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Foreword

The physical reasoning which led to the conclusion by the author that
particle trajectories in a rotating field are stable in the plane of rotatiox
functions as an introduction to the reader of the concept of plasme. confinement
in a rotating field.

The magnetic field's relation to Maxwell’s equations is discussed and
the induced electric field is presented, whereupon the equations of motiun and
their exact general soliutions are given,

The orbits of particles are derived for special limiting cases on
the basis of the general solutions, and the orbvits are compared with the analog
computer solutions of the equations,

It is shown that a rotating magnetic field alone is not enough to
confine a plasma; but that the rotating field used in conjuction with other
types of stationary fields should result in an effective plasma containment
device. .

Firaily, two additional, nhysically-possible rotating fields are
introduced and their properties are discussed btriefly.

I. Orientation

Interest in plasma physics has grown exponentially during the last
decade; and during that time, many confinement devices have been proposed and
some tested, but none were sufficient for confining that all-important
substance——the thermonuclear plasma. All of the confinement devices to date
have had a common fault: particle leakage.

The basic method for confining a plasma, which is considered by some
to be the only possible way, is to trap it in a unagnetic field. A major problem
in plasma physics, therefore, is the design of a magnetic fielid which has
minimal particle leakage.

This paper describee another leaky field configuration, but there

exists a possible application of the proposed device such that the leakage
is acceptable (see Section VI).

II. Introduction to the Rotating Field Concept.

The reasoning which led to the conception of a rotating field for
confining plasmas proceeded as follows:

’ Confinement is ach.eved in the plane of rotation but not always in the

direction normal to the plane of rotation.
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Figure 1 - Stepwise Rotating Magmnetic Field.

A particle spirals in a uniform magnetic field as in Figure 1(a),
Hence, a particle would escape from a uniform field of finite dimensions.
! Suppose now the field in Figure 1(a) is suddenly replaced by the perpendicular
, field in Mgure 1(b). The original component of =xial velocity is converted
to azimuthal velccity and vice versa. so the particle is again moving along
lines of force. If the field-rotation process is continued in this stepwise
manner, some of the particle should possess orbits ac shown in Figure 2(a).
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Figure 2 - Particle Orbit in a Stepwise Rotating Magnetic Field.

But some particles, because their velocities are in the wrong
direction at the instant the field changes, will possess orbits as in
Figure 2(b).

This clearly reveals the fact that particles tend to follow lines
of force as they rotate. Consider, now, a magnetic field rotating with a
uniform angular frequency w,. Ifw, is slightly smaller than the frequency
of rotation ®, (Larmor frequency) of the particle in the field, then the
particle obvidusly spirals as in Figure 3,

&

N

Figure 3 - Spiraling Orbit in Rotating Magnetic Field with og < @5e
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But, if a2 is greater than @ , a particle is turned by the field quicker than
it can move along a field line and is therefore bounded within the plane of
rotation.

This, therefore, implies the following confinement conditions:

(i) @ <aw: Particles are unconfined in the plane of rotation
o~ “L

(ii) o >w;: Particles are confined in the plane of rotation.
W =o. is called, hereafter, the critical frequency.

In the confined state, most particles are however unconfined in the
direction normal to the plane of rotation. This may be realized by considering
a particle which is instantaneously moving upward in a field with @ >,

In one xy-plane” orbit, the particle will not have time to complete a larfior
orbit (since ® >'wL); and hence, after one period, the particle is still
moving upward. Hence, the particle is unconfined in the z-direction. The

exact conditicn for confinement in the z-direction will be derived later,

III. Fields
The rotating magnetic field, illustrated with respect to an xy-

cocrdinste system in Figure 4, is desired to have the form of Equation (1) for
non-relativistic rotation. ‘

B=B [isinwt+jcosot] (1)

7 The magnitude of the field is the
constant Bo. Hence, Equation (1)
represents a uniform rotating rield.

wt

x FIGURE 4, Ccordinate System.

A necessary condition for B to ve a physically possible field is for it to
satisfy the wave equation:

-1

c

—

+
Jee Figure b,

2

b

ro

ot

(2)
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Substizution shows that Equation (1) is not a solution of Equation (2), which
means that a uniform rotating field cannot exist. However, it is prcven in
Appendix 1 that Equation (1) represents an approximute solution of Equation (2),
the approximation being valid for small frequency-distance products.

