EFFECT OF AIR POLLUTING CHEMICAL GASES
UPON IMMUNOLOGIC PROCESSES IN ANIMALS

by

Terumasa Miyamoto, M. D.
Department of Physical Therapy and Medicine
University of Tokyo,
School of Medicine,
Tokyo, Japan

August 1967

U. S. ARMY RESEARCH AND DEVELOPMENT GROUP
FAR EAST
APO San Francisco 96343

This document has been approved
for public release and sale; its
distribution is unlimited.
EFFECT OF AIR POLLUTING CHEMICAL GASES UPON IMMUNOLOGIC PROCESSES IN ANIMALS

by

Terumasa Miyamoto, M. D.
Department of Physical Therapy and Medicine
University of Tokyo,
School of Medicine,
Tokyo, Japan

August 1967

U. S. ARMY RESEARCH AND DEVELOPMENT GROUP
FAR EAST
APO San Francisco 96343

This document has been approved for public release and sale; its distribution is unlimited.
EFFECT OF AIR POLLUTING CHEMICAL CASES
UPON IMMUNOLOGIC PROCESSES IN ANIMALS

Terumasa MIYAKOTO, M. D.

Department of Physical Therapy and Medicine
University of Tokyo, School of Medicine
Tokyo, Japan.
In a preliminary study, it appeared that antibody production was enhanced when antigen was aerosolized to the experimental animals following the certain period of SO₂ gas exposure. It was also found that when sensitizing antibody against house dust antigen appeared to be higher in sputum among the human subjects with chronic respiratory diseases or with smoking habit. Present studies were carried out to extend the preliminary studies to confirm it and to investigate the influence of air-polluting chemical gases upon immunological processes in animals.

MATERIALS

Animals:

Male guinea pigs weighing 400 to 500 gm, male albino rabbits weighing 3,500 to 4,000 gm, and adult white Leghorn hen were used in this studies.

Antigen:

Porcine serum albumine (BSA) (Armour Co.) and five time crystallized egg albumine (EA) (Nutritional Biochemical Co.) were used for immunization.

Exposure box:

As shown in Fig.1, two funs were installed in exposure box securing uniform distribution of chemical gases and aerosolized antigens. Absorbing tube contained glass fiber which had been immersed to saturated sodium hydroxyde solution and dried. This tube was connected between box and outlet in an attempt to absorb SO₂ as much as possible. Sulfur dioxide bomb was purchased and concentration of SO₂ gas in exposure box was adjusted, controlling SO₂ and outlet flow. Concentration of SO₂ gas was measured by sensitive detecting tube available at Takachiho Co. (Tokyo).
METHOD

Immobilization procedure:

Guinea pigs and rabbits were exposed to 250 to 400 p.p.m. of SO_2 in exposure box for 30 minutes. Following this, 1% of BSA or EA was aerosolized for 30 minutes from both sides of the inlet exposure box, where SO_2 preexposed experimental animals and control animals were placed together. This was repeated for seven times every other day. Two weeks after last exposure, blood was drawn from each animal and sera were frozen until use.

Two groups of rabbits, consisting of four animals each, were exposed to SO_2 in an identical manner as stated previously. One group of animals received 5 mg of BSA intramuscularly with Freund's adjuvant and another 5 mg of BSA subcutaneously immediately after 1st, 4th and 7th exposure. Blood was drawn two weeks after the last injection. Control two groups were immunized with BSA in an identical manner but without preexposure to SO_2. This study was done to see whether SO_2 exposure itself could promote systemic or local antibody production showing adjuvant effect.

Antibody production:

Titer of antibody produced was measured by tannic acid treated red cell hemagglutination test^2 and passive cutaneous anaphylaxis^3 (PCA). One guinea pig was tested with two sera in PCA: one is from the experimental animal and the other from control for comparison.

Serial two fold dilution from 1:10 was employed in hemagglutination test and serial three fold dilution in passive cutaneous anaphylaxis.

Histological studies:
The animals were sacrificed after SO2 exposure and sent for histological studies.

Activity of cilia:
Legion hen was placed on board and one drop radioactive macrogla-
gated human serum albumino was placed into lower part of trachea and movement
of radioactive material was checked by scintigram. These studies were done
with and without SO2 exposure in the same hen. Hen was particularly chosen
because of length of neck to make comparison easier.

Inhalation of radioactive material:
1131 labelled human serum albumino was aerosolized to rabbits preexposed
to high concentration of SO2 and rabbits without preexposure. Blood was
drawn periodically to follow fate of inhaled material.

RESULTS

Antibody production:
As shown in Table 1 and 2, titer of antibody was higher in SO2 pre-
exposed animals measured by hemagglutination test and PCA, when immunized
with aerosolized antigen.

When antigen was given intramuscularly with Freund's adjuvant or
subcutaneously, there appeared no significant difference of antibody titer
in comparison between SO2 preexposed group and control, although statistic
analysis appeared not to be feasible, because of variation of titer and
small number of animals (Table 3).

Histological studies:
Infiltration of leucocytes, hemorrhage, edema, atelectatic changes, increased excrete in bronchi etc. were major changes in acute exposure of \(\text{SO}_2 \).

