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ABSI RACT

Plane and spherical waves in a Voigt medium were
investigated to compare the calculated wave forms with
observed waves generated by large contained HE and NE
explosions. Interest is centered on wave forms in what
is usually considered to be the elastic region around
an explosion. Plane waves do not apply at this distance
because of geometry.

The plane Voigt wave equation has been previously
solved for particle velocity, stress and strain for a
unit impulse forcing function. However, solutions for
the displacement for a unit impulse and for the four
wave parameters for a unit step and a decay exponential
involve multipliers in the operational form for which no
transform pairs have been published. A method of solu-
tion is presented which utilizes a Heaviside expansion
of the multipliers in the transform plane which results
in products of two infinite series which may be inverted
term by term. These may be further resolved as single
series with polynomial coefficients for purposes of com-
putation.

A similar method of solution of Voigt spherical
waves was found for unit impulse, unit step and decay
exponential forcing functions for displacement, parti,'le
velocity, strain and radial stress. Appropriate recur
sion formulas make them readily adaptable to computer
evalivation. Oscillations occur for a spherical wave
whereas for a plane wave they do not.

Calculations were performed for particle velocity

for three values of the Voigt viscoelastic parameter w.
and comparisons made with pulse forms for waves in granite,

tuff and salt.
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List of Symbols

ai = constants

bm M constants from Heaviside expansion

c elastic velocity of sound
c v-7 for plane wave

c - V/X+ 2u)/p for spherical wave

c M constants

D_n Weber function of negative integral order

e - exponential

E -Young's modulus of elasticity

k -summation index

m -summation index

n - summation index

P = notation for plane wave

P- pressure
P' pressure multiplier for S(t)

P" pressure multiplier for l(t)

q s

r radial length

r. radius of cLvity

R wo(r-ro)/c, dimensionless distance

s - transform variable

S - notation for spherical wave

t - time

T - dimensionless time - wot

u - displacement

v - particle velocity
x -linear distance
X -w.x/c, dimensionless distance

C strain
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L ame's constant -elastic

Al viscoelasticmou s

=shear modulus -elastic

p =density
a= stress

wo transition frequency
Z= summation
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A Comparison of
Plane and Spherical Transient Voigt Waves

With Explosion Generated Waves in Rock Masses

Introduction

The Voigt model yields responses to transient forc-
ing functions which are different from the standard elas-
tic model, and earlier (Ref. 1) mathematical analyses of
plane waves in Voigt materials indicated pulse lengthen-
ing and attenuation somewhat similar to that observed in
waves generated by large explosions in rock.

While the theory of elasticity provides a good first
approximation to many problem!- in rock mechanics, in the
solution to close-in wave mechanics in rock it does not
give an accurate descripticn of the behavior of peak
stress, strain, displacement, velocity or pulse length.
The Voigt viscoelastic model is among the many physical
analogs which have been investigated in an attempt to
find valid mathematical representations of wave para-
meters in rock. The only solutions for a plane Voigt
wave in the literature appears to be those of Collins
(Ref. 1) and Hanin (Ref. 2) in which they solved for the
particle velocity in response to a unit impulse.

Lee (Ref. 3) solved the spherical Voigt equation
for stress for a continuous harmonic forcing function.
However, in solving for response to transient loading
he introduced a "constant loss factor" into the trans-
form which changed the problem from a Voigt model to
essentially a solid frictio, model.

The objectives cf this investigation are to arrive
at and present solutions to both the plane and spherical
wave equations for pacamete-s of interest, i.e., partifle
velocity, strain, displacement and stress, and to compare
the calculated results with these obtained in observa-
tions of waves in rocks from large I and nucIear explo-
sions.

There have been many approaches made to Oie solo-
tion of transient Voigt waves, but aptparent l the first
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successful solution was made by Collins (Ref. 1) for
particle velocity for a unit impulse. Clark and Rupe:'t
(Ref. 4 and 5) obtained stress and strain by Collins'
method and the displacement by numerical integration.
The method employed by Collins was to normalize and
shift the Laplace transform solution for the Voigt
wave equation, expand the positive part of a resulting
exponential in a series, and obtain a term by term in-
version expressed as negative order parabolic cylinder
filzctions multiplied by a factorial, an exponential and
a power term.

Operational solutions for the displacement for a
unit impulse and for forcing functions such as a unit
step or a decay exponential require that the transform
solution also contain an appropriate multiplier. No
transform pairs for the resulting expressions exist in
published tables.

The transformed :uiltipliers may, however, be ex-
prcssed as Ileaviside expansiors, yielding a transformed
solution in the s-plane composed of the product of two
infinite series. TI~ese may be inverted term by term
into th- time plane, expres ;ed as a product of two
serie" in the time variable arid by proper arrangement
utiliZed for computer evaluation. Some of the double
series may be expressed as Cauchy products, which clari-
fies the mathematical operations and assists materially
in computer programming

VoIgIt Model: The basic Voigt model for an acolotropic
o]iTas conceived for a substance in which IZ w".

assumed that thc stress components co,!id be expressed
as the sum of two sets of terms, the first being pro-
portional to the strains and the second prunertional to
the rate of change of the strains. (R, f. o) For an
aeolotropic solid the stress equations ar of the form
(Ref. ")

1 j
~~cc 1 ,.d1..1 7,,7

t X t'lt • V

9 .
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where cy, OZ , Tyz Txz and Txy are of similar form with

appropriate cij and dij multiplying constants. If energy

is to be an univalued function then c rs= c sr and d rs

dsr. This reduces the number of independent constants

from 72 to 42. In an isotropic medium there are only

three elastic constants and three viscoelastic cnnstants.

