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ABS1RACT

Plane and spherical waves in a Voigt medium were
investigated to compare the calculated wave forms with
observed waves generated by large contained HE and NE
explosions. Interest is centered on wave forms in what
is usually considered to be the elastic region around
an explosion. Plane waves do not apply at this distance
because of geometry.

The plane Voigt wave equation has been previously
solved for particle velocity, stress and strain for a
unit impulse forcing function. However, solutions for
the dispiacement for a unit impulse and for the four
wave parameters for a unit step and a decay exponential
involve multipliers in the operational form for which no
transform pairs have been published. A method of solu-
tion is presented which utilizes a Heaviside expansion
of the multipliers in the transform plane which results
in products of two infinite series which may be inverted
term by term. These may be further resolved as single
series with polynomial coefficients for purposes of com-
putation.

A similar method of solution of Voigt spherical
waves was found for unit impulse, unit step and decay
exponential forcing functions for displacement, parti-le
velocity, strain and radial stress. Appropriate recur-
sion formulas make them readily adaptable to computer
evaluation. Oscillations cccur for a spherical wave
whereas for a plane wave they do not.

Calculations were performed for particle velocity
for three values of the Voigt viscoelastic parameter uw,

and comparisons made with pulse forms for waves in granite,

tuff and salt.
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A Comparison of
Plane and Spherical Transient Voigt Waves
With Explosion Generated Waves in Rock Masses

Introduction

The Voigt model yields responses to transient forc-
ing functions which are different from the standard elas-
tic model, and earlier (Ref. 1) mathematical analyses of
plane waves in Voigt materials indicated pulse lengthen-
ing and attenuation somewhat similar to that observed in
waves generated by large explosions in rock.

While the theory of elasticity provides a good first
approximation to many problems in rock mechanics, in the
solution to close-in wave mechanics in rock it does not
give an accurate descripticn of the behavior of peak
stress, strain, displacement, velocity or pulse length.
The Voigt viscoelastic model is among the many physical
analogs which have been investigated in an attempt to
find valid mathematical represcntations of wave para-
meters in rock. The only solutions for a plane Voigt
wave in the literature appears to be those of Collins
(Ref. 1) and Hanin (Ref. 2) in which they solved for the
particle velocity in response to a unit impulse.

Lee (Ref. 3) solved the spherical Voigt equation
for stress for a continuous harmonic forcing function.
However, in solving for response to transient loading
he introduced a ''constant loss factor" into the trans-
form which changed the problem from a Veigt model to
essentially a solid friction model.

The objectives cf this investigation are to arvive
at and present solutions to both the plane and spherical
wave equations for paramcters of interest, i.c., particle
velocity, strain, displacement and stress, and to compare
the calculated results with these obtained in observa-
tions of waves in rochs from large HE and nuclear cxplo-
sions.

There have been many approaches made to the solu-
tion of transient Voigt waves, but apparently the first




successful solution was made by Collins (Ref. 1) for
particle velocity for a unit impulse. Clark and Rupe:t
(Ref. 4 and 5) obtained stress and strain by Collins'
method and the displacement by numerical integration.
The method employed by Collins was to normalize and
shift the Laplace transform solution for the Voigt

wave equation, expand the positive part of a resulting
exponential in a series, and obtain a term by term in-
version expressed as negative order parabolic cylinder

feictions multiplied by a factorial, an exponential and
a power term,

Operational solutions for the displacement for a
unit impulse and for forcing functions such as a unit
step or a decay exponential require that the transform
solution also contain an appropriate multiplier. No

transform pairs for the resulting expressions exist in
published tables.

The transformed =aultipliers may, hewever, be ex-
pressed as lleaviside expansiors, yielding a transformed
solution in the s-plane composed of the product of two
infinite series. Thkese may be inverted term by term
into th~ time plane, expressed as a product of two
seriec in the time variable and by proper arrangement
utilized for computer evaluation. Some of the double
series may be expressed as Cauchy products, which ¢lari-
fies the mathematical operations and assists materially
In computer programming.

Voigt Model: The basic Voigt model for an acvolotropic
sol1d was conceived for a substance in which it wa.
assumed that the stress components conld pe expressed
as the sum of two scts of terms, the first being pro-
portienal to the strains and the second pruvortional to
the rate of change of the strains. {Rcf. 0) For an
acolotropic solid the stress equations ar: of the form
{Ref. ™)
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where Syr Ogs Tyy Ty and Txy are of similar form with
appropriate cij and dij rultiplying constants. If energy

is to be an univalued function then ¢ = C and d =
Ts ST TS
dsr'

This reduces the number of independent constants
from 72 to 42. In an isotropic medium there are only
three elastic constants and three viscoelastic constants.
Thus, '

€12 = €13 = €21 = €31 = €32 = A
diz = d13 = dz) = d3y = d3; = A'

Cyy = €55 = Cgp = U

(2)

C1] = €22 = €37 = A+2u

dy; = dap = d3z = A'+2u!
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Thus, the stresses for a Voigt solid become

o, = {(A+x! %;J A+ 2(n+n' 2 €

3 9
- | I | I,
0)_ = (.\4.\ Et) A+ 2(u+u at) Ey
3\ ( ]
- v 2 IR AN T
o, = (MA Yy, A+ 2{u+y at) €,
(3)
o= (el y
yz at’ 'yz
- 1_3__]
Tz © [u+u at/ Yxz

-
t

3
xy = (u+u'3;] Yy

where

b=e€ + £y te, {dilatation)

Thus, the wave equation may be obtained for a Voigt

solid by substituting (a+r' %f) and (y+y' %f) for .
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Plane Waves
The basic wave equation for a plane Voigt wave may
be derived in different ways and in terms of alternative
parameters:
(141 a)azz 1 3% (4)

where z represents either displacement, velocity, stress
or strain.

Where,

wo = Viscoelastic or transition frequency factor
¢ = bar velocity = E/op

x = distance

t = time

Collins, (Ref. 1), however, derived the operational form
of the equation directly for particle velocity utilizing
the force acceleration relation

20 by )

x - P ot ¢
in which particle velocity is

Ju
V= (6)

and the relationship of strain to displacement
£ = o= (7

together with the following. The Voigt relationship
between stress and strain 1is

c=E(e+-——-——) (8)




which in operational form is
o = E{l+s/we)e (9

Fguation (5) in operational form becomes

a0 -
— 7 0
3 pPSYV (1 )

where the bar indicates that the Laplace transform : R
has been taken and (5) is

U= sv (11)

Tt et

For a delta function input the boundary condition at
t>o is

o = - P'6(1) (12)

which is unity in operational form, i.e.,

1 g = -P! (13)

From (10) and (11)

90 2

> psu (14)
or differentiating
25 I -
9_3_ = psz _:i!:‘, = 952 € (15)
ax? 3x
T
13
W ¥ o - - '
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which, with (9) becomes

3% _ '} s? =
3 T E (5/urD) C (16)

The solution to this, after satisfying the boundary
conditions is

o = eXp['XS/C(S/wo*l)i] 0%))]

Differentiating once with respect to x and using (10)
gives the velocity equation

Al exp[—xs/c(s/wﬁl)i] (18)
pc VS/wo+1

The notation of Collins and van der Pol is used
herein for the symbol connecting a function to its
transform:

v(x,t) = V(x,s) 19)

The transform expression in 7)) is then "normalized"
by substituting wes for w,, or muitiplying s by wo. This
is equivalent to dividing the time and the velocity func-
tion by we, thus

H
1 = P! exp[-xwos/c(s+1)"] (20)
Do v(x,t/we) ] oo v/;:l_

The shift theorem is then used to place the transform

4
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solution in a form which can be inverted by use of tabu-
lated transform pairs, i.e.,

