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jRESIDUAL VARIANCE SCALING AND MATRIX APPROXIMATION

1. Philosophical Orientation

Every human discipline develops terminology and concepts peculiar to

its own needs and interests. TerminoloMr developed by a discipline may

shape and direct but it can also obscure the basic underlying concepts

essential to the development of the discipline. This appears to be true

for all human disciplines, whether scientific, political, religious,

esthetic, or what not. We must, of course, have verbal, auditory, or other

types of symbols to communicate the concepts which are developed within a

discipline. Unfortunately, after verbal symbols become established there

is often a tendency to confuse them with the nundamental concepts of the

1' discipline. In much of human communication the problem is often one of

semantics rather than of agreement as to what are the essential concepts of

the discipline.

The confusion between terminology and underlying concepts is not

restricted to the nonscientific disciplines. In the sciences as well as

the humanities, semantic difficulties are common. Particularly in the

sciences where we like to think that our terminology is less ambiguous than

in other disciplines, the problems of communication are not confined to the

ambiguity of words alone. But even here communication and consequently the

development of the science can be either impeded or facilitated by the

selection of a particular model or set of underlying philosophical con-

stznicts on the basis of which we attempt to regularize observations. These

observations may be generated either from events uncontrolled by the

observer, such as economics, astronomy, and so on, or by systematically

generated experience commonly known as scientific experimentation.
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It is important to recognize not only when difficulties of agreement

* are due to semantic ambiguities but also when they are due to disparities

among the underlying philosophical constructs utilized either consciously

* or unconsciously by the comunicators. The problems of semantics and

philosophical constructs are perhaps nowhere more pronounced In the scien-

tific disciplines than in the field of psychology. Communication and there-

fore progress in psychological science can be impeded by preoccupation with

both semantics and philosophical models at the expense of more basic issues.

A striking example of how semantic and philosophical ambiguities can

cause confusion in a discipline is found in an area of psychology where the

techniques of mathematical statistics have been introduced. We refer here

to that general field of activity which has come to be known as factor

analysis. There is, of course, disagreement as to what specific kinds of

activities should be designated as factor analytic. It is perhaps unfortu-

nate that the techniques which have come to be designated as factor analysis

have been developed and utilized more extensively in psycholcgy than in

other scientific disciplines. One even gets the impression that factor

analysis is regarded by some as a branch of psychology. The work of Spearm.'?n

(1947) in the early part of the century contributed much to this notion that

factor analysis is a branch of psychology. It is well known, of course,

that his general and specific factor theory of intelligence formed the basis

for th'e rierical and statistical techniques developed to demonstrate his

two-factor theory. It is also well known that Thurstone (1947) generalized

Spearman' s two-factor theory by expanding the general factor into a number

of conmn factors.* It is further well known -that Hotelling (1933), in an

effort to give mathematical elegance to the multidimensional study of



intelligence, developed what has come to be known as principal component

analysis. The distinction between Hotelling's principal component analysis

and Thurstone's common factor analysis has been the source of much contro-

versy. Perhaps most of this controversy is based on semantic wnd philo-

sophical preferences '.ather than on fundamental concepts.

In any case, it has been amply demonstrated over the past several

decades that factor analysis is not a branch of psychology, but rather that

It is a methodology applicable to all of the sciences. It -has not been so

clearly demonstrated that factor analysis is a general methodology of which

there are many special cases. For example, there are some who would contend

that factor analysis is a special case of mathematical statistics. Perhaps

the safest way to avoid unproductive semantic and philosophical controversy

is to adhere as closely as possible to arithmetical concepts. It is prob-

able that if discussion in any field of human endeavor which purports to be

in any sense constructive were confined more closely to arithmetical and

numerical considerations, controversy and ambiguity could be greatly

reduced. In any case, while the following discussion will be related to

what has come to be known as factor analysis methodology in psychology, we

shall attempt to adhere as closely as possible to arithmetical concepts and

to exclude the more abstract concepts of psychology and matheratical

statistics.

