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ABSTRACT

The problem of scattering of a scalar plane wave by a spheroid of revolution
is solved for either Dirichlet or Neumann boundary conditions, arbitrary major to
minor axis ratio, and arbitrary incident direction. The solution is obtained by using
an iterative method applied to solutions of the corresponding potential probliem and
is expressed as a series of products of Legendre and trigonometric functions, and
ascending powers of wave number. A recursion relation for the coefficients in this
series is derived. These results are employed to calculate the scattering cross sec-

tions for 2:1, 5:1, and 10:1 prolate spheroids.
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INTRODIUCTION

This report presents the complete low frequency expansion of the field scat-
tered when a scalar plane wave is incidznt from an arbitrary direction on a spheroid
of revolution (prolate, oblate, or disc), on which either Dirichlet or Neumann boun-
dary conditions are imposed. The expressions for the field are valid everywhere in
space and for all values of the ratioc of spheroid dimension to wavelength within the
radius of convergence of the low frequency e:pansion.

The work began as a demonstration of the efficacy of a recently derived tech-
nique for solving boundary value problems for the Helmholtz equation by iterating
the Green's function for Laplace's equation. This new method had been applied to
the problem of scattering by a sphere both for a Dirichlet boundary condition (Klein-
man, 1965) and a Neumann boundary condition (Ar and Kleinman, 1966). The prolate
spheroid was selected to provide a more substantial test of these methods, which
proved to work even better than anticipated.

The problem of scalar scattering by a prolate spheroid for both Dirichlet and
Neumann boundary conditions has been extensively treated. F.B. Sleator (1964) pre-
sents an exhaustive bibliography. Exact solutions are known in terms of spheroidal
wave functions and both low and high frequency approximations have been found. The
standard methods for obtaining low frequency approximations, either by direct ex-
pansion of the terms of the spheroidal function series in powers of wave number or
by determining each term in the expansion as the solution of a potential problem
(cf. Noble, i1362), arec somewhat cumbersome. One may question the purpose of
finding low frequency expansions if the exact solution is known. The answer lies in
the complexity of the spheroidal functions which make analysis and computation dif-
ficult.

The prescnt approach, although certainly not a trivial calculation, avoids

entircly the use of spheroidal functions on the one hand and, on the other, obviates
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the need for solving more than one potential problem. The solution is found in the
form of a series of products of spheroidal potential functions, i.e. Legendre func-
tions, whose coefficients are determinated iteratively. While this in itself might be
ampl> justification for presenting the results, their value is considerably enhanced
by the fact that a recurrence relation for the coefficients is found. This means, in
effect, that the iteration process may be carried out completely and the complete low
frequency expansion obtained.

This is carried out explicitly for a plane wave incidert irom an arbitrary
direction on a prolate spheroid for both Dirichlet and Neumann boundary conditions.
In additior to exprzassions for the field valid everywhere in space, the simplifications
occurring in the limiting cases of far zone and nose-on incidence are explicitly given
as is the expression for scattering cross section. The corresponding results for an
oblate spheroid and the important limiting case, the disc, may be obtained by a sim-
ple transformation and these results are also presented explicitly. Some numerical
calculations of scattering cross sections of prolate spheroids have been carried out.
These results are presented and compared, where possible, with existing data.

In Section II, the iteration method is adapted to take advantage of the symme-
try of prolate spheroid geometry. The method is applied to the Dirichlet problem
for the prolate spheroid in Section III and the Neumann problem in Section IV. Sec-
tion V contains the detailed analytic results for oblate spheroids and discs. The
numerical calculations for prolate spheroids are presented in Section VI. Much of
the detailed mathematical analysis has been relegated to a series of appendices in
the hope of making the method and the results more accessible.

This work was supported by the Air Force Cambridge Research Laboratories
under contract AF 19(628)-4328 and by the National Science Foundation under Grant
No. GP 6140,




THE UNIVERSITY OF MICHIGAN
7133-5-T

11
GENERAL CONSIDERATIONS

In this section we present the problem, the method of attack, and some def-
initions essential to a clear understanding of the prcccdures followed.