V(X,t/wg)et .ﬁ. E'_U_)_o exp[-x(s-l)/si] (21)
pc /s

where X = 2oX

The second half of the exponential is then expanded:

n! n/2 (22)

® n
RO ;X 1
n=o )

which gives

te, Plue v xn —&L——le -x/s
v(x,t/wo)e ™ be ngo HT'sn/Z*l/Z (23)

By use of formula (9) page 246 of Ref.(8)equation (23)
may be inverted term by term to give

, t Pw xnzn/ztn/Z—I/Z
vi{x,t/wo)e = =) exp(-X %/8t)
PC =0 nt /7 (24)
X
% (73)

or, rearranging and substituting woet for t and letting
mot=T

CPlue oo v X" on/2 (n-1)/2, (X
v(x,t) mexp( r-X</8T) nzo -~ 2%t D-n(,rﬁ‘)

(25)

15




Similarly, from equation (24)

G(X,t/mo)et'=i- P'we exp[-X(s-l)/si] (26)
or
t- T " e-x‘/f
o(x,t/wede” = - P'uo | oF SV (27)
n=o0 s

whose solution is

-Plue ¥ X' (n-1)/2.n/2-1 X
o(x,t) = =2 ngo X222y () (28)

The displacement is the integral of the velocity with
respect to time, which is obtained by multiplying equa-
tion (11) by 1/s. This operation is valid only for zero
displacement at t = o. Hence

}
« P' exp[-xs/c(s/wo+1)*]
u(x,t) s oy (29)

Normalizing and shifting gives

P exp[-X(s-l)/s“
.pc wo(s-l)/;

1 t
o u(x,t/uwele (30)




In this case 1/(s-1} must be expanded and the final
operational solution is a double series, i.e.,

L1y L
s-1 s & m (31)
m=0 S
which yields
© w® n
t.e P! X ex(—x@ﬁ
wtrwdete L1 o Smmar (32)
m=0 m=0 S
which may be inverted term by term to give
P
- @ n
! X n/2+m+1..n/2+m=1/2
u(x,t) = e exp(-T-X2/8T) § I 7 2 T
pcrm m=0 n=o
(33)

)] X
en-2m-2
' n-2m-2 ()

The double series is readily amenable to evaluation
by computer methods for small values of X and T.

The expression for strain is found by differentiating
equation (29) with respect to x, which gives

. P exp[-xs/c(s/wetl) )
) 2 e R Tae D)

(34)

R
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which yields
1 t .ot P T X" exp(-X/5)
oo e e e 5 Z = ——gi———sn T8 (35)

Equation (35) may be inverted term by term to give

pc2/n

,(n+1)/2.n/2,

S X
£(x,t) = exp(-T-X2/8t) 1 =T
n=o

-n- 1(.*/__) (36)
2T

The solutions for an exponential decay input can be
obtained by multiplying the transform for each parti-
cular parameter before normalizing and shifting by
F,/(s+8), wlich is the transfovm of P(t) = Pyexp(-8t).
This is illustrated by the derivation of the velocity
equation:

Po 1 . X 3
vix,t) = c (—5_‘-55. ex‘p(--c— s/wool) (37)

Upon sh fting and normalizing this becomes

Lovix, by etnale ! - exp(-x(s-1)//5) (38)
we we pc wc[s-(l-;—)] Vs
Let

[s-(+ 2] = (s-a) (39)

18

e e e

PRIy




and expanding the positive exponential as previously
done, and letting

T O (40)

Lotgetule 1] @ ] X epChs (41)
w *wo Tpcwe TS Y s L n! n/2:1/2

m=0 n=o s
which may be rewritten
1——v(x E__)et‘... P, E E Z(f_ oM X (-X'fs—) (42)
wo ’ we pCwe 20 2o n! n/2+m+1/2

The inverse is found term by term to be

® « n
. Y \ 3 x
vixt) = 2 exp(-T-X7/8T) [ ] nt
ocvn m=0 n=o
(43)
amznjza»m#l,rn/.f*m’l/:l‘ L X
-n-am-C( G*J
¥l

which can be evaluated by computer methods.

19




The other parameters are determined in a like
manner each resulving in a double series. Tne values

for a unit step input can be readily determined by
letting B = 0 which makes « = 1.

Spherical Wave

Collins (Ref. 1) presented a Laplace transform
solution for particle velocity in terms of the s-variable
for a spherical Voigt wave with a unit impulse, 5(t),
input, but did not invert it.

The spherical Voigt wave equation may be developed
in more than one way (Ref. 4), but is probably in its
most tractable form when expressed in terms of the dis-
placement potential, ¢:

2 2
(]+-1_.. i_) 3_1?;=.1__3_r_9; (44)
Wo at arz CZ atz
The boundary condition pressure equation for a
cavity of radius r, is:
2 > t
[(AoZu) +« (Ate2pY) -;-‘ 3’y + M?E = g (t) (45)
o ar? r ir r
No experimental values are available for the visco-
elastic moduli, hence, for purposes of computation
it 1s assumed that a1 = , and M'= ', although the
following methods are applicable without this assump-
tion.
Equation (45) then reduces to
13 et 23
wl e — 9 (3224270 0 (e
{ w WOUET T 9r) et {40)

For a Dirac delta forcing function, P(t) » P's(t),




the operational sclution of equation (44) becomes

{'ro exp[-s(r-re)/c(s/we+1)?]

Tus (S/do’l)[ 3s2 4s r ] (47)

r¢(r)t).:'_

+ +
c?(s/wo*l)  Toc(S/we+tl)}  To?

However, interest is centered ~n parameters such as
displacement, particle velocity, stress and strain.
The displacement is

ag
us st (48)
or
. P're expj;s(r-ro)/C(S/we'l)?l 1 s
ulr,t) = u(s/wetl) [B] [;‘[’ rc(s/wetl): ] (39)
where

32, is C 3 .
CQTS/".J.’I) TeC(S/wevl)2 et (50)

(B] = [

Let s = .o (normalize) and then s = s-1(shift),
and equation {(49) becomes

.o SReReR/VS) L1 se (5-1)
1~ u(‘.“.t;’a.)ft - 0L e!]:‘( ALIALY, f— s = sr-- ~} (51
we ) vwe® TA]) r ress

P
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where

5
a ac 3/2 4¢? 4c s
Al = [s- + s + [ -2s - + 1] 52
(Al =1 3rotto 3ro2wol ) 3Touwe (52)
and R = woe(r~Te)/C (53)

The fraction inveolving the quadratic in s may be
expanded as follows:

it~ 8
o
[

1 _
1/[A] = ) YE] (54)

m=0 s
where the coefficients b_ are functions of the coeffic-

ients of the quadratic. ° The positive exponential may
likewise be expanded to yield:

RY 1

exp R/‘/; = (s)n/z (55)

I o~ 8
=

Substituting in (51} and separating into appropriate
terms gives the operational solution in terms of double
infinite series:

) t . P'roc? 1 i Rn exp(-R/s
u(r,t/ue)e il mgo nzo = b _‘P.L__).sn/bm/m
(56)
R exp(-R/s) RY exp(-RYS)
[ mzo ngo nl bm Sn/2+m/2+3 2 -m=g £=o n! bm sn/2+m/2+5/2 1t

n




Equation (56) may then be inverted term by term (Ref. 7)
to yield the solution in the time plane.

The velocity for a unit impulse may be found by
differentiating the displacement with respect to t, or
multiplying (49) by s. The strain is determined by
differentiating the displacement equation (49) with re-
spect to r, and the stress by substituting into equation
(46). All of these lead to solutions consisting of douhle
series similar to equation (56), which may be invexted
and evaluated by computer methods.

