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ABSTRACT 

This report presents results of an Investigation of a 

microstrip filter which was designed for the study of nonreciprocal 

phase in S-band (***3 GHz).   Data are presented showing scattering, 

absorption, and nonreciprocity. The device is a low-pass "comb" 

filter. When matched to less than l.l/l VSWR over a 13^ hand, its 

insertion loss is 0.8 - 1.2 db. nonreciprocal differential phase 

is frequency-sensitive, reaching 30 degrees near the cutoff frequency 

of 3.5 GHz. An analysis is presented of the theory _>f periodic 

networks with sufficient generality to include the nonreciprocal 

and nonconservative cases. Comparison with the performance of a 

reciprocal filter shows good agreement. The agreement with non- 

reciprocal effects is qualitatively correct, although a full treatment 

of nonreciprocity must await a detailed field theory of propagation 

on microstrip with a magnetic substrate. The investigation shows 

that substantial amounts of nonreciprocal phase can be produced by 

means of a simple, compact, efficient ndcrostrip structure with low 

loss and good match over an ample band, suitable for control in the 

"latching" (remanent) mode of operation. 
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FIGURES 

1. Four-Section Microstrip Comb Filter. 

2. Single Section of the Comb Filter. 

3. Microstrip Comb Filter — Photoetch Positive 
Master, Actual Size. 

h.    Characteristic Exponent TC = u + iv for the Nor- 
mal Modes of the Comb Filter; £  = 1/3, 
2(ß?)a/(ße)b = 0.1. 

5. Amplitude of Transmission |EL,| of a Four-Section 
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6. Observed Insertion Loss of a Four-Section 
Microstrip Comb Filter. 

7. Filter with Matching End Stubs — Photoetch 
Positive Master, Actual Size. 
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RECIPROCAL AID NONRECIPROCAL RTCROSTRIP 

PERIODIC NETWORKS 

1* Introduction. 

Ibis report presents a sunmary of the work performed under 

Subcontract Ho. 351 during the contract period September 15, 1966 — 

June 15, 1967» on the investigation of propagation in nonreciprocal 

miniature microwave transmission structures. 

As discussed in the Proposal of August 12, 1966, the objectives 

were: 

i. design and construction of a miniature ndcrostrip nonreciprocal 
filter consisting of a ferrite substrate to which a strip 
transmission-line periodic network is applied by metal deposi- 
tion and photoetch techniques; 

ii. microwave investigation of the match, loss, and dispersion of 
the filter, including nonreciprocity and its dependence on the 
magnetic state of the substrate; 

iii. theoretical investigation of the transmission properties of non- 
reciprocal periodic networks in general, and comparison of the 
theory with the performance of the experimental model. 

The experiments were performed in S-band. The filter to be 

described is of the low-pass "comb" type, composed of four sections 

("teeth"), designed for operation in the band centered at 3 GHz, with 

cutoff at 3.5 GHz. 

The ferrite substrate is magnetized by incorporating it as one 

leg of a closed magnetic circuit. The magnetization is directed 

-1- 
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transversely with respect to the direction of propagation, in the plane of 

the substrate, and nay be pulsed to its remanent state or excited by a 

sinusoidal current at, e.g., 60 Hz. Using a swept S-band signal generator 

as source, phase and other scattering characteristics are observed by means 

of phase bridge and reflectometer circuits. 

The filter was observed to produce nonreciprocal differential 

phase which increases monotonically with frequency, reaching 30 degrees 

(difference between phases of transmission for the two opposite states of 

renanent magnetization) close to cutoff. With the addition of simple end 

sections for matching to 50-ohm transmission line, the VSWE is less than 

l.l/l over the band from 2.76 to 3.1U GHz; In this band the insertion loss 

is 0.8 — 1.2 db, and the differential phase is in the range from 

3 to 9 degrees. Investigation of this filter is still in progress. We „ 

should like to perform the matching at other points in the passband; in 

particular, we anticipate that an ample band of low reflection can be 

created in regions where larger amounts of nonreciprocal phase are avail- 

able. The rather steep frequency-dependence of nonreciprocal phase in 

this structure is not understood as yet. 

The dispersive properties of the filter (input match and 

reciprocal transmission phase as functions cf frequency) conform reasonably 

well to prediction, indicating that the correlation between mechanical 

layout and electrical performance of the network is good. Although no 

comprehensive theory of nonreciprocal effects in structures of this type 

exists as yet, the performance of this device indicates that substantial 

1 - 
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amounts of nonreciprocity can be produced In this way; that .Is, by means 

of a staple, compact, efficient microstrip structure, with low loss, good 

match over an ample band, which can be readily adapted for digital control 

In the "latching" (remanent) mode of operation. 