The exact expression for the rotating field is derived in Appendix 1
B=B [icosoysinwt + jcosox coswt] (3)

where o =

As Oy and ox =+ 0, Bquation (3) reduces to Equation (1),

The size of field necéssary to contain a one hundred million degree
plasma, given by the condition that the magnetic pressure
P = B2/8M

exceeds the plasma pressure

P
p

nkT,

is on the order of 30kG. It is presently beyond thec state of the art to
constrnst a 30kG field which rotates at the Larmor frequency; but, as discussed

in Section VI, large rotating fields may not te necessary., It is proposed that

a small rotating field can be superimposed on a large stationary field, resulting
in a practical device.

The vector potential,defined by the equation

is given by

- 3 = L3
A=B_ [ysinet -xcoswot] k (5)

for the apprcximate field. The induced electric field is calculated by
substituting Equation (5) in Faraday's law:

= - 194
2 c at (6)
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The resulting expression is:

o B
= .29
E = — [y cos ot + x sin o t], )

The exact expression for E,consistent with Equation (3),is given by
the following:

' E=- Bo [sin oy cos ot + sin Ox sin wot] k (7a)

Equation's (1) and (7) are the field equations which enter into the equations
of motion derived in the next section., The simplified field expressions lead
to differential equations which have exact solutions, and they are fairly
accurate for 0, Wy

Both field's (1) and (3) con ~in another approximation which is not
quite correct. It was assumed that v/c << 1 at every point in space where v
is the speed of the field with respect to inertial space, which is obviously
a bad assumption for high frequencies of rotation or for large distances from
the origin. Calculation shows, however, that the approximation is fair' for
w /o, <10 and V&2+y2 < 10. For small frequency-distance rroducts, the rela-
tdvistic field expressions reduce to Equations (1) and (7). All statements in
tiis paragraph are proven in Aprendix 2.

IV. Equations of Motion of a Charged Particle in an Electromagnetic Field.

(a) Laboratory Coordinates

The equation of motion of a particle with charge q and mass m in a
magnetic field B and an electric field E is obtained by applying the Lorentz
force equation to Newton's second law. Th: vector equation of motion is:

m%=q[§+%!x§] (8)

Using the expression for Ederived in the previous section, the component
equations are immediately written as:

o = - 8 V coswt
c 2 o

x
' m\.l= 'LB 3
¥ g Vz sin wot (9)
v o= .- 28 o 5 gB ;
sz 5 (ymo cos w t + %o &in mot) == (Vx cos © t - Vy sin mot)

\&
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where:

M
]
<5

tde
"
L~

(20)

Ne
L]
<}

Equations (9) are relatively ccmplicated and their solutions are not immediately
apparent. It is clear, however, that the sines and cosines are introduced by
the rotating field, and therefore fransforming to a rotating reference frame
should remove these factors and simplify the equations considerably. This
indeed happens under such a transformation.

(b) Rotating Coordinates

A rotating reference frame is chcosen, as illustrated in Figure 5,
according to the orthogonal transformation:

b 4 sin mot - cos wot X
= (11)
y cos w_ t sinw t Y
o o
whereX and Y are rotating coordinates.
Y
Y \ X
wt
o
X
FIGURE 5.
The transformed equations are:
X:-awi‘+m2x
) o c
Y=+ BwBX + woaY + vaZ (12)
v :‘—mi

'Z L
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where z % 7,

(¢) Time Scale Transformation

Equation (12) may be represented more simply, parametrically, if
one defines

o
Em— (13)
i )

and transforms the time scale according to
ot =T, (14)

The resulting equations in rotating coordirates are

2 : \
dX dy p
= =-2E=+ KX
ar? ¥
: dZY dXx dz
- —S = 2F + + § 3= > (15)
é‘ d',ta ar dv
7 _1ar
et L /
The equations in laboratory coordinates with transformed time scale are:
2
X .-V cosix \
ar”© £
d2
—t - V sinkv > (16)
4 &
daz
— = - E(y cos &T + x sin &T) +V, cos &% -Vy sin &7

/




VR JROE NONDE PIVERNTY
APPLEED PHYBICS LABORATORY

wpee  sumes -8 - BBD-937

V. Solution of the Equations of Motion.

The equations of motion will be solved exactly, and solutions
corresponding to particular initial conditions will be given as calculated by
hand or, in the case of more complicated solutions, as calculated from the
differential equations by the analog computer.

