISM.MOMFNPLNNONFNR.NUXYNUVNUXV3.NUXYLLOA,
44
IKI IvK12,K22,K33vLNNM1
45
PI.3.14159265 DOLS
46
C READ INPUT DATA
47
100 READ(5,1) DOLS
48
C WRITE TITLE OF DATA AND PROBLEM
49
WRITE(6, 1) DOLS
50
C WRITE TYPE OF LOADING AND RANGE M AND N
51
IF(LOAD.EQ.1.) WRITE(6,94)
52
IF(LCAO.EQ.2.) WRITE(6,95)
53
IF(LCAO.EQ.3.) WRITE(6,96)
54
WRITE(6,6) NL DOLS
55
C READ ORTHOTROPIC LAYER PROPERTIES
56
DO 110 I=1,NL
57
110 READ(5,3) LN(I),EXX(I),EYY(I),NUXY(I),NUYX(I),GXY(I),T(I)
58
C WRITE ORTHOTROPIC LAYER PROPERTIES
59
WRITE(6,6) NL DOLS
60
DO 120 I=1,NL
61
120 WRITE(6,9) LN(I),EXX(I),EYY(I),NUXY(I),NUYX(I),GXY(I),T(I)
62
C TEST FOR PRESENCE OF ORTHOTROPIC STIFFNESS LAYER
63
C ZERO OUT PREVIOUS ORTHOTROPIC STIFFNESS LAYER PROPERTIES
64
BX=0.
65
BY=0.
66
BX=0.
67
TOSL=0.
68
DX=0.
69
DY=0.
70
DXY=0.
71
NUXYD=0.
72
GO TO 140
73
C READ ORTHOTROPIC STIFFNESS LAYER PROPERTIES
74
130 READ(5,3) BX,BY,BXY,NUXYB,TOSL
75
T(I)=TOSL
76
READ(5,3) EX,DX,DXY,NUXYD
77
C WRITE ORTHOTROPIC STIFFNESS LAYER PROPERTIES
78
WRITE(6,10) BX,BY,BXY,NUXYB,DX,DXY,NUXYD,TOSL
79
C READ AND WRITE RING AND STRINGER PROPERTIES
80
140 READ(5,3) ER,AR,ZR,IR,SR,GR,RA
81
WRITE(5,3) ES,AS,LS,GSJS,GRJS,GR,RA,AS,GSJS,SR,AR
82
C READ AND WRITE BASIC GEOMETRY
83
READ(5,3) LR,DELTA
84
WRITE(6,12) LR,DELTA
85
C CALCULATE FUNCTIONS OF THE ELASTICITY CONSTANTS
86
DO 150 I=1,NL
87
K11(I)=EXX(I)/(-NUXY(I)*NUYX(I))
88
K12(I)=NUYX(I)*K11(I)
89
30
C22(I) = EY(I)/(1.0 - NUXX(I)*NUXX(I))

150 K33(I) = GXY(I)

C CALCULATE DEL'S OF THE VARIOUS LAYERS
DO 160 I = 1, NL
 IF(I.EQ.1) DEL(I) = 1
 IF(I.NE.1) DEL(I) = DEL(I-1) + 1
160 CONTINUE

C ADJUST ZR AND ZS TO REFERENCE SURFACE
 IF(ZR.GT.0.) ZR = ZR*DELFN(I).DEL
 IF(ZR.LT.0.) ZR = ZR-DELFN(I).DEL
 IF(ZS.GT.0.) ZS = ZS*DELFN(I).DEL
 IF(ZS.LT.0.) ZS = ZS-DELFN(I).DEL

C CALCULATE EXTENSIONAL, COUPLING, AND BENDING STIFFNESSES
C ZERO OUT B'S, C'S, AND D'S PRIOR TO SUMMATION
B11 = 0.
B12 = 0.
B22 = 0.
B33 = 0.
C11 = 0.
C12 = 0.
C22 = 0.
C33 = 0.
D11 = 0.
D12 = 0.
D22 = 0.
D33 = 0.