2. Theory of Honreciprocal Periodic networks. 

The following theory is formulated in a scattering-matrix 

representation; the results are, of course, related by a bilinear trans- 

formation to those of the Impedance representation which is more familiar 

to many workers. It may be pointed out that, in the presence of 

nonreciprocity, the Impedance formulation loses its main advantage, in 

that it no longer lends itself to interpretation in terms of lumped- 

element equivalent circuits composed of simple elements. On the. other 

hand, the gyromagnetic interaction which must ultimately account for the 

nonreciprocity seems to be more naturally expressible in tne scattering 

picture. 

A. General Theory of Scattering in a Periodic Network. 

We consider a two-port junction characterized by the scattering 

matrix S, 

S = r s' 

s r' 

(1) 

Our objective is to analyze propagation in a periodic network composed 

of identical elements (sections) -A cascade, each characterized by S. 

For the present we assume that the network extends infinitely in both 

■• .> 
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directions. The matrix (l) connects the vectors whose components are the 

incident ware amplitudes IE^, E2 I and the scattered wave amplitudes I E?, E| 1 

according to 

4\ 
=  S 

4 
(2) 

For the purpose of iteration, we transform to the R-matrix representation 

in which the vector j El, ES], whose components are the forward and 

backward (say, toward the left and toward the right) wave amplitudes at 

port 1, is connected with the corresponding vector of wave amplitudes 

feg, Eg] at port 2. We have 

4 
E S 

E' 

EL 
(3) 

Solving the system (2) to put the relations in the form (3), we find 

for R, 

R = *p r] CO 

where Z^. denotes the determinant of S: 

A  = det S = r'r - s's (5) 

m the periodic network, the R matrix acts as a transfer operator 

connecting the wave amplitudes at the j-th interelement reference plane 

with those at the (j + l)-th, applying equally to each pair of reference 
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planes In the entire range - «o < j < + » 

modify the notation in (3) to read 

Hence it is appropriate to 

* R H 
UJ 

(6) 

where f and b refer to the forward and backward directions of propagation, 

respectively. 

How, in the terminology of the theory of group representations, 

we observe that in the infinite periodic network the boundary value 

problem of which the E's are solutions (that is, the wave equation together 

with boundary conditions) is invariant with respect to translation through 

any integral number of sections. Hence there must exist solutions which 

"transform according to the irreducible representations of the one- 

dimensional discrete translation group." The meaning of this statement 

is developed in treatises on applications of group theory ; for the 

present purpose we state the conclusion, as follows. There must exist 

wave amplitudes [E£, EjJ] having the property that under the translation 

j -* j+1 the only effect is the multiplication of the two waves by the 

factor e , in whichX is a constant (in general complex), called a 

p 
characteristic exponent.. This consequence of the symmetry, when applied 

to the present case of a one-dimensional structure composed of discrete 

sections, is also known as Floquet's theorem, In any case, the conclusion 

wnw»W—»»• - ■—■- - 
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nay be expressed as 

(7) 

The problem becomes that of determining jC  and the innre amplitude [si, E£] 

such that both (6) and (7) are satisfied. 

We shall see that under ordinary circumstances, when the 

sections are conservative (reactive), jC  is either pure real or pure 

imaginary. The domains of imaginary X are the passbands of the network, 

and the value of Ji  is the iterative phase in that case. The corresponding 

pair of wave amplitudes characterizing the normal mode of propagation 

may be expressed alternatively through an iterative impedance Z according 

to 

1 + R 
1 - R 

(8) 

where R = Ejj/E^ and Z is the characteristic impedance of the transmis- 

sion line at the planes at which the E's are defined. For the normal 

modes, R is, of course, independent of j (eq. 7)« The domains of 

real % are the stopbands, and the value of X.  is the attenuation per 

section in that case. 