The problem we are concerned with is the determination of the scattered
field which results when a plane wave of arbitrary incidence impinges upon a pro-
late spheroid. With respect to a rectangular system of coordinates (x,y, z), the
prolate spheroid is oriented with its axis of revolution (major axis 2a) coinciding
with the z-axis, and its geometrical center at the origin. The minor axis is 2b.
Then the relations between prolate spheroidal coordinates (&, n, ¢) and rectanguiar

+
coordinates (x,y, z) are

x = ¢ iE%- 1M1-7) cos p (2.1)
y=c \/(Ez- 1)(1-n2) sin (2.2)

= c&n (2.3)

where c is half the interfocal distance of the spheroid, and 1€ §<m, -1 n<+1,
0<P<2r. The surfaces £ = constant represent confocal prolate spheroids. The

metric coefficients of the spheroidal variables are given by by
2 2 2 2
h§=c -g?-n- ; h =¢ §_-_r)§ ; h¢=cl(§-1)(1-n2) . (2.4)

Having defined the prolate sphercid, we now turn to the definition of the incident
plane wa/e. Without loss of generality, we take the x-z plane as the plane of inci-

dence. The direction of propagation forms an angle 90 with the positive z-axis,

+
For a detailed discussion of the geometry of the prolate spheroid see Sleator (1964),

R
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FIG. 1-1

(see Fig. 1-1), and, if p is the observation point with coordinates (r, 8, §), we
write

ul(p) - e—lkrcose . (2.5)

where ul(p) denotes the plane wave as observed at p and

cos @ = cosfcosd + sin6 sinaocos¢ . (2.6)

When 60 is reduced to zero, the plane wave is seen to prepagate along the negative
z-axis. The time dependence is harmonic (e-jwt).

We now state the problem:

Let S designate the surface of a prolate spheroid with surface coordinate
ES, and let V be the volume exterior to it. Designate by V the vnion of S and V:
V = SUV. Finally, let us(p) be the resulting scattered field due to the presence of

the prolate spheroid. We wish to determine a function u(p) such that
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(i) up) = uip)+up) , peV (2.7)
(if) (P+kdu®p) =0,  pev (2.8)
a S
(iii) lim r (L - ikus> =0 (2.9
Jar
r—Qa
(iv) Either
(a) u(ps) =0, pseS (2.10a)
= au(ps)
(b) rrat 0, pseS (2.10b)

Equation (2.9) implies a suppressed time harmonic dependence e-wt. Moreover,
boundary condition (2. 10a) refers to the Dirichlet problem and (2.10b) to the Neu-
mann problem and the two problems will be treated separately.

The approach employed in solving the problem is based on a new method of
finding iterative solutions of the Helmholtz equation (Kleinman, 1965; Ar and Klein-
man, 1966). Inherent to this method is the assumption of long wavelength compared
to the dimensions of the scatterer. The original iteration scheme was phrased in
spherical coordinates and much of the analysis depended upon expansions in these
variables. Here we essentially rederive these results in prolate spheroidal coor-
dinates in which form the iteration becomes more tractable.

We start with a representation theorem (Kleinman, 1965; Ar and Kleinman,
1966):

Theorem: Any function w(p), defined for all peV, which is twice differentiable in

V, and regular at infinity satisfies the integral equation
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~

= D 2a.D
wtp) = | 6o . p )V utp Jav + \ wtp )26, p s . (2.11a)
\' )

where GL) is the normalized static Green's function of the first kind, and the inte-

gral equation
_ N 2 N 9
u(pl) = Go(pl,pv)V w(pv)dV— Go(pl. ps) aum(ps)dS s (2.11b)
\' S

where G? is the nurinalized static Green's function of the second kind. The normalJ

ized static Green's function Go(pl' p) of either kind is defined as follows:

(1) Go(pl.p) = élp|p), pl.DEV
(2.12)
(ii) Go(pl, p) regular at infinity
(iif) (a) GD(p p)=0 (first kind)
o 1'"s )

3 N _ .
(b) on Go(pl'ps) =0 (second kind) .

The normal is directed out of the volume V. Moreover, we define a function f(p) to
be regular at infinity if it satisfies the Kellog (1929) conditions
0o

lim Irf(p\|<a) and lim rz‘%‘-})|<m, (2.13)
r— r— 0gpg2n .