In confining our discussion primarily to arithmetical considerations,

we exclude also most of mathematics. The reason for this excessive

restriction is that even in mathematics, semantic and philosophical red

herrings may confuse communication and methodology. It is well known that

many different mathematical rationales may lead to the sa.e numerical
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results. It is probably in general true that the more ancient a disciplile

the more it tends to become encrusted with irrelevant and ritualistic

semantic and philosophical devices. This is true of law, madicine, religion,

philosophy, and mathematics, the last three of which are among the oldest

of formal human disciplines. It is hoped therefore that our presentation

can be maintained almost exclusively on the arithmetical level, and that

even the algebra which it is necessary to employ will be merely shorthand

nc'tation for th arithTetic operations involved. Even though we shall

attempt to restrict the major part of our discussion to nurerical concepts,

we shall nevertheless relate the procedures to methods and systems developed

by psychologists and mathematical statisticians. Our own notation and

terminology will follow closely that which we have developed previously

(Hurst, 1963, 1965) to circumvent sor of the more cumbersome nomenclature

of traditional mathematics.

2. The Arithmetical Model

Suppose we have given an M x n basic data matrix X with N > n and

X'l = 0 (2.1)

Consider an approximation atrix U of rank m with m < n such that

X - U= e (2.2)

where e is a residual matrix and

U C - 0 (2.3)

Let

G = X' X N

G -zu' u/ N (2.5)
Ce

0e  Cc / N (2.6)

1£

I

I
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From Eas. 2.2 through 2.6

a -%(2.7)

Let A be an 11 x m matrix such that

AA' (2.8)

Let
n - dia8(a) (2.9)

I CDo ,.ia,( ,) (a. o)
DA da(GAA)

Do -- cla (0) (2.11)

- D" D -- (

From Eqs. 2.? through 2.12

(D - DA)' (G - A A') (DQ - DA)- - (2.2)

Note that

DE = 0 
(2.14)

Let

D e A (2.15)

C D G D C 
(2.161

From Eqs. 2.13 through 2.

C-ca'cW -I E (2.17)
Let the basic structure of C be indicated by

SQ 6(2.18

and let

[Q, (2.19!
6 -- 1 (2.20o)

[

I "
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wherm m and r are dimensionality subscripts and

m* + = n (2.21)

Let

$ tr E2  (2.22)

We wish now to determine A so that is a iniu . Equation 2.17 means

obviously that the matrix X has been scaled so that the varianc, 3 of the

residual matrix are all unity. The minimization of 0 in Eq. 2.22 means that

the sum of squared correlations for the residual matrix is a minimum.

It is well known that 0 will be a minimum when
1

hence for o to be real, the smallest 6 in 6 must bea in

6 > 1 (2.24)m
m

From Eqs. 2.17 through 2.20, and 2.23, it can readily be shown that

0 = tr (6, - IS)2 (2.25)

Because of Eq. 2.14 we have

tr 6 = s (2.26)
s

Hence $ is simply s times the variance of the s smallest roots or basic

diagonal elements of C in Eq. 2.18.

It is of interest to note that because of Eqs. 2.16 through 2.20, and

2.24, we may write

D G D - (D - A) - D " " A (I + A' D I A) (2.27)

or more simply

(c - I a = a a' 0 (2.28)

| | | | |
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Equations 2.27 and 2.28 are mathematically equivalent to those given by

Lawley (190), Rao (1955), and others, and usually derived from much more

elaborate theoretical constructs. The problem of determining A to minimize

has received much attention by these and other investigators. All

method proposed require iterative procedures beginning with initial esti-

mates of A or functions of its elements. Three major difficulties have

been encountered: (1) the determination of suitable initial estimates;

(2) excessive computation time, even with electronic computers; (3) so-

called improper solutions in which some of the elements of D may be

negative.

The methods refe red to have been insistently designated "factor anal-

yale" to distinguish them from what some writers prefer to call principal

component analysis. More specifically, they have been variously called

maximum likelihood factor analysis, canonical factor analysis, and maximum

determinant factor analysis. We have preferred to circumvent the distinc-

tion between factor analysis and principal component analysis and to refer

to the algebraic model as a specificity scaling model (Horst, 196 5a). It

will be noted also that our approach emphasizes the scaling and decomposi-

tion of the data matrix rather than of the covariance matrix of the data

matrix, although this distinction is not germane to the solution.

3. Computational Rationale

Semantic and philosophical preferences aside, a computational procedure

developed by Jdreskog (1966) appears to be the best available to date vith

reference to the problems of initial estimates, computational speed and

accuracy, and proper solutions for residual variances. His development

provides significance tests for specific values of m. These tests are based



on the more elaborate philosophical substructure of his model which we do

not include in our arithmetical developmont.

