MINIMAX RESULTS FOR IFRA SCALE ALTERNATIVES

by

Kjell Doksum

This document has been approved for public release and sale; its distribution is unlimited.

OPERATIONS RESEARCH CENTER
COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA - BERKELEY
MINIMAX RESULTS FOR IFRA SCALE ALTERNATIVES

by

Kjell Doksum
Operations Research Center
University of California, Berkeley

August 1967

This research has been partially supported by the Office of Naval Research under Contracts Nonr-222(83) and Nonr-3656(18) with the University of California. Reproduction in whole or in part is permitted for any purpose of the United States Government.
ABSTRACT

Let $X_1, \ldots, X_m$ and $Y_1, \ldots, Y_n$ be two independent random samples from populations with continuous IFRA distributions $F(\cdot)$ and $F(\cdot/\Delta)$ respectively, and let $s_1, \ldots, s_n$ denote the ranks of the $Y$'s in the combined sample. For testing $H_0 : \Delta \leq 1$ vs. $H_1 : \Delta > 1$ it is shown that the error probabilities of each monotone rank test $\phi$ are bounded by the error probabilities for exponential alternatives, i.e.

if $K(t) = 1 - \exp(-t)$, $t > 0$, then $P(\text{reject } H_0 | F(\cdot), F(\cdot/\Delta)) \leq P(\text{reject } H_0 | K(\cdot), K(\cdot/\Delta))$ for $\Delta \leq 1$, and $P(\text{accept } H_0 | F(\cdot), F(\cdot/\Delta)) \leq P(\text{accept } H_0 | K(\cdot), K(\cdot/\Delta))$ for $\Delta > 1$.

These inequalities are used to derive tests that maximize the minimum power in the class of all rank tests. The results are extended to censored samples, sequential sampling, distributions ordered by skewness, the problem of combining independent test statistics, and the goodness of fit problem.
MINIMAX RESULTS FOR IFRA SCALE ALTERNATIVES

by

Kjell Doksum

1. INTRODUCTION AND SUMMARY

Recent results by Birnbaum, Esary and Marshall (1966), Barlow and Proschan (1967) and others suggest that the exponential models used by Epstein and Sobel (1953) and others for life testing problems should be extended to models in which the lifetimes have increasing failure rate average (IFRA) distributions.

In this paper, IFRA scale models are dealt with. For instance, consider two independent random samples $X_1, \ldots, X_m$ and $Y_1, \ldots, Y_n$ from populations with distributions $F(\cdot)$ and $F'(\cdot/\Delta)$ and respectively, where $F(\cdot)$ is a continuous, unknown, IFRA distribution. The null hypothesis $H_0 : \Delta \leq 1$ is to be tested against the alternative $H_1 : \Delta > 1$. Let $K(\cdot)$ be the exponential distribution function defined by $K(t) = 1 - \exp(-t), t \geq 0$. It is shown (Theorem 2.1) that for each monotone rank test $\phi$ and each $\Delta > 1$, the minimum power is attained at the exponential distribution, i.e. $\inf_{F(\cdot)} E[\phi|F(\cdot), F'(\cdot/\Delta)] = E[\phi|K(\cdot), K'(\cdot/\Delta)]$.

Moreover, it is shown that for each $\Delta < 1$, the probability of a type I error is maximized at the exponential distribution, i.e. $\sup_{F(\cdot)} E[\phi|F(\cdot), F'(\cdot/\Delta)] = E[\phi|K(\cdot), K'(\cdot/\Delta)]$.

Since $F(\cdot)$ is unknown, it is not possible to maximize the power $E[\phi|F(\cdot), F'(\cdot/\Delta)], \Delta > 1$. However, it is shown (Theorems 3.1, 3.2, 4.1, 4.2) that the tests that maximize the power for the exponential alternative $K'(\cdot/\Delta)$ actually maximize the minimum power $\inf_{F(\cdot)} E[\phi|F(\cdot), F'(\cdot/\Delta)]$. Thus these tests are minimax. They have been computed by Lehmann (1953), Savage (1956), and Rao, Savage and Sobel (1960). The results indicate that in the case of uncensored samples, one should use one of the statistics
where $N = m + n$ and $s_1, \ldots, s_n$ are the ordered ranks of the $Y$'s in the combined sample of $X$'s and $Y$'s. $L$ is minimax for $\Delta$ in an interval about two, and $S$ is minimax for $\Delta$ in an interval $(1, \Delta)$ to the right of one.

The minimax statistics in the case of censored samples are more complicated (see (4.1) and (4.2)) and one might use one of the approximations suggested by Gastwirth (1965) or Basu (1967) (see (4.3)).

Next, bounds on the error probabilities for sequential rank tests are given in Section 5, and inequalities showing that power is a decreasing function of "skewness to the right" are given in Section 6. Finally, extensions to the problem of combining independent tests statistics are given in Section 7.