Using expressions (2.4), it can be readily shown that in prolate spheroidal coor-

dinates

6
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v2=——-l—{—?-i—(§ 1)—J —aﬁl nz)a ]}
et %L 2t | *on a¢ 2= 2 af

(2.14)

dv = c3(§2- n2)d§dnd¢ (2.15)
/7 nNE>-1) dndf (2.16)

9 _ \
2 - (2.17)

The function we wish to substitute in the representation theorem equations is

the scattered field us(p). This furction, however is not regular at infinity but, as

ike(Etn) s

we have shown in Appendix A, the function e u (p) is. For this reason we

let

-ike(€¥n) s

wp) = e u (p) (2.18)

in equitions (2.11a) and (2,11b). From (2.14) and the Helmholtz equation (2.9) we

have

2 2 s *t n

vulp) =-—?L[(£2-1)a"’( - (n2-1)a‘—"(*’-)+(§;n)uxp]. (2.19)
c(§~-n)

Substitution of equations (2.15), (2.16), (2.17) and (2,19) in (2.11a) and (2. 11b) gives,

T
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(04} +1 2n
Wp) = -2tke” \ dg| an\ dpGip,p) E52-1>m;<n2-1>"‘—"‘1’+<g;n>u;£]
o1 of on
§s -1 0
+1 2n
- c(§2-1)( d dpuwlp ) — GD( ) (2.20a)
s \) n Pg § o P1’ Pgh <
-1 0
for the Dirichlet case, and
(04} §~+1 2n
wlp, = -2ike? ng dn\ df GN(p .D)Es l)a‘—"ﬂ +(n2- I)MHGMMPE‘
o1 oE an
3 -1 0
s
+1 2r
ro€®-n\ dn\ a8 e ,p )L wp) (2.20b)
s n o Py: Pg 35 ps ' '
-1 0

for the Neumann case.
These are tke integrodifferential equations that we have to solve. The first
one involves the normalized static Green's function of the first kind (Dirichlet boun-

dary condition) defined by (2.12) and given by

D 1
Go(pl’p) T T4nme

[}
A
.—-
v
m
A
)
=
+
[uy
o
AA
::
+
B
e [
L___J
o
©
7
8
-
-
-
S

m:
m m
P (E)Q (€) ] (g ) £>E
P )P () e R 3 9 e (2.21)
n 1 n
mm Q, (&)
P (e)Q_ (E,) E<E,

[See for example, Morse and Feshbach (1953, p.1291). The existing diiferences are

due to a different normalization and a different definition of the Legendre functions.
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The corresponding Green's function of the second kind is of similar form except for
involving the ratio of the derivatives of Legendre furctions so that the boundary con-
dition (2.12.iiib) is satisfied.] Equation (2, 20b) involves the normalized static
Green's function of the second kind (Neumann boundary condition) defined by (2. 12)

and given by
(] n _'2
N _ 1 m (n-m)!
Go(pl,p) —-47TCZ . (-1) Gm(2n+l) (n+m)!_] cosm(¢1-¢)
n=0 m=0
m m .
P E QT () | TE>E,
m m Pn (gs)
P (n)P_(n) - Q e )Q &) , (2.22)
n 1 n
m . m Qn (E )
Pn (§)Qn (sl) 3 <§1

where a prime on a function denotes differentiation with respect to £ s The symbol

€ is the Neu:nann factor defined by

1, m=0
€ = (2.23)
m 2, m=1,2,3,...

The associated Legendre functions are defined as follows:

m 1 Mn+m+1) 2,m/2 , 1-p
= — o o + - .
Pn(u) Jm Flacm+ M (m+1) (1-u) 2Fl(m n,ntm+1; m+1; 5 ),
u-1]<2. (2.24)
F‘(n+—)

m . _.n 2 m/2 n-m m-ntl m-n 1 1
P W =2 5 m+1)r(1f)(“ =) 2F1< 2 T2 i3 “'“2>'
|yl>l; Iarg(ui’l)|<77 . (2.25)
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m

Q, W)

o+l

- (-1 Fn+m+1)(1/2) (;;2-1)m/2 F C1+m+2 n+m+1 'n+§"—1'>
R 14 ? A 2 »
2 r(n+%) mmtl 21 2 2 2 7

lu]>1; |arglu-1)] <7 . (2.26)

Definitions (2. 25) and (2. 26) agree with those given by Magnus and Oberhettinger
(1949, pp 64 and 60, respectively), while (2.24) differs by a factor of -n™,

To solve the integrodifferential equations (2. 20) for «{p) we proceed as fol-
lows:

We write w(p) as a power series in k of the form

a0
wlp) = Z (-ike) wy (p)
M=0

and we substitute in equations (2.20) to obtain an iteration scheme for wM(p). We
subsequently show that these coefficients of k are of a particular form and develop

recurrence relations through which wM(p) can be found for arbitrary M.

