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ON STERWISE MULTIPIE LINEAR REGRESSION

ABSTRACT

Stepwise multiple linear regression has proved to be an extremely
useful computational technique in data analysis problems. This
procedure has been implemented in numerous computer programs and overs=
comes the acute problem that often exists with the classical
computational methods of multiple linear regression. This problem
manifests 1tself through the excessive computation time involved in
obtaining solutions to the ZN-l sets of normal equations that arise
when seeking an optimum linear combination of voriables from the subsets
of the N variables. The procedure takes advantage of recurrence
relations existing between covariances of residunls, regression
coefficients, and inverse elements of partiticas of the covariance
matrix. The application of these recurrence formulas is 2quivalent to
the introduction or deletion of a variable into & linear approximating
function which 1s being sought as the solution to a data analysis
problem. This report contains derivations of the recurrence formulas,
shows how they are implemented in a computer program and includes an
improved algorithm which halves the storage requirements of previous
algorithms. A computer program for the BRLESC computer which incorpo-
rates this procedure is described by the author and others in a previous
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report, BRL Report No. 1330, July 1966. The present repcrt is an
amplification of the statistical theory and computational procedures

presented in that report in addition to the exposition of the improved
algoritim.
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I. INTRODUCTION

TR e &%&ﬂuﬁ%&ﬂﬂﬁ@%ﬁ 4

The computational technique for stepwise multiple linear
regressicn described by M. A. Efroymson [5]* has proved to be
extremely useful in data analysis problems. This procedure, with
various modifications, has been implemented in numerous computer
programs in government lsboratories, universities, and industry and
overcomes one of the major problems that often exists with the
classical®* computational methods of multiple linear regression. 1In
problems where many variables are involved, one may have only
intuitive suspicion regarding those variables which may be significant.
In these instances, one of the classical approaches is to obtain the
least-squares solution to the regression equation containing all the
variables that are believed to be potentially significaut and then
attempt to eliminate insignificant variables by tests of significance.
This procedure is of limited use when many variables are involved and
usually runs into extreme computational difficulty. An alternative

procedure is to examine the solutions of all the subset models that can

*Numbers in brackets denote references which msy be found on pcge 4€.

**The word "classical™ here may be a misnomer in that the essential
substance of the computational procedure was proposed as early as
1934 by Horst [12] and 1938 by Cochran [4]. The recent interest in
the subject is of course due to the advent of modern high speed
Computing machinery.
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be formed from the collection of variables that are of interest and
choose the one which seems to give the "best fit." This procedure;
however, can be very costly in terms of computation time. If one has
N independent variables and wishes to cbtain all possible solutions to
models containing 1,2,... and N variables one has to solve 2“ -1 sets of
linear equations. For candidate models ccntaining five variables this
vould require the solution of 31 sets of linear equations (a practical
number) but for twenty variables this number jumps to 1,048,575. A
means to circumvent this computational difficulty is provided by
stepwise multiple regression. This procedure takes advantags of the
fact that the Gauss-Jordan algorithm, whep used to solve the normal
equaticns with N variables, ylelds intermediate solutions to N
regression problems containing 1,2,... and N variables. The power of
the procedure lies in the fact that the variables are introduced into
the regression in the order of their significance. At each stage the
variuble which is entered into the regression is the one which will
yield the greatest reduction in the sum of squares of residuals. The
power of the procedure is further enhanced by removing terms from
regression at later stages that have become insignificant as a result
of the inclusion of additional variables in the regression. The
computations proceed until an equilibrium point is reached where no
significant reduction in the sum of squares of residuals is to be
gained by adding variables in the regressicn and where a significant
increase in the sum of squares of residuals would arise if a variable
vere removed from regression. The procedure described above will be

8
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referred to as forward stepwise regression. A modification of the
method is to begin with all variables in regression and then remove
insignificent variables, one by one. In a fashion similar to the
forward regression, a variabie which is removed from regression can
subsequently reenter if it becomes significant at a later stage. This

procedure will be referred to as bacxwards stepwise regression.

The optimum or ideal sub-model chosen from a candidate model
can be defined as that model containing only variables which are
statistically significant at a chosen level of significance and which
has the minirum variance of residuals among the sub-models that have

all terus significant at that level.

In general, neither version of stepwise regression yields the
cptimum model but in most cases the model obtained Ly either procedure
comes very close to being optimum and in many cases is identical to

that obtained by the costly method of enumerating all the soiutioms.

In those instances where one is interested in finding the
optimum model, ac defined above, the Gauss-Jordan algorithm greatly
reduces the required computations. The optimum path of elimination
for generating ali possible stepwise combinations can be controlled by
a "binary algorithm” described by Lotto [14], 1961, and Garside [6],
195. The procedure is optimized so that the computations go through
the fewest recursions. Despite this optimization, the computational

labor is such that the procedure seems limited to handling fewer than

twenty variables.
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The paper by Efroymson contains mostly a description of the
computational procedure. This report contains derivations of the
pertinent mathematical equations related to the procedure including
the recurrence formulas relating covariances of residuals, regression
coefficients, and elements of the inverse of partitions of the
covariance matrix. An improvement of the algorithm used by
Efroymson is derived. This improved algorithm reduces the storage
requirement by 50% thus allowing the analysis of larger models cr the
use of double precision arithmetic. This lacter consideration is
quite important when analysing models containing many variables. 1In
addition, a numerical example is presented showing the differing

results that can be obtained by the backward and forward versions of

the procedure.