DO 190 I = 1, NL
 IF(I.NE.1) GO TO 170
 C COUP(I) = (DELFN(I)**2 - 2.*DEL**2)*DEL(I)
 C BEND(I) = (DELFN(I)**3 - 3.*DEL**2*DEL(I) + 3.*DEL**3)*DEL(I)
170 CONTINUE

BEND = DEL(I)**2 - DEL(I)**2 + DEL(I)**2 - DEL(I)**2
COUP = DEL(I)**2 - DEL(I)**2 + DEL(I)**2 - DEL(I)**2

180 B11 = B11 + B11**2
B12 = B12 + B12**2
B22 = B22 + B22**2
B33 = B33 + B33**2
C11 = C11 + C11**2
C12 = C12 + C12**2
C22 = C22 + C22**2
C33 = C33 + C33**2
D11 = D11 + D11**2
D12 = D12 + D12**2
D22 = D22 + D22**2
D33 = D33 + D33**2

C INITIALIZE
ABSXM = 0.7E35
IF(ABSXM.EQ.0.7E35) GO TO 300
C CALCULATE AXISYMMETRIC BUCKLING LOADS UNDER AXIAL OR HYDROS TIC
C LOADING FOR A RANGE OF MD TO 4*MF, AND PRINT MINIMUM LOAD
C INITIALIZE
AXIM = 0.5
M = 0
ORDMM = 0.8E35
ORDMR = 0.8E35
200 MPL = MPL/L

C CALCULATE A VALUES
A11 = (I11+BX*ES*AS/B)*MPL**2
A12 = 0.
A13 = (I12+NUXX*BXY)*MPL/R1*(C11+ES*AS*IS/B)*MPL**3
A22 = (I22+BXY*[8XY]*MPL**2
A23 = 0.
A33 = (I33+ES*AS*IS/B)*MPL**2 + 12.0/R1*(C12*MPL**2 + I22)*MPL**2
1/2)*BXY*ER*A/A

31
C TEST FOR TYPE OF LOADING, CALCULATE BUCKLING LOAD (MX OR PRESSURE),
C AND STORE LOAD IN ADDRESS ORD (ORDINATE AT ABSCISSA N)
C
IF(LOAD.EQ.1.) ORD=ORD+PART/NPL**2
IF(LOAD.EQ.2.) ORD=ORD+PART/NML**2
C TEST FOR ABSOLUTE MINIMUM ASYMMETRIC BUCKLING LOAD
C
ORDM3: IS THE ORDINATE AT ABSCISSA N-1
C
ORDN2: THE ORDINATE AT ABSCISSA N-2
C
C TEST TO SEE WHETHER ORDM IS INCREASING OR DECREASING
C
IF(ORDM.GT.ORDN1) GO TO 210
C
C ORDN DECREASING FROM ORDM TO ORDN1
C
IF(1.040.0..3) ORDER=PART/(.5*XPL**2)
C
C TEST FOR ABSOLUTE MINIMUM ASYMMETRIC BUCKLING LOAD
C
ABSIN=ORDM3

ABSIN=ORDM2
ABSIN=ORDM1

ABSIN=ORDM
ABSIN=0.

C TEST FOR TYPE OF LOADING, CALCULATE BUCKLING LOAD (MX OR PRESSURE),
C AND STORE LOAD IN ADDRESS ORD (ORDINATE AT ABSCISSA N)
C
IF(LOAD.EQ.1.) ORD=ORD+PART/NPL**2
IF(LOAD.EQ.2.) ORD=ORD+PART/NML**2
C TEST FOR ABSOLUTE MINIMUM ASYMMETRIC BUCKLING LOAD
C
ORDM3: IS THE ORDINATE AT ABSCISSA N-1
C
ORDN2: THE ORDINATE AT ABSCISSA N-2
C
C TEST TO SEE WHETHER ORDM IS INCREASING OR DECREASING
C
IF(ORDM.GT.ORDN1) GO TO 210
C
C ORDN DECREASING FROM ORDM TO ORDN1
C
IF(1.040.0..3) ORDER=PART/(.5*XPL**2)
C
C TEST FOR ABSOLUTE MINIMUM ASYMMETRIC BUCKLING LOAD
C
ABSIN=ORDM3

ABSIN=ORDM2
ABSIN=ORDM1

ABSIN=ORDM
ABSIN=0.