Wle hove previously (Horst, 196 5a) presented a computational solution

which is a siecial case of a more general basic structure type solution

(Horst, 1965b). The solution cited suffers both from unsatisfactory speci-

fications for the selection of initial values and excessive comiputation

time. It appears, however, to restrict the residual variances to positive

values. The method begins with a consideration of the general Gramian

matrix G and a factor loading matrix A such that

G AA' (3.1)

2de determine A in Eq. 3.1 so as to minimize tr e We indicate the basic

structure of G by

G -Q Qm m' + q SIs Q' (3.2)

where m and s are dimensionality subscripts which zorrespond to the first

m and last s latent roots and vectors of G.

It is well known that the solution for A of width m which minimizes

tr e2 is

A m (3.3)

From Eqs. 3.1, 3.2, and 3.3

A = GA (A' G A)-'f h (3.4)

where h is an arbitrary square orthonormal matrix. In particular, we may

indicate the triangular factoring

tt' - A' G A (3.5)

Then h in Eq. 3.4 may be such that

t = (A' G A) - 1 h (3.6)
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From Eqs. 3.4 through 3.6

A - G A t' 1  (3.7)

Suppose we choose en arbitrary matrix 0A of width m, cubject only to

the restriction that 0A' % is basic. We then write the iteration equations

it t' = A' G iA (3.8)

i+lA G iA it (3*9)
iA

It has been rhown (Horst, 1965b) that i+iA converges to Dm SM 2 and therefore
2

minimizes tr e as i increases without limit.

We have used a modification of this method to solve for A in Eq. 2.13

(Horst, 1935). We let

D - (DG - PA,) (3.10)

1 1 1 1

t t' =A' D-2 (D_ 0 D2 - I) D-2 A (3.11)

Then
D A (D - G D " - I) D At (3.12)

From Eq. 3.11

t t' A D-1 G D- 1 A - A' D- 1 A (3-13)

From Eq. 3.12

A = (G D - A - A) t' - 1 (3.14)

We may ncw let

U D D1 A (3.15)

W1 G U - A (3.16)

Then from Eqs. 3.13 through 3.16

t t' =U' W (3.17"

and

J - L [(3]18)A W]
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Thus the partial triangular factoring of the supermatrix on the right of

Eq. 3.18 yields the factor loading matrix A as the lower submatrix on the

left. This leads to the iteration equations

i D = (DG - iA,') (3.19)

i u = iD-1 A (3.20)

W = G iU- A (3.21)

it i t i W

L KU1  V j 
(3.22)

Equations 3.19 through 3.22 constitute in slightly different form and

notation those we have previously given for the specificity scaled factor

analysis solution (Horst, 1965c). We originally suggested that 0A be taken

as the principal axis factor matrix for m factors of the correlation matrix

corresponding to G. As is well known, the pc 2ificity scaled solution is

independent of scale for the original variables and hence the correlation

matrix R may, without loss of generality, be taken as G, an arbitrarily

scaled covariance matrix. When the principal axis solution is taken for oA,

it is obvious from Eq. 2.23 that the number of assumed factors cannot exceel

the number of roots of R greater than unity. This restriction is consonant

with the recommendations of Kaiser (1960) and others for an upper bound to

the number of factors.

Let us now return to Eq. 2.15. From this it can be shown that

[D Y ED] D -n t1 (.23'
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Let

A D +n ' (3.24)
G a

From Eqs. 3.23, 3.24, and 3.12

t t' a A' G of a -C (3.25)

and

a M (A (G - I) a I) at'1I  (326)

From Eqs. 2.15 and 3.23

A - (D0 + D . a (3.27)

The iterative solution indicated by Eqs. 3.25 and 3.26 shows that because

of Eq. 3.24 no iteration can yield a negative A, or because of Eq. 3.23, a

negative residual variance.

4. Initial Estimates

However, the method previously outlined (Horst, 196 5c) does suffer from

several weaknesses. First, the principal axis approximation for the OA

matrix as determined from the correlation matrix does not appear to be

satisfactory. Second, the iterations converge slowly. Third, there is not

adequate assurance that the convergence is to an absolute rather than a local

minimum.