Activity of cilia:

Movement of radioactive material due to ciliary activity was measured by scintillation counter using hen. Because of coughing, it was sometimes difficult to ascertain the speed of movement. In addition, because of the insignificant number of subjects and preliminary stage of the study at the present time, definite statement could not be made at this time, but some delay of movement was seen in \(\text{SO}_2 \) preexposed hen.

Inhalation of radioactive material:

At the present stage of studies, no definite statement cannot be made as only preliminary studies were done so far.

DISCUSSION

\(\text{SO}_2 \) is thought to be one of the most important air polluting gases at the present time. From the investigation presented here, it became clear that antibody production is accelerated when animals are immunized through air way following exposure to \(\text{SO}_2 \). \(\text{SO}_2 \) inhalation itself does not appear to stimulate immunologically competent cells as shown in Table 3, but \(\text{SO}_2 \) inhalation produce damage of air way tract. This probably cause permeability of air way since any kind of inflammatory changes increases permeability. Activity of cilia decreases when \(\text{SO}_2 \) is inhaled. According to Kesler and Battista\(^4\), ciliary activity is markedly reduced when exposed to \(\text{SO}_2 \). This confirmed our preliminary findings. Consequently, inhaled

-4-
antigen would stay longer period in air way tract since ciliary activity is reduced. In addition, permeability of air way tract membrane is increased. Therefore, inhaled antigen has more chance to touch with immunologically competent cells in body through the circulation. This is thought to be the main cause of acceleration of antibody production when SO_2_ was preexposed, although this was not proved definitely at this stage.

Currently it was found that the incidence of positive skin test to house dust was higher among the smokers and among the subjects with chronic respiratory diseases^1). This fact can be explained with the identical mechanism.

In human daily life, high concentration of SO_2_ such as used in this study is seldom encountered, but chronic exposure of low concentration of SO_2_ could produce an identical changes in respiratory tract. Anyhow, the findings in this study is certainly important, taking present air polluting problem into consideration.

To know the mechanism, more studies are needed. For instance, activity of alveolar macrophage, fate of inhaled antigen, etc. should be investigated further.

CONCLUSION AND SUMMARY

Antibody production was accelerated when animals were preexposed to SO_2_ and aerosolized with antigen. Because of premature investigation at the present stage, the mechanism could not be clarified definitely but from the available investigative results, it was most likely due to: 1) increased permeability of air way tract membrane, and 2) decreased activity of cilia which cause accumulation of antigen in longer period when SO_2_ was preexposed.
REFERENCES

Table 1. Antibody titer in rabbits

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>No. of animals</th>
<th>Antigen</th>
<th>Hemagglutination titer (reciprocal)</th>
<th>PCA (reciprocal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>8</td>
<td>EA</td>
<td>1280-5120 (3260)</td>
<td>90-2700 (900)</td>
</tr>
<tr>
<td>None</td>
<td>6</td>
<td>EA</td>
<td>320-2560 (907)</td>
<td>10-90 (50)</td>
</tr>
<tr>
<td>SO₂</td>
<td>10</td>
<td>BSA</td>
<td>640-5120 (2112)</td>
<td>not done</td>
</tr>
<tr>
<td>None</td>
<td>9</td>
<td>BSA</td>
<td>10-5120 (780)</td>
<td>not done</td>
</tr>
</tbody>
</table>

Note: Number in () shows mean value.

Table 2. Antibody titer in guinea pig

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>No. of animals</th>
<th>Antigen</th>
<th>Hemagglutination titer (reciprocal)</th>
<th>PCA (reciprocal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>9</td>
<td>EA</td>
<td>160-10240 (1866)</td>
<td>30-270 (174)</td>
</tr>
<tr>
<td>None</td>
<td>11</td>
<td>EA</td>
<td>20-10240 (1285)</td>
<td>10-90 (38)</td>
</tr>
<tr>
<td>SO₂</td>
<td>9</td>
<td>BSA</td>
<td>0-320 (57)</td>
<td>not done</td>
</tr>
<tr>
<td>None</td>
<td>11</td>
<td>BSA</td>
<td>0-80 (18)</td>
<td>not done</td>
</tr>
</tbody>
</table>

Note: Number in () shows mean value.
Table 3. Antibody titer in rabbit

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>No. of animals</th>
<th>Immunization method</th>
<th>Hemagglutination titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>4</td>
<td>BSA with Freund's adjuvant</td>
<td>640-10240</td>
</tr>
<tr>
<td>None</td>
<td>4</td>
<td>BPA with Freund's adjuvant</td>
<td>640-20480</td>
</tr>
<tr>
<td>SO₂</td>
<td>4</td>
<td>BSA S.C</td>
<td>160-640</td>
</tr>
<tr>
<td>None</td>
<td>4</td>
<td>BSA S.C</td>
<td>160-320</td>
</tr>
</tbody>
</table>

Fig. 1. Exposure box
Antibody production was accelerated when animals were preexposed to SO₂ and aerosolized with antigen. Because of premature investigation at the present stage, the mechanism could not be clarified definitely, but from the available investigative results, it was most likely due to: (1) increased permeability of airway tract membrane, and 2) decreased activity of cilia which cause accumulation of antigen in longer period when SO₂ was preexposed. (Author)
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pollution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical gases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibody</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>