10
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m
THE DIRICHLET PROBLEM

3.1 The Iteration Scheme

The appropriate integrodifferential equation for the Dirichlet problem is

(2.20a) which we repeat here for convenience

@ +1 27
u(pl) =-2ikc2K d€ dn d¢GoD(pl,p)l:(E _1)M+(n -l)mﬂg;n)w(pi'

3 an
Je, J-1 Jo
+1 2r
2 D
-olg_ -1\ dn| dfulp )gg—cow..p ). G
-1 0

The appropriate Green's function is given by (2.21) and the boundary condition satis-
fied by w(p) is seen to be, from equations (2.7), (2.1Ca) and (2.14),

1 -ikc(gstn)
w(ps) = -u (ps)e . (3.2)

The incident plane wave ul(p) is given by (2.5) which can be written in prolate spher-

oidal coordinates as

. . { 2 ( 2
e-ikrcosO=e-lkcE°seogn+smeo £E-1Jl-n cosﬂ:l

u'(p) = (3.3)
Denote the surface integral of (3.1) by ™ pl):
+1 27
2
p) =-clE_-1)\ dn)\ dpulp) 3, G p,,p) . (3.4)
-1 0

In Appendix B we show that Is(pl) may be written in the following form

11

W
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-ikct;'s > M. s
Is(p1)=e 2 :(-ikc) Ly, (3.5)
M=0
where
M 1
L) = E E :AM' ™ )PM(n,1QIE, Jcos mp (3.6)
1 Loy A AU A 1
£=0 m=0
with
€ coso *1
M po (s 0
~ (Esfcoseo) (- m): £\ & .i’cos@0
- A S
K 2/ 2 2) 4 s
M+{ even
M,m -
Arte ) = <
L0,  M+fodd .
(3.7
Note that IISVI is independent of k. Moreover, let
+ickE
Up)=e  Sulp) (3.8)
where l,b(pl) is assumed to have a power series expansion in k of the form
©
o M
Up) = z :(-1kc) tl/M(p) . (3.9)
M=0

Substitution of (3.9) in (3.8) and the resulting equation together with (3.5) in (3.1)

gives

12
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® 0 (04} +1 27
2 D
E :(-ikc)Mw (p.) = -2ike ike™M\ ae\ dan\ ap o, p)
M™1 o1
M-=0 M=0
Es -1 0

. (p) av. (p) -
1.2 M~ _, 2 M - M
Eg D=5 3t -0—5 +(E+n)¢M(pﬂ + ME:O:(-ikc) I;i(pl).

The interchange in differentiation and summation, and summation and integration

was made by assuming (3.9) to converge absolutely and uniformly and to be term by
term differentiable with respect to each of the variables and the resuiting series to
be uniformly and absolutely convergent. Collecting the coefficients of equal powers

of k in the above equation, we arrive at the following iteration scheme:
v (p) = Iﬁ(pl)

(3.10a)
{4 4] +1 2n

&, (p) a_(p)

_ D 2 M*™_., 2 M

¢/M+1(p1) = 2c dg dn dg Go(pl,p)le -1)_"aE 3+ (n"-1) P
£ -1 0

+(E Tk (p) +I;l+1(p1). M=0,1,2,... (3.10b)

3.2 The Recurrence Relations

We shall now solve for the M+ 1st iterate in (3.10b). In order to do this we
need to establish the fact that ¢/M may be written as
M M
)

o 0 = > > D"

t
£ £
(€ )Q_(E)P (n)costp (3.11)
t0 r=0 =0 Tt s Tt

forall M (M=0,1,2,...). This is accomplished using the principle of mathematical

induction, that is, first we show that (3.11) holds for M =0 and secondly we show
that if it holds for M, it also holds for M+1.

13
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That the representation holds for M =0 is obvious since, with equations

(3.10a) and (3.6,

_ .0,0
v (P = A% %E )Q (8} (3.12)

which clearly is of the form (3.11).
Next assume that (3.11) holds for M. We wish to show that ¢M+l(p) may

then be written as

M+l M+l _t

M+1,¢ 1 I .
WM+1(P) = g ZO: g Dr,t (Es)Qr(g)Pt(n) COb1¢
= r: -

The analysis which establishes this is somewhat tedious; however, in the process

b4

we actually arrive at an expression for Diﬁ in terms of Dr’tl which in fact is
the major goal of this section.