To overcome the first objection we take a cue from the image analysis

model of Guttman (1953). We consider the residual matrix obtained when each

variable is estimated by conventional least square procedures from all the

others. The covariance matrix of this residual matrix is well known to be

given by

D 1  G -l(.1)

and has been called by Guttman (1953) the anti-image matrix.
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The covariance matrix of estimated variables is given by

= G - 2 D  i + D 1 l G 1 P 1  (4.2)
G G G

We seek a scaling of the observed covariance matrix such that the correspond-

ing residual covariances will be unity. This will be the ease if we let

oD  D-l (4.3)

For then we have say

I

C - _, (4.4)

and

i -1 -i 4.5)
G G

It is clear therefore that if a covariance matrix is scaled by the square

roots of the diagcaals of its inverse, the anti-image matrix of the re-

scaled covariance matrix will have unity in the diagonals.

We begin now by rescaling the matrix G as indicated in Eq. 4.5, and

let the basic structure of C be

-- m % % s s Q' (4.6)

We let

'CV . M I(s - 1)0 (4.7)
1

0A (I +D 0 ,)2 0 (4.8)

When 0A is used for i = 0 in Eqs. 3.19 through 3.22, the value 0 for

successive iterations drops much more rapidly than when the approximation

0A is based on the largest latent roots and associated vectors of the

correlation matrix. For data from Hemmerle (1965), ro-analyzed by J"reskog
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(1966), it was also found that with a sufficient number of iterations the

value of his criterion and T (our D) values were closely approximated. For

this example it appears therefore that the absolute minimum rather than a

local minimum was reached. Furthermore, no problems of negative residual

variances were encountered although several variables which J6reskog (1966)

found to have T values on the boundary appeared small, as will be subse-

quently indicated.

5- Iterative Procedures

However, the number of iterations required to achieve J&reskog's

solution for Hemmerle's data was 10,000, and required about 21 minutes on

the IM 7094-MOD 1. It was noted, however, that after about 20 iterations

a definite drift appeared to establish itself so that the vectors of

differences between s'uccessive D vectors decreased slowly. The iteration

procedure was therefore modified to take advantage of this regularity as

follows:

Let

be a specified number of iterations

K. be a specified number of sets of K1 iterations

be a parameter to be empirically determined

E2 be the minimum value allowed for any element of .D in Eq. 3. 11,.

For any iteration i we may calculate the criterion

i tr (iD - (G - iA iA  iDf - 1)2 (5.1)

However, this criterion need be calculated only at prespecified intervals.

We proceed as follows:

K1 iterations are computed of the type 3.19 through 3.22 for the set of

Y(2 iterations. We calculate
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- A-(5.2)

and also $ by means of Eq. 5.1.

We assume now that

A = KA + a U (5.3)

where a is some positive scaler quantity. In particular, we let

a -El JK 54

where K2 is the serial order of the set. From Eq. 5.3 we calculate

D - [I - DAA,] (5.5)

If no element Di of Eq. 5.5 is less than E2, we take A as given in Eq.

5.3 and continue with the next set of iterations. Otherwise we take A as

KA, and reduce K2 to

K2 - K2 / n. (5.6)

where n is a positive number empirically determined.

We continue in this manner so that for each set of iterations we

calculate Eq. 5.2 from the last two iteration cycles of the set and Eq.

5.1 from the last iteration cycle. The value X2 in Eq. 5.3 increaseq by 1

for each set of iterations, and the beginning A for the next set of

iterations is given by Eq. 5.3 unless a D in Eq. 5.5 is less than E * In
i 2

this case, K2 is first redued by Eq. 5.6, and the beginning A for the next

set of iterations is taken as the last A from the previous set.

Presumably the success of the method depends on the choice of the con-

stants , K2, El, and nc . For seven sets of data of widely differing

cbaracteristics, good results were obtained with Kj 10, K2 =. 10, E1 . 10,
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and nc  3. Five of these seven sets have been analyzed by J6reskog (1966)

but his 0 value is given for only one of these. J6reskog gives results

based on a number of different assumed numbers of factors fo each set of

data. Since his method is presumably at least as accurate as ours and yields

in addition tests of significance for any assumed number of factors, the

only advantage ours may have is length of time required.