To proceed, we eliminate l&'F'       Ep+ J between (6) and (7), 

obtaining the homogeneous system 

f-A- ■ ••    r«    1 TEJ-J 

[  -r      l-s'e-*J [EJ 
= 0 (9) 

Ä 
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Equation (9) possesses a isontrivial solution if (and only if) the 

determinant^ of coefficients is zero. This condition yields the 

characteristic equation 

s'V2* + s'e~* (A- 1) + (r»r - A) = 0 (10) 

Solving, 

-x. '   ST [(1-A)±|(r+A)2.^rj (11) 

Equation (ll) specifies the characteristic values of TC corresponding 

to the normal nodes of propagation. With jC thus determined in terms 

of the scattering coefficients of the individual sections, the 

ratio EJJ/E4 = R can be evaluated from (9): 

R = 
A+ s*e 

1 - s'e"*- 
(12) 

This result is completely general, in that no assumptions have been 

imposed regarding either reciprocity or conservation of energy. To 

illustrate its meaning, let us apply it to the special case in which 

the sections are both conservative and reciprocal. A simple and familiar 

filter-theory result emerges. 

For a lossless network, the scattering matrix S is unitary: 

S*S = I (13) 

where t means Hermitean conjugate and I is the unit matrix. When 

(13) is applied to the matrix (l), we obtain the following constraints 



an it*, components: 

|r|2+|s|2   = |r«|2+|«^2=   1 

arg r*r - arg s's = * 

(l*) 

(15) 

(16) 

from which it follows that 

|A|=|dets|   *   |r'r-8(s|-l 

For a reciprocal network, S is symmetric.   We write s and s* as 

- 1-1 <■'« s * s' 

Then, with the conditions due to losslessness (l*i—17) we have 

The solution (11) of the characteristic equation reduces to 

'-&""** Jjfc cos   9^-1 

(17) 

(18) 

(19) 

(20) 

or, more simply 

COBhjC    ■  — COS <* 
181    r I« I 

Since the right side of (21) is real, jC  must be either pure imaginary 

or pure real, according as the magnitude of the right side is or is not 

less than one. As a simple illustration, suppose that the transmission 

phase f>  increases monotonically in some simple way with increasing 

(21) 

,«■ #>..*Jir>H».- *„v - . t .■-■■^^..^■^^t||.J^r|^.j^^ri,|Npht ■.*. m ,»-■.*. ■*-■■■ .«... . *   --»m... 1 -  _ ■  ■ ■ '■■gaSlM* 
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frequency and that |s| is frequency-insensitive. Let 

3d * u + i Y (22) 

t 

Then the passbands occur in the frequency ranges in which 

*       |cos 9*|< |s|, and the iterative phase is 

v = arccos(.-. cos f) (23) 

The stopbands occur where |cos ff |2^|s|, and the attenuation per section 

is 

u = cosh-^ijlcos/l) (2U) 

B. The Reciprocal Comb Filter — Normal Modes. 

Continuing with the reciprocal, conservative case, we calculate 

the overall scattering coefficients fcr a comb filter. The treatment in 

Sees. 2B and 2C is a reformulation in the scattering representation of the 

theory of conventional periodic networks''. It is included here for 

reference and by way of background for the discussion of the nonreciprocal 

case to be presented in Sec* 2D. 

According to the prescription (23), the iterative phase can be 

determined in terms of the phase fP  and magnitude \S\ of the transmission 

coefficient of the individual sections. To simplify the calculation, we 

make the customary assumption that the transverse dimensions of the sections 

of transmission line used in the comb structure are negligible at the 

frequencies of interest. 

""»•"**■ St   •;' ■"<,•.. 
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The filter structure under consideration is shown in Fig. 1; 

ilg. 2 shows a single section, indicating the dimensions used in the 

calculation« Fig. 3 i* » copy of the photoetch positive ■aster, showing 

the actual size of the structure. To determine the transmission coeffi- 

cient s it is convenient to begin with a lumped-element analog/. Consider 

a stub ("tooth") of characteristic impedance ZL, length 2. , terminated 

in an open circuit: the impedance at the root of the tooth is 

Z = -i 2^ cot(ßnb (25) 

where ß. is the propagation constant for transmission line of 

characteristic impedance Z.. (On microstrip, the propagation constants 

of all modes, including the fundamental mode, are functions of the 

characteristic impedance and the dielectric constant of the substrate, 

due to the partially-dielectric-filled construction of the line.) For 

brevity, we denote ß, ?. by (ß ? ),. This tooth is in shunt with the 

transmission line, and may be regarded as the shunt element of a T 

network composed of shunt Z between two equal series Z. For such a 

network, the impedance matrix Z is 

'Z + Z Z 
p   s p 

Z Z + Z 
p p   s 

(26) 