Only finite sample size properties are dealt with. Asymptotic results are given in [8].
2. THE POWER OF MONOTONE TESTS

Let \( X_1, \ldots, X_m \) and \( Y_1, \ldots, Y_n \) be two independent random samples from populations with distribution functions \( F(\cdot) \) and \( G(\cdot) \). The problem first considered is that of testing the null hypothesis that the \( X \)'s are stochastically larger than or equal to the \( Y \)'s against the alternative that the \( X \)'s are stochastically smaller than the \( Y \)'s; i.e. one tests \( H_0: G(t) \geq F(t) \) for all \( t \), against \( H_1: G(t) \leq F(t) \) for all \( t \) and \( G(t) < F(t) \) for some \( t \), \( -\infty < t < \infty \).

For this problem, it is reasonable to consider tests \( \phi \) that are monotone in the sense that

\[
y_j \leq y_j \quad \text{for } j = 1, \ldots, n \implies \phi(x_1, \ldots, x_m; y_1, \ldots, y_n) \\
\leq \phi(x_1, \ldots, x_m; y_1', \ldots, y_n')
\]

(2.1)

Monotone tests are known (e.g. [12, p. 187] and [4]) to have monotone power, i.e. if \( \beta(\phi; F, G) = E[\phi(F, G)] \) denotes the power of \( \phi \), then \( G_1(\cdot) \leq G_2(\cdot) \) implies \( \beta(\phi; G_2, F) \leq \beta(\phi; G_1, F) \). In particular,

Lemma 2.1

If \( \phi \) is monotone, then

\[
G_1(t) \leq G_2(t) \leq F(t) \quad \text{for all } t \implies \\
\beta(\phi; F, F) \leq \beta(\phi; F, G_2) \leq \beta(\phi; F, G_1) \quad \text{and} \]

(2.2)

\[
F(t) \leq G_1(t) \leq G_2(t) \quad \text{for all } t \implies \\
\beta(\phi; F, G_2) \leq \beta(\phi; F, G_1) \leq \beta(\phi; F, F)
\]

(2.3)
This result shows that for monotone tests, the further the Y's are away from the X's stochastically, the smaller are the probabilities of type I and type II errors.

Next the scale model in which \( G(t) = F(t/A) \) for all \( t \) and some \( A > 0 \) will be considered. The problem is now to test "\( A \leq 1 \)" against "\( A > 1 \)."

For each test \( \phi \), let \( \beta(\phi; F; A) = \mathbb{E}[\phi|F(\cdot), F(\cdot/A)] \) denote the power of \( \phi \) for the scale alternative. \( F = F(\cdot) \) is said to be an IFRA distribution if \( F(0) = 0 \) and

\[
-\log[1 - F(t)]/t \quad \text{is non-decreasing in } t > 0.
\]

Similarly, \( F \) is a DFRA distribution if \( F(0) = 0 \) and \(-\log[1 - F(t)]/t \) is non-increasing in \( t > 0 \). Let \( s_1 < s_2 < \ldots < s_n \) denote the ordered ranks of \( Y_1, \ldots, Y_n \) in the combined sample and let rank tests be tests depending only on \( s_1, \ldots, s_n \).

It will now be shown that for monotone rank tests, the probabilities of type I and type II errors for IFRA distributions are at most what they are for the exponential distribution, i.e. if \( K(t) = 1 - \exp(-t), t \geq 0 \), then

**Theorem 2.1**

If \( \phi \) is a monotone rank test and \( F \) is a continuous IFRA distribution, then

\[
\text{for each } \Delta \geq 1, \quad \beta(\phi; K; \Delta) \leq \beta(\phi; F; \Delta), \quad \text{and}
\]

\[
\text{for each } 0 < \Delta \leq 1, \quad \beta(\phi; F; \Delta) \leq \beta(\phi; K; \Delta).
\]

**Proof:**

Since \( B(t) = -\log[1 - F(t)] \) is an increasing function and since the ranks \( s_1, \ldots, s_n \) are invariant under increasing transformations, then
\[ \phi(X_1, \ldots, X_n; Y_1, \ldots, Y_n) \]
\[ = \phi(X_1', \ldots, X_n'; Y_1', \ldots, Y_n') \]
where \( X_1' = B(X_1) \) and \( Y_j' = B(Y_j) \).

Next note that if one defines \( Y_j'' = -\Delta \log \left[ 1 - F\left( \frac{Y_j}{\Delta} \right) \right] \), then the definition of the IFRA property implies that for each \( \Delta \geq 1 \),
\[ \frac{Y_j}{Y_j''} = -\frac{1}{(Y_j''/\Delta)} \log[1 - F(Y_j/\Delta)] \leq -\frac{1}{Y_j''} \log[1 - F(Y_j)] = \frac{Y_j'}{Y_j''}. \]
That is, \( Y_j'' \leq Y_j' \), and since \( \phi \) is monotone, then
\[ \phi(X_1', \ldots, X_n'; Y_1'', \ldots, Y_n'') \]
\[ \leq \phi(X_1', \ldots, X_n'; Y_1', \ldots, Y_n') \]
Upon using (2.7), taking expectations in (2.9), and noting that \( X_1' \) has the distribution \( K(\cdot) \) while \( Y_j'' \) has the distribution \( K(\cdot/\Delta) \), one obtains (2.5). The inequalities are reversed for \( 0 < \Delta \leq 1 \), and (2.6) follows.