First, solutions will be obtained for the simpler equations in
rotating coordinates. Then, the solutions will be transformed back to
laboratory coordinates.

Equations twelve are given in operator notation as the following
matrix equation:

2 - 2 2ED 0 X
- 2ED ° - 52 -D Y = 0 (17)
0 D p° 2 /

The solutions are of the form eDT where the D's are solutions to the
.characteristic determinant,

BE - 2 26D 0
- 28 p° - £ -D =0 (18)
0 D p°

(a) Critical Frequency

The solutions to Equation (18) provide the critical frequency for
confinement which was discussed in Section II. Equation (18) reduces to the
sixth order polynomial equation:

@ [Db % (252+1) . Eb- 52] = 0 (19)

The first factor yields a double root D = O which corresponds to solutions of
the form constont and T, It will be seen, later, that an expression of the
foru T occurs in the Z-solution only. Hence, the stability of the X and Y
solutions depends on the second factor of Equation (19). This provides the

four roots:
2 2
+
D=:j/1+2£L‘[1+85 . (20)

2
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Solutions are stable when

1+2€2i71+8£2>0, (21)

which implies that £ > 1, This is equivalent to the critical frequency
statement:

© > @y
(b) Solutions in Rotating Coordinates

(i) Stable Solution

Define
o, =»/1 + 252 + 1/1+8§!' (22)
2
and
wa =/1 + 252 - ‘/14—8;2- (23)

2

Then, for & > 1, solutions are linear forms which include only the expressions:

:jcol'r ijwa‘r
constant, T, e and e .

Substitution of the linear forms into the equations of motion determines
the relations among constants, and, by using Euler's identity,

¢
e =cos ¢+ jsin @, (24)

Lthe general solution in sine-cosine form is obtained. The general stable
solution in rotating coordinates is tharefcre .

2 (-Di2+§2-l
X = Z -2—&)—- Bi cos (Coi’t' +,Qi) (25)
i=1 i
Y = B, sin (coi't' + ai) +C (26)
i=]l
2 B.
i
72 = Z a-)-;cos ((Di’t'+ Gi)-EzCT+D (27)

[
]
ot
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where Gi, Bi’ C and D are arbitrary constants.

The character of orbits can be derived directly from the general
soluticn, For & > 10, calculation shows that

012 + 52 -1 .

1,
2Ew
which implies that the orbits are of the form:
x 2 7 2
(;T) + (r ) =1+ e cos [(ml-ma)T + (01-02)]- : (28)
where r =‘?§12 + 822
2B1B2
and e == 3 .
B1 +Bz.

The orbits for & > 10 are, therefore, circles whose radii os¢illate
with the angular frequency (w,-w,). For £ < 10, examination of the equaticns
shows that the orbits are slig tiy elliptical and the oscillation cf their radii
is not purely sinusoidal. As &*«, the orbits are circles whose radii oscilates
with the angular frequency 42.

It follows that there are (§/(w -wz) ) orbits in one oscillation.
This fact is illustrated in the sample or%it, shown in Figure 9, which was
plotted by the analog computer.

The z-motion consists of stable oscillations superimposed upon a
constant drift velocity VZD,given by

v = - 2. (29)

zD

The constant C is given in terms of initial conditions by

dZ
321-1%-)& : S

Figure 6 shows a sanple plot of the z-motion and the corresponding x and y
motion for C # O. Figure 7 shows z-motion and the corresponding x and y
motion for C = O,
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The time scale in the figures is represented by the variable 6 given

6

Et (31)

where T is defined by Equation (14).

Equation (29) and (31) are combined to give an explicit expression
for drift velocity in terms of initial conditioms:

dz
v _!o'+(d‘to
T

zD

1

g2
or
.Y +2
V. =% 0, real time.

zD 1
=g

Calculation on the basis of the above equation shows that a particle,
after a collision, will escape at rates on the order of 107cm/sec.

This implies that a rotating magnetic field alone is unsuitable for
confining a thermonuclear plasma; tut, as developed later in Section VI, the
rotating field will have important applications to other plasma devices.
Figures 5, 6, and ? clearly illustrate the xy-stability.