For example:

_ Pirec?

N/2+m/24572
ulr,t} = — 22 mi2e)
1]

exp(—‘!‘—RZ/ST){}—Z-
r

Tn/z#m/2+2D , R we

[ 2 RY . n/2em/242
-n‘m-S\’E * I-_E. Z b " m/ 2+
)

° (57)

J2+m/2+3/2 , T R n/2+m/2+3
v D»-n-m-A‘/—) B ) at On 2
2T m=0 n=

/2+m/2+5/2 ]
™ D_n_m_(,(?’z?)] i

(R iiaiihl st il ool i L b

where
T=mot
D imez Weber functions of negative integral

order

23

EOR

e

B




The expansion of fracticns has been shown to be
valid for both rational (Ref. 8) and fractional expo-
nents (Ref. 9) of the denominator terms of the frac-
tion (see below). Some of the expansions in series con-
verge slowly for large values of dimensionless distance
and dimensionless time. The limits of convergen.e for
real time are therefore dependent upon the value of w,,
as well as the programming techniques employed and the
capacity of the computer. Several other methods of ob-
taining a function which could be inverted were investi-
gated but none offered a means of solution.

In every term in the inverted equations, there are
essentially five components. an exponential, a power-
factorial term, 2 to an exponential value, T to an ex-
ponential value, and a cylinder function of negative in-
tegral order. The exponential decreases rapidly with in-
creasing values of T, and the cylinder functions also de-
crease with an increase in order or an increase in value
of the argument. The power-factorial term increases
rapidly until n = R and then it decreases. Cylinder func-
tions are calculated by means of an appropriate recursion
formula (Ref. 4).

The factor (ZT)n increases without bound as n in-
creases. The behavior of all of these functions must be
considered in programming inasmuch as some of the numbers
may become very large, in excess of 10100 and some very
small, less than 10‘160. In some cases the order of mul-
tiplication becomes important so that two small or two
large numbers are not multiplied in succession.

For computation of the double series, it is more
convenient to find the multipliers of each successive
cylinder function. These are found to be increasing trun-
cated series of power-factorial terms. That is, a double
series may be expressed as a Cauchy product:

b s R" (n+#m+2) /2 (n+m+2-1)/2
nzo mzo bm -7;-1-2 ' P-nem-z 7
(58)
2 0 b RMK (nez)/2, (ne2-1)/2
J 01 k ) 2 T D,
n=0 k=0 (n-k)!

24
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The infinite series all converge rapidly for relatively
small values of R and T, but not so rapidly for larger

values. S3Specific values must also be chosen for r, ro,
wo, and c, which was not necessary in the case of plane
waves.

e st o GiRR SMRWEANE, L

A rational function of the following type may be
expanded (Ref. 9) in an infinite series, and has a zero
or order n at =, i.e.,

y(s) = = 1_ (59)

n
30S *+ays  4--a

may be expanded as

2) 1 aj-a0az2

1
$) £ — - — + t---
y(s) 30S 3,2 N+l 2,3 (N2 (60) .

and inverting term by term yields

v tn--i & tn+1
f y(t) = Co —(—‘-{—_—1—5—!- + (] ;‘-!—- + Co W tom- (61)

However, the individual coefficients of the terms in

: the series rapidly become very cumbersome to develop and
to use in computation. For digital computer calculations,
on the other hand, a simple sequential loop procedure can
be employed to determine the successive coefficients.

Let equation (60) be written in the following in-
finite series form:

C
_ Co €1 €2 n (62)
A e v i v iy T
s S s S

The same process may be carried out for irrational
fractions (Ref. 10):

1
y(@) = ——53 (63)
30q +a1q  4--a
where 3
q=3:

25
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This may likewise be expanded in the form

<, c ¢
y(q) = — + —EL— —2 4 ee- (64)

-1 * n-2
4 94 q

and may also be inverted term by term to give a solu-
tion in the time plane.

Thus, the inversion of the double series resolves
itself into the inversion of a single series with a
polynomial coefficient, each term of the series having
a valid inversion. The inverted terms are similarly
expressed and are in a convenient form for computation.

The operational solutions for unit step and decay
exponentials are obtained in a similar manner. In these
cases the operational expression i$ multiplied into the
quadratic in s before it is expanded.

It is notable that there is an oscillation of all
varameters for the spherical wave, while the plane Voigt
wave does not exhibit oscillations (Ref. 3). The be-
havior is somewhat similar to an elastic wave, but with
greater damping and a difference in wave shape. For a
unit impulse and a decay exponential forcing function
the oscillations are about the zero axis. For a unit
step, however, the oscillations are about a curve which
is parallel to the zero axis. In an elastic material,
a wave caused by a unit step function also oscillates
about a line parallel to the zero axis.

For larger travel distances the wave spreads out
and becomes somewhat more symmetrical. However, very
small disturbances which are characteristic of a "dif-
fusion model" are indicated before the arrival of the
main wave.

26




Computatiou Procedures

A generalized flow diagram for the computer program is
given in Fig. 1. The cylinder functions are evaluated by
use of the following recursion:

(+)D_ ,(2) = - 2D_ _;(t) +D_ (2) (65)

.
J
g
3
A
%

where

ot

Do(2) = e-zz/4 (c6)

_ [m 2%/4 zZ (67)
D_l(z) —\/;e erfc -7-5_

The complementary error function is computed from

and

erfc = 1.0-erf (68)

and the error function may be determined from several ap-
propriate formulas (Ref. 11), including an infinite series
expansion. For large arguments the error function rapidly
approaches a value of 1.0 and the value of erfc becomes
very small, which restricts the use of equation (68 ) and
the upper limit of argument which may be employed in com-
putation procedures, i.e., ahove a value of about 3.0.

The argument of the cylinder function is

R/V2T = wo(r-To)/cYZuot, which means that any combination

of the quantities in the expression such as large r, large
we Or very small t, which yields values of the argument
larger than 3.0 leads to computing difficulties. Further,
large values of w, in the expression

_T_n2 R _r‘roz
e TR /8T , -weft-( c ) /8t] yield very small values for
this function. The cylinder functions of high order also
are very small. On the other hand the factor :

(2T) "= (2wat)™ b
increases very rapidly for large values of we to 3000 for
the ranges of r and t shown in Fig.33 . Also, the terms
in the polynomial in R increase very rapidly for large values
of wo (Eq. 58).

Thus, the series expressions are well adapted for small .
values of the parameters involved with the exception of very B

27
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small t. Numerical integration of the wave equations was
also considered, but this method also becomes unwieldy for
large values of wo.

Comparison of Voigt Waves and Observed Waves

The important parameters of waves in natural earth
materials are arrival time. rise time, fall time, rate of
attenuation with distance and oscillating characteristics.
In this study the observed waves of interest are radial
pulses generated by underground nuclear explosions, i.e.,
in the HARDHAT, AIRVENT, LONG SHOT, and GNOME events.

There are several types of energy losses, dispersion,
etc. in the transmission of dilatation waves through natu-
ral rock masses which cause the waves to differ from those
predicted by elastic theory. Two immediate evidences of
this are greater attenuation, and lengthening of the ini-
tial pulse with distance. In many rocks the pulse length
has been found to increase approximately with the first
power of travel distance. As indicated earlier one of the
primary purposes of this investigation was to ascertain
whether the spherical Voigt wave equation would demonstrate
any of the characteristics found in observed pulses created
by under ground nuclear explosions.

Since there have been only approximated values for w,
for rocks published in the literature, a range of values
was used which would demonstrate the possible applicability
of the Voigt equation. The values employed for w, were
600, 2000, and 3000, having the dimensions of t-1. Larger
values could not be handled by the computer program, and
smaller values represent large effective coefficients of
viscosity which do not appear to be applicable. That is,
the higher the viscosity of the dashpot element, the more
nearly the Voigt model acts as a single rigid member. This
results in very high velocities of the wave front which
velocities are not characteristic of rock or other natural
materials.