Thus,

C12  - C13 - C2 1 
= C31 =  C 32 =

d12 = d 1 3 = d21 = d31 = d32 =

C44 = C55 
= C66 

=

(2)

d4 = d5E = d66 = p'

C1l = C2 2 = C3? = X,21

dll = d22 = = '+2u'

10



Thus,the stresses for a Voigt solid become

o x -)A + 2(u+' z :E
xat) Tt

Y = t * t Y*

z AA at) at + (z~i~

(3)

T= Yyz

xz = ' at' xz

TX +1 Yxy

where

A = + E + E (dilatation)

Thus, the wave equation may be obtained for a Voigt

solid by substituting (A+A' a) and (p+p' a-) for p.

at at

11



Plane Waves

The basic wave equation for a plane Voigt wave may
be derived in different ways and in terms of alternative
parameters:

S;Z I I 2
Z (4)

-l -i -= -

where z represents either displacement, velocity, stress

or strain.

Where,

=viscoelastic or transition frequency factor

c = bar velocity e/p

x = distan~ce

t = time

Collins, (Ref. 1), however, derived the operational form
of the equation directly for particle velocity utilizing
the force acceleration relation

a1 -CT- a2 c t

in which particle velocity is

at (6)

and the relationship of strain to displacement

au (7)

together with the following. The Voigt relationship
between stress and strain is

WO ata = -- (8)

12i



which in operational form is

a E(l+s/w.)E (9)

Eouat ion (5) in operational form becomes

ax_-- sv (1o)
ax

where the bar indicates that the Laplace transform
has been taken and (6) is

U =SV (1

For a delta funiction input the boundary condition at
t>o is I t - P'6(t) (12)

which is unity in operational form, i.e.,

a -P' (13)

From (10) and (11)

P_ 2 p U2~ (14)

x

or differentiating

2  (2 (15)

ax
2  P x

13
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which, with (9) becomes

a2 2  5 s2 a (16)

= E (s/wo+l)

The solution to this, after satisfying the boundary
conditions is

a exp[-xs/c(s/w. o) ] (17)

Differentiating once with respect to x and using (10)
gives the velocity equation

=P exp[-xs/c(s/w+1) ] (18)
pc= - -/(181
P2C i/W.+1

The notation of Collins and van der Pol is used
herein for the 6ymbol connecting a function to its
transform:

v(x,t) e-e(xs) i19)
The transform expression in %) is then "normalized"

by substituting w s for w., or multiplying s by w.. Thisis equivalent to dividing the time and the velocity func-
tion by w., thus

fV(X,t/W.) _ pL exp[-xwos/cs+l) (20)

The shift theorem is then used to place the transform

14



solution in a form which can be inverted by use of tabu-
lated transform pairs, i.e.,

V(~/.et-_ P'wo exp[-X(s-1)/s 1 (21)
PC F

where X wo
C

The second half of the exponential is then expanded:

e = 77-n2 (22)
n=o s

which gives

v(x,t/wo)e pc I - /2+/2 (23)

By use of formula (9) page 246 of Ref.(8)equation (23)
may be inverted term by term to give

t PIO Xn n2t /-/

PCn=o n!VT (24)

or, rearranging and substituting w~t for t and letting
wot =T

V(X't) PWeexp(-'T-X2/8T) L 2r 2'T(~) 2 ~
P C 77 n=o

(25)

15



Similarly, from equation (24)

a(x,t/w.o)e =- Pwo exp[-X(s-L)/s (26)

or

t. ~ 0 n -XV® Xn e-x

a(x,t/w.o)e t  - Pn sn/2  (27)
n=o

whose solution is

o-x,t) =PO .2 (n-l)/2Tn/2-1D (2') (28)

n=o

The displacement is the integral of the velocity with
respect to time, which is obtained by multiplying equa-
tion (11) by 1/s. This operation is valid only for zero
displacement at t = o. Hence

) P' exp[-xs/c(s/W+1) 1
u(x,t) (9PC svs/w +1 29

Normalizing and shifting gives

I u(x,t/ )et = I16

16



in this case 1/(s-1) must be expanded and the final
operational solution is a double series, i.e.,

s-i S~ M (31)

which yields

t.P'Xn exp(-xv7-)U(X't/W.)e m n~ ! n/2+m+3/2 (32)

which may be inverted term by term to give

-(~) I7- exp(-TX
2/81T) n2mIn/m=2

PC,, n=O r1=o n

(33)

D..n- 2n- 2 ( X)

The double series is readily amenable to evaluation

by computer methods for small values of X and T.

The expression for strain is found by differentiating
equation (29) with respect to x, which gives

17



which yields

1 E(,t et L %xr" (3S)VW-- e - o7t (35) 
nj~ oe p

Equation (35) may be inverted term by term to give

£(x,t) -- exp(-T-X2/8t) 2(nD- T (36)
PC2 Vn n~~o n! 0nl V (lI) 2 f/ 2 iJ

The solutions for an exponential decay input can be
obtained by multiplying the transform for each parti-
cular parameter before normalizing and shifting by
IK/(s+B), wl ich is the transform of P(t) = Poexp(-Bt).
This is illustrated by the derivation of the velocity
equation:

v xt) *s. ) exp(-- (37)

Upon shifting and normalizing this becomes

1 v(x tL et'P _ _ exp[-x(s-1)/Vs] (38)

O

Let

[s-(0- )] (s- (39)



and expanding the positive exponential as previously
done, and letting

1( 1 (zm (40)
M=o

The transform then becomes

X (41)
v"x, t! f ) e t "  PO Xn  E,,xp(-X/s) (11 v t t -. - - (s)ma V n_ n1"l2

Wo p wS) L n! n/2-:1/2WO CWo S m=o n=o S

which may be rewritten

1 t -. Xn  m exp (-xs) (42)

We WO PCWO m=o n~o S

The inverse is found term by term to be

P( ~ f c--' cxpt-T-X2/aT) W

m o n=o
(43)

mn/+m+lTn/ 2m l/2  X
-n - m - ."( -

which can be evaluated by computcr methods.