For DFRA distributions, the opposite result holds, i.e.

Lemma 2.2

If \( \phi \) is a monotone rank test and \( P \) is a continuous DFRA distribution, then
\[ \beta(\phi; F; \Delta) \leq \beta(\phi; K; \Delta), \text{ and} \]
\[ \beta(\phi; K; \Delta) \leq \beta(\phi; F; \Delta) \]
The proof is the same as that of Theorem 2.1 with the inequalities reversed.
Remark

Lemma 2.1 shows that if \( \phi \) is monotone, then \( \beta(\phi; F; \Delta) \) is an increasing function of \( \Delta > 0 \). Thus Theorem 2.1 implies that the power of monotone rank tests has the bound \( \beta(\phi; F; \Delta) \geq \beta(\phi; K; \Delta_1) \) for the IFRA scale alternative with \( \Delta \geq \Delta_1 \geq 1 \).
3. MINIMAX TESTS IN THE TWO-SAMPLE CASE

Although it is a desirable property for a test to have monotone power for the stochastic ordering alternative $H_1$ of Section 2, this alternative cannot be used to derive optimal tests. One would like to have tests that are most likely to reject for alternatives that indicate a definite distinction between the distributions of $X$ and $Y$. When $X$ and $Y$ are time measurements, then one such model is the scale model of Section 2 in which $Y$ has the same distribution as $AX$ for some $\Delta > 0$. Then \( \frac{E(Y) - E(X)}{E(X)} = \Delta - 1 \), and $(\Delta - 1)$ measures the relative difference of the mean times.

Note that if $N = m + n$ and if $s_j'$ is defined to be the number of $Y$'s greater than or equal to the $(N+1-j)$th order statistic in the combined sample, then $(s_1', \ldots, s_N')$ is equivalent to the ordered ranks $(s_1, \ldots, s_n)$. Next it will be shown that in the class of level $\alpha$ rank tests, the Lehmann level $\alpha$ test $\phi$ which rejects for small values of

\[
\sum_{j=1}^{N} \log \left( \frac{j - \frac{(\Delta-1)}{\Delta} s_j'}{s_j'} \right)
\]

maximizes the minimum power $\inf_F \beta(\phi;F;\Delta)$ for the IFRA scale model whenever $\Delta > 1$.

Here, a rank test $\phi$ is said to be of level $\alpha$ if $\beta(\phi;F;\Delta) = E(\phi|F,F) = \alpha$ for all continuous distribution functions $F$. As in Section 2, $\beta(\phi;F;\Delta) = E[\phi(F(\cdot), F(\cdot/\Delta))]$ denotes the power of $\phi$ for the scale alternative.

**Theorem 3.1**

The Lehmann test $\phi_\Delta$ is minimax for the IFRA scale alternative in the sense that for each scale parameter $\Delta > 1$ and for $F$ ranging over the class of continuous IFRA distributions,

\[
\inf_F \beta(\phi;F;\Delta) \leq \inf_F \beta(\phi_\Delta;F;\Delta)
\]
for each level $\alpha$ rank test $\phi$. Moreover, $\phi_\Delta$ is the unique minimax rank test in the sense that any other level $\alpha$ rank test satisfying (3.2) coincides with $\phi_\Delta$ a.e.

Proof:

Using the Neyman-Pearson Lemma, Lehmann (1953), Savage (1956), and Rao, Savage and Sobel (1960, Corollary 3.4) have essentially shown that $\phi_\Delta$ maximizes the power for the exponential scale model, i.e. for each $\Delta > 1$,

$$\beta(\phi; K; \Delta) \leq \beta(\phi_\Delta; K; \Delta)$$

for all level $\alpha$ rank tests $\phi$. On the other hand, the definition (3.1) shows that $\phi_\Delta$ is monotone, thus Theorem (2.1) implies that $\phi_\Delta$ attains its minimum power for the exponential scale model, i.e.

$$\inf_F \beta(F; \Delta) = \beta(\phi_\Delta; K; \Delta)$$

Since $K$ is an IFRA distribution, then

$$\inf_F \beta(F; \Delta) \leq \beta(\phi_\Delta; K; \Delta)$$

and (3.2) follows. Uniqueness follows also since if $\psi$ is a level $\alpha$ rank test satisfying (3.2), then the above shows that it must satisfy

$$\beta(\psi; K; \Delta) \leq \beta(\phi_\Delta; K; \Delta)$$

for all level $\alpha$ rank tests $\phi$. Since $\phi_\Delta$ also satisfies this (see (3.3)), then the uniqueness part of the Neyman-Pearson Lemma implies that $\psi = \phi_\Delta$ a.e.

In order to be able to use the minimax test $\phi_\Delta$, one must choose a value of $\Delta$. Savage (1956) suggests using the level $\alpha$ test $\phi_\beta$ that maximizes the power for the exponential model for $\Delta$ in a neighborhood $(1, \delta)$ to the right of one, i.e.
when the relative difference of the means of $X$ and $Y$ is close to zero (and positive). This test reject for large values of

$$
J_0(k) = \sum_{j=1}^{N} \frac{1}{j}.
$$

Note that $J_0(k)$ can be approximated by $-\log\left[1-k/(N+1)\right]$. It can now be shown that the Savage test $\Phi_s$ is minimax for $\Delta$ in an interval of the form $(1,6)$.