For lower viscosities the Voigt wave forms do demon-
strate some of the important properties of natural waves,
i.e., attenuation and pulse lengthening. For high viscosi-
ties, (small wo), they exhibit velocities of the wave front
which are, as indicated above, velocities which exceed the
velocity of both elastic and observed waves in rock.
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Plane Waves. Plane Voigt waves were investigated in the
process of developing procedures for solving the transformed
spherical wave equation. Close to the source of disturbance
these waves demonstrate a significant attenuation of peak
velocity and strain, etc., whereas a plane elastic wave is
propagated without loss of amplitude or change in shape.
While the behavior of plane Voigt waves (Figs.2 to 13) is
not of direct importance in this study, the principles
evolved in their solution were valuable aids in solving and
programming the spherical wave equations.

Forcing Functions. As previously discussed, three forcing
functions were employed in calculating wave forms, a unit
impulse, a unit step and a decay exponential. Each of

these functions makes the transformed solutions successively
more complicated, and the first two were used primarily as

a means of developing procedures for obtaining inverse trans-
forms, working from the less to the more complex forms,.

For simulation of a real pressure function, the decay ex-
ponent is the more realistic of the three, but has too

sharp a rise time for most field conditions. TFinally, solu-
tions obtained for the unit impulse, &(t), forcing function
serves as a basis for solutions for other forcing functions
by means of convolution.

Rock Properties. Available data on properties of rocks which
constituted the environment of the nuclear events discussed
are listed in Table I. !, data were available for AIRVENT.
The data for LONG SHOT are limited to strength and ultra-
sonic pulse velocity. Data on salt and granite are more
complete. However, no values for viscoclastic properties

are available inasmuch as meth . have not been devised for
measuring such properties of rock masses.

Physical property data and viscoelastic wave analyses
are not complete cnough to derive any quantitative rela-
tionships hetween them. However, for rocks with lower modu-
1i and a significant porosity, the pulse forms are of shapes
similar to those obtained from a Voigt model. Also, the
Voigt wave shows some lengthening with travel distance, but
is not as great as that found in natural rock.
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Wave Velocity. A detailed frequency-wave velocity analy-
sis has not been made, but an inspection of the particle
velocity pulses indicates that the macro-wave front veloci-
ty for we = 600 (Fig. 27, for e¢xample), 2000, and 3000 is
greater than the elastic velocity, decreasing with an in-
crease of we. The actual first disturbance at the distances
investigated are extremely small, and they occur at very
small times. That is, there is no well defined arrival
time for either plane or spherical Voigt waves. This is
not the case for an elastic wave, however, where the arri-
val time is defined by the elastic velocity, i.e., for

»

1 = t-(r-ro)/c, and no wave is defined for t < 0.

For larger values of w, the velocity at the wave front
decreases, but in each case approximately one-fourth of the
"measurable" use time has passed before the corresponding
elastic pulse would have arrived. For very large viscosity
the Voigt model would indicate a small disturbance at = for
a very small time. For low viscosities th» behavior approaches
that of an elastic wave.

The forcing function of greatest interest in this study
is the decay exponential, P,e-B8t. The early arrival times
of waves for this function are in part due to the abrupt
(zero) rise time in pressure. The dashpot in the viscoelastic
model tends to respond as a rigid segment to instantaneous
change in pressure or force. Thus, in a Maxwell element the
first response to a sharp pressure front is almost totally
in the spring. In the Voigt model where the spring and dash-
pot are in parallel, however, one element cannot respond with-
out the other. Consequently, for even moderate values of vis-
cosity the Voigt model will act as a rigid element in its im-
mediate response to high magnitude, short changes in force.
For a less abrupt rise the wave velocity and the rise time
approach those of an elastic wave.

Rise and Fall Time. The spherical pulses in the Voigt model
show a marked symmetry in their first positive phase. These
are similar in shape to the pulses in GNOME (salt)} and AIR-
VENT (andesite), (Figs. 35 to 43) and are also symmetrical
in tueir first positive phase. The pulses for HARD HAT
(granite) and LONG SHOT (andesite) on the other hand have

a shorter rise time and a longer fall time. Exact scaled
comparisons cannot be made at the present stage of develop-
ments with the Voigt results primarily becausc¢ of the uncer-
tainty of the choice of a3 radius of equivalent cavity, r,

at which either elastic or viscoelastic behavior could be
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assumed to become effective. The Voigt equation is linear,
but will scale only if the viscosity varies as the scale fac-
tor. This condition does not occur for small and large events
in the same earth material,

- g itinabern AN el

It would appear that for somewhat porous types of rock
such as those cf GNOME and AIRVENT that certain properties
of the .ock mass cause a damping out of the higher frequen<ies
more rapidly than in granite and andesite. Porosity, water
content, and geologic structure, as well as elastic proper-
ties of intact specimens all have their effect in varying
but unknown degrees. No quantitative coefficients for the
damping properties of large rock masses for high order tran-
sients have been found in the literature, however. Hence,
this would be a fruitful area for further research.

R

The value of ¢ for the wave velocity employed in the iy
Voigt wave calculations was 20,000 fps, or a value equal
to that of a dense granite with large shear and Young's
moduli. However, the shape of the Voigt pulses corresponds
more nearly to that of low moduli materials such as salt.

Attenuation. Roth the relative magnitude and the rate of
attenuation of the normalized particle velocity pulse are
affected by the value of wo (Fig. 34). For larger values
of we, 1.e., for smaller viscosity, the normalized peak
particle velocity becomes larger and the attenuation is
lower. The rate of attenuation decreases somewhat with
travel distance, which is not the case for actual velocity
pulses in salt, granite and tuff. However, the slope of
the peak velocity curve for larger values of wo is some-
what lower than that of observed values in natural rock,
which 1s about 1.65 (Fig. 49).

It should be noted that the calculated peak velocities
are for a wave input form of P(t) = P.c 8!, which has an in-
finitely steep rise in pressure. The shape of the input
pulse affects the attenuation as well as the magnitude of
tiic pcak velocity as shown ahove. At the radial distance
from the disturbance at which either the elastic, visco-
elastic or similar wave equartion becomes cffective (radius
of ecquivalent cavity), the shape of the pulse crossing this
surface is also affected by the properties of the rock medium. *
That is, pressurcs generated by caplosive sources are so in-
tense that there may be vaporization and melting (nuclear
cxplosives) as well as pulverization, fracturirg and flow.
The 1imit of this velume is described by the distance called
radius of equivalent cavity, and encrgy and pressure losses
will be determined by the porosity, strength and various
properties of the rock which contribute to its ability
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to successfullysustain an intense pressure pulse. Thus,
fractured granite apparently can sustain a pulse with sharper
rise time than porous rocks and salt, as well as transmitting
the same general shape of pulse beyond the fracture zone.
Further, the pulse to be considered for possible viscoelastic
applications would have a more gentle rise time than a simple
exponential. Pulses of the form P(t) = P,(e-0t-e-Bt) will

be investigated in a continuation of the study of viscoelastic
waves.

Conclusions. The Voigt spherical wave generated by a single
decay exponential forcing function exhibits some characteris-
tics which are similar to those of pulses observed in some
kinds of natural rock masses. The Voigt pulse form tends to
become symmetrical and lengthens somewhat with travel distance.
However, the velocities of the frequency components of the
Voigt pulse are frequency dependent, and hence, the wave
spreads in both directions, rather than lengthening from an
arrival time described by the elastic velocity. Observed
pulses in salt and porous andesite likewise tend to become
symmetrical, but lengthen more than the Voigt pulse does and
only in one direction. The attenuation of this type of visco-
elastic wave is somewhat greater than the average of attenua-
tion rates observed in rockhs in which contained nuclear explo-
sions have been carried out, but is comparable for tuff and
salt. Waves generated by pulses with longer rise times will
undoubtedly more nearly approximate waves in natural rock.

