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RESIDUAL VARIANCE SCALING AND MATRIX APPROXIMATION

1. Philosophical Orientation

Every human discipline develops terminology and concepts peculiar to
& its own needs and interests. Terminology develored by a discipline may
E shape and direct but it can alsoc obscure the basic underlying concepts
i ' essential to the development of the discipline. This appears to be true
| for all human disciplines, whether scientific, political, religlous,
esthetic, or what not. We must, of course, have verbal, auditory, or other
types of symbols to communieate the concepts which are developed within a
discipline, Unfortunately, after verbal symbols become established there
% is often a tendency to confuse them with the fundamental concepts of the
| discipline, In much of human communication the problem is often one of
semantics rether than of agreement as to what are the essential concepts of

- the discipline.

The confusion between terminoclogy and underlying concepts is not
restricted to the nonscientific disciplines., 1In the sciences as well as
the humanities, semantic difficulties are common. Particularly in the

sciences where we like to think that our terminology is less ambiguous than

; in other disciplines, the problems of communication are not confined to the

ambiguity of words alone. But even here communication and consequently the

development of the science can be either impeded or facilitated by the

selection of a particular model or set of underlying philosophical con-
structs on the basis of which we attempt to regularize observations. These
observations may be generated elther from events uncontrolled by the
observer, such as eccnomics, astronomy, and so on, or by systematically

generated experience commonly known as scientific experimentation.

-
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It 1s important to recognize not only when difficulties of agreement
are due to semantic ambiguities but also when they are due to disperities
among the underlying philosophical constructs utilized either consciously
or unconsciously by the communicztors. The problems of semantiecs and
philosophical constructs are perhaps nowhere more pronounced in the scien-
tific disciplines than in the field of psychology. Communication and there-
fore progress in psychological science can be impeded by preoccupation with
both semantics and philosophical models at the expense of more basic issues.

A striking example of how semantic and philosophical ambiguities can
cause confusion in a discipline is found in an area of psychology where the
techniques of mathematical statistics have been introduced. We refer here
to that general field of activity which has come to be known as factor
analysis. There is, of course, disagreement as to what specific kinds of
activitles should be designaeted as factor analytic. It 1s perhaps unfortu-
nate that the techniques which have eome to be designeted &¢s factor analysis
have been developed and utilized more extensively in psycholcgy than in
other scientific disciplines. ie even gets the impression that factor
analysis is regarded by some as a branch of psychology. The work of Spearm:n
(1927) in the early rart of the century contributed much to this notion that
factor analysis is a branch of psychology. It is well known, of course,
that his general and specific factor theory of intelligence formed the basis
for the rumerical and statistical techniques developed to demonstrate his
two-factor theory. It is also well known that Thurstone (1947) generalized
Spearman's two-factor theory by expanding the general factor into a number
of common factors. It is further well known that Hotelling (1933), in en

effort to give mathematical elegance to the multidimensional study of
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intelligence, developed what has come to be known &s principal component
analysis, The distinction between Hotelling's principal component analysis
ard Thurstone's common factor analysis has been the source of much contro-
versy., Perhaps most of this controversy is based on semantic and philo-
sophical preferences -ather than on fundamental concepts.

In any case, it has been gmply demonstrated over the past several
decades that factor analysis is not a branch of psychology, but rather that
it is5 a methodclogy applicable to 211 of the sciences, It has not been so
clearly demonstrated that factor analysis is a general methodology of which
there are many speciml cases. For example, there are some who would contend
that factor analysis is a speciasl case of mathematical statlstics. Perhaps
the safest way to avoid unproductive semantic and phillosophical controversy
is to adhere as closely as possible to arithmetical concerts. It is prob-
able thet if discussion in any field of human endesvor which purports to be
in any sense constructive were confined more closely to arithmetical and
nunerical considerations, controversy and ambiguity could be greatly
reduced. In any case, while the following discussion will be related to
what has come to be known as factor analysis methodology in psychology, we
shall attempt to adbere as closely as possible to arithmetical concepts and
to exclude the more abstract concepts of psychology and mathermatical
statisties.