Theorem 3.2

The Savage test $\Phi_s$ is locally minimax for the IFRA scale alternative in the sense that there exists $\delta > 1$ such that for $F$ ranging over the class of continuous IFRA distributions,

$$
\inf_F B(\Phi; F; \Delta) \leq \inf_F B(\Phi_s; F; \Delta)
$$

for each level $\alpha$ rank test $\Phi$ and for all $\Delta$ in the interval $(1,6)$. Moreover, $\Phi_s$ is the unique locally minimax rank test in the sense that any other level $\alpha$ rank test satisfying (3.8) coincides with $\Phi_s$ a.e.

Proof:

Savage (1956) has essentially shown that there exists $\delta > 1$ such that

$$
B(\Phi; K; \Delta) \leq B(\Phi_s; K; \Delta)
$$

for all level $\alpha$ tests $\Phi$ and all $\Delta$ in $(1,6)$. Since $\Phi_s$ is monotone, the remainder of the proof is as the proof of Theorem 1.

Remarks

(i) The Savage test maximizes the minimum power when the relative difference of the means of $X$ and $Y$ $(\Delta-1)$ is close to zero. In most situations, it would be better to use the test that is optimal when $(\Delta-1)$ is in a neighborhood of some
fixed positive number $\lambda$ (say). Thus one would use the Lehmann test $\phi_\Delta$ defined by (3.1) with $\Delta = \lambda + 1$. For instance, if the relative difference of the means of $X$ and $Y$ is unity, then Lehmann (1953) has shown that $\phi_\Delta = \phi_2$ is equivalent to the test that rejects for small values of

$$
\sum_{j=1}^{n} \log \left(1 - \frac{j}{N+j}\right).
$$

(ii) The uniqueness parts of Theorem 3.1 and 3.2 can be extended as follows. A test $\phi$ is said to be distribution-free (DF) if $B(\phi;F,F) = E(\phi|(F,F))$ is independent of $F$ for $F$ continuous. Thus rank tests are DF. For $\Delta$ close to one, tests that are not DF have minimum power less than $\phi_\Delta$ and $\phi_8$, and they cannot be minimax. To see this, note that if $\phi$ is of level $\alpha$, a.e. continuous, and not DF, then there exists a continuous distribution $F_0$ such that

$$
E[\phi|F_0,F_0] < \alpha = \sup F E[\phi|(F,F)].
$$

Now for $\Delta$ close to one $B(\phi;F_0,F_0) < \alpha$ and $\phi$ is worse than $\phi_\Delta$ and $\phi_8$.

(iii) Lemma 2.1 shows that if $\phi$ is a monotone test, then $B(\phi;F;\Delta)$ is an increasing function of the scale parameter $\Delta > 0$. This implies that for fixed $\Delta_1 > 1$, $\phi_{\Delta_1}$ is doubly minimax for the scale alternative in the sense that for testing $H_0: \Delta \leq 1$ against $H_1: \Delta \geq \Delta_1$, it maximizes $\inf_F \left[ \inf_{\Delta \geq \Delta_1} B(\phi;F,\Delta) \right] = \inf_{\Delta \geq \Delta_1} \left[ \inf_F B(\phi;F,\Delta) \right]$. Here, $F$ ranges over the class of continuous IFRA distributions and only level $\alpha$ rank tests are considered. See the remark at the end of Section 2. Note that $(1, \Delta_1)$ is an indifference region.
The censored samples considered here arise typically as follows: \( m \) objects of one type and \( n \) objects of a second type are put on trial at the same time and one waits until a total of \( N^* < m + n = N \) of the objects have failed, where \( N^* \) is a fixed number. Moreover the experiment is conducted so that if one waited until all \( N = m + n \) objects failed, then the times to failure \( X_1, \ldots, X_m \) and \( Y_1, \ldots, Y_n \) would be two independent random samples.

Thus the situation is as in Sections 2 and 3 except that only the first \( N^* \) smallest order statistics in the combined sample are observed. Let \( m^* \) and \( n^* \) denote the total number of \( X \)'s and \( Y \)'s observed respectively. Since the unobserved \( X \)'s and \( Y \)'s are all larger than the observed ones, it is possible to compute the ordered ranks \( s_1 < \ldots < s_n^* \) of \( Y_1^*, \ldots, Y_n^* \) among the uncensored combined sample \( X_1, \ldots, X_m; Y_1, \ldots, Y_n \). Rao, Savage and Sobel (1960, Corollary 3.4) have computed the most powerful test \( \phi^* \) based on \( s_1^*, \ldots, s_n^* \) for exponential alternatives. This level \( \alpha \) test rejects \( H_0 \) for small values of

\[
\sum_{j=1}^{N^*} \log \left[ A(\Delta) + j - \frac{(\Delta-1)}{\Delta} s_j^* \right] + n^* \log \Delta
\]

(4.1)

where \( s_j^* \) is as in Section 3. For tests depending only on \( s_1^*, \ldots, s_n^* \) one obtains

Theorem 4.1

The test \( \phi^* \) is uniquely minimax for the IFRA scale alternative in the sense of Theorem 3.1.