C TEST FOR TYPE OF LOADING, CALCULATE BUCKLING LOAD (MX OR PRESSURE),
C AND STORE LOAD IN ADDRESS ORD (ORDINATE AT ABSCISSA N)
C
IF(LOAD.EQ.1.) ORD=ORD+PART/NPL**2
IF(LOAD.EQ.2.) ORD=ORD+PART/NML**2
C TEST FOR ABSOLUTE MINIMUM ASYMMETRIC BUCKLING LOAD
C
ORDM3: IS THE ORDINATE AT ABSCISSA N-1
C
ORDN2: THE ORDINATE AT ABSCISSA N-2
C
C TEST TO SEE WHETHER ORDM IS INCREASING OR DECREASING
C
IF(ORDM.GT.ORDN1) GO TO 210
C
C ORDN DECREASING FROM ORDM TO ORDN1
C
IF(1.040.0..3) ORDER=PART/(.5*XPL**2)
C
C TEST FOR ABSOLUTE MINIMUM ASYMMETRIC BUCKLING LOAD
C
ABSIN=ORDM3

ABSIN=ORDM2
ABSIN=ORDM1

ABSIN=ORDM
ABSIN=0.

C TEST FOR TYPE OF LOADING, CALCULATE BUCKLING LOAD (MX OR PRESSURE),
C AND STORE LOAD IN ADDRESS ORD (ORDINATE AT ABSCISSA N)
C
IF(LOAD.EQ.1.) ORD=ORD+PART/NPL**2
IF(LOAD.EQ.2.) ORD=ORD+PART/NML**2
C TEST FOR ABSOLUTE MINIMUM ASYMMETRIC BUCKLING LOAD
C
ORDM3: IS THE ORDINATE AT ABSCISSA N-1
C
ORDN2: THE ORDINATE AT ABSCISSA N-2
C
C TEST TO SEE WHETHER ORDM IS INCREASING OR DECREASING
C
IF(ORDM.GT.ORDN1) GO TO 210
C
C ORDN DECREASING FROM ORDM TO ORDN1
C
IF(1.040.0..3) ORDER=PART/(.5*XPL**2)
C
C TEST FOR ABSOLUTE MINIMUM ASYMMETRIC BUCKLING LOAD
C
ABSIN=ORDM3

ABSIN=ORDM2
ABSIN=ORDM1

ABSIN=ORDM
ABSIN=0.
IF(ABS2.*(ORDY-ORDY11)/(ORDY+ORDY11).LE.1.E-3) GO TO 390
C RELATIVE MINIMA ARE CLOSE ENOUGH TO CAUSE TROUBLE IN THE SEARCH FOR
C ORDINATES ARE CLOSE ENOUGH TO CAUSE TROUBLE IN THE SEARCH FOR
WRITE(6,211) M,ORDY1,MR,ORDY1
GO TO 360
C TEST TO SEE WHETHER ORD IS INCREASING OR DECREASING
330 IF(ORDY.GT.ORDY11) GO TO 340
C ORDY DECREASING
IF(N.EQ.NF) WRITE(6,201)
GO TO 340
C ORDY INCREASING
340 IF(ORDY.GT.ORDY11) GO TO 350
C NO RELATIVE MINIMUM
GO TO 340
C TEST FOR ABSOLUTE MINIMUM
350 IF(M.EQ.NF-1.AND.ORDY11.LT.ORDY1) ANOM1=ORDY1
IF(M.EQ.NF.AND.MC.NE.NF.AND.ORDY11.LT.ORDY1) WRITE(6,19)
360 IF(ORDY11.GT.ABSMIN) GO TO 370
C NEW ABSOLUTE MINIMUM FOUND
ABSMIN=ORDY1
ABS=N
ABS=N-1.
370 RELYN=ORDY1
RELYN=ORDY1
C WRITE RELATIVE MINIMUM WITH CORRESPONDING M AND N
WRITE(6,161)RELYN,RELYN
380 IF(N.EQ.NF) GO TO 390
C STEP N
M=M+1.
ORDY2=ORDY1
ORDY1=ORDY
GO TO 320
390 IF(N.EQ.NF) GO TO 395
C STEP N
M=M+1.
GO TO 310
C WRITE ABSOLUTE MINIMUM WITH CORRESPONDING M AND N
395 IF(LOAD.EQ.1.) WRITE(6,17)ABSMN,ABSM,ABSM
IF(LOAD.EQ.2.) WRITE(6,18)ABSMN,ABSM,ABSM
IF(LOAD.EQ.3.) WRITE(6,19)ABSMN,ABSM,ABSM
RETURN TO 8. TURNS TO READ NEXT DATA CASE
GO TO 100
END
APPENDIX D
BONDLESS, LAYERED SHELLS