A computer program for BRLESC (Ballistic Research Laboratories
Electronic Scientific Computer) which incorporates this procedure is
described by the author and others in a previous report, BRL Report
No. 1330, July 1966. The present report is an amplificatior of the
statistical theory and computational procedures presented in that

report in addition to the exposition of the improved algorithm.
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II. MIITIPLE LINEAR REGRE3SION

Z
1
:

[

The theory of multiple linear regression and correlation is
contained in the theory of "Linear Statistical Models" and can be
found in many widely used texts such as that by Graybill [T]. The
concept of a linear model is fundamental to the ensuing exposition ard
hence the definition found in Graybill is listed. By a linear model
is meant "an equation that relates random variables, mathematical
variables, and parameters and thet is linear in the parameters and in
the random variables." Linear models are classified into several
categories depending on the distribution of the variables, the presence
and nature of errors when observing the variables, and in the nature
of the variables themselves, i.e., whether the variables are
mathematical variables or random variables. The equation relating the

variables is written in +*he form

Xn=bo+bl Xl+b2 x2+... +bn_l xn_l. (1)

The variables Xl, Xe, ces xn-l are referred to as "independent

variables" and Xn as the dependent variable. In some instances one
is interested in polynomial or curvilinear models and the variables
Xl, X2, cee xn-l are not necessarily independent in the probability

sense. For example the model

X
= 1 .
X, =b; X, + b, cos xl+b5e (2)

fatia.

J;
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is curvilinear, i.e,, linear in the parameters bl, b2 and b5 even

This model fits into the framework of

l.
xl

Fyuation (1) when the transformations X2 = CcO8 xl and X5 = e = are

introduced. This model is contrasted with the model

though nonlinear in X

)
_ 2
X, = b, e xl + b3 cos bh X1 (3)

wvhich is nonlinear in the perameters bl, b2, b, and bh and cannot be

3
linearized by transformations. This problem is one of nonlinear

regression and is not discussed further in this report.

In multiple linear regression one is interested in obtaining
an estimate of the bi vhich will yield a "prediction equation"
represented by Equation (1) which best fits a set of observations.
The m set> of observations of Xh, the dependent variasble, and of
xl, x2, coe xn-l can be written as & matrix xij’ i=1,2, ... m,

J=1,2, ... n. When the variables are measured about their

respective means, Equation (1) can be written

X -% =% (xl -xl) +1, (x2 -xa) + ...

+o o (X X ) (4)

The coefficient b  in Equation (1) is obtained from the relationship

n-1
b, =X - Z b, X,. (5)
i=1

Hereafter the variables will be assumed t0 be measured about their

-

respective means and the gquantity X1 will be used to represent xi - xi.
12




For a particular observation Equation (4) takes the form

X, =b, x

jn = by Xp * Dy + ... %D

32 n-1 *y,n-1 ¥ (6)

ety

eJ is a residusl and is the difference between the predicted value

33 and the observed value of X ¥. The least-squares method of estimating
.;

%% the coefficients bi is based on the minimization of the sum of the

f; cquares of th. residuals, denoted as E°.

= m

,§ E2 =§E eJQ

.;:j J=l

] .

3 _ 2

%;_- ‘-2 (xan bl xal - b2 xje ® eee = bn"l x,j,n-l) (7)
. 3=1

3 This minimization is achieved by teking partial derivatives of E- with
f% respect to each of the b, and equating each of these (n-1) equations to
b2

¥ zero. This leads to the normal equations

§ n

- }E x,. (x

.zf': J=l Jk Jn - bl le - b2 xda ® ecee = bn-l xJ’n-l) = 0. (8)
:::: k=l’ 2, s e n‘l

;% The normal equations can be written in matrix form

s X'X B = X'Y. (9)
,% X is the mx(n-1) matrix of observations of the independent variables,

:

% X' its transpose, Y is the mxl matrix cf cbservations of the dependent .
£

H *It should be noted that the variables X., 1 = 1, 2, ... n, are assumed

to be measured without ~rror.

T
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variable and B is the column vector of (n-1) regression coefficients.
The solution of the normal equations to obtain the regression

coefficients is given as

B={ . |-@x*xy, (10)

l bn-l ‘
vhere (x'x)'l is the inverse of the matrix X'X. The normal equations
can be solved by any of several algorithms for the solution of systems

of linear equations, however, the Gauss-Jordan algorithm is used in

stepvise multiple regression for reasons that will become apparent.

1
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III. COMPUTATION. 'Y, CONSIDERATIONS IN MULTIPLE LINEAR RECRESSION

The most severe computational problem occurring in multiple ,
linear regression is the formation and solution of the normal equations.
For any problem containing more than a few variables and observations
this problem can become too laborious for desk calculation and the use
of high speed computers is very desirable. As a consequence,
generalized library programs for doing multiple regression computations
are widely available and can be obtained in most computing facilities.

In general it is desirable for these programs to do more than compute

regression coefficients and variance of residuals, they should also
provide associated statistical data that could be used for significance
tests, computing prediction intervals, etc. These considerations are
discussed by Slater [6], 1961 and by Healy [11], 1963. These

programs should be designed as efficiently as possible to keep the
computation time reasonably small. Since the Gauss-Jordan algorithm
provides the solution to (n~1) regression models en route to solving
the complete problem at essentially no significant increase in cost

compared to other algorithms, it seems wherever any library program for

o

multiple regression is prepared, the program should incorporate the

stepwise scheme. Such a program could then be used either to provide

only the complete solution or to select the significant variables for :
inclusion in the output model. :E;;
15 %.i;
%




The programming effort required to include the optional
capebilities for both forward stepwise regression and backward stepwise
regression is relatively small compared to the total programming
effort required to prepare either program. For this reason it seems
worthwhile that a well designed computer program should provide a
capability for both types of computations. The relative advantages
and disadvantages of the two procedurs will be discussed in a later
section. The effort required to prepare the matrix elements to begin
the backward stepwise regression is identical to the effort required
to perform a complete forward regression. Because of this it seems
advisable that when the backward option is selected, the program should
be controlled in a manner which yields the results of a normal forward
regression as a by-product. When proceeding forward the various

solutions obtained may correspond to models of the form:

= +
xn bo bl xl

= H! 1 t
X, =by +b] X) +b) X, (11)
= ht 11 1 11
xn bo +blx1+b3X3+b7x7
At each stage the program, at a minimum, should print the standard
deviation of residuals and identify the variables entered or removed.
This information can then prove to be invaluable if one chooses a

simpler model than the one finally selected by the stepwise regression

procedure.