In general, the scattering and impedance matrices are related by 

S = (z + l)-1(z - I) (27) 

where z = (l/z_)Z, Z. being the characteristic impedance of the 

I 
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transnlBsion line In which the T network is inserted. Denoting Z/z 

and Z/Z& by s and s , respectively, and applying (27) oo (26), ve hare 

S (2ap + a, I l)(.g + 1) f's^p 
+ «a)"1     *p   1 (28) 

For the case of the shunt tooth we have z = 0, so 
8 

S = 
2z + 1 
P 

-1  2z 

2z   -1 
P 

(29) 

The coaplete filter section is composed of the shunt tooth placed between 

two equal lengths t   of transmission line, of characteristic impedance Z . 
a a 

Transforming the reference planes of S to the ends of these elements, we 

have finally 

S = 
e-2/(ß?)a f.!       2Zp] 
2z+l 

P 2z        -1 
P 

(30) 

I    ' 

from which we may read the transmission coefficient s:    using (25), 

8 _ e-2i(ßj)a g*rc°tfenD 
2trcotonb -1 (31) 

where £ = Zb/Zfl 

To solve (21) for %, we require the combination (using eq.  3I) 

|s|COS^ = ,7" Re(s) = COS 2(ß * }a "   27 tan(ß? V111 2(p* }a  (32) 

Thus, 

cosh ^. = cos 2(ßf )a - 27 tan (ß ? )fe sin 2(ßf )? (33) 

—» ■ '■'■■^■■»LjH.'wa.--,        _, > 
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1» -/ A computer program was composed for the evaluation of 7C according to 

(33) as a function of frequency (as represented by the electrical length 

(ß I ). ) for various values of / and 2(ß / )a/(ß 2 ).. Fig. k shows the 

results for the case £   = 1/3, 2(ß ? )a/(ß 7 )b = 0.1. The iterative 

phase v (eq. 23) is plotted in the passbands, and the attenuation per 

section u (eq. 2k)  in the stopbands. 

The solutions of the characteristic equation occur in pairs 7^ 

and 'jC , corresponding to net propagation in the forward and backward 

directions. In the reciprocal, conservative case they are the negatives 

of each other + jC (note that both satisfy eq. 21). In general they are 

not; the discrepancy represent a the presence of nonreciprocity in gain, 

loss, or phase. 

C. The Reciprocal Comb Filter — Finite Structure 

We have the iterative phases ?£ and ^£ for the normal 

modes of propagation in the reciprocal, conservative comb filter, as 

given by (33). When such a filter, composed of n sections, is inserted 

into a transmission line of characteristic impedance Z , in general both 

modes are excited, their relative phases and amplitudes being determined 

by the boundary conditions at the terminal planes j = 0 and j = n. 

These relations in turn determine the overall scattering coefficients of 

the structure. Let S denote the scattering matrix representing the 

obstacle at j = n: 

(34) n   n 

s   r' 
n   n J 

MMn^m%-«w mm» 
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Assuming the filter is connected +o a matched termination, the reflection 

on the source side of the obstacle is r . This condition must be fulfilled 
n 

by a superposition of the two modes. Let 

*+ = 
*f+ 

R = V 
E 

(35) 

f- 

where + and - refer to the modes associated with jC    and jL    , 

respectively. The reflection on the source side of the obstacle at the 

plane j = n is given by 

E^ + E^ 

f *  -f. 

1 + (Ef
n/EfJ) 

Solving (36) for the ratio of amplitudes. 

(36) 

*f- 

Bf+ 

Rn-R+ 

R - R_ 
(37) 

The presence of the obstacle at the output plane j = n furnishes the 

requirement 

Rn « r (38) 

With the relative amplitudes thus determined according to (37)» we now 

seek the resultant reflection coefficient at the input plane j = 0. Row, 

.<■' 
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in the passbands tlv* iterative phases of the normal nodes are v and v_. 

Thus, 

Bf+ " e   ^f+ '   Ef- 
j nv__ n 

7f- (39) 

Hence 

^   ',n(v. - Y+)4. 