19



SI

The other parameters are determined in a like
manner each resulting in a double series. Tne values
for a unit step input can be readily determined by
letting B = 0 which makes a 1.

Spherical Wave

Collins (Ref. 1) presented a Laplace transform
solution for particle velocity in terms of the s-variable
for a spherical Voigt wave with a unit impulse, 6(t),
input, but did not invert it.

The spherical Voigt wave equation may be developed
in more than one way (Ref. 4), but is probably in its
most tractable form when expressed in terms of the dis-
placement potential, 0:

• -_- ) (44)
(1 +) ~ ar2  c2  at2

The boundary condition pressure equation for a
cavity of radius r. is:

_(_____/_tI aZ±[(X.2 ) • (A'+2') ar lr A r 3r r

No experimental values are available for the visco-
elastic moduli, hence, for purposes of computation
it is assumed that A - i and X'- u', although the
following methods are applicable without this assump-
tion.

Equation (45) then reduces to

ar' r ?r r (4o)

For a Virac delta forcing function, P(t)

20



the operational solution of equation (44) becomes

r¢(rt)'- Pr. exp[-s(r-ro)/C(S/w.+l) ]j
r( r, s (St ~)c 3 2  • 4 o (47)

[2 (S/.o+l) roc(s/w.+l)1 ro

However, interest is centered -n parameters such as

displacement, particle velocity, stress and strain.
The displacement is

)r (48)

or

P'r. exp[-s(r-ro)/c(s/ .+ 1)j 1 su(rt) ° [8 r (siwo j).

where

I- [c-T(i1) r.c(s/.

Let s - -cs (normalize) and then s - s-l(shift),j and equation (49) becomes

tr1 P'r. ILp(-Rwz+R/¢)

'A) r rcis

21



where

4c 3/2
[A] = [s2  S + (/2 Ic2 -2)s 4 + 1] (52)3rowo '3ro2Wo2  3To* W-.[

and R = w.(r-ro)/c (53)

The fraction involving the quadratic in s may be
expanded as follows:

1 = b 1 (54)I!A --sY m !--

where the coefficients b are functions of the coeffic-
ients of the quadratic. The positive exponential may
likewise be expanded to yield:

exp R/V5 T! , R n / 2n=o (s)n ($5)

Substituting in (51) and separating into appropriate
terms gives the operational solution in terms of double
infinite series:

t P'roc2  M 0Rn exp(-R I/-)u(r,t/wo)e t  I I'o2{ bm
PWo r2  s!M n/2+m/2+2

(56)

n W b n exp(-Ris)
bm exp(-Rrs) _ L Lb n/2+m/2+S/2

m=o n=o S M., n=o n

22



Equation (56) may then be inverted term by term (Ref. 7)
to yield the solution in the time plane.

The velocity for a unit impulse may be found by
differentiating the displacement with respect to t, or A
multiplying (49) by s. The strain is determined by
differentiating the displacement equation (49) with re-
spect to r, and the stress by substituting into equation
(46). All of these lead to solutions consisting of double
series similar to equation (56), which may be inverted
and evaluated by computer methods.
For example:

uf~r,tj Pr exp(_T.R2/8T){L
= F -!Rn bn/m=o n=o

ell2+/2+2 R wo R ' n n/2+m/2+2
a -mS,/;72T +  M' - ° "

7 n)

/+T/2+3/2 D  R 2n/2+m/2+3'"- - I I fb
i7=O n=o

Tn/ 2 +m/2 +51 2D ]

where

T =ot

D = Weber functions of negative integral
-n-in-z

order

23
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The expansion of fractions has been shown to be
valid for both rational (Ref. 8) and fractional expo-
nents (Ref. 9) of the denominator terms of the frac-
tion (see below). Some of the expansions in series con-
verge slowly for large values of dimensionless distance
and dimensionless time. The limits of convergen~e for
real time are therefore dependent upon the value of w.,
as well as the programming techniques employed and the
capacity of the computer. Several other methods of ob-
taining a function which could be inverted were investi-

* . gated but none offered a means of solution,.

In every term in the inverted equations, there are
essentially five components. an exponential, a power-
factorial term, 2 to an exponential value, T to an ex-
ponential value, and a cylinder function of negative in-
tegral order. The exponential decreases rapidly with in-
creasing values of T, and the cylinder functions also de-
crease with an increase in order or an increase in value
of the argument. The power-factorial term increases
rapidly until n =R and then it decreases. Cylinder func-
tions are calculated by means of an appropriate recursion
formula (Ref. 4).

qn

The factor (2T) nincreases without bound as n in-
creases. The behavior of all of these functions must be
considered in programming inasmuch as some of the numbers
may become very large in excess of 10100, and some very
small., less than 10-160. In some cases the order of mul-

* tiplication becomes important so that two small or two
large numbers are not multiplied in succession.

For computation of the double series, it is more
convenient to find the multipliers of each successive
cylinder function. These are found to be increasing trun-
cated series of power-factorial terms. That is, a double
series may be expressed as a Cauchy product:

in

R b (n+m+z)I2T(n~m+z-l)I2Db m-n-m-z-

(58)

n b R 4 j- 2 (n+z)/2T(n4~z-l)/2D
-n-z

nzo k~o (n-k) I
2

B2
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The infinite series all converge rapidly for relatively
small values of R and T, but not so rapidly for larger
values. Specific vlues must also be chosen for r, r.,

w., and c, which was not necessary in the case of plane
waves.