16
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IV. MATHEMATICAL BASIS OF THE STEPWISE REGRESSION

The mathematical basis of the stepwise regression is that the

transformation rules of the Gauss-Jordan algorithm correspond to

S

recurrence relations that exist between covariances of residuals,
regression coefficients, and inverse elements of partitions of the
covariance matrix. These relations can readily be derived by taking
advantage of Yule's nota‘ion as described by Kendall [13]. In this :

notation the regression Equation (1) is written as follows:

3 X

n = bnl.23...n-l x

1 ¥ P23z, a1 X2t e

+ bn,n"’lolaooon‘e xn-l (12)

The first subscript of each b is that corresp nding to the dependent
variable, the second subscript correspondr to tne variable attached to

é the regression ~oefficient. These two sublevripts «re called the

primary subscripts. The remaining subscripts on the right of the
Period are those of the remaining variables and are called secondary
subscripts. The entire collection of subscripts for those variables
that are in regression is thus represented by those subscripts to the
right of the period with the addition of the subscript to the
immediate left of the period. It should be noted that on a regression %
coefficient neither of the primary subscripts can ever be included in

the secondary subscripts.
17
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In a similar notation the residuals are denoted as
xn.l2...(n-l)' The subscript to the left of the period is that of the
dependent variable and those to the right are the subscripts of the
independent variables in the regression. Since regressions containing
fewver than the (n-1) independent variables will be of interest it 1is
nece3ssary to introduce the following notation. The subscript q will
be used to represent the collection of subscripts 1 through (k-1) with

the exclusion of i and j, i.e.,
g=1, 2, ... (i-1)(i#1) ... (3-1(3+1) ... (k-1).

Any var!able can be considered as the dependent variasble, e.g.,

the residuals xi and X 3.9 will be utilized in deriving the recurrence

q

relstions. The covariance of the variables X1 and X 3 is defined as

*

84 =z X, X J/r
where £ is the degrees of freedom and the summation extends over the
m data voints. For the present f will be defined as m and therefore

does not vary as the number of variasbles in regression varies. The

covariance of residuals is defined as

513.q T 2 X9 xg.q/f

The secondary subscripts of a covariance indicate the variables in the

regreesion. When using this notation neither of the primary subscripts

*Hereafter, unless denoted otherwise » all summations extend over the
m data points.

18




can be included in the secondary subscripts. The collection of
variables whose subscripts are contained in q, i1s aiways assumed to be
. in regression, however additional variables such as X, and )('j (whose
subscripts are not contained in q) may also be in regression. For &

covariance the presence of this situation is denoted as follows:

Skk.qij = Z x‘i.le. «o(k-1)
Similar notation will be used for the regression coefficients and for

elements of the inverse of partitions of the covariance matrix.

In the above notation, the normal equations (for the entire

collection of variables) can be written in the form

xn.12...n-l xr =0, r=1,2 ..., n-1 (13)

or eguivalently

Sir Pn1.23...(n-1) * S2r Pn2.13...402) t o0t
+ S(n-l)r bn(n~l).l2...(n-2) = Snr, r =1, 2, “oe (n'l). (lh)

The complete covariance matrix is:

Bll 512 > 68 s
- 821 822 s szn
S = (15)
8

nl Sn2 e s ann

~his matrix corresponds to the augmented matrix of coefficients usually

considered in solving a system of linear equations with the addition

19
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of the nth row. The nth row is added so that the variance of

residuals, s will be made available through the recurrence formulas,

nn.q
thus avoiding the need for computing residuals at each stage.

Derivation of Recurrence Formulas

In deriving the recurrence formulas it is convenient to take

note of Kendall's [13] three observations:

(a.) The covariance of any residual and any varieble is zero
provided that the subscript of the variable occurs among the secondary

subscripts of the residual, i.e., ZXi 0.

Xiq1 =

(b) The covariance of any two residuals is zero provided that
the subscripts of either residual are contained in the secondary

subscripts of the other, 1.e.,in.q XJ.qi = Q.

(c) The covariance of any two residuals is unaltered by
omitting any or all terms in either residual whose secondary

subscripts are contained in the secondary subscripts of the other

residual, 1.e.,2xi‘q xa.qi =in.q (xa - bdi.q xi).

Statement (a) is merely a statement of the normal equations. (b) and

(c) arise as a consequence of (a).

The actual value of a recurrence formula in computation is
dependent upon the availadility of all the elements entering in the

recurrence except the one to be determined. With this in mind the
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ensuing recurrences are derived and their relationship to the Gauss~
Jordan algorithm wili be exhibited. PFurthermore it will be shown that
the algorithm can be used without modification in a backwards
recursion, i.e., once a term is in regression {t can be removed by the
same algorithm. Altogether 18 recurrence relations are of interest.
Nine of these correspond to the introduction of variables in regression
and the remaining nine correspond to the removel of variables from the
regressivn. It will be shown that these 18 recurrence formulas are
equivalent to the four rules of the Gauss-Jordan algorithm. The
elements of the derivations do not necessitate any particular sequencing
of the digits in g (the sequence has been assumed for simplicity) and
hold true for arbitrary i, j and k. The presence of Xi’ X3 and xk in
regression (or not) will be dencted by the notation introduced

previously.

From (c)
zxk.q xj.qk =0 =zxk.q (x,j - b,jk.q xk)°

Also zqu XJ =zxk.q x,j.q “"Z’&:.q X =Zxk.q xk.q'

Hence
Zxk-q X5.a = Psx.q Z xi.q’
Dividing by
®ix.q = %kg.q/Ckeq = Cgkaa/ g’ (16)
21

C aon B b e W” MWWM?’.’:&

Whia o




As shown later, it is useful to define a new quantity dik q as

follows:

Again from (c)

zxi.qk X, qk =2 SWRIN
=in.q (x,j - b,jk.q xk)

=) X X -b,, Xx
Z i.q9 “J.q Jx.3 i.q x'k.q
or equivalently

13.qk T P13.q ~ ka.q Sik.q"

Substituting for b q from Equation (16)

k.

s

813.9k = %13.q9 " Bik.q skJ.q/skk.q°

From (16) and (17)
bji.qk = BiJ.qk/sii.qk

13.9 Skk.q ~ ®ik.q Ski.q
®11.q ®kk.q " Pik.q %ki.q

5 -
= b | + ij.q skk.q sik.g sk.j.g
J1:@ By 0 Bi1.q %kk.q  fik.q Pki.q

22
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(18)




or

Equivalently

Hence

Yiqqx =" P

51%.q ®kj.q %11.9 " ®ki.q

si,j.g
sii.q sii.q Skk.q

8ik.q ®kk.q

-b

Py1.gk © P3i.q9 " Pki.g Skj.qi/skk.qi'

15.0 - (Prsiq) Bik.qi/xk.qs°

dig.0k = %4409 T Pik.qy d‘kJ.q/skk.qj'

Elements of the Inverse Matrix

Rij'

Craemer's rule

5i1.q3k

taking all the rows and columns of indices q, i, J, k.