E. f+ 
n 

Bf+ 

= e in(v_- Y+)Rn- Rf (kO) 

The reflection coefficient R_ at the plane j = 0 is 

0   E ° + E ° Ef + + Bf- 
(to) 

*+ + R.(Ef?/Ef+) 

i + ftfSfrfJ) 
- (^) 

With (to), this is 

MR--«p)+R.(«n-R>',n(V- 
" " Vn(T- 

-V 
(R_-Rn) + (Rn -R+)e V (*3) 

To take account of the obstacle at j = 0, we introduce the scattering 

maxtrix SQ: 

•8o  ro' 

m 

iMOiUI 'S 
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Since the Incident and scattered amplitudes on the filter side of this 

obstacle are E^ + E^ and BjJ + Ef^, respectively, we have 

E f+ 
+ *f?J  l-o 'iJl^ + ^jJ 

(*5) 

where the 1 signifies the incident signal and E_ is the overall 

reflection at the source side of the obstacle. To solve (U5) for SL, 

we m 

conservative Junction, 

use of (41) and also the condition on S which holds for a 

det S0 = r£rQ - sfa   = -1 

This follows from (17) provided the reference planes of the obstacle 

are suitably chosen. Then 

ro + Ro 
** = 1 - r£R( 

(46) 

with RQ given by (43). Solving (45) for Ef° 4 Ef° , 

Efi + Ef- 
0 _ 

TT-rT 0R0 
(47) 

Then with (40) we obtain 

E 0   = 
f+ 

R   - R 

rr~7^      (R V ♦ eJn^- - V(Rn - R+) 

Transforming to the plane' j = n, 

E 
(R   - Rje-|nv+ 

f*   = TTT^0      (R_ - Rj + eU<V- - V^ - R+) 

(48) 

(*9) 
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Similarly, for tue - node we have from (37) 

X-rA  (R_ - «n) + e*
n<v- * r+h\ - R+) 

E. f- (50) 

Thus, the amplitude incident an the obstacle at the plane j = n is 

i - t*j 
» n . K n 
Ef+ + Ef« W> (R. - h) I e*n^- * V(Rn - B+) 

Finally, the overall transmission coefficient E- of the filter is s 

times this: 

*r - *»<** * «£» 
-invj 

(R, - R+)e""'+ 

r^ (R_ - Rj + eln(v- " V(Rn - R+) 

(51) 

(52) 

Equations (k6)  and (52), with (43), specify the reflection and trans- 

mission of the filter, in terms of the normal mode phases v , v_ and 

iterative reflection coefficients R , R_, together with the scattering 

matrices S_ and S of the obstacles at the ends of the structure, 
o    n 

For use in the subsequent discussion of nonreciprocity we 

have retained the generality in the: distinction between JL   and yL _. 

In the passband of a reciprocal, conservative filter we have the simple 

relation -Jt = ±v; it follows from this (see eq. 12) that R = l/R_ = R, 

so (U3) and (50) reduce somewhat, to 

£*£»&H 
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*nv% Rn(Reinv - 1/Refinr) - 2fsin nv 

R° = (Re"*11* - l/Re",nv) + 21^ sin nv 
(53) 

0 II 
R - l/R 

*r = I~r*C?lÖ   (Rc-
finr - 1/Re"iinr) + 2IR sin nv 

(54) 

The far« of &. remains the same as in (46): 

«.     r°*R° 

In the case of the filter shown in Fig. 1, the obstacles at 

j = 0 and j = n are the steps from Z to Z and hack again. The 

scattering coefficients for these steps are 

and 

rn - rJ-- ro 
Co'1 

" fo + 1 

8
n = fo'o = 

2fo 

(55) 

(56) 

where f _ ■ Z /Z . This problem has been solved as part of the computer 
\J C  & 

if 
program * for the case 

Z a 75 ohms 
a 

Z. = 25 ohms 

Z = 50 ohms 

2(M)a/fe7)b- 0.25 

The magnitude (EL I of the transmission coefficient is shown in Fig. 5» 

For comparison, Fig. 6 shows a recorder tracing of the observed trans- 

mission. The value of 2(ß ? ) /(ßl). is uncertain in the experimental 
&      0 
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filter, as indicated in Fig. 2, due to fringing of the radiation at the 

closely-spaced joints of the structure. The relative positions of the 

transmission 

agree reasonably veil with those of the experimental model. 

in the case computed in Fig. 5 with 2(ß2 ) /(ßj ). = 0.25 
ft      D 

D. The Reciprocal Comb Filter — Matching. 

A familiar problem in filter theory is that of matching to 

within given specifications over a specified band. Conditions for match 

are implied in the formulation of Sec. 2C; specifically, in the 

characterization by S and S , equations (3k)  and (hk),  of the obstacles 

at the planes j = n and J = 0. la the calculation of Sec. 2C we used the 

scattering coefficients (55) and (56) appropriate for a simple step to 

and from transmission line of standard characteristic impedance Z . 

Substitution of stubs or other dispersive end sections in place of these 

alters the overall reflection, and may be made so as to widen the matched 

regions and place them at a desired position in the passband. 

