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ABSTRACT

This paper is an attempt to solve the following
constrained minimum problem: To present the most
easily described algorithm for solving linear
inequalities subject to the constraints,

(1) The algorithm must be efficient.
(2) It must be shown to terminate.

The algorithm 18 a variant of the lexicographic
simplex method which avoids using any artificial
objective function.




o m e nes I

HOW TO SGLVE LINEAR INEQUALITIES

by
David Gale

1. Introduction

Sunpose you were asked to solve a system of simultaneous linear inequalities
of modest size, say for example, four irequalities in three unknowns. How would
you proceed? Or suppose that the size of the problem was immodest so that
machine computation was appropriate? How should the machine proceed?

These questions, it seems to me, are natural ones to ask, for linear inequalities

\ come up almost as often as linear equations in all sorts of applications; yet

T believe very few mathematicians can give a good answer to them. I suspect, given
a little time, a competent mathematician could devise some sort of finite algorithm
which for any system of inequalities would either produce a solution or else show
that none existed. It would be surprising, though, 1if he could on the spur of the
moment come up with a procedure that would do the job using onlvy a "reasonable"
amount of computation. By a reasonable amount of computation I mean an amount of
tne same order of magnitude as that involved in solving systems of equations. In
fact, this raises a mathematical question. Do there exist such reasonable
procedures, or is the inequality problem intrinscally of a higher order of computational
complexity then the equation problem? I would like to expound briefly on the

present curious state of affairs regarding this question.

The usual method for solving linear equations is ordinary "elimination;" solve
equation 1 for Xy and then substitute this ezpression into equations 2 through m ,

etc. In this method the basic step is this elimination, and after each of the n

variables have been eliminated, thus after n such steps, the solution emerges




Xy

(this description is not intended to be precise or rigorous). The algorithm we are
about to describe makes use of these same eiimination or, as we shall call them,
replacement steps. The number of such steps will in general be greater than n ,
but not much greater, perhaps as much as 2n . Klee [5]) has constructed examples
which indicate that one may run into situations whick require as much as (roughly)
mn steps and has conjectured that this is the maximum possible. Or the other hand,
the best upper bound on the number of steps which can be rigorously established is
not even algebraic in m and n but of the order of (:) . Thus there 1s a large
and embarrassirg gap between what has been observed and what has been proved.

This gap has stood as a challenge to workers in the fiela for twenty years now

and remains, in my opinion, the principal open question in the theory of linear
computation,

One further introductory word seems in order. There is one group in the
mathematical community who do know how to solve inequalities and these are the
people who work in linear programming. The situation here 1s again curious.

Linear programming involves maximizing or minimizing a linear function using
variables which are required to satisfy a system of linear inequalites. Thus,

in order to solve a linear program one must in the process find a solution of

these inequalities. It turns out, on the other hand, that the problem of solving
inequalities can itself be thought of as a linear programming problem in which one
18 minimizing a so-called "artificial objective function." Whiie this approach
achieves the desired end, it seems to me to be a backward way of going about things.
Logically one would first learn to solve the inequalities and then worry about
minimizing or maximizing over the set of solutions. This is the approach taken
here. The methcd used in the lexicographic variant of the simplex method of

Dantzig, Orden, and Wolfe (1] which was used by those authors to solve linear




programs and later by Dantzig [2] to solve matrix gamés. but has not up to now, to
my knowledge, been used to give a direct method (no artificial objective function)
for solving inequalities. A different direct method has been given by Debreu [3]
but his procedure is more complicated to describe than the one proposed here,

though it may be computationally more efficient in some cases.

2. Solving Matrix Egquations

We begin by reviewing the 'standard" method for solving linear equations,

slightly generalized and using slightly different terminology from the usual one.

PROBLEM I: Given an m x n matrix A and an m x r matrix B , find an n x r
matrix Y such {nat AY = B .
It will be convenient to rephrase the problem. Instead of thinking of A

and B as matrices we wili think of them as sets of m-vectors. Thus

A= {al, elehols an}

B = {bl, Ao R br}

Problem: Express each vector bk as a linear combination of the vecto:s aj

if possible.

We are about to describe what we will call a replacement algorithm for

solving (I). The following is the fundamental notion needed.

DEFINITION: Let S = {sl. . sm} be a basis for m-space and let B = {bl‘ - br

be any set of m-vectors. The tableau of B with respect to S 1s the mxr

matrix Y = (yij) such that

n
bj = 121 yij ai. 3 = e, B

ol il O,




In matrix notation, if we think of S and B as matrices with columns

b

We write tableaus in the following manner:

b b .l.’b

1° "2 n

Sy Y11 Y12* *** Y1n
2| Y21 Y22> *o* Yon

Sul Yml Ym2* " Ymn

Figure 1.

