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ABSTRACT 

This paper Is an attempt to solve the following 
constrained minimum problem:    To present  the most 
easily described algorithm for solving linear 
Inequalities subject  to the constraints, 

(1) The algorithm must be efficient. 
(2) It must be shown to terminate. 

The algorithm is a variant of the lexicographic 
simplex method which avoids using any artificial 
objective function. 
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HOW TO SOLVE LINEAR INEQUALITIES 

by 

David Gale 

1.  Introduction 

Sunpose you were asked to solve a system of simultaneous linear inequalities 

of modest size, say for example, four inequalities in three unknowns.  How would 

you proceed? Or suppose that the size of the problem was immodest so that 

machine computation was appropriate? How should the machine proceed? 

These questions, it seems to me, are natural ones to ask, for linear inequalities 

come up almost as often as linear equations in all sorts of applications; yet 

I believe very few mathematicians can give a good answer to them.  I suspect, given 

a little time, a competent mathematician could devise some sort of finite algorithm 

which for any system of inequalities would either produce a solution or else show 

that none existed.  It would be surprising, though, if he could on the spur of the 

moment come up with a procedure that would do the Job using onlv a "reasonable" 

amount of computation.  By a reasonable amount of computation I mean an amount of 

trie same order of magnitude as that involved in solving systems of equations.  In 

fact, this raiaes a mathematical question. Do there exist such reasonable 

procedures, or is the Inequality problem intrinscally of a higher order of computational 

complexity then the equation problem? I would like to expound briefly on the 

present curious state of affairs regarding this question. 

The usual method for solving linear equations is ordinary "elimination;" solve 

equation 1 for x.  and then substitute this expression into equations 2 through m , 

etc.  In this method the basic step is this elimination, and after each of the n 

variables have been eliminated, thus after n such steps, the solution emerges 
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(this description is not intended to be precise or rigorous). The algorithm we are 

about to describe makes use of these same elimination or, as we shall call them, 

replacement steps. The number of such steps will in general be greater than n , 

but not much greater, perhaps as much as 2n . Klee [5] has constructed examples 

which indicate that one may run into situations which require as much as (roughly) 

am steps and has conjectured that this is the maximum possible. On the other hand, 

the best upper bound on the number of steps which can be rigorously established Is 

not even algebraic in m and n but of the order of  ( ) • Thus there Is a large 

and embarrassing gap between what has been observed and what has been proved. 

This gap has stood as a challenge to workers in the fielo for twenty years now 

and remains, in my opinion, the principal open question in the theory of linear 

computation. 

One further Introductory word seems in order.  There is one group In the 

mathematical community who do know how to solve Inequalities and these are the 

people who work in linear programming. The situation here is again curious. 

Linear programming involves maximizing or minimizing a linear function using 

variables which are required to satisfy a system of linear inequalltes.  Thus, 

in order to solve a linear program one must in the process find a solution of 

these inequalities.  It turns out, on the other hand, that the problem of solving 

inequalities can Itself be thought of as a linear programming problem in which one 

is minimizing a so-called "artificial objective function." While this approach 

achieves the desired end, it seems to me to be a backward way of going about things. 

Logically one would first learn to solve the Inequalities and then worry about 

minimizing or maximizing over the set of solutions.  This is the approach taken 

here.  The method used in the lexicographic variant of the simplex method of 

Dantzig, Orden, and Wolfe [1] which was used by those authors to solve linear 
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programs and later by Dantzig [2] to solve matrix games, but has not up to now, to 

my knowledge, been used to give a direct method (no artificial objective function) 

for solving inequalities. A different direct method has been given by Debreu (3) 

but his procedure is more complicated to describe than the one proposed here, 

though it may be computationally more efficient in some cases. 

2.  Solving Matrix Equations 

We begin by reviewing the "standard" method for solving linear equations, 

slightly generalized and using slightly different terminology from the usual one. 

PROBLEM I:  Given an m x n matrix A and an n x r matrix B , find an n x r 

matrix Y such Inat AY ■ B . 