Proof:

It is enough to show that \( \phi^* \) is monotone and then apply the proof of Theorem 3.1.
However, it is clear from the definition (4.1) that $\theta^*_s$ is monotone since $A(\Delta)$ and $n^*$ are decreasing functions of the $y$'s.

The locally most powerful test $\theta^*_s$ (Rao, Savage and Sobel (1966, Corollary 3.4)) for the exponential alternative $K(\cdot/\Delta)$ rejects for large values of

$$
\sum_{j=1}^{n^*} J_o^*(s_j) + (n-n^*) J_o^*(N^*) - n^*
$$

(4.2)

where $J_o^*(k) = \sum_{j=N-k+1}^{N} 1/(j + (m-m^*) + (n-n^*))$.

**Theorem 4.2**

The test $\theta^*_s$ is uniquely locally minimax for the IFRA scale alternative in the sense of Theorem 3.2.

**Proof:**

Again, it is enough to show that $\theta^*_s$ is monotone. Monotonicity follows at once from (4.2) and the inequality $J_o^*(s_j) \leq J_o^*(N^*)$, $j = 1, \ldots, n^*$.

**Remark**

The tests $\theta^*_o$ and $\theta^*_s$ are complicated and one may use the approximations suggested by Gastwirth (1965) and Basu (1967). The latter's paper contains tables of rejection points and power for the test based on the statistic

$$
\sum_{j=1}^{n} J_o^*(s_j) + (n-n^*) \sum_{j=N+1}^{N} J_o^*(j) - \frac{1}{2} (m+n)
$$

(4.3)

where as in Section 3, $J_o^*(k) = \sum_{j=N-k+1}^{N} 1/j$. 

5. SEQUENTIAL TESTS

Rao, Savage and Sobel (1960), Sobel (1966), Basu (1967) and others have pointed out that if one is measuring time variables, then all rank tests have interpretations as truncated (curtailed) sequential tests. Consider for instance the uncensored samples of Section 3. If the significance level \( \alpha \) is .10, if \( m = n = 5 \) and if the first four values observed are \( X \)'s, then one can stop the experiment since \( H_0 \) will be rejected no matter what the remainder of the observations turns out to be. Thus only four observations are needed. The maximum number of observations needed until a decision is reached (the truncation point) is ten. Tables for carrying out some truncated sequential rank tests and tables containing expected sample sizes and sample times are given by Sobel (1966) and Basu (1967).

The situation considered here is the one in which the observations at the \( n \)th stage form two independent random samples \( X_1, \ldots, X_n; Y_1, \ldots, Y_n \). A sequential test \( \phi \) is monotone if

\[
\phi(x_1, x_2, \ldots; y_1, y_2, \ldots) \leq \phi(x'_1, x'_2, \ldots; y'_1, y'_2, \ldots)
\]

(5.1)

\[ y_j \leq y'_j \text{ for } j = 1, 2, \ldots \quad \text{implies}
\]

From the arguments of the proof of Theorem 2.1, it follows that for the IFRA scale model, the error probabilities of each monotone sequential rank test is bounded by the error probability for the exponential alternative \( K(t/\Delta) = 1 - \exp(-t/\Delta) \).

Here rank tests are tests which at the \( n \)th stage depend on the ordered ranks \( s_1, \ldots, s_n \) of the \( Y \)'s in the combined sample \( X_1, \ldots, X_n; Y_1, \ldots, Y_n \). As before, \( s_j \) is the number of \( Y \)'s greater than or equal to the \((N+1-j)\)th order statistic in the combined sample. Thus \((s'_1, \ldots, s'_{2n})\) is equivalent to \((s_1, \ldots, s_n)\). \( \beta_\phi(\delta; F; \Delta) \) denotes the power of \( \phi \) when the \( X \)'s and \( Y \)'s have distributions \( F(\cdot) \) and \( F(\cdot/\Delta) \) respectively.
Theorem 5.1

For each monotone sequential rank test $\phi$ and each continuous IFRA distribution $F$

\begin{align*}
\Delta \leq 1 & \text{ implies } \beta_s(\phi; F; \Delta) \leq \beta_s(\phi; K; \Delta) \quad \text{and}, \\
\Delta \geq 1 & \text{ implies } \beta_s(\phi; F; \Delta) \geq \beta_s(\phi; K; \Delta)
\end{align*}

Proof:

Same as the proof of Theorem 2.1.