In confining our discussion primarily to arithmetical considerations,
we exclude also most of mathematics. The reason for this oxcessive
restriction is that even in mathematics, semesntic and philosophical red
herrings may confuse communicatior and methecdology. It is well known that

many different matheratical rationales may lead to the sawe numerical
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results. It is probably in general true that the more mncient a discipline
the more it tends to become encrusted with irrelevant and ritualistic
semantic and philosophical devices, This is true of law, medicine, religlon,
philosophy, and mathematics, the last three of which are among the oldest
of formal humen disciplines, It is hoped therefore that our presentation
can be meintained almost exclusively on the arithmetical level, and that
even the algebra which it is necessary to employ will be merely shorthand
ncigtion for th= aritrretic operations involved. Even though we shall
attempt to restrict the major part of our discussion to nurerical concepts,
we shall nevertheless relate the procedures to methods and systems developed
by psychologists and mathemztical statisticians, Our own notation and
terminclogy will follow closely that which we have developed previously
(Horst, 1663, 1965) to circumvent some of the more cumbersome nomenclature

of traditional mathematics.

2. The Arithmetical Model
Suppose wWe have given an M x n basic data matrix X with & > n and
'l =0 (2.1)
Consider an approximation matrix U of rank m with m < n such that

X-U=c¢ (2.2)

where ¢ is a residual matrix and

U ¢=20 (2.3}
Iet
G=x"x/¥ (2.4
’ 1 Y
G, =U U / N (2.5}
Go=¢ e/N {2.6)




From Bas. 2.2 through 2.6
G -~ Gu u Gc

Iet A be an n x m matrix such that
G = A

Let

L=
]

¢ = ez (o)

o
]

‘A diag (GAA')

=)
1

g = dlag (0)
4,4
Ii:-l)e%cabe -1

From Eqs. 2.7 through 2.12

! , 4
(o, - D,) Z(6~aA") (Dy = D)2 -

Note that

Let

- -
C=D %'G D <
€ €
From Egs. 2.13 through 2.
C-oe' -1= E

Let the basic structure of C be indicated by

C=Q6 Q'
and let
Q- [Qin’ Qs]
5 0O
5 = m
0 6S ,

B

(2.7)

(2.8)

(2.9)
(2.10)
(2.11)

(2.17)

(2.12)

(2.1%)

(2.15)

(2.16,

(2.17)

(2.18"

(2.19;

2.70)




wher® m and £ are ditensionality subscripts and
me+s5=n (2.21)
Tet

# = ir Ee (2.22)

We wish now to determine A sc that @ is & minimum. ZEquation 2.17 means
obvicusly that the matrix X has been scaled so that the varianc.; of the
residual matrix are all unity. The minimization of ¢ in Eq. 2.22 means that
the sum of squared correlations for the residual matrix is a minimum.

It is well kmown that § will be a minimum when

1

@=Q (5 - 1)2 (2.23)
hence for « t¢ be real, the smallest 6m in Bm mst be
m
8, >1 (2.28)
m

From Egs. 2.17 through 2.20, and 2.23, it cen readily be shown that

)2

g =tr (b - I (2.25)
Because of Eq. 2.1k we have
tr 65 =8 (2.26)

Hence ¢ is simply s times the variance of the s smallest roots or basic
diagonal elements of C in Eq. 2.18.
It is of interest to note that because of Eqs. 2.16 through 2,20, and

2.2L, we may write

D'%GD'%(D‘%A)_—D'%’"A(I+A’D’1A) (2.27)
€ € [ € €
or more simply

(c-T)e=ca o (2.28)
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Equations 2.27 and 2.28 are mathematically equivalent to those given by
Lawley (1940}, Reo (1955), and others, and usually derived from much more
elaborate theoretical constructs. The problem of determining A tc minimize
# bas received much attention by these and other investigators. All
methods proposed require iterative procedures beginning with initial esti-
mates of A or functions of its elements. Three major difficulties have
been encountered: (1) the determination of suitable initial estimates;

(2) excessive computation time, even with electronic computers; (3) so-
called improper solutions in whick some of the elements of De nay be
negative.,

The methods refe red to have been insistently designated "factor anal-
ysis" to distinguish them from what some writers prefer to call princirpal
corponent analysis. More specifically, they have been variously called
maximuz likelihood factor analysis, canonical factor analysis, and maximum
determinent factor analysis. We have preferred to circumvent the distinc-
tion between factor analysis and principal component analysis and to refer
to the algebraic model as a specificity scaling model (Horst, 1$65a). It
will be noted also that our approach emphasizes the scaling and decomposi-
ticn of the data matrix rather than of the covariance matrix of the data

matrix, although this distircticn is not germane to the solution.