Since the covariance matrix is symmetrical,

B3 7 2 Dyt 12. . (4-1) (441) .. . (£-1) (£41). ..k
t=q,J,k

Byy * 1/R

=R

Rij i

Dyyqe = - RigfRys

= Z X?.qjk/f = Z xi.qjk xi/f

11 z 81t Byg
t=q,J,k

Z 8y Ryy/Ryye
t=q,1,J,k

i rim e - o e T S —— o = -

(19)

(20)

Consider the partition of the covariance matrix formed by

Denote the
determinant of this matrix as R and the cofactor of the element s

as

i)

« From

tm-

<L,

0w

it
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From the Laplace expansion theorem

R =Z 53¢ Ryg:
t=q,1,J,k

Hence
841,93k T R/Ry, - (22)

From Equation (16)

8:1,gk = Pji.qk S11.qk
== By/Ryy) Rygfhysyg):

Ry . sk 18 the cofactor of the second order minor in R which is cbtained

by striking out row h and column i and then row § and column k.

83,0k = " RyafRysogs = 7 RugfRyggy (23)

The {,Jjth element of the inverse of the partition of the

covariance matrix defined above is denoted as ¢ The only

i3.q1 3k’
inverse elements which will be of interest are those elements which are
inverse elements of partitions defined by taking the rows and columns
subscripted by the subscripts of the varisbles in regression. Hence
the primary subecripts of the inverse elements will always be included
in the secondary subscripts. As in the case of covariances, the

secondary subscripts will denote the variables in regression. From
fundamentals of matrix algebra

*This notation is taken from Gutman [8).
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®ix.qigk = Rxt/R = Ry /R

= (R, /Ry ) (R, /R)- (24)

Hence

®tk.qigk =~ bki.qJ/skk.qu' (25)

s " v o A o L ke LSS, al et T T
7o SR 4 S AN A

Similarly .

®kj.qiik T Cjk.qigk T T bkj.qi/skk.qij

= ey .q1/Pkk.q1 (26)

E and “ek.qigk = R/ = V/(RRG)

= 1/8kk-q1J . (2{)

From Equation (25)
€id.qi3k T T bji.qk/SJJ.qik

_Pyi.q Skk.q1 ~ Pki.g ®kj.qt
8 8 -5 8
Jy.al "kk.qi Jk.qi "kj.qi

o _ bai.g - in.q Sxk.qi ~ bki.g,skj.qi
1J.a13 844 01 B33.qt Skk.gt " Sjk.qi Skj.qi

- TR U TR A T TR TS TR
1j.qi) Bik.gt ~ Sjk.qa skJ.qi/sJJ.qi

or ®13.q15k = ®13.q15 * Pki.qj Pij.q1’Ckk.qiy ,
= %y.q1 " Pkt.qs Yg.q1/%kk.qiy" (28)

|
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The formulas derived to this point are those for forward
recursion, or for the sddition of variables into the regression.

Similar formulas are now derived for backward recursion.

From Equation (25)

P19 =~ Cik.qigk Skk.qij = " cik.quk/ckk.qijk'

Similarly

U s.qt = Cky.qi gk’ Cke.qi gk’

From Equation (28)

15.q15 = ®13.q15k ¥ Pri.qy ko.qi/skk.qu'

Substituting for

Bet.qs = ° Cik.qijk ®kk.q1j 2%

% s.qi = Ck.qt sk’ kk. g1k’

®13.913 T “1J.qidk " Cik.qigk cjk.qijk/ckk.qijk°
From Equation (18)

813.q = ®1J.qk T Bik.q skj.q/skk.q

b

+
8:5.ak * Pik.q kik.q Pik.q Skk.q/Pkk.q

or 813.q = %13.qk ~ Yik.q ka.q/ckk.qk'

From Equation (27)

fxk.qij © l/ckk.qijk'

T A . A TR s T BCLET -

P v
‘,“,‘:. v

" ¥
g ¥
+

(29)

(30)

(31)

(32)

(33)
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From Equation (19)

Pit.q “ Pii.qr * Pei.g Bk,j.qi/skk.qi
" Pit.gk T Cik.qtk “kk.q Pik.q1/%kk.qix Skk.q1
¥ ®s1.q T Ptk ~ ik.qik ® k.1 kic.qik (3)
5imilarly
"Pijq " " Pryaqr ” ® kg 3k P1x.q5) Ckk. 3k
or A5 = Yg.qe - .05 k.qix’ kk.q K’ (35)
From Equation (16)
Sk3.q = ka.q kk.q = b,jk.q/ckk.qk'
Similarly
S1k.q = Pric.q/kk.qx = " %o/ qic (37)

The eighteen recurrence formulas are listed in a convenient order on

the following page. The successive application of these formulas to

appropriate matrix elements is the basis of stepwise multiple linear

regression. The matrix elements are continually replaced at each

stage by the matrix elements of the new stage. The initial matrix is

the covariance matrix, equation (15). Each stage is characterized by

the presence of a particular set of independent variables in the

regression. In practice the variahles will not enter the regression

in sequence, dbut in an order determined by their ability to reduce the

variance of residuals. For the present we can assume that as the
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List of Recurrence Formulas

1.

2.

5.

6.

7.

80

13.

lu.

15.

16.

i7.

18.