REPLACEMENT ALGORITHM: We are going .o describe a procedure for constructing a
finite sequence of bases. The initial basis So consists of the unit vectors
(el, €rs oy em} , and each basis Sk in the sequence consists of certain unit

vectors and certain vectors aj of A . Reordering for convenience, we may

suppose Sk = {al, vevs By Bt cees em} . We write out the tableau of A UB

with respect to Sk as follows:

a b 28 o

1* " n 17 r
4
ék
el_<+1 k k
:em

Figure 2.

where we denote the tableau of A and B with respect to Sk by Xk and Yk

respectively. There are two cases.

and b, then Y is simply the solution if the equation SY = B , or Y = S-ln .

|
|
4
An: e j




vy t—y ¥

Case I: The last m ~ k rows of xk are zero. Then

(A) 1If the last m - k rows of Yk are also zero then Y, 1is the

k

degired solution of (I) since it expresses all the b, linearly

3
in al, Fook ak 5
(B) Yiy $#0 for some {1 > k . Then the problem has no solution;
in fact, bj is not a linear combination of the aj . To see

this note that the condition on xk shows that the set Ak -

1 e ak} is a basis for A , but bj is not a linear

combination of Ak since the term yi.1 e, occurs in the expression

{a

for b in terms of Sk' Hence the assertion follows:

b

Case II: xij #0 for some 1 > k , say 1=k <+ 1. 7hen let Sk+l
be the basis obtained from Sk by replacing 4l by aj « Thus

S = {a

K+l 10 crer o aj, €4 "t em} .

The proof that this algorithm solves Problem I is almost immediate. If
Case 11 ever occurs then (A) the solution is either present or (B) it is seen .
not to exist. If Case I never occurs then after m replacements we will have
constructed a basis Sm of vectors aJ from A and the tableau of B with
respect to this basis is the desired solution.

Note that our method always produces a basic solution, i.e., a solution Y

such that y1j $ 0 only for the basis Bys cevs B o This proves ihe following

fact which may not be immediately obvious:

THEOREM I: If (I) has a solution then it has a solution Y iIn which at least
n-m rows of Y are zero.

We now ask how much computation the replacement algorithm involves. Clearly




the only arithmetical step consists in going from a tableau with respect to a
basis S to one with respect to S' obtained from S by replacing a single vactor.
In our present notation let Y and Y' be the tableaus of B with respect to

L}
S and S' and let the ith row of Y and Y' be denoted by Yy and vy

THEOREM 2: Let S = {sl, — sm} and suppose y,, $#0. Then S' = {byy 8y «ens sm}

is a basis and Y' 1s given by the rule
L] 1
(1) yy =y /¥y ¥y =Yy 7 /vy

h Terminology: Operation (1) is known as pivoting and the element is

n
called the pivot element of the operation. It is easiest to rememeber the operation

from these "pictures"

b1 b2, ceey br

I Y 8 @ Y120 =00 Vyy

Sy | Ya1 Yozr 0 Yoo

Sn | Ymi Ym2® °"°* Yar

b1 b2’ oYy br

4 ! b 1 ' 5
o Y 1 Yi2» o0 Y1
| B ' '
4 8 | @ Yapr ceer Yy
. . [} 1
Sn 0 Ym2® *°** Yo

Figure 4.

. The pivot element is circled in Y . Pivoting is done by dividing the pivot
row by the pivot element, and by adding a suitable multiple of the pivot row to

each of the others, the suitable multiple being the one that will give zeros in

the pivot column.
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. ' =
Proof of Theorem: Let Y' satisfy (1). Then ¥1j ylj/yll

and Yig' = Yyy " (yﬂ/yn)ylj so for j $1

' m ' m m
Yyt 122 Y5 81 = Y13/ b ? 122 Y1y 81~ Oy/v10) 1§2 Yi1 84

(] O ;
=y,./y Yy 84 T Y1 841 % Y,y 8, = Y. 8, = b
L Yt T L Y Byt L Ve 81T L Y1y 8 T Yy

so Y' 1is the tableau of B with respect to S'

From rule (1) we see that each pivot step requires mr multiplications.
For the matrix equation problem the number :f columns of the tableau is n + r
(see Fig. 2.) and the problem is solved in at most m pivots so *he number of
multiplications is at most mz(n + r) . Actually one does some what better than
this because of the fact that after each pivot one gets columns which are unit
vectors, like the first column o. Y' in Figure 4.

Of special interest is the case where A and B are square m x m
matrices and particularly where B 1s the identity matrix so that bk is the
kth unit vector. In this case X , if it exists, 1s A-1 and the pivot method
involves exactly m3 multiplications. Note that this is the number of multiplications
used in multipling a pair of matrices, hence the number involved in checking a
proposed solution X of AX = I . This suggests that m3 multiplication is
about as few as one could reasonably expect to use in solving the problem.