A rational function of the following type may be
ex-.panded (Ref. 9) in an infinite series, and has a zero
or order n at -, i.e.,

y(s) a n n-1 (59)
aoS +al s  +--a n

may be expanded as

al-aoa 2 Iy (s) = a I+n+ t- (60)

aoSn a0
2 sn +  a,3  s+2

and inverting term by term yields

t nI t n tn1
y(t) = CO + C I + c2 (n +--- (61)

However, the individual coefficients of the terms in

the series rapidly become very cumbersome to develop and
to use in computation. For digital computer calculations,
on the other hand, a simple sequential loop procedure can
be employed to determine the successive coefficients.

Let equation (60) be written in the following in-
finite series form:

Y (S) 1 I C2 cn (62)
sn .E+ + 772 + ._ +s S S S

The same process may be carried out for irrational
fractions (Ref. 10)

y(q) n 1 (63)Y~q = n n-i
aoq +a1q +--an

where
q--

25

.)

-. ,. ['".



This may likewise be expanded in the form

C C Cy (q) + o2 + _ (64)
n-I n-2

q q qn

and may also be inverted term by term to give a solu-
tion in the time plane.

Thus, the inversion of the double series resolves
itself into the inversion of a single series with a
polynomial coefficient, each term of the series having
a valid inversion. The inverted terms are similarly
expressed and are in a convenient form for computation.

The operational solutions for unit step and decay
exponentials are obtained in a similar manner. In these
cases the operational expression is multiplied into the
quadratic in s before it is expanded.

It is notable that there is an oscillation of all
parameters for the spherical wave, while the plane Voigt
waye tiees not exhibit oscillations (Ref. 3). The be-
havior is somewhat similar to an elastic wave, but with
greater damping and a difference in wave shape. For a
unit impulse and a decay exponential forcing function
the oscillations are about the zero axis. For a unit
step, however, the oscillations are about a curve which
is parallel to the zero axis. In an elastic material,
a wave caused by a unit step function also oscillates
about a line parallel to the zero axis.

For larger travel distances the wave spreads out
and becomes somewhat more symmetrical. However, very
small disturbances which are characteristic of a "dif-
fusion model" are indicated before the arrival of the
main wave.

26



Computatiol Procedures

A generalized flow diagram for the computer program is
given in Fig. I . The cylinder functions are evaluated by
use of the following recursion:

(n+l)D n_2 (z) = - zD n (t) + D n(z) (65)

where

DO(z) = e-Z 2/ 4  (OS)

and

D_I(Z) 2 ez2I4 erfc -(67

The complementary error function is "computed from

erfc = 1.0-erf (68)

and the error function may be determined from several ap-
propriate formulas (Ref. 11), including an infinite series
expansion. For large arguments the error function rapidly
approaches a value of 1.0 and the value of erfc becomes
very small, which restricts the use of equation (68) and
the upper limit of argument which may be employed in com-
putation procedures, i.e., above a value of about 3.0.

The argument of the cylinder function is

R/I2¢ w.(r-r,)/c/2wt, which means that any combination

of the quantities in the expression such as large r, large

wo or very small t, which yields values of the argument
larger than 3.0 leads to computing difficulties. Further,
large values of w. in the expression

eT 'R2/8T c " *{t'(L -L }2/8tj yield very small values for
this function. The cylinder functions of high order also
are very small. On the other hand the factor (2T)n (2w.t) n

increases very rapidly for large values of w0 to 3000 for
the ranges of r and t shown in Fig.33 Also, the terms
in the polynomial in R increase very rapidly for large values
of w, (Eq. 58).

Thus, the series expressions are well adapted for small
values of the parameters involved with the exception of very

27
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small t. Numerical integration of the wave equations was
also considered, but this method also becomes unwieldy for
large values of w0.

Comparison of Voigt Waves and Observed Waves

The important parameters of waves in natural earth
materials are arrival time, rise time, fall time, rate of
attenuation with distance and oscillating characteristics.
In this study the observed waves of interest are radial
pulses generated by underground nuclear explosions, i.e.,
in the HARDHAT, AIRVENT, LONG SHOT, and GNOME events.

There are several types of energy losses, dispersion,
etc. in the transmission of dilatation waves through natu-
ral rock masses which cause the waves to differ from those
predicted by elastic theory. Two immediate evidences of
this are greater attenuation, and lengthening of the ini-
tial pulse with distance. In many rocks the pulse length
has been found to increase approximately with the first
power of travel distance. As indicated earlier one of the
primary purposes of this investigation was to ascertain
whether the spherical Voigt wave equation would demonstrate
any of the characteristics found in observed pulses created
by under ground nuclear explosions.

Since there have been only approximated values for w.
for rocks published in the literature, a range of values
was used which would demonstrate the possible applicability
of the Voigt equation. The values employed for wo were
600, 2000, and 3000, having the dimensions of t 1 . Larger
values could not be handled by the computer program, and
smaller values represent large effective coefficients of
viscosity which do not appear to be applicable. That is,
the higher the viscosity of the dashpot element, the more
nearly the Voigt model acts as a single rigid member. This
results in very high velocities of the wave front which
velocities are not characteristic of rock or other natural
materials.

For lower viscosities the Voigt wave forms do demon-
strate some of the important properties of natural waves,
i.e., attenuation and pulse lengthening. For high viscosi-
ties, (small wO), they exhibit velocities of the wave front
which are, as indicated above, velocities which exceed the
velocity of both elastic and observed waves in rock.

28
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Plane Waves. Plane Voigt waves were investigated in the
process of developing procedures for solving the transformed
spherical wave equation. Close to the source of disturbance
these waves demonstrate a significant attenuation of peak
velocity and strain, etc., whereas a plane elastic wave is
propagated without loss of amplitude or change in shape.
While the behavior of plane Voigt waves (Figs.2 to 13) is
not of direct importance in this study, the principles
evolved in their solution were valuable aids in solving and
programming the spherical wave equations.