For all values of wo, investigated and for the single ex-
ponential decay pressure function the arrival times of Voigt
waves are considerably smaller than for either observed or
elastic waves. This is due to the abrupt rise in magritude
of the pressure function and to the rigid response of the
viccoelastic model to abrupt changes in face.

Thus, while a change in the pressure function will make
the Voigt wave more closely approximate natural waves, a de-
crease in the viscosity factor causes the viscoelastic pulse
te approach the character of an elastic pulse, which does
not lengthen with travel Jdistance. It appears, therefore,
that while for certain parameters the Voigt mode) may more
closely approximiate observed pulses in attcnuation and pulse
lengthening, it does not offer sufficient advantages, c¢xvept
for a few special cases, to justify its use for predicting
wave parameters for design purposes in comparison with elastic
waves or empirical procedures,

These analyses of the Voigt model indicate that a con-

figuration other than one incorporating a dashpot clement will
be required te represect rock matertals,

12




TABLE I - Rock Properties
Physical Property Data
LONG SHOT - andesite (Ref. 12)

Compressive strength: 2260 - 5260 psi

Specific gravity: 2.27 - 2.36
Ultrasonic pulse
velocity: 6100 - 10,645 fps

HARD HAT - granite (Ref. 13)

Compressive strength: 19,835 psi
Tensile lit strengxh: 1,915 psi

Bulk de ..ty: 2.69
Ultrasoaic velocity

(20 kc): 19,450 fps
Modulus of elasticity,E: 11.3 x 106psi
Poisson's ratio: 0.20

GNOME - salt (Ref. 14)

Compressional wave

velocity: 4.08 km/sec
Shear wave velocity: 2.58 km/sec
Density (dry, bulk): 2.13 - 2.46
Poisson's ratio: 0.28 - 0.%’ ,
Young's moduius: 2.41 x 10 I dynes/cm¢
Porosity (% volume): 0.76 -~ 5.1%
Water contert (% wt): 1%

AIRVENT - data not available
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Input-erfc, r, re, €, we and o

1

-_—— = smﬁor

(A]

b
m

Calculate n values of bm from recursion of

b
m

(s-a) [A] )

sm/2

and store

Calculate n values of polynomial

g Rn-k

Poly(N} = b, ———

K=o k (n-k}!
and store

Calculate Weber functions (sub routine)

D-n~z (x) =

~-X D-n—l (x) + D-n (x)

n+]}

Calculate sum for z = 1, 0, -1,... -7

@ @ n-k
; R n+z/2 _n+z-1/2
5 I I b 2 T D (x)
5 n=o k=o k (n-X)?! -n-z
| /
|
; Calculate ! Calculate Calculate Calculate
: Particle Displacement Strain Stress
{ Velocity
%
!
Fig. 1. Generalized Computer Flow Sheet
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T=wt
Fig. 5. Normalized strain ¢'(x,t) = e(x,t) * - 0—01.27; for
c

small x for &(t) forcing function.
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Fig. 7. Normalized displacement u'(x,t) = u(x,t) : —-l—7=
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for 1(t) forcing function for plane Voigt wave.
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. 32. Normalized particle velocity v'(r,t} = v(r,t) 1 222

3Uwo'/;
for P(t) = P.,e-St for spherical Voigt wave, r, = 50 ft.,

we » 2000, B = 150 and ¢ = 20,000 ft/sec. Notation te

indicates arrival time of elastic wave.
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Fig. 33.

2
Normalized particle velocity v'(r,t) = v(r,t) : «;JL'-—CT.
[(IIRPR ]
for P(t) = Pee Bt for spherical Voigt wave, ro, = 50 ft.,
we ™ 3000, 8 = 150, and c = 20,000 ft/sec. Notation t,

indicates arrival time of elastic wave.
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Peak particle velocity versus travel distance for a
spherical Veigt wave for three vatlucs 0 o, with forc-

ing function P{t) = Poe °% and ¢ = 150,
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Fig. 35. Particle velocity pulse, Project AIRVENT, gage 60-A.
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Fig. 36. Particle velocity pulse, Project AIRVENT, gage 60u.
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Particle velocity pulse, Project AIRVENT, gage 70u.

70




8 T l T l ¥ f T I T ' v
- -
- - ‘
4 - - :
- - “v
Q L
(<} = —
(‘2]
S
ey
L ) - -
'
> \
0
s -
—— =
- -
4 L | i | 1 1 L L 1 1
0 0.2 04 0.6
time -sec
Fig- 38. Particle velocity pulse, Project AIRVENT, gage 90u.
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. 39. Particle velocity pulse, Project AIRVENT, gage 130-u.
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Particle velocity pulse, Project AIRVENT, 170-u.
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Particle velocity pulse, Project GNOME, range 229 meters, 6-AH.
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Fig. 42. Particle velocity pulse in salt, Project GNOME,

range 298 meters, 7-ulH.
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Fig. b3. Particle velocity pulse in salt, Project GNOME,

range 477 meters, 21-AlH.
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Particle velccity pulse in andesite, Project LONGSHOT,

80 KT, horizontal range 20 ft., gage depth 500 ft.,
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Fig. 48. Particie velocity pulse in andesite, Project LONGSHOT,
80 KT, hirizontal range 600 ft., gage depth 100 ft.,

slant range 2281 ft., gage "H, EH-2,
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Composite correlation of magnitude (peak) of radial

velocity pulse in salt, granite and tuff, scaled to

1 KT (Ref. 15).
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APPENDIX A
WAVE PARAMETER FORMULAS

Summation Symbols

Plane wave ~ single summation

(5,P}= L‘l e&('x/;)

] )
n! sn/2~|-)

W~ 8

(t,F) XM (ne2)/2 L (ne2-1)/2 X
= lTlT 2 T D-n-z (-—/2__1':)' EXP

Plane wave - double summation

n

. Xp (~X¥s)
22 = Z 2 bm%- em+n/§¢;
y m=c n=o s )
):z(t,P)z °z° °Z° p XL pm(n%2)/2 ome(ne2-1)/2) (_x_) EXP
1 al}~ -
z m=0 neo M TM! n-2m-z \ /37,
Spherical wave
(&95 5, R eners)
y m=o nso n! s(m+n)/2+y
(t,8) » = n
- R" ,(men+2)/2 _(m+n+2-1)/2 R
I, =1 1 b,.72 T D pomz \737) EXP
m=0 n=o0
(s,P) = s variable, plane wave (s,5) = s variable, spherical wave
(t,P) = t variable, plane wave (t,5) = t variable, spherical wave

On the left side of the above equations the first letter in
the superscript represents the s-plane or the t-plane, and
the second a plane or spherical wave. The subscripts y and
z a-e, respectively, the numerical values of the transform
variahle exponent other than the summation indices, and the
subscript of the Weber function other than the summation in-
dices. In all cases z = 2y-1, EXP = exp(-T-X2/8T) for the
plane wave, and EXP =~ exp(-T-R?/8T) for the spherical wave.
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In the following (1% is the transform solution, (2) the transform
shifted and normalized, (3) the expanded transform, and (4) the inverse
solution.