(ii) Unstable Solution

Define a, = jo, (i =1, 2), (32)

then the a,'s are real numbers, and the rotating solutions are linear forms

which consist in linear combinations of the expression constant, T, eial't and
+ao>T

e~ c + The linear forms can be expressed in terms of hyperbolic functions, time
and additive constants.

The general xy-unstable solutions are given by:

2

X = Z oK, sinh (ai't + Bi) (33)
i=1

Y = i Ki cosh (ai't + Bi) +C (34)
i=1l

2 K,
2 sinh (a7 + B,) - £%cT + D (35)

N




NG JONE HONDE WIMABTY
APPLED PHYSICS LASORATORY

nva seo narmme -1 - BBD-937
ai2 - {2 +1
where ai = TEem—————— (36)
Za,
and Ki’ Bi’ C and D are arbitrary constants.
Figure 8 iliustrates =1 XY-uastable solution.
=X
100
-
FIGURE 8.
£=.5
dxo
rri .-.5cm
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(c) Solution in Laboratory Coordinates

The general solution in laboratory coordinates is derived by

applying Equations (11) and (14) to Equations (25), (26), and (27). The
result is:

0, “+E -1
i —T&T Bi sin &7 cos (mi‘t+ai) - B, cos &ET sin (a)i‘Nai) - C cos E‘F

i
irl (37)
2 r(n +E -1
y = Z Bi sin £T sin (mi‘hai) + I_—EETJ Bi cos £T cos (mi't«n-ai) + C sin &%
il (38;
Bi
z = & cos (wi1+ai) - EZCT + D, (39)
iz}

As E*», the coefficients in square brackets approach 1, C*0, and (E«n ) -
(5-& ) =+ 1/¥2 , which gives the limiting solution

L]
1]

G, sin (712-1: + Yl) (ko)

G, cos (77 + ¥,). (41)

g
18

Equations (40) and (41) may be combined to give the equation of the path in
the xy-plane:

x2 2 2xy 2

e SR S fop v ) = 51 -

5+ 45 - G4 o5 () YZ) = sin (Yl YZ) (42)
G1 G2 172

The above is the equation of an ellipse. If Y-y s and G G the orbit

is circular. It is interesting that the sense o% the orb1t31 angular momentum
vector is only a function of the initial condil ons, and it does not tend to line
up with the vector of the rotating field.

The path in imertial space corresponding to Figure 5 is an ellipse with

Gl=56.6cm.
G2 =1ocm

- 27°71°!
Yl = =1°1

90°.

=
n
n
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The computer solution (Figure 9) gave corresponding results for the
first half orbit; but by that time, the ellipse had rotated in the direction.
This rotation was removed from the idealized elliptical orbit when it was assumed
that &+« For the orbit in Figure 9, £ was 20—considerably less than iafinity.

The effect of including C ‘Equations (37)-(29)) in the solution is to
superimpose_gn the ellipse a small amplitude wiggle with frecuency &, Since C
varies as £ ©, the effect is negligible at high frequency; but the wiggle was
visible on computer runs for & < 5.

The revolution frequencies of the particle were checked in both
coordinates systems on the analog computer and were found in excellent agree-
ment with those predicted in the general solutions. The oscillation frequency
of the orbit in rotating coordinates also checked. These important frequencies
in radiansg per second are listed here:

Angular frequency of revolution in lab ccordinates = NL/VE
Angular frequency of revolution in rotating coordinates = @

Oscillation frequency of orbit in rotating coordinates = YZ'mL

VI. Applications of the Rotating Field.

(a) Properties of the Rotating Field

The following are properties of the rotating magnetic field, revealed
in the computer solutions of the equations of motion, which suggest possible
applications of rotating magnetic fields to other existing plasma confinement
devices: )

A. All particles possess stable motion in planes parallel to the plane

of field rotation when the angular frequency of field rotation w_exceeds
. o

the Larmor frequency of the particle o .

B. Linear motion of a particle in a rotating field is partially trans-
formed into azimuthal motion.

c. Motion in the direction normal to the plane of rotation comnsirts in
a constant drift superimposed on a stable oscillatory component.

(b) Suggested Applications

The rotating field has obvious applications to the following three
devices, each of which will be discussed in some detail:

A. The Cusped Geometry
B. The Magnetic Mirror
C. The Stellerator
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X(0) = ¥(0) = v

X(0) = Y(0) = IV
E=20

Time Scale 1:1

© - Independ. Var.
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(1) The Cusped Geomctry.‘
Particle leakage in the cusped geometry occurs at:
1. the line cusp.
2. the points cuspc.