The sequential probability ratio test $\hat{\phi} = \hat{\phi}(a,b)$ based on ranks for the exponential alternative $K(\cdot/\Delta)$ has been studied by Parent (1965), Savage and Sethuraman (1966) and others. For testing $\Delta = 1$ against $\Delta = \Delta_1 > 1$, it can be written

Take two more observations $(X_{n+1}, Y_{n+1})$ if

\begin{align*}
\log(a) & \leq L_n < \log(b), \\
& \text{accept } \mathcal{H}_0 \text{ if } L_n < \log(a), \\
& \text{reject } \mathcal{H}_0 \text{ if } L_n > \log(b), \\
& n = 1,2, \ldots
\end{align*}

where $0 < a < 1 < b$ are constants independent of $n$ and

\begin{align*}
L_n = & \log((2n)! - n \log \Delta_1) - n \log \Delta_1 - \sum_{j=1}^{N} \log \left[ j - \frac{(\Delta_1 - 1)}{\Delta_1} s_j \right]
\end{align*}

It is clear that this test is monotone, thus the bounds on the error probabilities given in Theorem 5.1 apply. Let $\alpha_0$ and $\alpha_1$ be desired error probabilities for $\Delta = 1$ and $\Delta = \Delta_1$ respectively, and let $a$ and $b$ be such that the test $\hat{\phi}(a,b)$ achieve these bounds for the exponential distribution, i.e.

$\beta_s(\hat{\phi}; K; 1) = \alpha_0$ and $\beta_s(\hat{\phi}; K; \Delta_1) = \alpha_1$. Then Theorem 5.1 and the sequential version
of Lemma 2.1 implies that $\alpha_0$ and $\alpha_1$ are bounds on the error probabilities for all IFRA distributions for $\Delta \leq 1$ and $\Delta \geq \Delta_1$ respectively; i.e.

$$\beta_{\Delta}(-\hat{\phi}; F; \Delta) \leq \alpha_0 \quad \text{for} \quad \Delta \leq 1, \text{ and}$$

$$\beta_{\Delta}(\hat{\phi}; F; \Delta) \geq 1 - \alpha_1 \quad \text{for} \quad \Delta \geq \Delta_1$$

(5.6)

for all continuous IFRA distributions $F$.

Note that the test $\hat{\phi}$ is easy to carry out as $a$ and $b$ can be closely approximated as follows

$$a = \frac{a_1}{1 - \alpha_0} \quad \text{and} \quad b = \frac{1 - \alpha_1}{\alpha_0}$$

(5.7)

Since $\hat{\phi}$ is not known to be optimal for the exponential alternative $K(\cdot/\Delta)$, it is not possible to prove any minimax optimality properties of this test.
6. GENERALIZATIONS, SKEWNESS

Results of the previous sections hold if the class of continuous IFRA distributions is replaced by any class of continuous distributions that is contained in this class and contains the exponential distribution; e.g. the class of continuous IFR (increasing failure rate) distributions.

A distribution \( F(\cdot) \) is said to be IFR if \( K^{-1}[F(\cdot)] \) is convex, where

\[ K(t) = 1 - \exp(-t), \quad t \geq 0. \]

Extending this, van Zwet (1964) calls a distribution \( F(\cdot) \) less skew (to the right) than \( H(\cdot) \) if \( H^{-1}[F(\cdot)] \) is convex, and he writes \( F < H \). Thus a distribution is IFR if it is less skew than the exponential distribution \( K(\cdot) \). Carrying these ideas further, we define a distribution \( F(\cdot) \) to be weakly less skew (to the right) than \( H \) if \( H^{-1}[F(\cdot)] \) is starshaped \( (H^{-1}[F(t)]/t \) is non-decreasing in \( t > 0 \)), and write \( F \leq H \). Thus a distribution is IFRA if it is weakly less skew than the exponential distribution \( K(\cdot) \). One can now define \( F \) to be more IFRA than \( H \) if \( F \leq H \). It is assumed throughout this section that all the distributions satisfy \( F(0) = 0 \) and have inverses on the interval \((0,\infty)\). From the properties of starshaped and convex functions it follows that

**Lemma 6.1**

1. If \( F \) is weakly less skew than \( H \), and \( H \) is weakly less skew than \( L \), then \( F \) is weakly less skew than \( L \).
2. If \( F \) is less skew than \( H \), then \( F \) is weakly less skew than \( H \).

Next one shows that for scale alternatives, the error probabilities of each monotone rank test \( \phi \) are decreasing functions of weak skewness (to the right), or equivalently, increasing functions of the IFRA property.

**Theorem 6.1**

If \( \phi \) is a monotone two-sample rank test and if \( F \) and \( H \) are continuous
distributions such that $F$ is weakly less skew than $H$, then

(1) for each $\Delta \leq 1$, $\beta(\Delta; F; \Delta) \leq \beta(\Delta; H; \Delta)$

(2) for each $\Delta \geq 1$, $\beta(\Delta; H; \Delta) \leq \beta(\Delta; F; \Delta)$

Proof:

The proof is the same as for Theorem 2.1 with $H^{-1}[F(\cdot)]$ replacing $-\log[1-F(\cdot)]$.