Plane Wave: P(t) = P'§(t)

Particle Ve locity

(1) vix,t) = P'_exp[-xs/c(s/uor1)¥]
pc (s/wes1)¥

(2) (1/ws) V(X,t/w,)et = P! exp(—Xv/;bX/s_)

pc Vs
v (s,P)
(3)* (1/we) V(x,t/wo)et %&. 21}
(t,P)

(4)* v(x,t) = ::_;‘}:T Xo

Disglacement

(1) uix,t)= ¥ exP[‘XS/C(S/wo'rl)*]
pc S(s/wou)*

to, P' exp(-X/5+X/V5)
(2)  (1/we) u(x,t/wo)e * pcwe (s-1) Vs

.5,P)

(3)* u(x,t/we)e® = E_;z )

(t,P)
2

(* u(x,t) = 57:7;2 !

* In summations al] bm = ]
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Strain s ;

(D) et & - P explxs/e(s/uerD) ] ‘ ;
pc? (s/we+l) ]
- ;
(2) (1/we) e(x,c/ue)el & - B_SXRLX/5+X/Vs) :
OC2 s <‘
(s,P)
* t. P ’
(3) (1/(&)0) E(x,t/(Dc)e rd D—CT zl
§
(t,P)
* = . P'mo :
(4)* e(x,t) 2 21 ]

Stress
(1} o(x,t) = - P'exp[-xs/c(s/w°+1)i]
() (1/wo) (X,t/uwe)e’ & - Plexp(-X/5+X/V5)

(s,P)
(3)* (1/we) (X,t/we)e’ =-P zo

(t,F)

@* o(x,t) - Plus [

** In summations all bm = ]
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Plane Wave: P(t) = P"1(t)

Particle Velocity

3
n P _exp[-xs/c(s/we+1)”]
(l) V(x,t) ' pc (s/mo"'l)i
(2)  (1/we) V(x,t/uwo)et = P exp(-Xv/s+X//s) ;

pcwe (s-1) Vs j

" (s,P) )
(3)* v(x,t/wo)et = 2§ .

pc = %372
" (tlp)
@ vix,t) = =] ]

Disglacement

(1) ulxt) =P explxs/c(s/ues 1)}
pc SzVS/w.+1

t . P"  exp(-Xvs+X/Vs)
2 ot o ~~
(2) uixt/ue pcuwe (s-1)2/s

" (s,P)
.k t - P
(3)** u(x,t/we)e = oo 23/2
pr (t,P)
4)** ,t) «
( ) U(x ) DCUO/"— 2

* In summations all bm = ]

** Summation on m is from | + = for this case only
and in summations bm = m




Strain

P"_ exp[-xs/c(s/we+1) i]
pc s(5/wo+l)

(1) E(X,t) .=' =

P exp(-x/s_ﬂ(//s—)

pclu,  s(s-1)

(2)  (1/wo) e(x,t/wo)et = -

" (SJP)
(3)* (1/we) E(x,t/m,)et = P ‘.Z z
pc 2
(t,P)

. . prt
(4)* e(x,t) mz ,

Stress

(1) o(x,t) % - p exP[‘x:/JC(S/woﬂ)*]

p' exp(-Xv/s.—*X/v/s-)

() (1/we) 0(x,t/we)et ™ -

wo(s-1)
¢ (s.P)
(3)* o(x,t/us)e” - pr } Zl
(t,P)
(4)* o(x,t) = - p § Xl
* In summations a}l} bm = ]
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Plane Wave: P(t) = P,,e"3t

Particle Velocity

Po exp[-xs/c(s/wul)*
PC (s4B) (s/wet)}

(1) v(x,t)=

to Po exp(-X/5+X//s)
(2) (1/we) v(x,t/we)e” = pCwo  (s-a) Vs

where a = (1-8/we)

(s,P)
- toﬂ gl T
(3)* vix,t/we)e = =2 2L3/2
(t,P)

@ vxt) = == [ ]

Displacement
Po expl-xs/C(S/wo*l)%

pc  s(s+B) (s/u.+l)*

() u(x,t) =

. t . Po 9XP(‘X'/5V’X/'/;)
(2) u(x,t /uwo)e = oCwo (s5-1) (s-a) s

v p (s,F)
(3)**ulx,t/wele ~, — X
Plwe LY
P (P
($)**u(x,t) = —2pm )
PCuwe’® * “u

. .
* In summation bn = a

** In summation b. obtained from cxpansion of 1/(s-1)(s-a)




(2)

(3)*

(4)*

n

(2)

(3=

(&)=

Strain

P, eprfXS/C(S/Uo+l)k]

£(x,t) = - pcl (s48) (8/wetl)

e(x,t/we)et = - Ee exp (-XVs+X//s)
’ L] . OCZ S(S‘(],)

(s,P)

3
<

e(x,t/mo)et = - B E
pc?

(t,P)

Peo
E(x.t) ocz Z

N

Stress

P, exp[—xs/c(s/u.+1)5]

a(x,t) = - 5+3)

P, exp(-Xvs+X/¥s)

t
G(X.[/u)o)if "".’

(s-a)
t . (S'P)
x,t/wede * - Po b T
o (,P)
olx,t) = = P2V
11'1 - 'X
In summaliona b = At
~m
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Spherical Wave: P(t) = P'§(t)

Displacement

x ¥
o P're exp[-s(r-re)/c(s/we+l)?] |1 s
; 1 ) =
:? Wl u(s/we+l) [B]) [;‘7’ rc(s/u.#l);]
te, P'roc? exp’-R/s+R/Vs) 1 . we(s-1)
, (@) ulr,t/ude = 3uwe (A] r? ‘ re’s
;
(s,S) (s,5) (s,S)
S t . P'roc _l__ We _ We ’
(0) u(rbt/“b)e 4 Lwe rz 2 22 + re z 23/2 re z 25/2
. P'rec? |1 ¢ \:,S)+ - (t,8) we {t,9)
(#)* u(r,t) Juwe’n | T2 &3 re ! 22 IR T
* In summations all b- obtained from expansion of 1/[A}




Particle Velocity

(1) v(x,t) = P'Tes exp[-s(r-ro)/c(s/ /wer1) ¥] ., s
U(S/No*l) [B] 2 rc(s/moq.l)}

() v(r,t/w)et = PTec?(s-1) exp(-R/E+R/%5) [LZ_. we(s- 1)]

3ulA) L “rols

' 2 (S,S) . (sls)
(3)* v(r,t/«oo)et ‘-‘. P—S—;;o-c'— {L[z ): - ). z ]

'Sua

- = ] 2 (t,S) (t.S)
(3)* v(r,t) = P'rec {Lr [}: ) . Z ¥ ]

* In summations all bn obtained from expansion of 1/{A]
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Strain

_P'ro exp[-s(r-re)/c(sfmo*l}’

B(s/we+l} B}

i
+

CONETE R IR

2 Zs s?
Lt T+
[r3 r2c(s/wo+1)* rcz(s/w°+l)]

() e(r.t/wo)et s - DiTec? exp(-R/s+R/YS)
’ ’ ) 3uwo[A]

[3_+ 2us(s-1) , wozg-uz]

r¥  rlc/s rcls

Jlwe

2 ‘(S,S) (s,S) {s,8)
+“’°2[zz 211y ]}

3/2

' 2 (S,S) (S,S)
(3)* e(r,t/wo)et & - L LeC {%E , v due l:i ) -1 1

1 2 3

Buwo V1 1;3

o2 (t,%) Y(t.s) (t,S)
*;gf[le -22% *ZIS

* In summations all bm obtained from expansion of 1/[A]

] 2 (t:S) (t,S) (t,S)
@ ctrp - - st 2 [I, '+ %’1[2 I, -IL
rec

92

]




3ol A iR < i

Stress

Plvs expl-s(r-ra)/c(s/usr)?]
3 (31

1) o(r,u)=-

4 4s 352
—:+ +
¥ r2c(s/we+i)?  Tc?{s/we+l)