Forcing Functions. As previously discussed, three forcing
functions were employed in calculating wave forms, a unit
impulse, a unit step and a decay exponential. Each of
these functions makes the transformed solutions successively
more complicated, and the first two were used primarily as
a means of developing procedures for obtaining inverse trans-
forms, working from the less to the more complex forms.
For simulation of a real pressure function, the decay ex-
ponent is the more realistic of the three, but has too
sharp a rise time for most field conditions. Finally, solu-
tions obtained for the unit impulse, 6(t), forcing function
serves as a basis for solutions for other forcing functions
by means of convolution.

Rock Properties. Available data on properties of rocks which
constituted the environment of the nuclear events discussed
are listed in Table I. ', data were available for AIRVENT.
The data for LONG SHOT are limited to strength and ultra-
sonic pulse velocity. Data on salt and granite are more
complete. However, no values for viscoelastic properties
are available inasmuch as meth + have not been devised for
measuring such properties of rock masses.

Physical property data and viscoelastic wave analyses
are not complete enough to derive any quantitative rela-
tionships betwfen them. However, for rocks with lower modu-
li and a significant porosity, the pulse forms are of shapes
similar to those obtained from a Voigt model. Also, the
Voigt wave shows some lengthening with travel distance, but
is not as great as that found in natural rock.
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Wave Velocity. A detailed frequency-wave velocity analy-
;is has not een made, but an inspection of the particle
velocity pulses indicates that the macro-wave front veloci-
ty for we = 600 (Fig. 27, for example), 2000, and 3000 is
greater than the elastic velocity, decreasing with an in-
crease of wo. The actual first disturbance at the distances
investigated are extremely small, and they occur at very
small times. That is, there is no well defined arrival
time for eithor plane or spherical Voigt waves. This is
not the case for an elastic wave, however, where the arri-
val time is defined by the elastic velocity, i.e., for
T' - t-(r-r.)/c, and no wave is defined for T ' 0.

For larger values of w. the velocity at the wave front
decreases, but in each case approximately one-fourth of the
"measurable" use time has passed before the corresponding
elastic pulse would have arrived. For very large viscosity
the Voigt model would indicate a small disturbance at - for
a very small time. For low viscosities th behavior approaches
that of an elastic wave.

The forcing function of greatest interest in this study
is the decay exponential, Poe-Bt. The early arrival times
of waves for this function are in part due to the abrupt
(zero) rise time in pressure. The dashpot in the viscoelastic
model tends to respond as a rigid segment to instantaneous
change in pressure or force. Thus, in a Maxwell element the
first response to a sharp pressure front is almost totally
in the spring. In the Voigt model where the spring and dash-
pot are in parallel, however, one element cannot respond with-
out the other. Consequently, for even moderate values of vis-
cosity the Voigt model will act as a rigid element in its im-
mediate response to high magnitude, short changes in force.
For a less abrupt rise the wave velocity and the rise time
approach those of an elastic wave.

Rise and Fall Time. The spherical pulses in the Voigt model
show a marked Symmetry in their first positive phase. These
are similar in shape to the pulses in GNOME (salt) and AIR-
VENT (andesite), (Figs. 35 to 43) and are also symmetrical
in teir first positive phase. The pulses for HARD FAT
(granite) and LONG SHOT (andesite) on the other hand have
a shorter rise time and a longer fall time. Exact scaled
comparisons cannot be made at the present stage of develop-
ments with the Voigt results primarily because of the uncer-
tainty of the choice of a radius of equivalent cavity, r,
at which either elastic or viscoelastic behavior could be
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assumed to become effective. The Voigt equation is linear,
but will scale only if the viscosity varies as the scale fac-
tor. This condition does not occur for small and large events
in the same earth material.

It would appear that for somewhat porous types of rock
such as those of GNOME and AIRVENT that certain properties
of the .'ock mass cause a damping out of the higher frequencies
more rapidly than in granite and andesite. Porosity, water
content, and geologic structure, as well as elastic proper-
ties of intact specimens all have their effect in varying
but unknown degrees. No quantitative coefficients for the
damping properties of large rock masses for high order tran-
sients have been found in the literature, however. Hence,
this would be a fruitful area for further research.

The value of c for the wave velocity employed in the
Voigt wave calculations was 20,000 fps, or a value equal
to that of a dense granite with large shear and Young's
moduli. However, the shape of the Voigt pulses corresponds
more nearly to that of low moduli materials such as salt.

Attenuation. Both the relative magnitude and the rate of
attenuation of the normalized particle velocity pulse are
affected by the value of w. (Fig. 34). For larger values
of w,, i.e., for smaller viscosity, the normalized peak
particle velocity becomes larger and the attenuation is
lower. The rate of attenuation decreases somewhat with
travel distance, which is not the case for actual velocity
pulses in salt, granite and tuff. However, the slope of
the peak velocity curve for larger values of w. is some-
what lower than that of observed values in natural rock,
which is about 1.6S (Fig. 49).

It should be noted that the calculated peak velocities
are for a wave input form of P(t) - P.edt, which has an in-
finitely steep rise in pressure. The shape of the input
pulse affects the attenuation as well as the magnitude of
the peak velocity as shown above. At the radial distance
from the disturbance at which either the elastic, visco-
elastic or similar wave equ: ?ion b)ecomes effective (radius
of equivalent cavity), the shape of the pulse crossing this
surface is also affected by the properties of the rock medium.
That is, pressures generated by explosive sources are so in-
tense that there may he vaporization and melting (nuclear
explosives) as well as pulverization, fracturing and flow.
The limit of this volume is described by the distance called
radius of equivalent cavity, and energy and pressure losses
will be determined by the porosity. strength and various
properties of the rock which contribute to its ability
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to successfullysustain an intense pressure pulse. Thus,

fractured granite apparently can sustain a pulse wi~h sharper
rise time than porous rocks and salt, as well as transmitting
the same general shape of pulse beyond the fracture zone.
Further, the pulse to be considered for possible viscoelastic
applications would have a more gentle rise time than a simple
exponential. Pulses of the form P(t) - P.(e-at-e - St) will
be investigated in a continuation of the study of viscoelastic
waves.