©13.913k
ix.qidk
in .gk
®kj.qidk
“kk.qijk
ka.q

4y 5.qk

dik.q

513.qx

©13.q913

bki .qJ

bj1.q

d‘kj.qi

Bkk.qi]

®k3.q

d
iJ.q

8:!.k.q

®15.9

b

®5.915 " Pki.qj %J.q1/kk.q1j

" 1,93 ek q13

i .g skJ.qi/skk.qi

1.q "
ko.qi/skk.qu
l/skk.qu
sk,j.q/sk.k.q
%3.0 ~ %J.q Stkeas/*k.qg
51k ik q

813.9 " ®ik.q Bk,j.q/skk.q

®13.q19k " Sik.qiik ch-quk/ckk.quk
cki.qJ/ckk.quk

byi gk " Cik.qt Pyx.q1/Ckk.qix
ckJ.quk/ckk.quk

ek q1 ik

ka.q/ckk.qk

" 5 a3 Cgk.qik kK. qx

= Gy .o/ k. qk

d
1J.q

554.9k - Yk.q Pyic.q/kk.qk

v
Corgd
LT ’ N .
»

s e
e

—— ———— e e o - S —————a xema

> ki e

-

—r




variables enter the regression they are reordered. The end effect

(after the reordering) is that the variables are introduced into the

regression in the order Xl, X Xk, hence, the k'th stage is

2’ LR N ]
characterized by the presence of xl, Xe, cee xk in regression.

3
|
i

Theorem on Stepwise Multiple Linear Regression

Consider the sequence of matrices Ao, Al, R Ah Ab is the

~1°
covariance matrix, Equation (15). Ak(k =1, 2, ... n=1) is the matrix

formed by applying the transformation

TR TR A B Bl vt e B

a?k = - afgl/ k-1 1=1,2, «oop (k-1)(k+1) ..., n (38)
aij = a;SI/aiﬂl §=1,2, c0o, (k-1)(k41) ..., n
gy i

to the matrix Ak-l‘ is the i, jth element of the matiix Ak.

k
aiJ
Denote this transformation as Tk’ The results of applying this
transformation are contained in the following theorem:

THEOREM:
The matrix Ak contains four pertitions, the respective

. partitions having elements as follows:

i=1,2’ ootk,d 1’2, oock

813 7 %15.22...°

=1,2, ... k, j = k+l, k+2 ... n (39)

aiJ = inoleoooi"l’i+loook, i




i

, 1=k, k+2, .o.n, §=1,2, ... k

aiJ = didolZoo'i‘l,i*looak

i = k+l, k+2’ es e n, J k+1, k+2, e I3

853 % 815 12...k?

The prow? ig by induction. Assume that the theorem holds for .
Ak-l’ then show that it necessarily must hold for Ak ané furthermore

that it holds for k = 1. The matrix Ak-l can be partitioned as follows:

Aea1,n Ae1,2 Ake1,s

NN 1)

The senondary subscripts of the matrix have been omitted in

Ak-l for brevity. The variables having subscripts 1, 2, ... k-1 are

assumed to be in regression (due to the assumption that the theorem

1
! Acar = A M5 Aas (40)
Ak-l,? Ak-1,8 %-1,9
cu c12 aee cl’k-l bkl bk"‘l,l co e bnl
¢ oo coe cQ,k-l bk2 bk+1,2 coe bn2
O Sk Cke12 ttt Skeak-1 | Pioked | Penakel vt Pkl
dkl dk2 ces dk,k-l skk sk,k+l cee skn
1,1 1,2 0t Yed kel | Sk4l,k | Skel,k#l Ct SkHl,n
\ dnl dn2 cos dn,k-l snk sn,k+l e B

ho.ds for Ak-l) and hence the appropriate secondary subscripts should

be assumed to be attached to the variocus eleuents.

——
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By inspection of the transformation T, in relation to the

k
elements stored in the nine partitions on which the transformation
acts, it is seen that the application of ‘1‘k is identical to the
application of the nine recurrence formulas 1 through 9. Furthermore:
the application of the nine recurrence formulas to Ak-l is egquivalent
to replacing Ak-l with Ak. The same holds true for k = 1 and hence the

proof is complet~.

In a similar fashion it can be shown that as a consequence of
the nine recurrence formulas for backwards recursion, i.e., 10 through

18, the application of Tk to Ak generates the matrix Ak-l'

The consequence of the above theorem can be generalized as
follows: The collection of variables whose subscripts are represented
by the values taken by k in the successive application of Tk are said
to be in regression if k appears an odd number of times in the
collection. Alternatively, a variable is said not to be in regression
if its subscript does not appear in the collection, or if it appears
an even number of times. The content of the matrix at any stage is as

follovs:

aiJ = siJ.- vhen neither Xi nor xJ are in regression.

aij = bji.- when xi is in regression but not X

J

aiJ = dij" when XJ is in regression but not Xi.

a =c

13 13" when both Xi and XJ are in regression.

31
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The secondary subscripts are those appropriate to the particular
variables in cthe regression at that stage. A bookkeeping method for

determining which variables are in regression will be descrited in
Section VI.

The Correlation Matrix

For computational reasons it is desirable to transform the
initial matrix A (the covariance matrix) by dividing each elemeat

aij by 8y sJ vhere 8, =',811' The resulting matrix is a matrix ot

simple correlation coefficients rij’ i, J=1, 2, ... n where

r

13 = sij/si 8y
The diagonal elements of Ab are then unity and the remaining elements

are of a more uniform order of magnitude. The recurrence formulas

rerain valid as shown below:

Consider the regression equation
xn,/sn =B (X, /s,) + B(X,/5,) + ... Bk(Y%/sk).

By inspection it is seen that the covariance matrix for this system is
equal to the correlation matrix defined above. The coefficients Bi are
those that arise when Ao is the correlation matrix. Hence the

coefficient bni q is computed from the formulr

bni.q = Bni.q sn/si'

32




17 Sij g is a Ccovariance ari

can be recovered by the formula
S = S S. .
a7 1% Biy.