The objective is to define a mathematical model for a circular cylindrical shell of multiple isotropic layers with no bond between the layers. This configuration is of interest as a lower bound to layered shells with shear-deformable bonds between the layers. The Kirchhoff-Love hypothesis is employed in all previous sections, but is valid only if the bonds between layers are non-shear-deformable. Accordingly, certain new definitions must be established. It is convenient to work within the framework of the orthotropic stiffness layer feature of the computer program (see Section A.2 of Appendix A). Certain stiffnesses and so-called Poisson's ratios must be defined, namely, quantities associated with extension $(B_x, B_y, B_{xy}$ and $\nu_{xyB})$ and those associated with bending $(D_x, D_y, D_{xy}$ and $\nu_{xyD})$.

The extensional stiffness of a layered shell is not affected by the presence or absence of a bond between the layers, i.e., it remains

$$B_x = B_y = \sum_{k=1}^{N} B_k$$ \hspace{1cm} (D-1)

Similarly, the resistance to in-plane shear is unaffected, so

$$B_{xy} = \sum_{k=1}^{N} B_k \left(1 - \nu_k\right) / 2$$ \hspace{1cm} (D-2)
If the force-strain relations are written in the form

\[
\begin{align*}
N_x &= \sum_{k=1}^{N} B_k (\epsilon_{xk} + \nu_k \epsilon_{yk}) \\
N_y &= \sum_{k=1}^{N} B_k (\epsilon_{yk} + \nu_k \epsilon_{xk})
\end{align*}
\]

(D-3)

and it is stipulated that the layers have the same strains, i.e.,

\[
\begin{align*}
\epsilon_{xk} &= \epsilon_x \\
\epsilon_{yk} &= \epsilon_y
\end{align*}
\]

(D-4)

then the so-called Poisson's ratio for extension can be identified as

\[
\nu_{xyB} = \nu_B = \frac{\sum_{k=1}^{N} B_k \nu_k}{\sum_{k=1}^{N} B_k}
\]

(D-5)

Note that \(\nu_B \) is a geometrical as well as a material property.

The bending stiffness of a bondless, layered shell is the sum of the bending stiffnesses of the individual layers since the layers act with some measure of independence except for the requirement that the layers do not separate, i.e.,

\[
D_x = D_y = \sum_{k=1}^{N} D_k
\]

(D-6)
where D_k is the bending stiffness of the k^{th} layer about its own middle surface. Note that there are no terms such as occur in the transfer axis theorem for moments of inertia, i.e., no (area) times (distance squared) terms. Consequently, the bending stiffness is greatly decreased from the perfect bond case.