(2) o (r t)et o _ P'roc?s exp(-Rr?lR[jE}
P 3wo [A]

" 4 (s - 2¢c.1127%
F‘J""(T"Q'i’*l’”i

re récys rcés

5,5) (s,5) (s,9) -
t. P'ryc? 4 LS dwo T ’

)~ < ( PR « T T -y / -

(3) ReAOL PR PER + =, [i 102 23/2
¥

.2 H(S;S) (S)s) (S,S)
% -“;‘[Z; -23Y 4y ]}
rC “o “1 2

|3
!
2 (4 o (8.9 (L8] _ _(t,8)
{ ‘4)* ¢y = . PlTeC {ﬂ__ 3 duo R ]

(4)* ofr.t) Tl D ! hl * e ) Zo ) lz

2 [ (6] (t,8) _ _(t,9)
=l AT PR i |

* In surmmations all bm calculated from expansion of 1/[A]
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At

e i ot

o AT

Spherical Wave: P(t) = P 1(t)

03]

(2)

(4)*

Displacement

u(r, t) ;zP"ra exp{-s(r-ro)/c(s/wo+l)i] [}__+ s ]

us(s/we+1) [B] 12 ro(s/we+l)?

t. P'roc? exn(;R#ElR//g) 1 we (5~1)
,t ° = 4 P il St
uir, t/ue)e Suwe?(s-1) [A] rl ' rc/s

7/2

Piryoc2 t.s) . (t,8) (t,S)
v DA IS S
T rc

t pvvr°c2 1 (S)S) We (S:S) (S:S)
u(r, t/ue)e" o Lo {-—2-2 I, = ) 25/2 -11

In summations by calculated from expansion of 1/(s-1)[A]
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(1)

(2)

(33*

(4)*

Particle Velocity

a1l
«. P'"ro exp[-s(r-ro)/c(s/wo+1}*] .1_ . s ]
v = u(s/we+1) [B] 2 re(s/wetl)®

vir,t/uwe)e

to P'woro exp(-RVs+/¥s) |1 , Wols-1)
’ uwe [A] r? rcvs

(s,S) (s,S) (s,S)
t._P"I‘oCZ 1 Wo -
SR v {;ﬂ PR [X Lye - Ly,

(t,9) (t,S) (t,S) }
_P'rec? J 1 Yo .
v(r,t) = et | 22 Z 23 + e [Z 22 Z Zb ]

In summations b, calculated from expansion of 1/[A]
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Strain

() etrt) = - P'To expl-s(r-r0) /6 (s/uet1)?]
u(s/we+l) [B]

[2 2s s? ]
— i’+
3 r2c(s/we+1)? rc2(s/we+l)

(2)  e(r,t/wo)et = - P'roc? exp(-R/s+R/VS)
3uwe? (s-1) [A]

[2__ , 2ue(s-1) | woz(S-l)z]

1'2 I'ZCV/; I‘CZS

S)
te Prec? |2 (:8) 5.,
3)* e(r,t/wo)e = - —=o (- +
(3)* elr,t/uo) 2 {ra LI 3

(s,S) (s,S)
[Z 5/2 ) z X7/2

(s,S) (s,S) (5,5)]}

e i eny ey

. 2 (t,3) .,
(4)* e(r,t) = - R TR Xs * e [Z Zq -1 Ze

{t,S) (t,8)  (t,S)
ced ey )

3 ©5 7

* In summations all bm calculated from expansion of 1/[A]

(t,5) (t,s)]

]




Stress

P" exp[-s (r-rs)/c(s/uot)¥]

1 ’ .==- - <
(1) a(r,t) > 18]

4, 4s . 352 ]
T3 12c(s/wer1)F | 1cl(5/wetl)

P'roc’s exp(-R/§¥R//§) .
3we? (s-1) [A]

(2) o(r,t/we)et s -

4, due(s-1) | 3w92(s-1)2]
T3

r2c/s rc?s
T o SO RO S b
SRR |
(A)* o(r,1) = - X—;;; :_3 ) th.s)+ % [E zit,S)_ ; Zit’S)]
o )

* In summations all brn calculated from expansion of 1/[A]
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Spherical Wave: P(t) = Poe

(1)

)

(3)*

(&)

Bt

Displacement

u(r.t) = Pore expl-s(e-re) /c(s/uet)] [1 .
’ u(s+8) (8/we+l) {B] r?2 " rc(s/wetl)

3uwe? (s-a) [A] r? re/s

w(e,t/we)et & Porac? exp(-RVEHR//E) [_1_ . m,gs-u]

(s B (I‘B/Uo)

3uwe? Ic 5/2 7/2

2 (S,S) (S.s)
u(r,t/u,)e’ = Eaec” {f;f ng's)+ = [X I,o-11 jl}

Parec? f1 ¢ (65 (6,8) _ (£,8)
u(r,t) = Nweldn {rz ! 25 + 'r‘z‘ ! Z“ -1 26

In summations bm calculated from expansion of 1/(s~a)[A]




(L

(2)

(3)*

(4)*

L

« Particle Velocity

b
s. Pores expl-s(r-ro)/c(s/we+l) *) ., 8
vine) = u(s+B) (s/wo.+l) [B] [rz rc(s/w.+1);]

t . Porsc? (s-1) exp(-RVs+R/Vs) |1 . we(s-1)
vir,t/ue)e” = 3uwe (8~a) [A] r? +rcv/;

(s,5) (5,5)
t oo P roCZ l_‘ - )
vr,t/un)e" 3 Zeke {rZ [—.Z L 223 ]

(s,5) (s,S) (s,8)
+%: [X ):3/2 i} 2{ z5/2 * z 27/2 ]}

2 (¢, (t,S)
w Perec” g1 - —l
vir,e) 7= {rz [Z Za l 25 |

JUOQ

" (t,S) Y(t'S) ; (t,S)
@y N
+ e z Zl 22 g“ + 9 ZG

In suswations ‘b. calculated from expansion of 1/(s-a)|A]




(1

(3)*

(H*

Strain

PoTo exp[-s(r—ro)/c(S/wo*l)i] .

C(r’t) ‘_c‘
u(s+8) (s/we+l) [B]
2 2s s2
— +
3 r2c(s/wet1)?  rc?(s/we+l)
teo, _ Poro exp(-R/s+R//S) [2 = 2uwe(s-1) w,z(s-l)z]
c(r,t/ue)e 3 3u(s-a) [A] [r3 ' ric/s ' rcls

, 2 (5:5) 5 [« (545) (5,9
e(r,t/ue)e’ 5 - ZeEogt {2;;2 ) e [Z L, - L1 ]

&+
3uwe 3 réc 5/2 7/2
e (s,9) (s,9) (5,5)
=2 DOAMED N b
e (t,S) (t,S) (tns)
Poroc* L ‘Z_u_s_o_ -
ctert) -—Suwozﬁ{razzs e 11,1y, ]
m°2' (tns) (t»S) (tos)
SR A A

In summations bln calculated from expansion of 1/(s-a) [A]
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Stress

(1) o(r,t) = - Pere expl-s(r-re)/c(s/uas1)?]
i (s+*8) IB]

[

(2)  olr,t/uo)e’ = -

leh

. 4s . 352
rlc(s/wo+1)?¥ rc2(s/we+l)

Poroc?s exp(-RVs+R/¥S)
3we? (s-a) [A]

4, dwe(s-1) 3«»,2(5_1)2]
r3  refs rcls

. ;-_ Porec? )4 (S’S)’ duwe (s,5) (s,8)
(3) o(rﬁt/w.)e . '3;:5—' 3;? Z ZZ ;I; z 23/2 - Z 25,2 ]

AN S AR S|

. Porec? V4 (t,S) 4w, (t,S) {t,S)
(4) o(r,t) = - —3—2-7-3‘»' - 2;3- z 23 S ;{; {X ):2 - X z“ ]
2 (tns) (t,S) (t,s)
’—*::5 [ZZ 20 f e2id “

1 3 b

¢ In summations b. calculated from expansion of 1/(s-a)[A])

10!