In particula:; the variance of residuals is given by

s = 52 S
nn.q -~ “n “npp.q°

If

“13.q19 = C15.q14/5;5,-

33

sing from the transformed system, s

CiJ aij is an inverse element of the transformedq system then
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V. SELECTING THE KEY VARIABLE

In forward stepwise regression the variable which is entered
into regression is the one which yilelds the greatest reduction in the
variance of residuals at that stage. For an arbitrary variable Xi
that is not in regression it is seen from the recurrence formula 9

that the variance reduction is given by the quantity

Vimay, e/e s 5in.q sni.q/sii.q' (k1)

For an arbitrary variable Xi that is in regression the variance

increase resulting from the removal of Xi from regression is given by
18.

-V = e a/ay s 4ni.q bni.q/cii.qi' (42)

For Xi not in regression Vj is positive and for X, in

i
regression V1 is negative,

After determining the key element it is necessary to test
whether the variance reduction due to entering the key variable is

statistically significant. By inspection of 9 1t 1s seen that for

“nn.qk ~ ®nn.q Q- Snk.q skn.q/snn.q skk.q)‘ (43)

3k




y1/2
The quantity (s nk.g skr\.q/rnn. q Ski.c) is defined as the product

moment coeirficient of correlation between Xn q and Xk q° This
quantity is denoted as rnk q and is often referred to as a partial
correlation coefficient. Equation (43) can be written in the form

2
r

nk.q = 5nk.q Skn.q/snn.q Skk.q = (snn.q - snn.qk)/snn.q'

w st Sl BALL RO YR

(L)

inspection r2 gives the fractional variance reduction obtained by ?
nk.q

adding into the regression. If r is statistically different
nk.q

from zero, then we observe that the fractional variance reduction due

3
AT,
&
-‘“

B - A

2374

to Xk is significant and that xk should be brought into regression.

£

For forward recursion rik q cen be computed directly from the first

LS

cit 000 s

A w,tc"!
0 M

expression of (44). For backwards recursion, i.e., to test whether a

T
AL
O

variable xk can be removed from regression, rﬁk q can be computed from
the formula

SRR W/CHEES AP (45)

A test of significance for Tk q is listed by Graybill [T]. If the

true coefficient ;Qk a4’ for which r is an estimate, is zero the

Y . H . . e R e g
T LT o1y '.?—;"it"‘ ‘;;J"y {4 ‘!r). X DY TR (et iats 1(5:"1
Ry 6 AN e

nk.g
quantity
. B 1/2 2 \1/2
: t = rnk.q(f'2) /(l - rnk.q) (%)
,é is distributed as the Student t distribution. A test of the hypcthesis
;<f Tik.q # O against the alternative Tk.q = 0 is performed as follows:
e The quantity t is compared against the one-tailed t statistic, t(£-2,c)
E appropriate to the degrees of freedom, f, and the confidence level, c.
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The hypothesis is accepted if t > t(£-2,c).
The test is used in two ways:

(A) At the beginning of a stage V, is computed for all
subscripts, 1 =1, 2, ... n-1. The largest positive V1 identifies the
kay variable which should be tested for entering into the regression.
The quantity Tik.q is computed using Equation (LL) and the t test
described above is performed. If t > t(f-2,c) the variable X 1s

entered into regression by performing the transformation Tk‘

(B) The second part of the stage begins by again computing Vi
for all i. The negative Vi identify the variables that are not in
regression. The negative Vi of smallest magnitude identifies the key
variable to test for removal. rnk.q
If t > t(£-2,c) the correlation is significant and the variable X

is computed using Equation (45).

should remain in regression. If t < t(£-2,c) the variabie can be
removed from regression without significantly increasing the variance
of residuals. Xk is removed from the regression by applying Tk' The

procedure is repeated until all insignificant veriables have been

removed.

The modification of (A) and (B) above for backward regression
is quite simple. Initially the recursion is controlled to proceed all
the way forwerd, yielding the inverse of the covariance matrix. On the
way back, after any variable is removed, the determination is made as
to whether a variable removed previously has become significant, if so

it is reentered. If not, then the least significant varisble in
36
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4

regression is removed, provided again that the resulting variance

increase is not significant. As in the forward version, the procedure

continues until the equilibrium point is reached.

¥
+
3 I
E: H
4 -
H ¥
R i
B B
g \
3 .
34 N
- ;
i
_g,
L¥e
.‘

ATRR

s
A

.lv, A
)

B bt ¢ bl e
P Al t;-:‘«.A" ke 1]

Cob et *)

m‘ﬁ.wu“’:‘

Y

37

bkl
ipapdiiiesd. -

»
o : e s et e
PSR R T SR . .




VI. IMPROVEMENT OF THE ALGORITHM

The algorithm described by Efroymson requires n2 words of
storage for the covariance matrix and éhe successive matrices that are
generated as the regression proceeds. For problems requiring only a
few variables in the candidate model, this storage requirement creates
no difficulty on modern computing machinery. The author has been
involved in problems (see for example BRL Report Wo. 1348, [2]) where
it was necessary to examine candidate models containing 96 variables.
Fortunately the machine used on this problem, the Ballistic Research
Laboratories BRLESC has over 30,000 words of built-in double precision
storage, i.e., the standard word length in this computer is 68 binary
bits or approximately 20 decimal digits. Most commercial machines have
word lengths of only 8 or 10 decimal digits. The experience of various
computing facilities on large scale matrix problems done on commercial
machines is that double precision computations are required to avoid
the computationel problem associated with roundoff. The details of
this roundoff phenomena associated with polynomial models ig discussed

by Ralston {15], page 233.

The recessity of doing a stepwise multiple regression program
in double precision reduces the available storage by a factor of two

and accordingly limits the size of the model which can be analyzed by

38
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a factor of the square root of two. The modified algorithm derived
below has been implemented in the BRIESC program described in [3] and
requires only (n2 + Tn - 2)/2 words of storage. In addition the
computations related to the application of the recursion formulas is

halved thus requiring less computer time.