One can now proceed as in Section 3 and show that the test that maximizes the power for the alternative $H(\cdot; \Delta)$ maximizes the minimum power $\inf_F \beta(\Delta; F; \Delta)$ over the class of $F$ that are more IFRA than $H$. Since the rank tests that are optimal for the Weibull distribution

$$\hat{H}(t) = 1 - \exp(-at^b), \ a, b > 0; \ t > 0$$

coincides with the optimal tests for the exponential distribution (Lehmann (1953)), it follows that the tests in Sections 3 and 4 are also minimax for the class of $F$ that are more IFRA than $\hat{H}$. Note that $-\log[1-\hat{H}(t)]/t = at^{b-1}$, thus $\hat{H}$ is IFRA for $b \geq 1$ and DFRA for $0 < b < 1$. 
7. COMBINATION OF INDEPENDENT TEST STATISTICS. GOODNESS OF FIT

Let $T_1, \ldots, T_n$ be independent and such that $T_i$ has the continuous distribution function $G_i(\cdot)$. Let $F_1(\cdot), \ldots, F_n(\cdot)$ be $n$ given continuous distribution functions, then the problem is to test $H_0: G_i(\cdot) = F_i(\cdot), i = 1, \ldots, n,$ against $H_1: F_i(\cdot) \geq G_i(\cdot), i = 1, \ldots, n,$ with strict inequality at least once. In the goodness of fit problem, it is usually assumed that $F_1 = \ldots = F_n = F$ and $G_1 = \ldots = G_n = G$. The goodness of fit problem considered is not the one in which the "shape" of the distribution is of interest, but where one is interested in testing whether a new procedure leads to stochastically larger variables $T_1, \ldots, T_n$ than a standard procedure in which the variables have known distributions $F_1, \ldots, F_n$. For references to the "combination of independent test statistics" problem, see van Zwet and Oosterhoff (1967).

A test $\phi$ is called monotone if

$$t'_i > t_i, \ i = 1, \ldots, n,$$ implies

$$\phi(t_1, \ldots, t_n) \leq \phi(t'_1, \ldots, t'_n)$$

and it is called strongly distribution-free (SDF) if its distribution depends on $(F_i, G_i)$ only through $G_i F^{-1}_i(\cdot)$, where $G_i F^{-1}_i(t) = P(T_i \leq t|G_i)$. Let $\beta(\phi; F; A)$ denote the power of the test $\phi$ for the IFRA scale alternative in which $G_i(\cdot) = F_i(\cdot/A_i)$, and $F(\cdot)$ is an IFRA distribution. Let $K_1(x) = 1 - \exp(-x), x \geq 0,$ and let $\tilde{A} \leq 1 (\tilde{A} \geq 1)$ mean $A_i \leq 1 (A_i \geq 1), i = 1, \ldots, n,$ then

Theorem 7.1

If $\phi$ is a monotone strongly distribution-free test, then

(i) for each $\tilde{A} \leq 1$, $\beta(\phi; F; \tilde{A}) \leq \beta(\phi; K; \tilde{A}),$ and

(ii) for each $\tilde{A} \geq 1$, $\beta(\phi; K; \tilde{A}) \leq \beta(\phi; F; \tilde{A})$
Proof:

Set \( T'_1 = -\log[1 - F_1(T_1)] \). Then the SDF property implies that \( \beta(\cdot; F; \alpha) \) equals the power for testing \( H^*; \text{"T'} has the exponential distribution } K\) vs \( H'_1; \text{"T'} has the distribution } G_1^*(\cdot) = F_1(F_1^{-1}[K(\cdot)]/\alpha)\). Using the transformation \( T'_1 = -\Delta \log[1 - F(T_1/\alpha)] \), the IFRA property, and the arguments of Section 2, one finds that \( G_1^*(\cdot) \leq K(\cdot/\Delta) \) whenever \( \Delta \geq 1, i = 1, \ldots, n \). Since monotone SDF tests have monotone power (Chapman (1958)), (ii), follows. The proof for \( \Delta < 1, i = 1, \ldots, n \) is similar.

Fisher's test \( \phi_F \) which rejects for large values of the statistic

\[
(7.2) \quad - \sum_{i=1}^{n} \log[1 - F_1(T_1)]
\]

is strongly distribution-free and monotone. It is also uniformly most powerful for the Lehmann alternatives \( G_1(t) = 1 - [1 - F_1(t)]^{1/\theta}, \theta > 1 \) (which includes the exponential and Weibull scale alternatives). It will next be shown that it is minimax for the scale model when \( \Delta_1 = \ldots = \Delta_n \).

Theorem 7.2

(1) Fisher's test \( \phi_F \) is minimax for the IFRA scale alternative, i.e., if each \( F_1 \) ranges over the class of all continuous IFRA distributions, then whenever \( \Delta_1 = \ldots = \Delta_n > 1 \),

\[
(7.3) \quad \inf \beta(\cdot; F; \Delta) \leq \inf \beta(\cdot; F; \Delta)
\]

for all level \( \alpha \) tests \( \phi \).

(11) If \( \phi' \) is another level \( \alpha \) SDF test satisfying (7.3), then \( \phi' = \phi_F \) a.e.