There seems to be two possible schemes for applying the rctating
field to the cusped geometry in order to prevent, or at least decrease,
leakage:

1. The superposition of a rotating field locally in and parallel to a
region which includes the line cusp, and the superposition of a rotating
field locally near each point cusp in planes parallel to the line cusp.

2. The superposition of a rotating field parallel to the line cusp
throughout the field of the cusped geometry. The point cusps wonld
have to reflect most of the particles that the rotating field forces
normal to the rotation in order for the method to be feasable., This
would evidently imposc a restriction on the ratio of the rotating field
to the cusp field,

The system in (1) will now be considered. If a rotating field is
applied locally in a region which includes the plane of the line cusp, particles
tending to escape through the line cusp will be swept azimuthally against the
cusp field lines. Both the reflective properties of the cusp field and the
confining properties of the rotating field will confine the particles within
the line cusp. Simultaneously, the drift velocity imparted to the particles
by the rotating iield will move them from the rotating field into the portion
of the cusp where the particles are in a confined state until they again
approach a cusp.

A local rotating field, it is here proposed, wculd be applied locally
also at a value of 2'* between the point cusp and the plane of the line cusbp,
nearer to the point cusp. Particles which are escaping along lines of force
toward the poant cusp will be deflected against the cusp field line by the
rotating field; but, because of the Z-drift, will sometimes pass beyond the
rotating field where they will rellect against the cusp tield because of the
circular motion which they acquired in the rotating field.

Section VII (b) discusses a method of producing a rotating field
which is especially suitable for the cusped geometry and mirror machines.

(ii) The Magnetic Mirror.

The rotating field could be applied to the Magnetic Mirror for the
sume reason application to the point cusp of the cusped geometry seems possible:

Reference 3.

s

See Figure 10,
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Z-Limit of Device

Plane of
Line Cusp
‘\I"oint — Cusp Field Line

Cusp — — — - Rotating Field Line

FIGURE 10. The Rotating Magnetic Field Applied Locally
to the Cusped Geometry Field.
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Particles escaping along lines of force are given azimuthal motion
by the rotating field which causes them to reflect from the curved field lines.

A rotating field would be superimposed upon each mirror as shown in

Figure 11.
\L‘j\
|

1
s l-z

\ *,’/HJ,/

———P—— Mirror Field

?

-

—

-
il

== —-P»Rotating Field

FIGURE 11. The Rotating Magnetic Field Applied Locally to the
Magnetic Mirror Field,

(iii) The Stellerator

The property of the rotating magnetic fieid which makes its application
to the stellerator feasibile is the following:

Particles have stable orbits in a rotating magnetic field whenw > w..

A4 -l

The rotating magnetic field would be used as a fccusing device in this
application to return particles which have drifted from the axis of the stellerator
because of the curvature and field gradient drifts which are inherent in the
machine. A convenient position for thc rotating fields would be on opposite legs
of the stellerator as indicated in Figure 12,

-+ 5

+ —
+ . )

4
'
|

-4 44

4
|
I
|

P

S D

b —
b —

- |-F—-

——¥—Stellerator Field

-

‘-—l——-
- i 44
-

-«

‘‘‘‘‘ PRotating Field

FIGURE 12. The Rotating Magnetic Field Applied Locally to the Stellerator.
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V1I. Alternate Rotating Fields.,

It was shown in Section III that an exactly uniform rotating magnetic
field cannot exist, It ie in order, therefore, to consider physically possible
rotating fields and to note a few of their properties.

(a) Crossed Electromagnetic Field

A rotating magnetic field is formed by (1) the superposition of a
plane-polarized EM wave which progresses parallel to the Z-axis upon (2) a
plane-polarized EM wave which travels parallel to the y-axis and has the
right phase relation with the previous wave. This system of waves will be
referred to as a "crossed EM field".