The consistent definition for the twisting stiffness follows from the stipulation that each layer independently resists twisting. Thus,

$$D_{xy} = \sum_{k=1}^{N} D_k (1 - \nu_k) / 2 \quad (D-7)$$

In analogy to the situation for extension, it is stipulated that the layers have the same changes in curvature, i.e.,

$$\begin{align*}
X_{xk} &= X_x \\
X_{yk} &= X_y
\end{align*} \quad (D-8)$$

Then the so-called Poisson's ratio for bending is obtained by use of the moment-change in curvature relations as

$$\nu_{xyD} = \frac{\nu_B}{D} = \frac{\sum_{k=1}^{N} D_k \nu_k}{\sum_{k=1}^{N} D_k} \quad (D-9)$$

Again, as with ν_B, ν_D is a geometrical as well as a material property.

The above approach implies that the layers have the same displacements and the same curvatures, i.e., all layers take the same
shape. This implication is reasonable as long as the layers do not separate.

When the layers are in contact, the membrane circumferential strain is essentially the same in all layers if the sum of the layer thicknesses divided by the radius of the shell reference surface is small, i.e., a thin, layered shell. Thus, under lateral pressure, which is carried as membrane circumferential stress, \(\sigma_y \), in the present buckling theory, \(\sigma_y \) in the \(k \)th layer is proportional to the extensional stiffness of the \(k \)th layer. Accordingly, the lateral pressure on each layer is given by

\[
\sigma_k = \frac{B_k}{N} \cdot p \quad \text{(D-10)}
\]

where \(p \) is the lateral pressure on the layered shell. Thus, as a crude lower bound to the case of a bondless, layered shell, each layer must be thick enough to resist buckling under the pressure determined by Eq. (D-10). In addition, the layered shell with stiffnesses given by Eqs. (D-1), (D-2), (D-5), (D-6), (D-7), (D-9) must be thick enough to resist buckling under \(p \).

Eccentrically stiffened, bondless, layered shells can be treated by appending stiffeners to the orthotropic stiffness layer in the manner discussed at the end of Section A.2 in Appendix A.
APPENDIX E

TWO-LAYERED, BONDLESS SHELLS WITH CIRCUMFERENTIAL CRACKS IN THE OUTER LAYER

The objective is to define a mathematical model for a circular cylindrical shell which has two unbonded, orthotropic layers and circumferential cracks in the outer layer (see Figure E-1). The principal axes of orthotropy must coincide with the shell coordinate axes. The orthotropic stiffness layer feature of the computer program (see Section A.2 of Appendix A) is used in the calculations. Accordingly, certain stiffnesses and so-called Poisson's ratios must be defined, namely, quantities associated with extension (B_x, B_y, B_{xy}, and v_{xy}) and those associated with bending (D_x, D_y, D_{xy}, and v_{xy}).

Because of the circumferential cracks in the outer layer, the extensional stiffness in the axial direction is merely that of the inner layer, i.e., $B_{x2} = 0$. However, both layers are effective in resisting circumferential extension. Thus,

$$B_x = B_{x1} \quad \quad (E-1)$$
$$B_y = B_{y1} + B_{y2}$$

No axial strain develops in the outer layer, i.e., $\epsilon_{x2} = 0$. Thus, the force-strain relations are

$$N_x = B_{x1} (\epsilon_{x1} + v_{xy} B_{l1} \epsilon_{y1})$$
$$N_y = B_{y1} (\epsilon_{y1} + v_{yx} B_{l1} \epsilon_{x1}) + B_{y2} \epsilon_{y2} \quad \quad (E-2)$$
Figure E-1. Cutaway View of a Two-Layered Circular Cylindrical Shell with (Exaggerated) Circumferential Cracks in the Outer Layer
Moreover, because the layers do not separate circumferentially,
\[\epsilon_{y1} \geq \epsilon_{y2} = \epsilon_y \]
(E-3)

Accordingly, the force-strain relations become
\[N_x = B_x (\epsilon_x + \nu_{xyB} \epsilon_y) \]
\[N_y = B_y (\epsilon_y + \nu_{yxB} \epsilon_x) \]
(E-4)

where \(B_x \) and \(B_y \) are defined in Eq. (E-1), and
\[\nu_{xyB} = \nu_{xyB1} \]
\[\nu_{yxB} = \nu_{yxB1} B_{y1} / (B_{y1} + B_{y2}) \]
(E-5)

Note that the reciprocal relations
\[\nu_{xyB} B_x = \nu_{yxB} B_y \]
(E-6)

are satisfied for the two-layered shell because they are satisfied for the inner layer, i.e.,
\[\nu_{xyB1} B_{x1} = \nu_{yxB1} B_{y1} \]
(E-7)

For an isotropic inner layer, Eq. (E-7) is an identity.