Finally note that we can follow the steps of the replacement algorithm even
if there is no B matrix at all. The final tableau will then yield a column basis

for A , and also, if one thinks about it for a moment, a proof that the row and

column ranks of A are equal.




e

L i ’?‘\’3,& L

3. Solving Linear Inequalities

Problem II*: Given an m x n matrix A and an n-vector a find an

m-vector y such that
y20 and yA > a.

It is convenient to rewrite the problem as follows: Find an m-vector y such

that,

v

a a for =1 ...,
yay29y h) n
ye 2 0 for 1=1, ,.., m

where {ei} are the unit vectors of m-space.

Now there is no difficulty in finding a finite procedure for solving 11, for
it is easily shown, and will emerge from the procedure to be given here, that if

IT has a solution then it has a basic solution, that is a vector y such that

y aj = aj and vy e, = 0 for some set of m vectors aj and e which form a

basis for m-space. One could, therefore, consider all bases among the vectors

a,, e, and for each such compute the solution y to the corresponding m equations

A i |
and then substitute this y 1nto II. Fventually one of these vectors would satisfv
the system unless there was no solution at all. Of course, this would be an
enormously lengthy procedure since it would inmvclve solving possibiv ("::m) systemg
of m equations in m unknowns.

We shall now describe a replacement algorithm for solving II. For this purpose

we wish to transform II to a "homogeneous" problem, as follows:

JrWe are treating the case of nonnegative solutions of inequalities. The case in which
y 1is unrestricted in sign can be handled in a similar way but involves some slight
technical complication which we prefer to avoid in this exposition.




Let aj be the (m + 1)-vector (- aj, aj) and let éi = (0, ei) for
= (1, 0, ..., 0) so that é

i=1, ..., m and let e o ) ém are the

0 SpP =g
unit vectors in (m + 1)-space . Finally let Y be all vectors (1, y) where

y 1is any m-vector.

Problem II: Find y in Y such that

y &

| A%

j 0 for all

y &

av

0 for all k .

It 1s clear from the definitions that Problems II and II are equivalent.
Now let S = (eo, 8ys +ees sm} be a basis for (m + 1)-space where 8,
is either a vector aj or ék » and write the tableau with respect to this basis

as follows:

al’ LU 'Y an él’ s oy ém
€0 0 Yo
81 X Y
82
)
m
Figure 5.

THEOREM 3: If and Yo are nonnegative then (1, yo) solves IT (and Yo solves ]

*o
11).
Proof: Let ¢ be the (m + l)-vector which solves the system

y s = 0 {i=1, ..., m

y e = 1

- . e ——— — - e "
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(this vector exists since S 1is a basis).
From the last equation above ¢ 1s in ; .
Now from the tableau we have
m
98 =Y e + L 9 s = vy

so § = (1, yo) and by assumption Yo 2 0 . Finally

s aj > xoj(y ey) + Y xij(y s,) = - 0

~

so y = (1, yo) solves 1I, as asserted.
The inequality problem has now become that of finding a basis $ 8o that the
- tableau of Figure 5. has its first row nonnegative, if such a basis exists, we
wish to arrive at this basis by a sequence of replacements starting with the

inicial basis S, consisting of the unit vectors.The initfal tableau is given

; 0
4 f below.

31, 0.0 én él, . ém
€™ o] 0 2 10
| A [T
) a
m
Figure 6.

= Wi

Now, as in the previous section, we must describe the replacement operation.

Suppose then that we have arrived at the tableau of Figure 5., but (xo, yo) is

no. positive so that say, xoj < 0 (or Yok < 0) . Then by bringing aj (or ek)

1)
S R

$§ ) into the next basis S' we can be sure that in the next tableau the entry
£
23 1
- ij (or yék) will be zero which would seem to be a step in the right direction.

f o e
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The juestion which remains to be decided is which vector H in S should be

replaced by &, (or ék) and the success of the method depends on an ingenious

3

criterion for making this decision which we now describe.

DEFINITION: An m-vector x 1is called lexicographically positive, or simply
!-gositive if its first (reading from the left) nonzero coordinate is positive.

We write

x>0

A vector x 1is lexjcographically greater than y , written x> vy , if
X-y>» 0.
It is clear that for any x $# 0 either x » 0 or - x $ 0 so that }

defines a complete ordering of m-space with the further obvious property;
if x, y» 0 A, u>O0 then Ax+ uy > 0.

Finally we call a matrix Y l-gositive if all of its rows are l-positive.

The following is the crucial notion for our algorithm.

DEFINITION: The basis S will be called f-feasible {f the matrix Y (Figure 5.)
is [-positive.