Conclusions. The Voigt spherical wave generated by a single

decay exponential forcing function exhibits some characteris-
tics which are similar to those of pulses observed in some
kinds of natural rock masses. The Voigt pulse form tends to
become symmetrical and lengthens somewhat with travel distance.
However, the velocities of the frequency components of the
Voigt pulse are frequency dependent, and hence, the wave
spreads in both directions, rather than lengthening from an
arrival time described by the elastic velocity. Observed
pulses in salt and porous andesite likewise tend to become
symmetrical, but lengthen more than the Voigt pulse does and
only in one direction. The attenuation of this type of visco-
elastic wave is somewhat greater than the average of attenua-
tion rates observed in rocks in which contained nuclear explo-
sions have been carried out, but is comparable for tuff and
salt. Waves generated by pulses with longer rise times will
undoubtedly more nearly approximate waves in natural rock.

For all values of w. investigated and for the single ex-
ponential decay pressure function the arrival times of Voigt
waves are considerably smaller than for either observed or
elastic waves. This is due to the abrupt rise in magritude
of the pressure function and to the rigid response of the
vi-coelastic model to abrupt changes in face.

Thus, while a change in the pressure function will make
the Voigt wave more closely approximate natural waves, a de-
crease in the viscosity factor causes the viscoelastic pulse
to approach the character of an elastic pulse, which does
not lengthen with travel distance. It appears, therefore,
that while for certain parameters the Voigt model may more
closely approximate observed pulses in attenuation and pulse
lengthening, it does not offer sufficient advanta.ges, except
for a few s;,ecial -ases, to justify its use for predicting
wave parameters for design purposes in comparison with elastic
waves or empirical procedures.

These analyses of the Voigt model indicate that a con-
figuration other than one incorror.ting a dashpot element will
be required to reprvsv,.t rock mniterials.
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TABLE I Rock Properties

Physical Property Data

LONG SHOT - andesite (Ref. 12)

Compressive strength: 2260 - 5260 psi
Specific gravity: 2.27 - 2.36
Ultrasonic pulse

velocity: 6100 - 10,645 fps

HARD HAT - granite (Ref. 13)

Compressive strength: 19,835 psi
Tensile lit strength: 1,915 psi
Bulk de .ity: 2.69
Ultrasonic velocity

(20 kc): 19,450 fps
Modulus of elasticity,E: 11.3 x 106psi
Poisson's ratio: (.20

GNOME - salt (Ref. 14"

Compressional wave
velocity: 4.08 km/sec

Shear wave velocity! 2.88 km/sec
Density (dry, bulk): 2.13 - 2.46
Poisson' s ratio: 0.28 - .
Young's modulus: 2.41 x 10 1 dynes/cm2

Porosity (I volume): 0.76 5.1t
Water conternt (i wt): 11

AIRVENT - data not available
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APPENDIX A

WAVE PARAMETER FORMULAS

Summation Symbols3

Plane wave -single summation

(s,P)= X _____s_

y n! n/2+yy n~o s

(t,P) i
= no 11 2(~z/2 T(n+z 1)12 D ~) EXP

3 Plane wave -double summation

(s, P) Xn ) exp(-Xv~s)

= myoI I nIm m+nI2+y

mt, o n X n x M+(n+z)/2 .rm+(n+z-l)/ 2

Spherical wave

(s,S) '0b Rn exp(-R/W

y M=o n=o m fs mn/y

(t,S) = b bt 1 2 (ni+n+z)/2 T (m+n+z 1)/2 D_ (RF EXP
z m=o n=o mn -- 7T

(s,P) =s variable, plane wave (s,S) = s variable, spherical wave
(t,P) =t variable, plane wave (t,S) -t variable, spherical wave

On the left side of the above equations the first letter in
the superscript represents the s-plane or the t-plane, and
the second a plane or spherical wave. The subscripts y and
z a-e, respectively, the numerical values of the transform
variable exponent other than the summation indices, and the
subscript of the Weber function other than the summation in-
dices. In all cases z - 2y-1, EXP - exp(-T-X2/8T) for the
plane wave, and EXP -exp(-T-R 2/8T) for the spherical wave.
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* In the following (1'; is the transform solution, (2) the transformshifted and normalized, (3) the expanded transform, and (4) the inversesolution.

Plane Wave: P(t) = P16(t)

Particle Velo City

PC (s/w.+l)~

4 (2) (1/w-) V(x,t/w.)et= .!(L7ZY5

t P1 (tP)

(4)* v(x,t) O 1tP

Displacement

(1) (X~t P'exp[-xs/c(s/w.+l)J

PC s (s/W.+ l)

(2) (i/wo) u(x,t/w.)et*= PCW e SI Y

SP)
(3)' u(x,t/we)e t P,

PC 3/2

(4)' u(x,t)=(tP

*In sunmations all b=
n
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Strain

-1 ~xt P' exp[-xs/c(s/w.+1)i]

(1) 
t PX'te

()(1/w-) E(x,t/wo)et - - eP(-Xs+xlvs)
pC2  S

(3)* (1/w-) c(x,t/w,,)e ~ sP

(4)* e(x,t) = IW (tp

Stress

(1) G(x,t) -P'exp[-xs/c(s/w.+1) ]

(2) (1I/wo x t/wo) et P- P'exp (-Xvrs-+X/v-s)

(3)* (1/w) (xtw~
t  (sp)