The inner layer carries all the in-plane shear because the outer layer is cracked. Thus,
\[B_{xy} = B_{xy1} \]
(E-8)

For an isotropic inner layer,
\[B_{xy1} = E_1 t_1 / 2(1 + \nu_1) \]
(E-9)
Reasoning parallel to the above leads to the following definitions for the quantities associated with bending.

\[
\begin{align*}
D_x &= D_{x1} \\
D_y &= D_{y1} + D_{y2} \\
\nu_{xyD} &= \nu_{xyD1} \\
\nu_{yxD} &= \nu_{yxD1} \frac{D_{y1}}{(D_{y1} + D_{y2})} \\
D_{xy} &= D_{xy1}
\end{align*}
\] (E-10)

where, for an isotropic inner layer,

\[
D_{xy1} = \frac{E_1 t_1^3}{24 (1 + \nu_1)}
\] (E-13)

In the definitions in Eqs. (E-10) to (E-12), it is implicit that

\[
\chi_{y1} \approx \chi_{y2} = \chi_y
\] (E-14)

in analogy to Eq. (E-3). Both Eqs. (E-3) and (E-14) are a result of no circumferential separation of layers. In addition, it should be noted that the bending stiffnesses of the layers in Eq. (E-16) are about the middle surface of the respective layers because of the lack of bonding between layers.

Eccentrically stiffened, bondless, layered shells with circumferential cracks can be treated by appending stiffeners to the orthotropic stiffness layer in the manner discussed at the end of Section A.2 of Appendix A.
REFERENCES

REFERENCES (Continued)

An exact solution is derived for the buckling of a circular cylindrical shell with multiple orthotropic layers and eccentric stiffeners under axial compression, lateral pressure, or any combination thereof. Classical stability theory (membrane prebuckled shape) is used for simply supported edge boundary conditions. The present theory enables the study of coupling between bending and extension due to the presence of different layers in the shell and to the presence of eccentric stiffeners. Previous approaches to stiffened multilayered shells are shown to be erratic in the prediction of buckling results due to neglect of coupling between bending and extension. (Unclassified Report)
Shells
Buckling
Stability
Layered Shells
Eccentric Stiffeners
Reference: Addendum and Errata for
Buckling of Circular Cylindrical Shells with
Multiple Orthotropic Layers and Eccentric Stiffeners
Aerospace Report No. TR-0158(83820-10)-I,
dated September 1967.

1. Delete Eq. (D-10) and the discussion in the surrounding paragraph on page 38 as the shell buckling analysis is unduly conservative if the deleted considerations are imposed. That is, an inner layer when constrained by an outer layer would be expected to buckle at a very much higher load than that of the unrestrained shell implied by the deleted considerations. The buckling load of the constrained shell would be expected to be higher than that determined by the model discussed in Appendix D. Thus, the model in Appendix D appears to be the most reasonable model which could be devised.

2. Replace Appendix E (pages 39 through 42) with the attached revised pages.

T. A. Bergstrahl, General Manager
Technology Division
APPENDIX E

TWO-LAYERED, BONDLESS SHELLS WITH CIRCUMFERENTIAL CRACKS IN THE OUTER LAYER

The objective is to define a mathematical model for a circular cylindrical shell which has two unbonded, orthotropic layers and circumferential cracks in the outer layer (see Figure E-1). The principal axes of orthotropy must coincide with the shell coordinate axes. The orthotropic stiffness layer feature of the computer program (see Section A.2 of Appendix A) is used in the calculations. Accordingly, certain stiffnesses and so-called Poisson's ratios must be defined, namely, quantities associated with extension (B_x, B_y, B_{xy}, and ν_{xy}) and those associated with bending (D_x, D_y, D_{xy}, and ν_{xy}).