First note that the second term in (3.10b) has already been shown to be of the
form (3.11) |see (3.6), (3.7_)] . Next denote the volume integral of (3. 10b) by

l;q +1(pi) and substitute in it the Greer's function of (2.21). Then,

® n
' 2
v s m (o-m)!” m
L (Py) = - ZWZ Z(-l) 3t (o+m).| Tn (ny)
n=0 m=0 -
m +1 2r
. (p)
2 M
dEC:’l(E,El,ES) d7.‘P:l(n)§ d¢cosm(¢-¢l‘[(§ --1)—3?—
£ -1 Jo
s
. (p)
2 M
3(n-1) on +(§;n)¢'M(pj , (3.13)

where

14




Substitution of (3.11) in (3.13) leads to

® n
v _ 1 n- m)
IM+1(pl) == 3. Z Ay IZ:( -1)™e (2n+l)[(

@ +1
M, 1 m m, m
D, (€ )P (nl)g dscn\s.sl,ss)g dn P_(n)

3

8

2n
. S dff cos m(§ - ¢1) cos l¢[(52-

0

-1

daQL(e)

1 r
d€

l)Pt(r,')

F(n

+ETna, (s)pfmJ

Performing the angular integration and rearranging terms we get

t

2 . !
-1Q (§)
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(P QT (s) P ) £>e
c™e, e ,8) = -2 2 Q (3 e D) . (3.14)
R Qe )
PREQT (5) <t

® M
L‘I:/Hl(pl) - ZZ

n=0 t=0 r=0

V4
-Pn(nl)cosl¢18
3

r\m

S

Z( 1) (2n+1)

£=0

i
dEC (E,€,, ss)g

15

+1

-1

-Q (E)+ [:n ) —+ ]P (nQ (E_}

(n-4)!
(n+1)",

M, !

Drt

(g)

{ 2 d 1
an Pl {[(s -02 +¢] Pln

(3.15)
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To perform the n integration we use the relation (Magnus and Oberhettinger, 1949,

pp 61-62)
£
P (z) P (2)
[z _1)_+;] _(a+1}n-£+1) o+l 1
2n+1 N
Q (z) Qn+1(z)J
P:l_l(z)
n(n+{) . _
o0+ 1 , ; n£=0,1,2,... (3.16)
Qn_l(z)
Substituting this relation in (3.15), we get
@ M M
J = (n-10)!
LR "zﬁagﬁ' - (- 1) (2n +1)[( YTy (E )P Y )cosl¢
e} +1
. ! (t+1)t- 1+1)
& dgcn(e.sl.gs)g an P ( ){ e RN
£ -1

8

t(t+l)

+[_<£ 1)—+§]Q (E)P (nt — 911

P,

nQ (E{}

@ g zM_' t
!
—'> ) L - 1) (2n ‘rl)[n P(n)cos!;ﬁ
n=0 t=0 r=0 £=0 (n+1). 1 1
(00 +1
N 1 { Ht-1) l)
. dECu(s,EI,ES) ann(n)Pt(n) {+ T (€ )Q (E)
13 -1
S
M, { 2 + (t+i)t+2+1) M f
D" (E) E& - EJQ M T el DT (e} :

(3.17)
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where in this last expression we have adopted the convention that D (E ) is iden-
tically zero whenever any of the subscripts or the other superscript is greater than
M. We now employ the following orthogonality property for the Legendre functions

of the first kind (Magnus and Oberhettinger, 1949, p. 54),

+1
/] /] __ 2 (n+n!}
den(x)Pm(x) " 2n+1 (n-O)!
-1
to obtain
M+1' M t
v _ N 2 (t-1)
1M+1(p1)--2 - % lzzo_,(-l) 7YY Pt(nl)cosl¢1
®
U He-1) pM! + (tHINt+L+1) pM 1 I}
dECt(E,El,ﬁ ){J} ot 1 r t_1(58) %t +3 r t+1(§ ]Qr(ﬁ)
3

8

M, £ 2 .. d g
+Dr,t (58) [(E -1) d§+€] Qr(’;:}

Employing once more the relation (3,16) in the equation above, we write

M+l M t (o o]
v o (t-1) d ]
IM+1( Z_, 2:_, %{T(-l) YN Pt(nl)cosl[ﬂl dECt(E,El,Ss)
gS
(r+1)r-i+1) M,f (t-2) M,
{ 2r+1 (5 )Qri-l(g) I: 2t-1 Dr,t-l(gs)