3. Computational Rationale

Semanti~ and philosophical preferences aside, a computational procedure
developed by Joreskog (1966) appears to be the best available to date with
reference to the problems of initial estimates, computational speed and
accuracy, and proper solutions for residual variances. His develorment

provides significunce tests for steciflec values of m. These tests are based
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on the more elaborate philosophical substructure of his model which we do
not include in our arithmetical develeopment.

We have previously (Horst, 1965a) presented 2 computational soluticn
which 1s a special case of a more general basic structure type sclution
(Horst, 1965b). The solution cited suffers both from unsatisfactory speci-
fications for the selection of initial values and excessive cozputation
time, It appears, however, to restrict the residual variances to positive
values. The method begins with a ~onsideration of the general Gramian
metrix G and a factor loading matrix & such that

G-aAA' =¢ (3.1)

We determine A in Eq. 3.1 so as to minimize tr ee. We indlcete the basic

structure of G by

~ ’ ’
G = Y 6m Qm * Qs 65 Q (3.2)

vhere m and s are dimensionality subseripts which correspond to the first
m and last s latent roots and vectors of G.
It is well known that the solution for A of width m which mininizes

tr e2 is

A= Q 6& (3.3)
From Eqs. 3.1, 3.2, and 3.3

A=GA(a G A)-% h (3.4)
where h is an arbitrary square orthonorral matrix. In particular, we nmay
indicate the triangular factoring

[

tt' ' =A"GA (3.5)

Then h in Eq. 3.4 may be such that

£ o ca)y (3.6)




From Egs. 3.4 through 3.6

A=GaAt'™t (3.7)

Suppose we choose an arbitrary matrix OA of width m, cubject only to

tlLe restriction that OA' Qm is basic, We then write the iteration equations

it it' = iA' G A (3.8)

A=G A .t (3.9)

M~

It has been chown (Horst, 19€5b) that 412 converges to D Sm§>and therefore
minimizes tr 32 as 1 inereases without limit.
We have used a modification of this method to solve for A in Eg. 2.13

(Horst, 1935). We let

D = (DG - DAA’) (3.10)
, R S L L
tt" " =A"D2(DP2GD?-I)D°A (3.11)
Then
_l._ 1 _1 _}_ -1
D?A=(M?GD?-I)D24At’ (3.12)
From Eq. 3011
tt' =AaDYeDpta-4" DA (3.13)
From Eq. 3.12
A= (C ptoa - A) gL (3.14)
We msy ncw let
g=pta (3.15)
W=GU-A (3.126)
Then from Egs. 3.13 through 3.15
tt ' =u'wW (3.17

-, At .
LXJ N LU ;ﬂ (3.18)

1 o i e oA i
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Thus the partial triangular factoring of the supermatrix on the right of
Fa. 3.18 yields the factor loading matrix A as the lower submatrix on the

left, This leads to the iteration equations

iD= (D =Dy 40) (3.19)
ii
u=_ta (3.20)
i i¥ 1
M= G V- A (3.21)
{ ] 4t iU W
= g (3'22)
Liﬂﬁ_ }w

Equations 3.19 through 3.22 constitute in slightly different form and
notation those we have previously given for the specificity scaled factor

analysis solution (Horst, 1965c). We originally suggested that .A be taken

0
as the principal axis factor matrix for m Factors of the correlation metrix
corresponding to G. As 1is well known, the .pu :ificity scaled solution is
independent of scale for the original variables and hence the correlation
matrix R may, without loss of generality, be teken as G, an arbitrarily
scaled covariance matrix. When the principal axis solution is taken for ot
it is obvious from Eq. 2.23 that the number of assumed factors cannot exceel
the number of rcots of R greater than unity. This restriction is consonant
with the recommendations of Kaiser (1960) and others for an upper bound to

the number of factors.

Let us now return to Eg. 2.15. From this it can be shown that

-1 N
[DG * Daa'} = [DG - DAA'} (3.23

P
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let
A= DG + D (3.24)
From Eqs. 3.23, 3.24, and 3.12
’ PR R ‘
ttiaa’" A°G AN o - o (3.25)
and
o= (A% (G - 1) A% -1« g~ (3.26)

From Egqs. 2.15 and 3.23
A= (D, +D -)%a (3.27)
G o’ .
The iterative solution indicated by Egs. 3.25 and 3.26 shows that because

of Eq. 3.24 no itermtion can yield a negetive A, or because of Eg. 3.23, a

negative residual variance.