(4)* a(x,t) -p'Wa

**In summations all b 1
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Pliane Wave: P(t) =P11l(t)

Particle velocity

(1) v(x,t) Z. P" exp[-xs/cs/w..1~i]
PC (S/wo+1)*l

(2) (1/we) v(x,t/w.)e t P exp(-X/s-.X/rs)

pc-3/2

(4)* v(x,t) - (tP)I
PCw

Displacement

(1) u (x,t) 1% " exp[-xs/c(s/w.+1)
PC S2 ,/5/1

(2)* u(x,t/w.)e t  sP

-~P~w. ~3/2

(4)-- u(x,t) -tIPI

In summations al Ib =
m

SSummation on a is from I -for this case only
and in swumations b aM

m

6



Strain

(1 (x,t) t=&- PS" exp[- S/w./~+1) i
PC2  s (s/W.+1)

(2) (1/w.) £(x,t/w.)e t P"I exp(-XyVW.X/s)
Pc 2 w0  s(s-1)

(3)* (lwo) c(x,t/wo)e t  sP
PC 2

(4* E(x,t) P - T7 3tP

Stress

(1) O(x,t) t - PSI exp[-xs lc(s/w0 +1) i

(2) (11/w.) cl(x,t/w.)e t 
. -PSI exp(-Xrs.xlr4)

w.(s-1)

(3)' Jxt*0 e (s.P)

(t P)
(4)" o(x,t) -PSI

In summat ions al! b



Plane Wave: P(t) =Pe

Particle Velocity

where ci = (1-8/we))

(3)* v(x,t/w*)e *

~* (tP)
(4)* v(x,t/w)ep/

(tP)

PtP
(4)* v(x,t) -,

*~~P In 2umto

Displcemen

In umatiP. expt-xscd roscpawinofI/I)~ii
(1) u~~t) -

PCISB SW+~

(2) UX~t /.O~c P. ep(-X sais



Strain

PC2 (s+B) (S/wo+1)

(2) E(x,t/w.)e t
* P x(X+Xv)

c s(scx)

(3)* E(x,t/u)0)e ~ sP
PC 2  2

(4* E(X,t) = * 2 r,__ (t

S tress

(1) a~xt) -Po expt-xs/c(s/w.+l) I1
( 1 ) o x ~ t )( s + )

(2) t Po exp(-Xrs+X/l)

(t ,p)

SIn summationi b k



Spherical Wave: P(t) P'6(t)

Displacement

(1) u~~t . P'ro exp[-s(r-r.)/c(s/wo+l)] ri, s ]
u(s/w.+l) [B] rcswI~

(2) u(t/w)e P'rOc2 ex R/-/s)I+ w(s-l)]

(3' ( / t P'r.c (S,S) (s S) (sS)

3S) [r2tu~~ L + Yo I I5

P'r.c2  [ CS)+ I(tpS)_ lkt#S)
(4)* u(r~t) L

31uw./w- 3 rc 2 rc~ 4

'In sumations all b obtained from expansion of 1/[AI
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Particle Velocity

(1) ~ x~) * P ros exp [-s(r-r.)/c(s/lw. 1I)ir ~ / o l~
iu(s/wo.l) [B] r2 .

t~ P'rc 2 (s-I) exp(-Rrs.R/,,rs) 1 W.(s-l)j

(3)* v(r,tIw.)e to P'roc2  [I~ I(sS) (SS)]
-~311 r22 J

I))' 2 11 : Y) Ir 1,/2 3/25

(4)' v(r,t) =Pr.c2 r (tS) (t,S)1

3 3
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Strain

(1) ~r~) ~ P'ro exp[-s(r-r*)-/c(siw,+IVj.

(2) ~r~tw0)
t 

' P'roc2 exp(-R/s+R// s
- 311w,[Al

SL 2,(s 1 + W 2 (:1)
2 ]

*t P'rGc2  L (s,S)+ . (sS) (S)

(3)* E(r,t/wo)e - 3p 3 L ~2 + /2-r 5/

r. (s,S)- (s,S), (s,S)]
~rc2 1 2I 1 2 11

(4*Er~) -P'r~c
2 (~2 ~ (tIS) 2w, (t,S) (t)S)]

(4) crA) 13 Y3 +r2c -1 X 4 J

W0
2 r~t'S)- 2 1 (t ,S)+ t

'rc IL3 5j

*In summations all b mobtained from expansion of 1/[A]
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Stress~

4A 4s 3c, 21
-- 7__ __ + - -
ri rc(siO+1,!i +rc 2 (s/w0 +1)

t P'rc 2 s exp(-Rv's+R/Fs)
(2) r (~t~e~ - 3tc [A]X

Ir wr.cs-1 (.' (cs1

2rk S (s S) (sS
t -P rc 4 1.2+ L y 3/2

2 sS (s,S) (s,S)

+ 2Lr

L~ o2t (t S) (t,S) (t,S)]

3t,2 IY 't-S 2 Y
rc I + 3

In summations all h calculated from expansion of 1/[A]
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Spherical Wave: P(t) P~ 1(t)

Displacement

(1)u~r) Pra exp[-s(r-re)/c(s/w0 +l)] [1 s ]
UiS(s/w,+1) [I L2 r~~ol~

(2) u~~~~r~ t. PtIrOc 2 enp(-Rrs*R//sW) [ ~~-
(2 ~~/.e 3vw.2(S-j) [Al [r2 +c 7

(3)* u(r,t/w.)e t PoVr: 2  P r +-. (

(4)*2 urt r2~~ / c ~7;]

2tS (tS),S

SIn summations bm calculated from expansion of l/(s-l)[A]
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Particle Velocity

tP"ro exp[-s(r-ro)/c(s/w+l)] ri s J(v v(r, t)+
i1(s/W.+l) [B] rz rc(s/w.,)T

(2) v(r,t/w0 )e t  
3 'w~ 0 epw [A]7+V7 [+~ i 1

3iiwo[A] r2  cs

(3)* v(r,t w0 )e ( lr c 2 X I S S + . S S) 1 l ( $

3w 2 c 3/2 5/2

(4*v(r~t) -~ oC ('s)+ [o (ts) (t)S)]