It will be convenient to rephrase the problem. Instead of chinking of A 

and B as matrices we will think of them as sets of m-vectors.  Thus 

A ■= {a, , .. ., a } 
J.       n 

B • lb., ..., b } 
1       r 

Problem;     Express each vector    b,     as a  linear combination of  the vectms    a 

if possible. 

We are about to describe what we will call a replacement algorithTr for 

solving  (I).    The following is  the fundamental notion needed. 

DEFINITION:    Let    S -  (s,,   ....  s  }    be a basis for m-space and  let    B • Ib.,   . im i 

be any set of m-vectors.    The tableau of    B    with respect to    S    is  the    m x r 

matrix    Y •  (y.1.1)     such that 

■ 
N " I y^ v J " 1» •••• r • 

J   i-i  ^ 

.   b 

i ■      MM 
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In matrix notation.  If we think of    S    and    B    as matrices with columns 

s.    and    b      then    Y     Is simply the solution If  the equation    SY ■  B   ,   or    Y » S    \\ 

We write tableaus  in the following manner: 

V b2* .... bn 

1 yu yi2' •••' yln 

2 y21 y22' ••*' y2n 

m yml ym2' •••• ymn 

Figure 1. 

REPLACEMENT ALGORITHM:     We are going ..o describe a procedure for constructing a 

finite sequence of  bases.    The initial basis    So    consists of  the unit vectors 

{e,, *.,,   ....  e  }   ,  and each basis    S.     In  the sequence consists of  certain unit 
1      .■ m * 

vectors and certain vectors    a,    of    A  .    Reordering for convenience,  we may 

suppose    Sk -  {a1,   ...,  ak,  ek+1,   ....  e^   .     We write out  the tableau of    A U B 

with respect  to    S.     as  follows: 

V ••••  n "1, • • •» " 

1 v V 
k X 
k+1 

/ \ 
k 

1 
k 

e 
m 

Figure 2. 

where we denote the tableau of A and B with respect to S^    by Xk and Yk 

respectively.  There are two cases. 
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Case I:  The last m - k rows of arc zero. Then 

(A) If the last m - k rows of Y.  are also zero then Y.  Is the 

desired solution of (I) since it expresses all the b.  linearly 

1      k 

(B) y. , ^ 0 for some i > k .  Then the problem has no solution; 

in fact, b.  is not a linear combination of the a. . To see 

this note that the condition on X.  shows that the set Ak- 

(a., ..., a }  is a basis for A , but b.  is not a linear 

combination of A.  since the term y . e,  occurs in the expression 

for b  in terms of S. . Hence the assertion follows: 

Case II:  x  j* 0 for some 1 > k , say i - k + 1 .  Then let S. , 

be the basis obtained from S.  by replacing e. .  by a. •  Thus 

Sk+1 " {al ak, aJ, ek+2 em} * 

The proof that this algorithm solves Problem I is almost Immediate.  If 

Case II ever occurs then (A) the solution is either present or (B) it is seen 

not to exist.  If Case I never occurs then after m replacements we will have 

constructed a basis S  of vectors a.  from A and the tableau of B with 
m j 

respect to this basis is the desired solution. 

Note that our method always produces a basic solution, i.e., a solution Y 

such that y. . f* 0 only for the basis  s., ..., s .  This proves the following 

fact which may not be immediately obvious: 

THEOREM I:  If (I) has a solution then it has a solution Y in which at least 

n - m rows of Y are zero. 

We now ask how much computation the replacement algorithm involves. Clearly 
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the only arithmetical step consists in going from a tableau with respect to a 

basis S to one with respect to S* obtained from S by replacing a single vector. 

In our present notation let Y and Y' be the tableaus of B with respect to 
i 

S and S* and let the ith row of Y and Y* be denoted by y.  and y. . 

THEOREM 2: Let S - (s., ..., a  )    and suppose y.j^ j* 0 . Then S' - {b., s», ..., s ) 

is a basis and Y*  is given by the rule 

(1) Yi " Yi/Yn. Yj - Yi - (yilhn)y1   • 

Terminology;     Operation  (1)  is known as  pivoting and the element    y^    ia 

called the pivot  element of the operation.     It Is easiest  to rememeber  the operation 

from these "pictures" 

Y 
bl b2' 

.... b 

1 Q y12' .... yir 

2 *21 y22' .... y2r 

m 
yml ^2' •••• ymr 

Y 
bl b2' .... br 

1 y^ .... y;r 

0 722» .... yj,. 