To illustrate this procedure in the case of the filter of 

Fig. 3> matching stubs were incorporated^ so as to create a match over a 

band centered at 2.95 GHz. The complete structure is shown in Fig. 7» 

and its observed performance is shown in the recorder tracings, Figs. 8 

and 9. The reflection, Fig. 8, shows that the VSWH is less than l.l/l 

from 2.76 to 3.14 GHz (13% band) and less than 1.3/1 from 2.65 to 

3.17 GHz (18% band). The insertion loss, Fig. 9, is in the range 

0.8—1.2 db over the well-matched region. 

-*-i _*i' < V* htf***-**'■ *"iwfcm'W»» ■*****ft*i»*>4«i-wMfca<iha 
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E. Bbnreciprocity. 

We now inquire how the results of the scattering theory are 

affected if we relax the requirement of reciprocity while retaining that 

of losslessness. The appropriate modification in the scattering matrix S 

of the individual sections (equation l) is that it is no longer symmetric, 

hut still unitary (equations 13—17)« Note that the transmission 

coefficients 8 and s* may differ in phase only (equation 15). Let 

s = |s| e"f^+ , s' = /sf e -ir- (57) 

The equality of |s| and Is*I is the content of the so-called "reactive 

isolator theorem;" namely, that no conservative (reactive) two-port 

Junction can transmit (or reflect) with different amplitudes in the 

two directions — in particular, a "reactive isolator" for which 

r - 0, s' = 0 is not physically realizable. 

If we le+ 

£(*++*>-**    i(?+- VJ't (58) 

then the solution (11) of the characteristic equation (10) becomes 

e  = e '«  (i 00.fi   y-jfc co,V-l] (59) 

or 

cosh {%   - if) = i cos f (60) 

We note that if */>  denotes one of the solutions of (60), then 
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^£_ given by 

%    -i^ = -(/+-if) (61) 

is another; hence, 

Thus the differential phase for n sections is just n tines the differential 

phase per section. This holds irrespective of mismatches or any other 

dispersive effects; in fact, it holds in the stopbands as veil as in the 

passbands. It is noteworthy that in the presence of nonreciprocity 

*jL can never he pure real — since by (6o) we have that j£ — I tfs 

is real. That is, propagation persists into the stopbands. We note 

also that in the stopbands where the real part u of ^ = u + i v is 

different from sero (6o) gives u = u_; that is, the attentuation is the 

same in both directions. This is simply a manifestation of the 'reactive 

isolator theorem" for periodic networks. 

F. Data on Honreciprocal Phase. 

An embodiment of the comb filter was constructed using a 

substrate of thickness 0.040 in., made of the polycrystalline 

yttrium-iron garnet, saturation magnetization 680 gauss. Other 

materials, in the range U00-~600 gauss, were also used. Magnetization 

in the plane of the substrate, transverse to the direction of propagation 

(i.e., parallel to the teeth) was accomplished by attaching a U-shaped 

nickel-ferrite yoke, 1.5 in. long, suitably wound with magnet wire. The 

yoke was placed in contact with the underside (ground-plane side) of the 

substrate. This arrangement is preferable to placing the yoke on the 

■■■<....mm^amJWriim-.^HUt-Mmmmmm —.«^~— — — —•—■   ■- -■- ,«„ ^^ „^^^^  ; _ 
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upper surface,  in that it avoids spurious interaction with the 

radiation; examination of the magnetization curve showed that the 

remanent magnetization is not appreciably affected by the "air" gap 

due to the presence of the ground plane. Remanent magnetization is 

approximately kxH   = 300 gauss. 

Differential phase' (the quantity 2ny in the notation of 

Sec. 2E, equation 58) was measured by pulsing the magnetic circuit 

successively to its remanent states in the two directions and 

observing the phase change by means of a phase bridge. The data for 

this model are shown in Fig. 10. Differential phase is strongly 

frequency-dependent, reversing sign at 2,5 GHz and rising to about 

20 at the cutoff frequency of the filter. It continues to rise 

without interruption in the stopband, in agreement with the theory 

as discussed in Sec. 2E. The negative ■." differential phase occurring 

at the low end of the band is not fully understood, but appears to 

originate in small imperfections in the structure. 