References

1.

10.

11.

13.

4.

15.

Collins, F., Plane Compressional Voigt Waves, Geoph., Vol. 25,
pp. 483-492, 1960,

Hanin, M., Propagation of an Aperiodic Wave in a Compressible
Viscous Medium, J1. of Math. and Phys., Vol. 36, p. 234, 1956,

Lee, T.M., Spherical Waves in Viscoelastic Media, J1. Acoustical
Soc. of Am., Vol. 36, pp. 2402-2407, December 1964.

Clark, G.B., Rupert, G.B., and Jamison, J.E., Transient Plane
Voigt Waves, submitted to Quarterly of Applied Math.

Rupert, G.B., A Study of Plane and Spherical Waves in a Voigt
Viscoelastic Medium, Ph.D. thesis, U. of Mo. at Rolla, 1964.

Voigt, W., Ann. d. Phys., Vol. 47, 1892.
Kolsky, H., Stress Waves in Solids, Oxford, 1853.

Erdelyi, A., Tables of Integral Transforms, Vol. 1, McGraw-Hill,
1954.

Kaplan, W., Operational Methods for Linear Systems, p. 328, Addi-
son Wesley, 1962.

Carslaw, H.S., and Jeager, J.C., Operational Methods for Applied
Mathematics, p. xii, Dover, 1963.

Abramowitz, M., and Stegun, 1.A., Handbook of Math. Functions,
Nat. Bur. of Stand., Appl. Math. Series 55, pp. 298-299.

Oay, .'.D., and Murrell, D.¥_, Operation LONG SHOT, Ground and
Water Shock Measurements, POR, Project .01, U.5.A. Waterways
Exp. Sta., August 1966.

Perrett, W.R., Operation NOUGAT, Shot HARD HAT, POR, Project 3.3,
Free Field Motion Studies in Granite, Sandia Corp., PCR-1803
(WT-1803) April 1963.

Weart, W.D., Project GNOME, Particle Motion Near a Nuclear ietona-
tion in Halite, Sandia Corp., PNE-108P, March 1960,

Saver, F.M., et al., Empirical Analysis of Ground Motion and Cra-
tering, Nuclear Geoplosics, Pt. IV, DASA-1285(IV}, May 1964.

W02




RSy YN

Unclassified

Security Clasailic
DOCUMENTY CONTROL DATA-R & D

(Security clasatlication of titie, dody of abatrect and indesing ennciation must be ertersd when ihe everall repert i classiiiod)

1 OMIGINATING ACTIVITY (Compaele suthce) 24, AEPORT SECUMITY CLASBIFICATION

George 3. Clark and Assc "lates Unclassified

. . b, SROUP
Rolla, Missouri v

3 REPORY TITLE

A COMPARISON OF PLANE AND SPHERICAL TRANSIENT VOIGT WAVES WITH
EXPLOSION GEWERATED WAVES IN ROCK MASSES

4 DESCRIPTIVE MO TES (Type of repert and inclunivs daive)

Final Report

$ AUTHORS) (Firet neme, aiddle initial, las! n o)

G. B. Clark, ;. B, Rupert, and J. E. Jamison

¢ ALPOAY DATR 78. TOTAL mO OF PaASED . NO. OF ARPS
April 1967 115 15
4. CONTMACY OR SRANT NO 0. ORIGINATOR'S REPORT NUMBE RIS)

DA-22-079-cng-464

A PACLECTY MO

« NWER Subtask 13.191C

-, :'vwll AEBORY wO(S) (Any other munbore Rao! may be o0 sigeed 1
¢, S, Army Engineer Waterways
- Experiment Station Contract Rpt No. 1-170§

1 ATRMBUTION ITATEMENTY

Distribution of this document is unlimited.

11 BUPPLEMENTARY NOTES T3 BPONBOR 8 MLITARY ACTive s~

Conducted for UL S, Army Fngineer Detense Atonne Support Sovny,
Waterwave Fxperime: * Station, Corps Washington, D7

wibogingers, Vickaburg, Miss,

I A2
Plane nd spherical wavex in a Voigt medium were ainvestigated te compare
the caleulated wave torms with observed waves generated by arge vontaimed Hio and
NE explostons, Interest is centerod on wave torms 0 whae s usaally considered to
be the clastic regian around an explosion, Plane waves do not spply at this distance
hecanxe of geometry, The plane Voig! wave equatiun hax been previousiy solved for
particie vel city, stresa and straan for 4 unit pupalse foroing funcion. However,
selulionx tor the displacenm-nt for a unit ampulise and tor the four wave parameters
for a4 amit step and a decav exponential involve multiphicrs an tae operational tarnm for
which no franstorns parrs Lave been published, A methord of solution is pros. nted
whin b atilizes a Heavisade expansian of the sultiphiers an the transtorm plane which
reanlta n products of twoantinite xeries which mav be anverted term by tern:. These
may be urtlier reseived as single series with polvnomaal coeflicients 107 purpoeses
of campatation, L mipular method of selution of Yot spherncal waves was found tor

it ammpitae, umit atep and deoay exponential fording fumctions for dysplacement, par-
nole veludily, «<t=aan and radial stress. Appropriate recarsion tornugdas make them
reaitly atiaptable to computer evaluyation, Geadlations cocar for a sphertoal wave
whereas for a plane wave they do not, Calcylations were perfureed for particle ve-
locity for three validex of the Vaigt viacoeclastic parameter o and cOonparisena irade
with puise forma for waves in gramte, tuff ano sale, "

O BEOLACES SO COMN LATE | 24l 04 Bl w o
,‘.."73 SRUPA R TE FON Sy WS = .
Shodramitie

o Classifcotben

—
—
(V]




Unclassified

Sacarity Clasaification

nEY WORDS

j LiMx A

LINE B

Linw =

.

ROLR Yy ROLE av

ACLE LAS

Explosions
Mechanical waves
Nock (Geology)

Shock waves

Unclassified

Security Clansiflestion

116




DEPARTMENT OF THE ARMY ?
WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS
VICKSBURD, MIBSIBEIRP® 3918

N REPLY REFER TO: ol January 1968 .
Errata Sheet
(60340 L
,9:I> No. 1

A COMPARISON OF PLANE AND SPHERICAL )
TRANSIENT VOIGT WAVES WITH EXPLOSION
GENERATED WAVES IN ROCK MASSES i

Contract Report No. 1-170
April 1967

Please make the following revisions:
1. 1Insert on page 33:
"AIRVENT* - playa

Density - wet  1.44-1.85
Density - dry 1.15-1.67
Porosity - estimated 5070

Hugoniot Data

1.41-1.47 gm/bm3

Py =
V = 2,58-5.24 mmfisec 1
u = 1.04-3.54 mmAfssec ‘
P = 30-271 kb

v/bo = 0.302-6L0"

2. Page 28, line 10 - Delete "AIRVENT"

Insert after line 10 - "AIRVENT was a 40,000 1b. TNT event
detonated at 17 ft. depth in desert playa."

3. Page 29, line 26 - Delete "No data were available for AIRVENT,"

4., Page 30, line 37 - Substitute "playa" for "andesite.”

* Kintzinger, P. R., AIRVENT Phase I, Project I, Earth Particle Motion.
SC-RR-64-549, Sandia Corporation, October 1964.