0 
':2- 

i .... v ■'mr 

Figure 4. 

The pivot element <s circled in Y . Pivoting is done by dividing the pivot 

row by the pivot element, and by adding a suitible multiple of the pivot row to 

each of the others, the suitable multiple being the one that will give zeros In 

the pivot column. 

v.*- 
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Proof of Theorem; Let Y*  satisfy (1). Then y^. - y^/y,. 

and yij' " yij - (yii/yii)yij so for J ^ 1 

m m 
yij 

bi+ j2 
yij si" yi^n bi+ J2 

yij 8i - ^IAI* J2 
yii 8i 

(m m \        m m 

illyii 8i' illyii y+ ilz y±ie±' illy^8i" bj 

so Y'  is the tableau of B with respect to S1 . 

From rule (1) we see that each pivot step requires mr multiplications. 

For the matrix equation problem the number ;f columns of the tableau is n + r 

(see Fig. 2.) and the problem is solved In at most m pivots so tHe number of 

2 
multiplications is at most m (n + r) . Actually one does some what better than 

this because of the fact that after each pivot one gets columns which are unit 

vectors, like the first column ol Y'  in Figure A. 

Of special interest is the case where A and B are square m x m 

ma trices and particularly where  B is the identity matrix so that b.  is the 

kth unit vector.  In this case X , if it exists, is A   and the pivot method 

3 
Involves exactly m  multiplications.  Note that this is the number of multiplications 

used in multinling a pair of matrices, hence the number involved in checking a 

3 
proposed solution X of AX > I .  This suggests that m  multiplication is 

about as few as one could reasonably expect to use in solving the problem. 

Finally note that we can follow the steps of the replacement algorithm even 

if there is no B matrix at all.  The final tableau will then yield a column basis 

for A , and also, if one thinks about it for a moment, a proof that the row and 

column ranks of A are equal. 

*' # 

im i 
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3. Solving Linear Inequalities 

Problem II :  Given an m x n matrix A and an n-vector a find an 

m-vector y auch that 

y > 0 and yA > a . 

It is convenient to rewrite the problem as follows:  Find an m-vector y such 

that, 

y a > dj  for j - 1, .... n 

y e. > 0  for i • 1, ..., m 

where {e.} are the unit vectors of m-space. 

Now there is no difficulty in finding a finite procedure for solving II, for 

it is easily shown, and will emerge from the procedure to be given here, that if 

II has a solution then it has a basic solution, that Is a vector y such that 

y a »o  and y e ■ 0 for some set of m vectors a  and e  which form a 

basis for m-space.  One could, therefore, consider all bases among the vectors 

a., e. and for each such compute the solution y to the corresponding m equations 

and then substitute this y Into II.  Eventually one of these vectors would satlsfv 

the system unless there was no solution at all.  Of course, this would he an 

enormously lengthy procedure since It would Involve solving posslblv  I   1 systems 

of m equations in m unknowns. 

We shall now describe a replacement algorithm for solving II.  For this purpose 

we wish to transform II to a "homogeneous" problem, as follows: 

We are treating the case of nonnegative solutions of inequalities.  The case In which 
y is unrestricted in sign can be handled in a similar way but Involves some slight 
technical complication which we prefer to avoid in this exposition. 

- - - ■ — - ■-  
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Let ä  be the (m + l)-vector (- a , a ) and let 6 - (0, e.) for 

i ■ 1, ..., m and let e - (1, 0, .... 0) so that en, S,, ..,,  §  are the 
u Ulm 

unit vectors in (m + l)-space . Finally let Y be all vectors  (1, y) where 

y is any m-vector. 

Problem II: Find y in Y such that 

MH" 

'*m$ 

y ä     >  0    for all    J 

y §,   > 0    for all    k . 