The correct field which fulfills the arbitrality imposed coordinates
defined in the previous paragraph is expressed by Equations (43) to (46):

Wave (1)
B, = B sin (0t -o0z) ] (43)
E, = FE sin(et-o02) i (4h)
Wave (2)
B, = B cocs (ot -oy) i (45)
E, = E cos (®t -0y k (46)

The total field at any point in space is given by

B = B +B (47)
E - E+E (48)

The result is a non-uniform rotating magnetic field in the xy-plane
and a non-uniform rotating electric field in the yz-plane. If60'is small, 4
the field is approximately uniform. For example, if wb = 3x10%, then 0 = 10 ',

The equaticns of motion for o << 1 in coordinates which rotate with
the magnetic field were derived as:

.. . 2 =

X + ZmOY -0 X = @e sin @t cos @t (49)

f-20f-0° + 0V =owcasin® ot 150)
o [} L Z L ¢} h

7 = mhi + meox = ¢ cos wot (51)
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The solution of the characteristic determinant (Equation 52) of the
associated homogeneous equations gives the result that

DY = ot 20 D 0
o] o]
2 2 _
-2 D D% - @ @ D =0 (52)
2
wﬁwo 'JéLD D

The Z solution has a component which is again linear in time, which makes one
believe that Z-drift must be a fundamental property associated with rotating
magnetic fields, The determinant also provides the result that the X and Y
and solutions are stable for all w_ ', unlike the previous case, and the
characteristic frequencies are °

o = woa + wLa (53)
wa = wo (5“’)

The inhcmogeneous equations can be solved, but this labor has not
yet been attempted,

*
The characteristic determinant has the solution D2 = 0 which implies that
there are solutions of the form

X o= Al + Blr
y = Aa + BZT

= A B.T
2= 05 % Bgh

but substitution shows that Al' Bl' and B2 are all zero,
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(b) Circularly-polarized Electromagnetic Field.

A rotating magnetic field, as well as an RE field, is associated with
a circularly-polarized EM field which traverses the Z axis., Such a field, which
is self-consistent, is

|0
"

-i B, cos (ot - ou) + j B sin (et - oz) (55)

i Eo sin (mot -0z) +j Eo cos (wt -0z) (56)

The equations of motion in laboratory and rotating coordinates are, respectively,

m = qE_ sin (ot - 02) - 2 sin (ot - o2) (57)
VB
my = qu cos (wt - 0z) - 2 cos (wt - 0z) (58)
V.B VB
mz = =2 sin (0t - 02) + <2 cos (ut - 02 (59)
C
and
X+ 2m°ir S u)°2X = - (e - @ V,) sin oz (60)
Y- ano)'( = mozy = (e - @ V,) cos o2 (61)
Z=0 (T-0X) - (X+o¥) sin oz (62)
qE

©
where e = —
m

The XY rotation in the Z dimension,

[x cos 07 sinc Z2 0 A
Y| = |sin oZ cos 020 i (63)
[Z 0 0 1 Y

removes the sine and cosine coefficients from the equations to give Equations

(64) to (66).
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K+ ouf + 2oy - PN+ 20 [-ieol¥] - 0 51 = 0 (64)
- oMY - 20ky - 2¥Pu + 20 [heouy] - moau =qyY-e (65)
Y+abh-oyn+qor=0 (66)

No obvious result is immediate except that for small O, the magnetic field
equations, if one replaces i by (-i), reduce to (43) and (45). Thus, one
expects the same behavior of the equations of motion for small ¢ in this case
as in the crossed field case,

If interest is generated in regard to particle confinement in crossed
fields or circularly-polarized fields, it may be feasible to attempt to solve
the equations on the analog computer to check sclutions for values of o other
than the limiting one.

It should be noted that the circularly-polarized field has the correct

form for producing a rotating field in planes parallel to the line cusp if such
a wave is transmitted along the axis of symmetry of a cusped geometry machine.

VIII. Appendices.

Appendix 1, Derivation of the Rotating Field which Reduces tec the Given
Uniform Field for Small o,

The equations:

Iw
n

B, [i cos oy sin wt + j cos ox cos a)ot] (A1)

1t
]

-B, [sin oy cos @ t + sin ox sin mot] k (A2)

are derived here by assuming that:

B [1 sinw t + j cos w t] is correct, deriving an expres-
sion for E by Faradayqs law andoobtalnlng a®second expression for B by Ampere's
law. The total field is then equated to the sums of the first and “second
expressions for B, and the iteration process is repeated. Additional terms
are s1mu1taneously added to E.