4, Initial Estimates

However, the method previously outlined (Horst, 1965c) does suffer from
several weaknesses. First, the principal axis approximation for the OA
matrix as determined from the correlation matrix does not appear to be
satisfactory. Second, the iterations converge slowly. Third, there is not
adequate assurance that the convergence is 10 an absolute rather than a local
minimum,

To overcome the first objection we take a cue from the image analysis
model of Guttaan (1953). We consider the residual matrix cbtained when each
variasble is estimated by conventional least square procedures from all the

others. The covarlance matrix of this residual matrix is well known to be

given by

and. has been called by Guttman (1953) the anti-image matrix.
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The covariance matrix of estimsted variables is given by

S RS
=G-2D _,+D_, G D

G G G

G.

u (4.2)

-1

We seek a scaling of the observed covariance matrix such that the correspond-

ing residusl covarlances will be unity. This will be the case if we let

D=D (4.3)

0 G

For then we have say

: 3
¢=D?.CGD 1 (b .4)
G- G
and
-1 % -1 -‘% ’
¢ aD® _,G D (k.5)
¢t ¢t

It is clear therefore that if a covariance matrix is scaled by the square
roots of the diagcaals of its inverse, the anti-image matrix of the re-
scaled covariance matrix will haeve unity in the diagonals.

We begin now by rescaling the matrix G as indicated in Eq. 4.5, end

1=t the basic struceture of C he

P I '
c=Q & Q' +Q 5, Q (4.6)
We let
&= Q (sm - 1)% (4.7)
1
oh = (T + Do”oa'l) = o (4.8)

When A is used for i = 0 in Egs. 3.19 through 3.22, the value ¢ for
successive iterations drops much more rapidly than when the approximation
OA is based on the largest latent roots and associated vectors of the

correlation metrix., For date from Hemmerle (1965), rec-analyzed by JOreskog

-

con mERgi
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(1966), 1t was also found that with a sufficient number of iterations the
value of his criterion and ¥ (our D) values were closely approximated., For
this example it appears therefore that the absolute minimum rather than a
local minipum was reached. Purthermore, no problems of negeative residual
variances vere encountered although seversl varisbles which Joreskog (1966)
found to have ¥ values on the boundary appeared small, as will be subse-

quently indicated.

5« Iterative Procedures

However, the number of iterations required to achieve Joreskog's
solution for Hemmerle's data was 10,000, and required about 21 minutes on
the IBM TO94-MOD 1. It was noted, however, that after about 20 iterations
a definite drift eppeared to establish itself so that the vectors of
differences between successive D vectors decreased slowly. The iteration

procedure was therefore modified to take advantage of this regularity as
follows:

-

Let

K1 be a specified number of iterations
Ké be & specified number of sets of Kl iterations
El be a parameter to be empirically determined

E2 be the minimum value allowed for any element of iD in EqQ. 3.1,
For any iteration 1 we may calculate the criterion

Y A SR
F=tr (D72 (G- A A7) QDF - 1) (5.1)

However, this criterion need be calculated only at prespecified intervals.

We proceed as follows:

Kl iterations are computed of the type 3.19 through 3.22 for the set of

K2 iterations. We calculate
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1k
= A - o2
U K (Kl_l)A (5.2)
and also ¢ by means of Eq. 5.1.
K
We assume now that
A= _A+al (5.3)

&

where a is some positive scalsr quantity. In particular, we let

a=E K (5.4)

where K2 is the serial order of the set. From Eq. 5.3 we calculate

Da[I- DAA:] (5.5)

If no element Di of Eq. 5.5 is less than E2, we take A as given in Eq.
5:3 and continue with the next set of iterations. Otherwise we take A a5

A, and reduce K, to

K 2

Ky = K, / n, (5.6)

where nc is a positive number empirically determined,
We continue in this manner so that for each set of iterations we
calculate Eq. 5.2 from the last two iteration cycles of the set and Eq.

5.1 from the last iteration cycle. The value K2 in Eq. 5.3 increases by 1

for each set of iterations, and the beginning A for the next set of

iterations is given by Eq. 5.3 unless a Di in EQ. 5.5 18 less than E In

2.
this case, KE is first redu.=d by Eq. 5.6, ana the beginning A for the next
set of iterations is taken as the last A from the previous set.

Presumably the success of the method depends on the choice of the con-

stants Ki, K2' El’ and n,. For seven sets of data of widely dirfering

characteristins, good results were obtained with Kl = 10, K2 = 10, El = 10,
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and n, = 3. Five of these seven sets have been analyzed by Jéreskog (1966)
but his ¢ value is given for only one of these. Joreskog gives results
based on a number of different ocssumed nmumbers of factors fors each set of
data. Since his method is presumably at least as accurate as ours and ylelds
in addition tests of significance for any assumed number of factors, the
only advantage ours may have is length of time required.