Note that the initial basis of Figure 6. in [Lfeasible since in this case
Y 1is the identity matrix. We now complete the description of the replacement
algorithm, Assume in the tableau of Figure 5. that, say, X01 is negative (the

argument would be the same for Yo1 negative). There are two cases.

Case I: The first column of X 1s nonpositive. Then we have
m

+ ) x
i=1

8

(2) &, = x4 ¢, 11 84
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In this case Il has no solution for if ¢ solves II then ¥ sy 2 0 for all

i , but then taking scalar product of (2) with § gives

g8 =% + )%, 8) cxy <0

so ¢ cannot solve II.

Case II: X1 > 0 for some i . Then let I - {ilx11 > 0} and compute

Then obtain the new basis S' by replacing s by a, (1.e., pivot on x »

i

1y 0

The proof that this algorithm terminates depends on

LEMMA 2: The new basis S' 1is again l-feasible and the vector Yo of the new

tableau is lexicographically greater than Yo

Proof: From (1)

]
vy, =y, /x and since y, » 0 and x >o
10 10 101 io 101
1)
it follows that ¥ > 0. Also for 1 ¢ i

0 0

y, =y, - (k. /x, )y, .
1 i L

Xq 2 0 then clearly Yy >0. 1f x,. >0 then by the choice rule of

If 11

Case II above

y./x, . <y, /x
1"*11 LG

Equality cannot hold here since this would mean that Yy and y, were

0
proportional which is impossible since Y 1s nonsingular, so again y;‘> 0 and

- hence Y' 1s.l-positive.

Also from (1)

L 2re)

X I Fas i s PR it S
o pia Card hadbaas o Jo i i g VAT S

y/*4; for 1 in I, and choose 1, in T, for which yi/*y 1s £-minimal.

PO T

I
I
1
|
«
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Yo = Yo -(XOI/xi()#'io and since

L
is positive and vy is l—positive we have y, 3> vy
101 10 0 io

b is negative, x

01

as asserted.
THEOREM 4: The replacement algorithm terminates.

Proof: Since the vector Yo depends only on the basis S and since Yo
gets lexicographically larger at each iteration it is clear that no basis can recur.
Therefore, one eventually arrives at the situation of Case I in which some column

of the tableau is nonpositive in which case II has no solution, or else eventually

(xo, yo) becomes nonnegative and Yo is the desired solution.

4. An Example

Consider the system Yy Y, > 0

N
<
—
+
<
N
v
et

The initial tableau is then

[+ 3]
m>
>

e, [@ 0-1] 0 1

Now we will bring él into the next basis. According to the lexicographic

rule &, must replace e The pivot element has been circled in the tableau

1 2

above. The next tableau is
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1 ® "3 2
e 0 -1 0 0 1
eyl O O 2| 1 -2
af 1 0 -1] 0 1

The only possibility now is to replace él by 82 giving,

Again there is no choice. We must replace a by & and we get,

1 2
e 1 0 1 1 O
52 2 1 0 1 0
é2 1 0 -1 0o 1

which gives the solution ¥y = 1, Yy = 0 .

Note the way the row vector Yo increases lexicographically with each
replacement. Note too the interesting fact that the vector éz was replaced
on the first pivot step but came back in again in the end. Of course, if we had
chosen to bring in 52 instead of él on the first replacement we would have
obtained the solution in one step. However, in general there does not seem to be

any good way of deciding which vector to bring in in order to minimize the number

of replacements required to arrive at a solution.
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5. Concluding Remarks

Having found an (apparently) good way to find at least one solution of a
system of inequalities one might now ask for a way of finding all solutions, which
means in essence finding all basic solutions of II. There do exist procedures for
doing this but it is almost impossible to say whether these procedures are
reasonable or not because of the fact that the number of basic solutions may
increase very rapidly with m and n . The main interest here is theoretical.
How many basic solutions can there be for an m x n system? 1 should like to
conclude by describing very briefly the state of our knowledge (or ignorance)
on this matter. For more details see Grunbaum (&4].

It is conjectured that the maximum number u of basic solutions which an

m x n system can have is given by the strange looking formula

m+l
n-
py(m, n) = Z(n = ) for m odd

m
n-3 n == 1
=( )+ ( ) for m even.
n-m n -

This conjecture has in fact been proved for "most'" values of m and n ,

3 N3

specifically for all m < 8 and for n<m+ 3 and n > (m/2)2— 2 to see what

this means, the first unsolved cases are
m=9 12 $ng 18 .

In general for each m > 8 there is an interval of values of n for which
the conjecture has not been verified.
This strange situation together with the one described in the introduction

concerning the number of replacements required to solve an m x n system are perhaps
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the most interesting features of what might superficially appear to be a dull and
routine problem. To mix metaphors a little, they indicate how close to the

surface the so-called frontiers of mathematics sometimes lie.



(1]

(2]

(3]

(4]
(5]
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