Because of the circumferential cracks in the outer layer and the lack of bonds between layers, the axial force in the outer layer is zero, i.e.,

$$N_{x2} = B_{x2} (\epsilon_{x2} + \nu_{xy} B_{y2} \epsilon_{y2}) = 0 \quad (E-1)$$

The remaining segments of the outer layer are analogous to plane stress ring elements, the axial stiffness of which is finite. Accordingly, from Eq. (E-1),

$$\epsilon_{x2} = -\nu_{xy} B_{y2} \epsilon_{y2} \quad (E-2)$$

The force-strain relations can then be written as

$$N_x = B_{x1} (\epsilon_{x1} + \nu_{xy} B_{y1} \epsilon_{y1}) \quad (E-3)$$

$$N_y = B_{y1} (\epsilon_{y1} + \nu_{yx} B_{x1} \epsilon_{x1}) + B_{y2} (\epsilon_{y2} + \nu_{xy} B_{x2} \epsilon_{x2})$$

Moreover, because the layers do not separate circumferentially,

$$\epsilon_{y1} \equiv \epsilon_{y2} = \epsilon_{y} \quad (E-4)$$
Figure E-1. Cutaway View of a Two-Layered Circular Cylindrical Shell with (Exaggerated) Circumferential Cracks in the Outer Layer
whereupon, with Eq. (E-2), the force strain relations become

\[N_x = B_x (\varepsilon_x + \nu_{xyB} \varepsilon_y) \]
\[N_y = B_y (\varepsilon_y + \nu_{yxB} \varepsilon_x) \]

where

\[B_x = B_{x1} \]
\[B_y = B_{y1} + B_{y2} (1 - \nu_{yxB2} \nu_{xyB2}) \]
\[\varepsilon_x = \varepsilon_{x1} \]

and

\[\nu_{xyB} = \nu_{xyB1} \]
\[\nu_{yxB} = \nu_{yxB1} B_{y1}/B_y \]

Note that the reciprocal relations

\[\nu_{xyB} B_{x1} = \nu_{yxB} B_{y1} \]

are satisfied for the two-layered shell because they are satisfied for the inner layer, i.e.,

\[\nu_{xyB1} B_{x1} = \nu_{yxB1} B_{y1} \]

For an isotropic inner layer, Eq. (E-9) is an identity.

The inner layer carries all the in-plane shear because the outer layer is cracked. Thus,

\[B_{xy} = B_{xyl} \]

For an isotropic inner layer,

\[B_{xyl} = E_1 t_1/(2(1 + \nu_1)) \]
Reasoning parallel to that above leads to the following definitions for the quantities associated with bending:

\[D_x = D_{x1} \]
\[D_y = D_{y1} + D_{y2} \left(1 - v_y D_x \right) \]
\[D_{xy} = D_{xy1} \]

and

\[v_{xy} = v_{xy1} \]
\[v_y = v_{yy} \]
\[D_{xy1} = E_{11} t_1^3 / 24(1 + v_1) \]

In the definitions in Eqs. (E-12) and (E-13), it is implicit that

\[X_{y1} \approx X_{y2} = X_y \]

and

\[X_{x1} = X_x \]

in analogy to Eqs. (E-4) and (E-6). Both Eqs. (E-4) and (E-15) are a result of no circumferential separation of layers. In addition, it should be noted that the bending stiffnesses of the layers in Eq. (E-12) are about the middle surface of the respective layers because of the lack of bonding between layers.

Eccentrically stiffened, bondless, layered shells with circumferential cracks can be treated by appending stiffeners to the orthotropic stiffness layer in the manner discussed at the end of Section A.2 of Appendix A.