- 2t+3 t+1 2r+1

+ SrINHA+) Ml(Esi—]Q(E) sri ol )a (}

(cont'd)
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M+l M+l t
5 ' (t-1): r-1) M, ¢
=-2 5 . 5 (-1) ; P (n,)cost§ {—u  (E)
6 =0 £=0 (t+1) 1 2r-1 “r-1,t’s
-0 o + (tHINt+L+1) M, L
+ ot r t l(g) 2t+3 r,t+l(§s)
@
(r+1)(r+'+1) ] ]
Es
In arriving at this last expression, one must bear in mind that D_ ,t (Es) is iden-

tically zero whenever r, t or { is greater than M. As shown in Appendix C,

a
L {
dEC, (5, €),€ )Q (5) = (-1)
g

8

(€)

8

(€)

]

t 1 (t+2)! re
r(r+1)-t(t+1) (t-0! |_Q

1 1
Qt(El)-Qr(El;J,

- ey -

r#t. (3.20)

Furthermore, whenever r =t in (3.19), the bracketed coefficient is equal to zero.

This follows from the fact, established in Apperdix D, that the relatiocnship

<~ )=yt “"(s ) (.21

s

holds among these coefficients. Thus we need not evaluate terms in (3.19) when

r = t. Substituting, then, (2.20}) in (3.19) we get

18
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M+1 M+1. t
- 1 rr-1) M,!
sy Py 25—) 5 Hr+1)-Hie 1) [:Zr-l D) &
t=0 r= 0 =0
_tt-0 M, ¢ (t+1Nt+2+1) M, ¢
+ 2t-1 Dr,t-l(gs)t 2t+3 r_.t+1(€s)
(£)
CEIVISTESVIN'Y: Q& ! /
ar+3  Prel, t(g.,] [1 Q (€,)-Q (EZ)Pt(nl)cost¢l

(
Q&)
(3.22)
where the prime on the summation for r indicates that the term ¢=r must be de-

leted. This may be rewritten as

M+1 M+1 t
0 () = 2; > Bt ok )t (1, )cos 1, (3.23)
r=0 £=0
whe:e
M+1,1 2 rir-1) Ml t(t-2) M,!
r, (g) r{r+1)-t(t+1) [21- 1 r-l t(gs)+ 2t - IDr,t-l(gs)
+(t+1)0t+2+1) M, L ' (r+1)r+2+1) M ]
e B AL w3 Pt ﬂ rft .
(3.24a
M+1 .,
Q (E )
f‘:‘ “e) =- S e ) (3. 24b]
r=y Qt(ES) !

and the prime on the summation indicates that the term r =t must be deleted (see

Appendix E). Thus (3.10b) can be written as

19
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M+1 M+l t

8 N M+1,12
(o) =I5, (p)+15, (B, =D 20 e 1QlerP! (nicos 1

v
+ +
M+ M+ t=0 r=0 (=0 '
(3.25)
where
M+, L M+l
Dr,. _Er,t (ES) , r#t
+1,1 £

M 1, (5 )+ AM?I , F=t

t t
Equation . .25) is clearly of the form (3.11) which is what we wished to establish.

Not only have we completed this inductive proof but, in the process, we have derived

. .. M,
recurrence relations for the coefficients Dr ; (ES):

M+1, o 2 {r-£) M, ! Ht-£)
r,t (8 ) r{r+1)-t{t+1) [2r-1 r-l t(gs)* 2t-1 Dr t-l(gs)
+ (t+H1)t++1) M, L (r+1)(r+2+1) pM-1 r#t
- 2t+3 Dr, t+1(€s) 2r+3 r+1 t(gs)..| M=0,12,...
(3.26a)
M+1 £
"Q(8)
ey =- ) E= e e ey w012,
t,t s — 2 r,t t s
r=C Qt(ES)
(3.26b)

with
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D%t ) = A% %) , (3.26¢)
0,0 8 (o] 5