In our method we give only upper and lower bounds for the number of

factors and these are highly tentative. If we let
1 1

G0=9t;~ R D2 _ (5.'?)
R R

anid

Q 6 Q'+ Q 6 Q'G (5.8)

then the largest value of m will be such that

mm>~ (5-9)

and the smallest value such that

6 + s6 >2 (5.10)": mm sas

In addition we specify that

mZn/2 (5.11)

It should be noted that for the method outlined it is quite possible

for a i0 value to be greater than for 1-10. This can occcr after an

acceleration indicated by Eq. 5.3- If the value of a is kept sufficiently

small it will not occur, but then the rate of convergence may be unaccept-

ably slow. Our procedure provides for grouping of the successively

calculated 0 values into sets of K3 each. In particular we may have K3  , T.

If the lowest 0 value in set i is lower than the lowest 0 in set i + 1, the

routine described is terminated and the A matrix corresronding to the lowest
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0 value is taken as the starting point for a final set of iterations without

acceleration. This is a sort of polishing operation and it appears that 25

iterations is adequate for the data we have analyzed. If no reversals in

0 values are encountered, the routine method continues for some prespecified

number of sets, after which the polishing iterations occur.

6. Numerical Results

Results for the seven sets of data we have analyzed are given in

Table 1. Each column of the table represents a set of data. The rows are

as follows:

Row 1 gives the number of variables in the set.

Row 2 gives the source from which the data were taken.

Row 3 gives the number assigned to the set of data by JSreskog.

Row 4a gives the smaller number of factors solved for.

Row 4b gives the number of factors solved for by JXreskog which

corresponds most closely to our smaller number.

Row 4c gives the larger number of factors solved for.

Row 4d gives the number of factors solved for by J5reskog which

corresponds most closely to our larger number.

Row 5a gives the 0/2 values or half the sum of squared residuals for th .

smaller number of factors as determined after 400 final polishing iterations

and therefore assumed to be very close to the minimum value.

Row 5b gives the 0/2 values after 25 polishing iterations for the

smaller number of factors with KI, K2 , and E1 all equal to 10.

Row 5c is the same as row 5a except that the 0/2 values are for the

higher number of factors.

Row 5d is the s._ as row 5b except for the higher number of factors.

I



.17

Raw 6a gives the time in seconds for the accelerated and 25 polishing

iterations for the lower number of factors. It does not include the com-

ptation time for the initial estimate of 0OA nor for input. Perhaps 30 per

cent to 50 per cent additional time is required for the initial estimate of

Bow 6b gives Jreskog's time on the CDC 3600 for the nearest correspond-

ing number of factors to those in 6a but does not include input and output

time.

Row 6 c is the same as row 6a for the higher number of factors.

Row 6d is the same as row 6b for the nearest corresponding number of

factors to those in 6c.

It is difficult without actually running J~reskcog's program on the IB

7094 to compare otur time with his. If we take his estimate that the CDC

3600 is about two and a half times as fast as the 13M 7094, it appears that

for a maximum of ten sets of accelerating iterations with ten iterations to

a set, our method is from three to five times more rapid than Jdreskog's

and from 99 to 100 per cent as accurate, depending on the particular set of

data and the number of factors solved for. However, we have run our progran

also on the CDC 3600. Our results indicate that the CDC 3600 is at best

only 10 per cent faster than the IBM 7094. If this is correct, then our

method is at best only 25 per cent to 100 per cent faster.

Our method does not give the lev.1 of significance at which a specified

number of factors satisfies the so-called factor analysis model as does

J~reskog's method. If desired, his tests could be added to our prcgram. I.

this case one would probably begin with our lover bound for the number of

factors and proceed first downward and then upward with one less and one

additional factor at a time.
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It is interesting to note that with Data 3 for 8 factors, the 0/2 value

of .05806 is reached after 8 accelerated sets of 10 iterations each and 20

polishing iterations, or a total of 100 iterations, while this criterion is

attained only after 6,000 nonaccelerated iterations. Table 2 gives to three

decimal places for Data 3 the residual variances scaled back to unit variance

for the observed covariance matrix for a number of different cases. The

corresponding 0/2 values are given in the last row. 'olumn 1 gives our

values for 80 accelerated and 25 polishing iterations. Column 2 gives our

values for 6,000 unaccelerated iterations. The 0/2 values for these two

columns are the same. Column 3 gives our values for 100 unaccelerated

iterations. The 0/2 value is almost 14 per cent greater than for the same

number of accelerated iterations of column 1. Colum, 4 gives our values for

10,000 unaccelerated iterations. Column 5 gives Jdreskog's values. The

dispar'ty among all columns except column 3 is doubtless far less than the

accuracy of the data would require. Nevertheless the Jgreskog metho gives

the lowest 0/2 value, .05787. This value was calculated by using the

specificity variances which he calculated to three decimal places.