3. Conclusion. 

The investigation clearly demonstrates the potential value of 

microstrip periodic structures as a means for performing the function 

of nonreciprocal, digital, phase control, as well as the more 

conventional functions of reciprocal filtering. It has been verified 

that microstrip network design presents no special difficulties in the 

range of structural arrangements treated in this program. (Certain 

circuit elements, such as those involving tightly coupled p^irs of 

strips, appear to present special problems due to the composite 

«*.».» **** « 
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dielectric-air nature of nicrostrip; these have not been considered in 

the present program.) The next substantial objective in the general 

study of nicrostrip transmission on magnetic substrates will be that 

of placing nonreciprocal effects on a firm theoretical footing. In 

particular, it should be noted that guidance is .not yet available for 

the determination of circuit arrangements which optimize nonreciprocity 

while fulfilling other device requirements (match, bandwidth, loss, 

peak and average power capability). Programs such as the present one, 

together with investigations by other groups active in this field will 

extend our experience in this area, but theoretical support will also 

be required in the form of analytical and computational investigations 

of propagation in the heavily-loaded inhomogeneous, magnetically 

anisotropic, nicrostrip transmission-line structure. Application of 

network synthesis methods, based on scattering analysis such as the 

one presented in this report or equivalent treatment of nonreciprocal 

networks, will also be needed. 

i J~ "-* «-I . 
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Figure 3. Microstrip Comb Filter — Photo-Etch 
Positive Master, Actual Size. 
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Figure 7.    Filter with Matching End Stubs — Photo-Etch 
Positive Master, Actual Size. 
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Fig. 11. Fortran List of the Program for Evaluation of 

i* , Ej and Ep of the Reciprocal Comb Filter. 
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//E25245 JOB  S360. 
// «WEISS, J.A.  UE09* 
//START  EXEC  PROOOUMHY 
//SOURCE EXEC PROC-FORTRANH 
//SYSIN 00 * 
C 
C     MICROSTRIP COMB FILTER 

C    FILTER DESIGN  J.A.WEISS NOTES OF 1/3G/67, PAGE 33. 
C     THIS PROGRAM WAS COMPOSEO BY D.N.KLAUKE, WORCESTER POLYTECHNIC INSTITUTE» 
C       FOR THE 1620. AND ADAPTED FOR THE 70*4 BY T. BRYANT. 
C 
C     INPUT DATA  F - 2BETA-LA/BETA-LB, RATIO OF ELECTRICAL LENGTH OF SERIES 
C CONNECTION 2BETA-LA TO THAT BETA-LB OF SHUNT TOOTH 
C J - NUMBER OF F VALUES TO BE USED 
C ZA « CHARACTERISTIC IMPEOANCE OF SERIES CONNECTION 
C 10  *  CHARACTERISTIC IMPEDANCE OF INPUT AND OUTPUT LINES 
C ZETA * RATIO OF CHARACTERISTIC IMPEDANCE ZB OF SHUNT TOOTH TO 
C THAT ZA OF SERIES CONNECTION 
C N * NUMBER OF SECTIONS. 
C 
C     OUTPUT COSH X. WHERE X IS THE CHARACTERISTIC EXPONENT X«U+IV 
C V « ITERATIVE PHASE CONSTANT 
C ESI » INPUT REFLECTION COEFFICIENT 
C ES2 * FILTER TRANSMISSION COEFFICIENT. 
C 

1 FORMAT (2F7.4) 
2 F0RMAT(F6.1,F8.4,F8.4,F7.2,F8.4,F7.4,8F8.4) 
3 FORMAT I6H0ZETA»,F9.4,15X,17H2BETA-LA/BETA-LB«,F9.4) 
4 FORMAT (7F10.4) 
5 FORMAT (4H0ZA*,F7.2,10X,3HZ0-,F7.2,10X,2HN-,F6.2) 
7 FORMAT t'3X,»B      COSHX     V     VOEG     R      Z    ES1R    ESI 
II   ES2R    ES2I    ES1N    ES2M   SQUARE*) 
REA0(5,17)J 

17 FORMAT(Ä10I 
READ <5,4)EN,ZA,Z0 
N*0 

200 READ (5.UY.F 
WRITE I6,3)Y,F 
WRITE (6,5)ZA.Z0,EN 
WRITE (6,7) 
N«N*1 
A*0.0 

10 BLB'A*.017453 
B«A 
B2LA*F*BLB 
IFU-90.0) 20,30,20 

20 IF (A) 21,30, 21 
21 IF U-180.0) 22,30,22 
22 IFCA-270.0)40,30,40 
30 WRITE (6,2)A 

GO TO 90 
40 €0SHX*C0S(B2LA)~«1.0/(2.0*Y)>*SIN(BLB)*SIN(B2LAI/C0S(BLB) 