It is clear from the definitions that Problems II and II    are equivalent. 

Now let    S - (en,  s.,   ...,  s  }    be a basis  for     (m + l)-space    where    aJ Ulm i 

is either a vector    ä,     or    &,    ,  and write the tableau with respect to this basis 

as follows: 

a. i   • ••t  ä      6-,   • •.,  e 1 n      1 m 

1     xo y
o         1 

X Y 
Figure 5. 

THEOREM 3:  If x0 and y0 are nonnegative then (1, y.)  solves II (and y- solves 

II). 

Proof:  Let 9 be the (m + l)-vector which solves the system 

y s. ■ 0 i « 1, ..., m 

y en " ! 

IN 

r- 

~-**3 

*tm »Mum u m*. 

\ . 
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(this vector exists since S Is a basis). 

From the last equation above jr is in Y 

Now from the tableau we have 

m 

* 6k - yok^ eo) + I y^ 8i) - y i-i 

so ^ - (I, y.)  and by assumption yn > 0 .  Finally 

Ok 

y äj "xoj(y eo) +1 xij(y 8i) - xoj ^ 

so    y ■  (1,  y»)     solves II,  as asserted. 

The inequality problem has now become that of finding a basis    S    so that  the 

tableau of Figure 5.  has its  first row nonnegative,   if such a basis exists, we 

wish  to arrive at  this basis by a sequence of replacements starting with  the 

initial basis   S0 consisting of the unit vectors.The initial  tableau is given 

below. 

a.,   .. . ,   a        e. ,   ...,   e i n       1 m 

&1 

^1 ^n 0,   ...,  0      | 

r A -*-             i 

Figure  6. 

Now, as in the previous section, we must describe the replacement operation. 

Suppose then that we have arrived at the tableau of Figure 5., but  (x-, y )  is 

not positive so that say, x» < 0 (or y0, < 0) .  Then by bringing ä  (or e ) 

into the next basis S1 we can be sure that in the next tableau  the entry 

x-  (or Yp. )  will be zero which would seem to be a step in the right direction. 

" 1 HI  I II — rtftt .MAM ±M 
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The question which remains to be decided is which vector s  in S should be 

replaced by ä (or &, )  and the success of the method depends on an ingenious 

criterion for making this decision which we now describe. 

DEFINITION: An m-vector x is called lexicographically positive, or simply 

/-positive if its first (reading from the left) nonzero coordinate is positive. 

We write 

x > 0 

A vector x is lexicographically greater than y , written x ^ y , if 

x - y ^ 0 . 

It is clear that for any x jt 0 either x^O or -x^O so that ^ 

defines a complete ordering of m-space with the further obvious property; 

if x, y > 0  A, u > 0  then Ax + yy > 0 . 

Finally we call a matrix Y t-positive if all of its rows are x-positive. 

The following is the crucial notion for our algorithm. 

DEFINITION:  The basis S will be called /-feasible if the matrix Y  (Figure 5.) 

is /-positive. 

Note that the initial basis of Figure 6. in /-feasible since in this case 

Y is the identity matrix.  We now complete the description of the replacement 

algorithm. Assume in the tableau of Figure 5. that, say,  x«, is negative (the 

argument would be the same for y»,  negative).  There are two cases. 

Case I:  The first column of X is nonpositive.  Then we have 

m 
(2) a1 - x01 eo + l^ x11 si . 

^Ml MdhMMHMMMMI 
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In this case II has no solution for If ^ solves II then y s, > 0 for all 

i , but then taking scalar product of (2) with y gives 

9 ä1 - X01 + I X^ 8^ < X01 < 0 

so ^ cannot solve II. 

Case II:  x . > 0 for some 1 .  Then let I. - ^'^i >  0^ and compute 

yjxll     for i ln li    and choose IQ in T1  for which yj/x..  Is j-mlnlma] 

Then obtain the new basis S' by replacing s.  by a     (i.e., pivot on x ,) 
^ 1 V 

The proof that this algorithm terminates depends on 

LEMMA 2: The new basis S' is again /-feasible and the vector y» of the new 

tableau is lexicographically greater than yn . 