JSreskog's published value for 0 is .1134 so that his 0/2 is .0367. We

cannot account for the discrepancy between this value and our value of .0579

calculated from his unique variances. It is perhaps possible that greater

decinnr.l accuracy for the unique variances would have given his 0 value but

only three-place accuracy uas available to us.

The ratio of our residual sum of squares to that of J~reskog is 1.00L

and, using 2.5 as the ratio of IBM 7094 .,ZD 1 to CDC 3600 time, was obtained

in less than one-fifth the time. One reason for the rapidity of our metho'

is that an iteration cycle indicated by equaticns 47 through 51 is any
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times faster for a small number of factors than a basic structure 3olution

for the full covariance matrix. The time of the I4 7094 MOD ! for a

15 x 15 matrix with 8 factors is less than .12 seconds for one of our iter-

ations, whereas for the basic structure solution it is about 20 to 30 times

as long. Each Jdreskog iteration requires a basic structure solution.

But even though our results for Data 3 with 8 factors is for all prac-

tical purpose as good as those of J~reskog and much faster, the superiority

of the method for other numbers of factors for Data 3 and for all of the

remaining sets of data has been demonstrated only for speed and not for

accuracy. Our minimum 's indicated in Table 1 are probably quite accurate

for the initial OA matrices on which they are based. Whether, however, these

lead to an absolute as well as a local minimum we have not preyed empirically

or theoretically. The application of J6reskog's method for the other data

would doubtless indicate whether we are close to an absolute minimum for

positive unique variances. This would not, however, prove that our method

for selecting the initial OA converges in general to an absolute minimum.

That the solution is restricted to positive residual1 variances we have

already shown.

EBen though the iteration cycles for the method we have outlined are

very rapid, columns 1 and 2 of Table 2 indicate that it is primarily the

acceleration feature which is responsible for the speed of the method. This

feature increases the speed of the method by a factor of about 60 for Data 3

with the acceleration parameters used. The question may well be raised

whether other acceleration parameters, or indeed other acceleration stratcgi-,

may increase the rate of convergence appreciably. To date we can only say

that we have experimented with many different combinations of values o.

I
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iteration parameters and with other methods of determining the augmentation

rarameter a throughout the successive iterations. To date we have found no

acceleration r.rocedure which is clearly as good or better, from the point of

view of speed and accuracy, then the values K1 = 10, K2 
= 10 E1 

-- 10,

n - 3

It is important in closing to emphasize obvious liritations of the

method we have outlined.

(1) We have not proved--and it may well not be true--that in general our

method for determining 0A leads to an absolute rather than a local minimum

sum of squared residuals.

(2) We have not provided a method for determining the number of factors

although J~reskog's procedure for doing this might be incorrorated into ours.

(3) We have by no means exhausted all possibilities for appreciably

improving the acceleration strategy.

(4) We do not know how well the acceleration strategy and parameters

would work on Gramian matrices in general.
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TABLE 2

Unique Variances for Data 3

1 2 3 4 5
100 6,0OO 100 10,000 J6reskog
Ace. Un. A. Un. A. Un. A.

2. .263 .262 .238 .262 .263

2 .392 -395 .366 .395 .395

3 .458 .457 .451 .457 .458

4 .090 .o86 .238 .083 .o8o

5 .489 .485 .467 .486 .487

6 .259 .260 .280 .259 .259

7 .014 .010 .173 .oo6 .005

8 .466 .466 .450 .465 .465

9 .662 .663 .618 .663 .664

10 .OO .o42 .143 .037 .029

11 .580 .579 .566 .579 .580

12 .504 .497 .515 .498 .499

13 .738 .736 .721 .737 .738

14 .620 .620 .586 .62-1 .622

15 .010 .o14 .143 .009 .005

0/2 .058o6 .058o6 .065P6 .05796 .05787
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