In our method we give only upper and lower bounds for the number of

factors and these are highly tentative. If we let

1 1
G=0°_, RD? (5.7)
R gt

I NC I I IR (5.8)
then the largest value of m will be such that

obn > 1 (5.9)
and the smallest value such that

ofn * s > 2 (5.10)
In addition we specify that

m < n/2 (5.11)

It should bde noted that for the method outlined it is quite possible

for a i¢ value to be greeter than for i—l¢' This can occur after an
acceleration indicated by Eq. 5.3. If the value of a is kept sufficiently
spall it will not occur, but then the rate of convergence may be unaccept-
ably slow. Our procedure provides for grouping of the successively
calculated ¢ values into sets of K3 each. In particular we may have K3 =1,
If the lowest ¢ value in set i is lower than the lowest @ in set 1 + 1, the

routine described is terminated aud the A matrix corresponding to the lowest
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¢ value is taken as the starting point for a final set of iterations without
acceleration. This is a sort of polishing operation snd it appears that 25
iterations is adequate for the data we have analyzed. If no reversals in

¢ values are encountered, the routine method continues for some prespecified

number of sets, after which the polishing iterations occur,

6. Numerical Results

Results for the seven sets of data we have analyzed are given in
Table 1, Each column of the teble represents a set of data. The rows are
as follows:

Row 1 gives the number of variables in the set.

Row 2 gives the scurce from which the data were taken,

Row 3 gives the number assigned to the set of data by Joreskog.

Row ha gives the smaller number of factors solved for.

Row 4b gives the number of factors solved for by Jreskog which
corresponds most closely to our smaller number,

Row ke gives the larger number of factors solved for,

Row 44 gives the number of fectors solved for by Joreskog which
corresponds most closely to our larger number.

Row 5a gives the $/2 values or half the sum of squared residumls for thc
smaller number of factors as determined after 40O final polishing iterations
and therefore assumed to be very close to the minimum value,

Row 5b gives the @§/2 values after 25 polishing iterations for the
smaller number of factors with Kl’ K., and El all equal tc 10,

Rov Sc is the same as row Sa except that the @/2 values are for the

higher number of factors.

Row 54 is the s.. as row 5b except for the higher number of factors.




er i RS SR

17

Row Ga gives the time in seconds for the accelerated and 25 rolishing
iterations for the lovwer number of factors. It does not include the com-

putation time for the initial estlmate of _A nor for input. Perhaps 30 per

0
cent to 50 per cent additional time 1s required for the initial estimate of

0A.

Row 6b gives Joreskog's time on the CDC 3600 for the nearest correspond-
ing number of factors to those in 6a but does not include input and output
time.

Row 6c is the same as row 6a for the higher number of factors.

Row 64 is the same as row 6b for the nearest corresponding nurber of
factors to those in 6c¢.

It is difficult without actually running Joéreskog's program on the IBM
7094 to compare our time with his. If we take his estimate that the CDC
3600 is about two and a half times as fast as the IBM TO9%, it appears that
for a maximum of ten sets of accelerating iterations with ten iterations to
a set, our method is from three to five times nmore rapid than Joreskog's
and from 99 to 100 per cent as accurate, depending on the particular set of
data and the number of factors solved for. However, we have run our prograr
also on the CCC 3600. Our results indicave that the CDC 3600 is at best
only 10 per cent faster than the IRM TO9%. If this is correct, then our
method is at best only 25 per cent to 100 rer cent faster,

Our method does not give the lev:l of significance at which a specified
number of factors satisfies the so-czlled factor analysis model as does
Joreskog's method. If desired, his tests could be added to our prcgrem. It
this case one would protably begin with our lover bound for the number oi
factors and proceed first downward and then upward with one less and one