Proof;  From (1) 

i 

y.  » y. /x 1  and since y  > 0 and x 1 ^ 0 
10    0  Ü 10 10 

i 

it follows that y  > 0. Also for 1 ^ 1Q 

yl ' yl " (X11/X1^ yl0 ' 

t 

If x . < 0 then clearly y ^ 0 .  If x . > 0 then by the choice rule of 

Case II above 

yi/x11 < V^f*^ 

Equality cannot hold here since this would mean that y,  and y   were 
10 

proportional which is impossible since Y is nonslngular, so again y' ^ 0 and 

hence Y'  is /-positive. 

Also from  (1) 

i ■ »Mmm M   - ■       urn    - 
..^ ■    n      ■■ 
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and since 

x01 is negative, is positive and yi 
0 

is l-positive we have Yo > yi 
0 

as asserted. 

THEOREM 4: The replacement algorithm terminates. 

Proof: Since the vector depends only on the basis s and since 

gets lexicographically larger at each iteration it is clear that no basis can recur. 

Therefore, one eventually arrives a t the situation of Case I in which some column 

of the t ab l eau i s nonpositive in which case II has no solution, or else eventually 

(x0 , y
0

) becomes nonnegative and y0 is the desired solution. 

4. An Example 

Consider the system y
1

, y2 ~ 0 

The init ial tableau is then 

-1 

2 

(!) 

2yl + y2 ~ 1 

yl ~ 1 

-1 

1 

-y > -1 2 .. 

1 0 

0 1 

0 -1 0 

0 

0 

1 

Now we will bring a
1 

into the next basis. According to the lexicographic 

rule A1 must replace e 2 
The pivot element has been circled in the tableau 

above. The next tableau is 
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0 -1 0 0 1 

0 0 2 1 -2 

1 0 -1 0 1 

The only possibility now is to replace e1 by &
2 

giving, 

0 0 2 1 -1 

0 1 2 1 -2 

a, 1 0 -1 0 ® 

Again there is no choice. We must replace a
1 

by e
2 

and we get, 

1 0 1 1 0 

2 1 0 1 0 

1 0 -1 0 1 

whi ch gives the solution y1 c 1, y2 = 0 . 

Note the way the row vector y0 inc reases lexicographically with each 

replacement. Note too the interesting fact that the vector e2 was replaced 

on the first pivot step but came back in again in the end. Of course, if we had 

chosen to bring in a2 instead of al on the first replacement we would have 

obtained the solution in one step. However, in general there does not seem to be 

any good way of deciding which vector to bring in in order to minimiz the number 

of replacements required to arrive at a solution. 
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5. Concluding Remarks 

Having found an (apparently) good way to find at least one solution of a 

system of inequalities one might now ask for a way of finding all solutions, which 

means in essence finding all basic ~olutions of II. There do exist procedures for 

doing this but it is almost impossible to say whether these procedures are 

reasonable or not because of the fact that the number of basic solutions may 

increase very rapidly with m and n The main interest here is theoretical. 

How many bas ic solutions can there be for an m x n syst em? T should like to 

conclude by describing very briefly the state of our knowledge (or ignorance) 

II 

on this matter. For more details see Grunbaum [4]. 

It is conj ec tured that the maximum number u of basic solutions which an 

m x n system can have is given by the strange looking formula 

u (m, n) 
= 2(n _ m;l) 

n - m 
for m odd 

(: -!) + (: ~ ~ - 1) for m even . 

This conj ecture has in fact been proved for "most" val es of m and n , 

specifically for all m ; 8 and for n < m + 3 and n > 
= 

(m/2) 2- 2 to see what 

this means, the first unsolved cases are 

m 9 12 < n < 18 . 
"" 

In general for each m > 8 there is an interval of values of n for which 

the conjecture has not been verified. 

This strange situation together with the one described in the introduction 

concerning the number of replacements required to solve an m x n system are perhaps 
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the most interesting features of what might superficially appear to be a dull and 

routine problem. To mix metaphors a little , they indicate how close to the 

surface the so-called frontiers of Mathematics sometimes lie. 
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