IF (COSHX-1.0) 50,50,45 
45 WRITE (6,2)A,COSHX 

GO TO 90 
50 IF(COSHX+1.0)60,85,85 
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60 8»A-10.0 
61 IF (8-90.0)62,75,62 
62 IF IB) 63,75,63 
63 IF (8-180.0164.75,64 
64 IF (8-270.0165,75,65 
65 818 «B*.017453 

B2LA*F*BLB 
C0SHX»C0S(B2LA)-(1.0/(2.0*Y))*SIN(BLB)*SIN(B2LA)/C0S(BLB> 
IF (C0SHXI69,76,69 

69 IF (COSHX*1.0>80,70,70 
70 CALL CLEM(C0SHX,Y,BL8,B2LA,B,EN,ZA,Z0) 

GO TO 77 
75 WRITE (6,2)B 

60 TO 77 
76 WRITE (6,2)B,C0SHX 
77 B«B*0.5 

CO TO 61 
80 WRITE (6,2)B,C0SHX 

WRITE (6»2)A 
GO TO 90 

85 CALL CLEM(C0SHX,Y,BLB,B2LA,B,EN,ZA,20> 
90 A»A*5.0 

IF(A-270.0)10,100,100 
100 IF <N-J)200v110,110 
110 RETURN 

END 
SUBROUTINE CLEMICOSHX,Y,8LB,B2LA,B,EN,ZA,Z0) 

2 F0RHAT(F6.1,F8.4,F8.4,F7.2,F8.4,F7.4,8F8.4) 
V-ATAN((SORT{1.0-C0SHX**2))/COSHX) 
IF (V>410,420,420 

410 V«3.14159*V 
420 VNEG« -V 

VDEG*V*57.2958 
R»2.0*Y*C0S(BLB)«(SIN(V)-SIN(B2LA))/SIN(BL8)-C0S(B2LA) 
IF (R-l.0*700,800,700 

700 Z»(1.0*R»/(1.0-R) 
RN*(1.-ZA/Z0)/(1.0*ZA/Z0) 
RSUM»(1.*R**2)/R 
RDIF«(1.-R**2)/R 
RONR»RN*CGS(EN*V)*RDIF 
RGNl»SIN(EN*V)*(RN»RSUM-2.0> 
RODR*COS(EN*V)*ROIF 
R0DI«S1N (EN*V)*(2.0*RN-RSUM> 
X«R0DR**2*RODI**2 
ROR *<R0NR*R0DR*RÜNI*R001I/X 
ROI *<RONl*RODR-RONR*RODI)/X 
ES1NR*-RN*R0R 
ES1NI*R0I 
ES1DR*1.0-RN*R0R 
ES1DI*RN*R0I 
U*ES1DR**2*ESIDI*»2 
ES1R*(ES1NR* ESIDR+ES1NI*ES1DI)/U 
ES1I«(ES1NI»ES10R-ES1NR*ES1DI)/U 
SPS*4.0*Z0/(ZA*(l.0*Z0/ZA)**2) 
ES2NR*R0IF 
ES2NI*0.0 
ES20R*RDIF*C0S(EN*V» 
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ES20I —(RSUM-2.0*RN)*SINfEN*V> 
T«ES2DR**2*ES2D!**2 
ES2R=lES2NR*ES2DR*ES2NI*ES2DI)/T 
ES2I * (ES2NI*ES2DR-ES2NR*ES2DII/T 
W*(I.0-RN*ROR)**2*(RN*ROI)*»2 
ES2RR *-SPS*(ES2R*(1.0-RN*R0R)-ES2I*RN*R0I)/W 
ES2II =-SPS*«ES2I*(1.0-RN*RORI*ES2R*RN*ROI)/W 
FFF«ES1R**2*ESU**2 
EEE«ES2RR**2*ES2II*»2 
ES1M-S0RTIFFFI 
ES2M«S0RT(EEE) 
SQUARE* FFF*EEE 

800 WRITE (6t2>BtC0SHX,V,V0EGtRtZtESlRtESlI,ES2RR,ES2II,ESlM,CS2M,SQUA 
IRE 
RETURN 
END 

/* 
//LINK EXEC PROOLINKSRCE 
//EXEC EXEC PR0C*EXECUTE 
//FT05F001 DO * 

1 
6.0000   75.0000   50.0000 

.3333  .2500 

.3333  .1500 

.3333  .3000 
/* 

L 
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