additional factor at a time.
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It is interesting to note that with Data 3 for 8 factors, the @/2 value
of 05806 is reached after B acceleruted sets of 10 iterations each and 20
rolishing iterations, or a total of 100 iterations, while this eriterion is
attained only after 6,000 nonaccelerated iterations. Table 2 gives to three
decimal places for Data 3 the residual variances scaled back to unit varilance
for the observed covariance matrix for a number of different cases. The
corresponding $#/2 values are given in the last row, ‘olumn 1 gives our
values for 80 accelerated and 25 polishing iterations. Column 2 gives our
values for 6,000 unaccelerated iterations. The ¢/2 values for these two
columns are the same. Column 3 gives our values for 100 unaccelerated
iterations. The @/2 value is almost 14 per cent greater than for the same
number of accelerated lterations of column 1. Column 4 gives our values for
10,000 unaccelerated iterations. Column 5 gives Jbreskog's values. The
disparity among all columns except column 3 is doubtless far less than the
accuracy of the data would require. Nevertheless the Joreskog methoi gives
the lowest @/2 value, .05787. This value was calculated by using the
specificity variances which he calculated to three decimal places.
J8reskog's published value for @ is .113%4 so that his ¢/2 is .0367. VNe
cannot account for the discrepancy between this value and our value of .057%
calculated from his unigue variences, It is perhaps jpossible that greeter
decirsl accuracy for the unique variances would have given his # value but
only three-place accuracy was avallable to us.,

The ratio of our residual sum of sjuares to that of Joreskog is 1.00h
and, using 2.5 as the ratio of IBM 7094k 170D 1 to CDC 3€CO time, was obtained
in less than one-fifth the time. One reason for the rapidity of our rmethod

is that an iteration cycle indicated by ecuaticns 47 through 51 is rany
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times faster for a small number of factors than a basic structure solution
for the full covariance matrix. The time of the IBM TO34 MOD 1 for a
15 x 15 matrix with 8 factors is less than .12 seconds for ome of our iter-
ations, whereas for the basic structure solution it is about 20 to 30 tires
as long. Esch Joreskog iteration requires a basic structure solution.

But even though our results for Data 3 with 8 factors is for all prac-
tical purpose as good as those of JSreskog and much faster, the superiority
of the method for other numbers of factors for Data 3 and for all of the
remaining sets of data has been demonstrated only for speed and not for
accuracy. Our minimm @'s indicated in Taeble 1 ere probably guite accurate
for the initial 0A matrices on which they are based. Whether, however, these
lead to an absclute as well s a local minimum we have not prcved empirically
or theoretically. The application of JOreskog's method for the other data
would doubtless indicate whether we are close to an absolute minimum for
positive unique variances., This would not, however, prove that our method
for selecting the initial OA converges in general to an absclute minimum.
That the solution is restricted to positive residu~l variances we have
already shown.

Eren though the iteration cycles for the method we have outlined are
very rapid, columns 1 and 2 of Table 2 indicate that it is primarily the
acceleration feature which is responsible for the speed of the method. This
feature increases the speed of the methcd by a factor of about 60 for Data 3
with the acceleration parameters used. The question may well be raised
whether other acceleration parameters, or indeed other acceleration stratogi-.-
may increase the rate of convergence appreciably. To date we can only say

that we have experimented with many diff'erent combinations of wvalues oy
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iteratisn parameters and with other muthods of determining the augmentation
rarameter a throughout the successive lteratlons. To date we have found no
acceleration procedure which is clearly as good or better, from the point of

view of speed and accuracy, than the values Kl =10, K

, = 10, B

l = 10’

nc = 3.

It is importent in closing to emphasize obvious limitations of the
method we have outlined. |

(1) We have not proved--and it may well not be true--that in general our
method for determining OA leads to an absolute rather than a local minimum
sum of squared residuals.

(2) We have not provided a method for determining the number of factors
although J8reskog's procedure for doing this might be incorrorated into ours.
(3) We have by no means exhausted all prossibilities for appreciably

improving the acceleration strategy.
(4) Ve do not know how well the acceleration strategy and parameters

would work on Gramian matrices in general.
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TABLE 2

N :
m‘.wﬂa.;..;,..,qé

\ 1(1)0 6, SOO 200 10, goo J'o'rtseskog
: Acce  Un. A. ___Un., A Un. A,
2 263 262 238 262 263
2 392 «395 .366 +395 +395
3 458 JAs7 451 457 458
L 050 .086 .238 .083 .080
5 489 L1485 JL67 486 L87
6 259 260 .280 <259 «259
7 014 .010 173 .006 .005
8 466 JL66 450 165 465
9 662 663 618 .563 .66k
10 .010 LOl2 143 037 029
i 11 «580 579 566 +579 .580
12 «504 L97 515 498 1499
13 .738 736 721 737 .738
1k 520 520 586 £21 622
15 .010 L0k 143 .009 .005
f
g/2 +05806 05806 ,06586 05796 05787
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