Faraday's law and Ampere's law are, respectively,

and (A3)

1<

~
1=

"

i
o~
1 1

1 3E
1X_B_=?¥. (Ah)
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First, assumec the field is given by
B, =B, (i sin ot + jcos wot) (AS5)
. and substitute B, in (A3), Faraday's law, to obtain the electric field
- —o—on 1 . &
) E=->=I[ycoswt +xsinwt] (46)

Equation (A6) is then substituted in (Al), which gives a second approximation
§2 to the field B:

o

B “’Zslizm t + 3x° t] (A7)
_2_-202 L iy s mo + Jx cosmo . 7

Both B, and §2 are approximate solutions to Maxwell's equation [(A3) and (A4)],
as B N B2 is an approximate solution. §1 + §2 is substituted back into (A3)
to g:Lve a nev approximation to E:

1
i w3
E,=-B (“—)y-—o-ﬁ)sinwt-é’gf-a—%i cosmth (a8)
o 3 o c o | =

31c 3160

If the above process is continued, the fields are represented by
the infinite series:

B=B |1i _c_gng+wl+u_u_)gy§+... sin o t
- °1= 2!c2 hic 6lc 2
2.2 4 4 6.6
+3 1-%‘:’;55+:)!c -2?2(:-6+... cos ® t (A9)
and
o ==B “-)-Q-=y-°—)gz-3-+‘£g£-°—)g£+... cos W
- ° ¢ 3!c3 5!c5 7!c7

- sinw t i Al10
310 5160 716l J L

The expressions in parentheses in B and E converge to sine and cosine
respectively, so that Equations (A1) and (A2) are proven to be correct.
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Appendix 2. Derivation of Relativistic Fields.

For £ = 10, the velocity of the magnetic field lines approaches the
speed of light at about 100 cm if &€ is referenced with respect to conditions
for confinement of a deuteron at 100 million degrees. This implies that the
situation must be described by relativistic equations for accuracy.

Maxwell's equations, asswped to be Lorentz invariant by the first
postulate of special relativity, have the same form in a uniformly translating
frame of reference. The lorentz field transformations are given by*

B'H =B|| (A11)
BTy =xl?(§~%!_)_[_ (A12)
E'|| = E|
E', = —2= (E + 2 Vx3) (A14)
|| T T iy
“There || denotes components parallel and | components perpendicular to the axis of

translation, and § = V/c.

With the assumption that most of the motion occurs in the f-direction
equations (All) to (Al4) are in cylindrical coordinates:

' 1 of
Br = 7]?. [Br - T (ng)r] (Al15)
. Bg' = B (A126)
1 wor ]
Bz' = F_ﬁ'l:Bz = —c- (QX-E)Z‘ (Al?)
1 Cl)or 1
Er- = 71.:5:. [Er g === (_9_x§)r (418)
Ey' = Eg (A19)
B¢ =% [1: v 29" (ax3) ] (A20)
z pﬁ z c == zc_lo )
where P = —g— )
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For simplicity, the low velocity fields are assumed in a rotating frame of
reference since it is known the low velcocity limit will be taken anyway.

In order to have a uniform rotating field in inertial space, the
field in rotating coordinates is the constant Bo and the electric field is

zero.
This gives:
\
E'=0
r
Eg' =0 ? (A21)
Ez' =0 ,
\
B '=8 sin (8 - t)
r o o
By' = B_ cos (8 - wt) P (A22)
Bz' =0 /

Combining Zquation (A15) to {A22) gives the results:

Bo cos (6 - mot)

B_ = (A23)
S

Bo sin (0 - wot) (a2h)

&P

wrB cos (0 ~w t)
o ‘o 0

E = (A25)
& ch-BE

In the low velocity limit limit (A23) to (A25) reduces to the low
velocity limit equations.in Section III,

If one sets £ = 10 and r = 10, one sees that f = .03 and

1 1
o S .1,
1182 Y.991

which implies that using the non-relativistic equations gives fairly good
accuracy up tothis limit of mor.




——— e

g

o Ly - b - BBD-937

Appendix 3. Energy Integral.

If the first equation of (12) is multiplied by X, the second
multiplied by Y, the third multiplied by Z, and the resulting equations are
added and integrated; the following conservation law results:

2
%? (iz e 22) - E%- (x2 + !2) = Constant.

This is the mathematical statement of an interesting property of rotating
fields: the kinetic energy with respect to a rotating frame of reference
minus the centrifugal potential is constant.
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