*In summ~iations bm calculated from expansion of 1/[A]

Im
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Strain

(1 (r, t) = Pro exp[-s(r-r.)/c(s/w.1l)
l'(s/w.i+i) [B]

L + 2s ]2
r3 r2 c(s/w,+I) rc(S/wo+lJ

(2) E(r,t/w )e 31 W. -S l A

IL+2w 0 (s-) +w. 2 (S-1)
2 1

r r C /S- rc sI

(3*Ert/.et P"rOc2 (2 ()s)S) + 2w. (s :S) (s S)

(3)*w ~ ( ~ / . e ~ - 3 2 r3  3 r2c 5/ 2 7/ 2

+W0
2  (s,S)- (s,S) (s,S)~
rc ~ 2 +~2

(4) cr~) *a
2  (2 i.(t,S) +(tS) (tIS)]

2 r.t ,S) 2Y(t,S) tS
r, 3 2 5 + 7 )J

*In suimmations all b Mcalculated from expansion of 1/[A]

96i



Stress

[4 + 4s 3s2
2yrc(s/w.+1)i rc (s/W..1~

(2)~ IYrtw)t ~- Pvroc2 s~ exp(-RvWs+R/Fs)
(2) ~r~tw,)e3w.2 (s-i) [A]

F+4wo(s-1) +3w1(S-1) 21

tr Prc 2 s (sS)

3w2 r rc111/2 1 5/2
(3) o~3two2e ( - , (s,S) r( LL (,) s))

(4) or~t = Pfroc2  L (t'S)+ 4w j ;~) (t)S)]
(4j r ) 3.2/-I 3 r 2 c L 2 4

+ w2 [ l(tS)- 2 (t'S)
rc2  -2 3

*In summations all b m Liilctlated from expansion of 1/[A]
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Spherical Wave: P(t) -Pee-st

Disp lacement

(1) u~,t - Poe exp(-s(re-r.)/c(s/w.+l)] fiS 1
~i~+8 (sw.l)[B] [-2+ rc(s/w,+W5~

(2) u(r,t/w.)e t  Porpc2 exp(-Rrs+Rlrs) F + w.(s-l)1
31jwo2 (s-u) [A] [r 2  r c /s

(3)* u(r,t/w.)et %. Pqrqc2  1(~SS)+ . (S 'jS) - SS

(4)* u(r,t) ___(S) jt S- (t)]

In summations b calculated from expansion of lI(s-a)f A]mI



Particle Velocity

W(+)(s-ao) (Al [r rcs/,)Is

(2) v(r,t/uo)e t  Pqr~c2 (s-1) exp(-Rrs+R//) I+WO(S-l)]

(3)* v(r,t/w.)e t  s.r c2(,S)- - SS

3uw jr2 ~2  (i)

+I(S ;S)- 2 (s;S)+ (sS)
rc 3 /2 7/2

2 FS (t,S (t,S

*In sumations 'b calculated from expanuioni of I/(s-o) (AI



Strain

(I c(r, t) -P.r. exp[-s(r-r.)/c(s/w,.+)1
Iu(s+S) (s/w.+1) [B]

Er3 r2c(s/w.1P~ rC2(S/W,+)]

(2) c(r,t/w.)e t - Par* exp(-R/s-.R//-) 12 +2w. (s-i) + 0(-)

-3v(s-ci) (A] IP r 2c/rrcs

3iw. rT 3 r c 5/2 /

+ c W0 s, (s,S) 2sS

Pore- j23 (tS tS r(c[2, L 6

3uc 5 V

' In sumations b mcalculated from expansion of l/(s-ci) [A)



Stress

(1) ~r~) ~. -Per. expl-s(r-r.)/C(S/WO+1)
(S+B) [B]

4L 4s 3s2  ]
[r3 r2C(S/w,.1)i ' rC2 (S/w.+1)J

(2) a (r, t/e) e t  -Porac
2 s exP(-Rv's+R/4)
3wo2 (S-Q,) [A]

[4+ 4wo(s-l) + 3W*2(S-1)2]

(3* ~rt/o~.t P rOc2  4 j~ S) 4w.~ (S S) (SS)

(3)~w. I~~/w) rT - 2  ~ 7[L3/2 5/2

___ 1121

(4) rrc2 (t S) 4  ~(t,S) k t,S

rc2  3 L2~

In sumations ba calculated from expansion of l/(s-a)[A]
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Errata Sheet

No. 1

A COMPARISON OF PLANE AND SPHERICAL
TRANSIENT VOIGT WAVES WITH EXPLOSION

GENeRATED WAVES IN ROCK MASSES

Contract Report No. 1-170

April 1967

Please make the following revisions:
1. Insert on page 33:

"AIRVENT* - playa

Density - wet 1.44-1.85

Density - dry 1.15-1.67

Porosity - estimated 5070

Hugoniot Data

P = 1.41-1.47 gi/er 3

V = 2.58-5.24 mm/sec

u = 1.04-3.54 mm/lsec

P = 30-271 kb

v/v = 0.302-64o"

2. Page 28, line 10 - Delete "AIRVENT"

Insert after line 10 - "AIRVENT was a 40,000 lb. TNT eventdetonated at 17 ft. depth in desert playa."

3. Page 29, line 26 - Delete "No data were available for AIRVENT."

4. Page 30, line 37 - Substitute "playa" for "andesite."

* Kintzinger, P. R., AIRVENT Phase I, Project I, Earth Particle Motion.

SC-RR-64-549, Sandia Corporation, October 1964.