In problems involving symmetric matrices it is common to take
advantage of the symmetry to reduce computations and storage. This is
especially true of least-squares computations since the covariance
matrix is symmetric. The matrices involved in stepwise multiple
regression are not symmetric, but might be termed pseudo symmetric,
i.e., 'aidl = ladil’ the elements are symmetric in absolute value.
Except for signs, all the statistical information stored in the matrix
Ak is contained in the upper triangular part of the matrix and the
diagonal. The Justification for storing the lower triangular matrix
(and subsequently operating on it) seemingly is that the signs contained
in the lower triangular matrix are used to indicate which variables
are in regression and which are not. To keep track of which variables
are in regression one can store a sequence of numbers 235 2p) 0o Zpe
The presence of a variable }(i in regression is denoted by the presence
of =1 in Zy. Initially 295 2oy -- 2, aTE all + 1 to denote no
varigbles in regression. As a variable xi is entered into regression
or removed 2z N is multiplied by - 1. If z " is operaved on an even
number of times this means that Xi was removed from regression as often
as it was entered and hence is not in. This would be so indicated by
z, since z, would be equal to (-1)2r = + 1. Alternatively if z, is
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is equal to (-1)&* - .1,

operated on an odd number of times z N

This indicates Xi is in regression.

One additional problem remains. The transformation of

elements in the upper triangular matrix using Tk involves elements
wvhich by storage implications are in the lower triangular matrix. Since
it is desired to modify the algorithm so that the lower triangular
matrix will not be stored, some method is needed to determine the signs
of the elements below the diagonal. The elements ey 3 = C 31 and

13 = sai. Ir ai,j is a regression coefficient a’ij = b,ji = -di,j'
Hence we note that a, 3 = - a.,.11 3 are in regression,

but a, 3 =8 31 if both are in regression or if neither are in regression.

if either xi or X

By inspection of Tk it is seen that the only elements involved in
transforming a, 3 are a, 3 itself and other elements which lie either in
row k or column k. This leads one to look for a way of "filling in"
row k and column k below the diagonal with proper signs at the beginning
of the stage. This is most conveniently done by storing the row and
column in separate storage as elements t

13° Ir ai,j is on o1 above the

diagonal then ti 3 =8, It Hence two rules are immediately apparent.

th = a’kJ =k, k#1, .e. n Upper triangle row k

tik =a., 1=1,2, ¢«o. k-1 Upper triangle column k

By inspection it is seen that ti 3 is obtained in magnitude by a 31 and
in sign by zizd. This leads to the additional two rules
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1, 2, ... k-1, Lover triangle row k

ky " k% 8 I

Bik = Zg%y By 1
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k+l, k+2, eee N

Equations (38) are then used to generate the new upper triangular

matrix. The complete algorithm is as follows:
th = o ' J =k, k+l, ... n
b = 8 1=1,2, ... k-1
th=zsz a',jk J=1,2, ... k=1
tik =22, 8y i =k+l, k42, ... n
&ij = ey -ty th/tkk 1i=1,2, ... k-1, k41, ... n
g =i, i+l, «i. kel, k+1, ... n

k+l, k+2, ... n

By = byt J

8}, = - tik/tkk i=1,2, ... k=1
‘o= 1/t i=§=k

8xk kk

2 =-zk

The primes denote the elements of the new matrix.

k1

Lower triangle column k
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VII. A COMPARISON OF FORWARD AND BACKWARD STEPWISE REGRESSION

Hamaker [10], 1962, compsred forward and backward stepwise
regression on data taken from Hald [9]. This data concerned the heat
evolved during the hardening of cement. The problem involved four
independent variables Xl, x2, X3 and Xh. The optimum model in this
problem contains the variables Xl and x2. In Hamsker's version of
"forward selection” the variables were entered into the regression in
the order X, X;, X,, x3 and in his "backward elimination" the
variables are eliminated in the order xa, Xh, Xl, x2. He concludes
that if a model containing two variables were selected the forward
version would yield the model containing Xh and Xl while the backward
version would yield the optimum model contzining the variables Xl and
Xe. Hamaker made no provision for remcving variables as they became
insignificant and in fact, a forward procedure which does provide this
capability would in this example have arrived at the optimum model.
The author analysed Hald's data using the computer program described

in {3] and obtained the results listed on the next page.
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STAGE ACTION TAKEN

VARIABIES IN STD. DEV. QF
REGRESSION AT RESIDUALS
END OF STAGE
0 - - 15.04
1 Add Xh Xh 8.96
2 Add X, X,» Xy 2.73
3 Ad4 X, X0 Xy X, 2.31 :
4 Remove Xh X, X

)1 ;
10 X5 2.41 .

The decision to add or remove variables were made at the 95% level

of significancz. It is quite possible that at other levels of

significance different results mizht be obtained and in fsct in

: Section IX. an example is 1listed showing that even for a "perfect it"
5
]

model the forward version does not obtain the optimum model whereas the
backward version does.

Abt* et al [1] discuss the forward and backward versions and

attribute the occurrence of different results to the presence of
"compounds”.

They define & compound as

a set of N £ N iadependent variables plus the dependent
variable when the error variance associated with sil N
independent variasbles is smaller, by orders of magnitude,

than the error variance sssociated with any subset of
. K-l independent variables.

Their discussion, however, seems to be based on a stepwise procedure

which does not sllow for the removal of terms in the furward version,

e bt AR

*Also discussed in a paper titled "On the Identification of the
Significant Independent Varisbles in Limear Modzls" by Klaus Abt,

socon to be published in Metrika. Dr. Abt wrovided the suthor s
preprint of this pepar.
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nor for the subsequent addition of variables that have been eliminated
in the backwzrd version. The end result of & regression run on Abt

et al's program as in Hamaker's example is an ordering of the variables
in either a forward or Lickward ranking. The ranking in tke end has
really no meaning in regards to the relative importance of the
variables' contributions to the variance reduction. The author, for
example, has observed the following phenomenon: In six stages of a
forvard run, five stages consisted of removing variables that had
entered earlier. In this problem, variables that in the end were
insignificant would have been highly ranked had they not been tested for

removal.