Proof:

Theorem 7.1 implies that

\[
(7.4) \quad \inf \beta(\cdot; F; \Delta) = \beta(\cdot; K; \tilde{\alpha})
\]
Using the Neyman-Pearson Lemma, one finds that

\[(7.5) \quad \beta(\phi; K; i) \leq \beta(\phi_F; K; \Delta)\]

for all \( \phi \) such that \( \beta(\phi; K; i) \leq \alpha \). Since

\[(7.6) \quad \inf \beta(\phi; F; \Delta) \leq \beta(\phi; K; \Delta),\]

the result (7.3) follows. The uniqueness part follows from the uniqueness part of the Neyman-Pearson Lemma and the structure (d) property of SDF statistics derived by Birnbaum and Rubin (1954) and Bell (1960). The structure (d) result implies that all SDF statistics are functions of \( T_1, \ldots, T_n \) only through \( F_1(T_1), \ldots, F_n(T_n) \).

**Remarks**

(i) Note that the minimax property is uniform in \( \Delta = \Delta_1 = \ldots = \Delta_n \) and that it holds in the class of all tests satisfying \( \beta(\phi; K; i) \leq \alpha \) (not just the class of SDF level \( \alpha \) tests).

(ii) If the \( \Delta \)'s are not all equal, then the minimax statistic is

\[- \sum_{i=1}^{n} \left( (\Delta_i - 1)/\Delta_i \right) \log [1 - F_i(T_i)] \]

A sequential test is monotone if \( t_i' \geq t_i, \; i = 1, 2, \ldots, \) implies \( \phi(t_1, t_2, \ldots) \leq \phi(t_1', t_2', \ldots) \). SDF tests are defined as before. Theorem 7.1 holds also for monotone SDF sequential tests. One such test is the test \( \phi_{\Delta_1} \) which at the nth stage rejects \( H_0 \) if \( T_F > \log b \), accepts \( H_0 \) if \( T_F < \log a \), and continuous sampling of \( \log a \leq T_F < \log b \), where

\[(7.7) \quad T_F = -\sum_{i=1}^{n} \left( (\Delta_i - 1)/\Delta_i \right) \log [1 - F_i(T_i)]\]

\( -n \log \Delta_i, \; \Delta_i > 1, \; a < 1 < b \).
This is the sequential probability ratio test for the Lehmann alternatives, moreover, it coincides with the sequential probability ratio test for exponential scale alternatives. Let \( E[\cdot|\bar{F},\Delta] \) denote the expected value when \( F_1(\cdot), F_2(\cdot), \ldots \) are the \( H_0 \) distributions of \( T_1, T_2, \ldots \) and \( F_1(\cdot/\Delta), F_2(\cdot/\Delta), \ldots \) are the \( H_1 \) distributions. If \( N \) denotes the number of stages before termination, then the optimality property of sequential probability ratio tests and the above implies that

**Theorem 7.3**

If \( a \) and \( b \) are such that \( E[\hat{\Delta}_1|\bar{K},1] = a \) and \( E[\hat{\Delta}_1|\bar{K},\Delta_1] = b \), then \( \hat{\phi}_{\Delta_1} \) minimizes \( E[N|\bar{K},1] \) and \( E[N|\bar{K},\Delta_1] \) in the class of all tests \( \hat{\phi} \) satisfying

\[
E[\hat{\phi}|\bar{K},1] \leq a, \ E[\hat{\phi}|\bar{K},\Delta_1] \geq b, \ E[N|\bar{K},1] < \infty, \text{ and } E[N|\bar{K},\Delta_1] < \infty.
\]

Moreover, when \( F_1(\cdot), F_2(\cdot), \ldots \) are continuous IFRA distributions, then \( E[\hat{\phi}_{\Delta_1}|\bar{F},\Delta] \leq a \) for each \( \Delta \leq 1 \), and \( E[\hat{\phi}_{\Delta_1}|\bar{F},\Delta] \geq b \) for each \( \Delta \geq \Delta_1 \).
REFERENCES


FOOTNOTE

This research has been partially supported by the Office of Naval Research under Contract Nonr-222(83) with the University of California. Reproduction in whole or in part is permitted for any purpose of the United States Government.
MINIMAX RESULTS FOR IFRA SCALE ALTERNATIVES

REPORT TITLE

KJELL DOKSUM

AUTHORS

August 1967

REPORT DATE

Contract or Grant No. Nonr-222(83)

CONTRACT OR GRANT NO.

Project No. NR 047 033

PROJECT NO.

Research Project No.: RR 003 07 01

nn PROJECT NO.

TOTAL NO. OF PAGES 24

TOTAL NO. OF PAGES

NO. OF REFS 19

NO. OF REFS

ORC 67-31

ORIGINATOR'S REPORT NUMBER(S)

OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.

Also supported by the Office of Naval Research under Contract Nonr-3656(18).

SUPPORTING MILITARY ACTIVITY

MATHEMATICAL SCIENCE DIVISION

SEE ABSTRACT
### INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity, or other organization issuing the report.

2. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, and middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

8. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

9a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

9b, c, & d. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9e. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9f. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

   (1) "Qualified requesters may obtain copies of this report from DDC."

   (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

   (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through "

   (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through "

   (5) "All distribution of this report is controlled. Qualified DDC users shall request through "

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

---

**KEY WORDS**

<table>
<thead>
<tr>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimax</td>
<td>Tests</td>
<td>IFRA</td>
</tr>
</tbody>
</table>

Unclassified  
Security Classification