The objective in multiple linear regression analysis is the
obtaining of a "prediction model” as near optimum as is practical, and
the ordering as discussed above 1s of interest only in relation to the
information it provides in achieving this end. In this context a
provigion for removing terms in the forwurd version seems to be more
effective toward achieving this goal than e forward procedure which
merely orders the variables in the sequence which produces the
greatest reduction in the sum of squares of residuels. Similarly, the
backward version should seemingly include e provision for reentering

varigbles if they subsequently become significant after their removal.

The cost of running regression drobiems on todays modern
mechinery is so small that it seems for many problems one might

fruitfully apply bouvh versions for comparison. When many observations
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are involved in relation to the number of variables the formation of
the covariance matrix seems to comprise the bulk of the computation
time. On a problem involving 96 variables and 1430 ocbservations the
ERLESC program [3] ran 5.34 minutes in the forward version, eantering
21 variebles before reaching equilidbrium. When the program was
mocified to take advantage of the modified algorithm derived earlier
this same problem ran in L.90 minutes. From these figures it is
estimated that the formation of the covaricnce matrix required about
k.5 minutes and that a complete forward regression would take
approximately 2.0 minutes with a similar estimste for the time required
to do & backward regression. Most problems are of a much smaller scale

and running time considerations are usually unimportant.
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AFPENDIX

Numerical Example¥

The Pollowing example illustrates the point made earlier, that
even for a "perfect £it" model the forward version of stepwise
regression might not identify tke optimum mcdel. The linear model

from which the data was generated is of the form

Ky = bR, - X%, + Xy - (49)

The matrix of observations is:

5 X, X X,

0 0 %

o 2 -1 -5

R 3 2 -1

4 10 1 9

\ 2 0 8 32

-fl=5/5 §2”3 X}

]

2 ih = 39/5

Rather than the covariaace watrix, S, we begin with tue matrix IS,
éenoted A 0°

¥This example was &iscovered by Mr. L. W. Campbeil 2f the Ballistice
Research laetoratories, Aberdsen Proving Ground, Margisud.
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G taaliilingi £ Aendal)

baada 4 b ued (ARl st hdel

Ll

370 L75 150 1455
475 1700 -h0O  =1000
A =325 156 oo 1250 4750
1455 -1000 4750 21070

At the first stage the test quantities for the reduction in the sum

of squares of residuals is given by

v, =& 8, /8, = 1/25 (155)%/370 = 28.9,

V, = 8y, &),/8,, = 1/25 (1000)%/1700 = 23.5,
2

Vs = ag, ahj/a35 = 1/25 (4750)</1250 = 722.0.

Since VB is the largest of the three test quantities, )Lj becomes the
key variable. ¢ test whether this variable will significantly reduce

the sum of squares of residuals we obtain the coefficient rh}'

g

: 2
Tys = 83 a3h/333 8y, = (k750)</(1250) (21070) = .857
2 B
v = I’hé(f;a)
l hd rhE

- f%ﬁ%iil LR
6{£-2,.65) = %(3,.95) = 2.35

Siacz t > +{f-2,.95) the test for adding the variable indicates that

23 (at the 95% level of confidence) shuuld be brought into the

regression. Afier cverating on Ao with the Gauss-Jordan algorithm with

335 as the pivol we Ob%ain
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352 523 -3 885
523 1572 8 520

3 -8 1/2 95
885 520 =95 3020

A =1/25

The test quantities are

|
3
§

v, = 1/25(885)%/342 = 91.7,
V, = 1/25(520)%/1572 = 68.7.

AW g

The key varisble by inspection is Xl.

2
Th.3

758(2) /2
% = 7%2%1-1 = 2.10

t(f"ao 095) = t(a’ ‘95)

(885)/(342)(3020) = .758 f

t

2.92
Since t < t(£-2,.95) the test for addition fails and the variable X,

is not entered into regression. 'This then is the equilibrium point

and the model which a forward stepwise procedure would yield is
xl‘ - xh = b} (x3 - 15)’
b} = aua = 95/25 = '38)

i

by = X - by Xy = 39/5 - (2)95/25 = .2,

xh = .2 + 038 X3.

Al b o (s B e

Note that in this example no tests for removal were necessary.

It is not necessary to do the complete computations to exhibit
the result for the backward version.

TR MR U

One of the three variables,
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(assume xa) vill be the key variable to test for removal. The

partial correlation coefficient is computed from Equation (45).

2
k2,13 = Vol (suy.105 * Vo)

Since B, 10% = 0, the coefficient is 1.0 indicating perfect
correlation. This wouli be true for any of the three variables.
Obviously, no varisble is removed and the equilibrium point is

established with all three varisbles in regression.

Recent Work in Europe

After the completion of this manuscript the author attended a
seminar titled, "A New Computer Approach in Determining Optimum
Regression in Multivariate Analysis.” The lecturer was Dr. M. G.
Kendall, the noted British statistician. The new approach referred to
in the seminar title was a modification of the technique described by
Lotto and Garside in enumerating the 2N -1 regressions. Kendall and
his coworkers have developed an algorithm which is more economical than
the recursive generation of the 2N -1 regressions by noting that it is
possible to identify (without performing the computations) certain
useless combinations which are d=monstrably worse than combinations for
wvhich regressions have already been obtained. The details of this
algorithim can be found in the paper "The Discarding of Variables in
Multivariate Analysis” by E. M. L. Beale, M. G. Kendall and D. W. Mann,

copies of which were distributed at the seminar®. This technique has

*This seminar was } :1d on April 11, 1967 and sponsored by C-E-I-R Inc.,
5272 River Road, Washington, D.C.
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been called "partial enumeration" and its attractiveness in comparison

to forward and backward stepwise regression was noted.

It was pointed
out, as was done earlier in this thesis, that stemwise regression does

rot in general lead to the optimum model. In this connection,

reference was made to a paper by Oosterhoff* (1963) which contains an

example for which the forward and backward methods lead to the same
model, neither of which is optimum.

¥Oosterhort, J. (1963), On the Selection of Independent Variables in a
Regression Equation, Report S 319 (VP23) Mathematisch Centrum,
Amsterdam.
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