(see equation 3.12}.
We are now ready to write the expression for the scattered field us(pl). By

equations (2.138), (3.8), (3.9) and (3.11) we have

+
Sy -e U )
Pl € Pl
-i - +
lkcgs +|kc(§l_n1)‘
=e e “p,)
-1kc§ +ike(€ -nl
=e e E :( 1kc) 11/ (pl)
M=0
. . - M
ikef, -ikelE_3n)) < " 1 ML
=e e E (-ike) -2_ E D ,t )
M=0 t=0 r=0 (=0 50
QHE P (0. Jeos 19 (3.27)
Q8P {nyJcos 1P, - :
-ike(& $n1)
If we expand e S in a power series of k and employ the Cauchy formula

for the product of two infinite series, the above expression becomes

nMMMt

«*(p)) o Z( ike)"” z(g ;nlM), > ) e )

t=0 r=0 £=0 T

£ {
-Qr(El)Pt(nl)cosljl)1 , (3.28)
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where, in both of the above equations, D (E ) is given by equations (3.26a, b, c)
and, in turn, A:w E ) is given by (3. 7)

3.3 The Far Field and the Scattering Cross Section

From the definition of Q:'(g) in (2.26) and (3.28) the far field is given by

1kc§ (0] €
si E 2 st § E M, !
u(p)= (-ike)" - (1)1' *(E)
1 (n M) =0 150 o,t s
{
-Pt(nl)coslﬁ1 . (3.29)

Since the incident wave is of unit amplitude and r ~ c& in the far field, the scatter-

ing cross sectiot is given by

o= lim 47rc I Sf )|2—47rc E (1kc) u® (p1 . (3.30)
£ —>>m
1
where
Z(e 3n )" M ZM <-
{ 1 f
uzsxf(pl) - (n 1M)’ (-1 £ Dgl,t (ES)P*(T)I)COSI¢1
M=0 t=0 £=0 ! -
(3.31)

Assuming k real, we can rewrite (3.30) as follows:

22
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0
o =4nc

()
., sf
;(-ch) u (pl)

® 3]
= 47rc2 E :(-ikc)nqu(p ) E (-ikc)nqu(p )
n 1 n 1

n=0 n=0

® w
2
_ 2 .. n sf ., D sf
= 4r¢ n§=0:(-1k0) un(pl).nio (-ike) un(pl)

w ®
= 47rczz(-ikc)n qu(p )Z(ikc)n qu(p )
n=0 8 n=0 5
@ n
2 N m sf sf
= 4nc ;(-ﬂ(c) Z:(; (-1) un_m(pl)um(pl)

® 2n

_ 2 E 2n E ntm_sf sf

=4nc (ke) (-1) u2n-m(pl)um(pl) . {3.32)
n=0 m=0

3.4 Nose-on Incidence

In the case of nose-on incidence (90 = Q) quite a few simplifications occur.

If we set 60 =0 in(3.7), it becomes obvious from the definition of the
Legendre function Pr(u), ] u-l‘ <2, equation (2.24), that Ai“’m(gs) becomes zero
unless m =0, We then conclude that in the case in which the incident plane wave
propagates along the z-axis there is no dependence on the azimuthal angle §. This
simplifies the results as follows:

Equation (3.6) can be written

M
] _ M
L,(p,) = ZO A(EIP(n)QUE) (3.33)
with

23
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(E ¥ (21+1)

‘] , M+t even
( oM+l M q r-(M+t )Q(E)
A (E ) =

O s M+t odd (3.34)
Equations (3. 26a, b, ¢) become
2 2
M+1 ) 2 ) M
(5 ) r+1)-t(t+1) [2r 1 r-l 1(55) + 2t lD 1(53)
+(t+1)2DM ). xn) M )], r
T 2t+3 T, t+1'°s 2r+3 I+1 t 2 M=0,1,2,...
(3.35a)
I+1
Qe i
=_ )+A ; M=0,1,2,.
tt (ES) n Qt(g ) (E (E H
i = (3.35b)
with
0 0 -
Do’ O(ES) = AO(ES) . (3.35¢)

The scattered field, us( p1 ), becomes

. m n - n -M M M

S 1k(‘§l n )

u (pl) =e E (-ike) ‘\ § §
n=0 M=0

(3.36)
and the far field,
lkCE w M
Z Z (€ +T71 M
u® (pl) — (-ike)® eIy - Do,t(gs)Pt(nl) . (3.37)

M
D_ (¢ )Qr(El)Pt(nl) ,
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The expression for the scattering cross section remains the same except for
sf
u :
i (pl)
n-M

M
T it o
un(Pl) = . (n M) D ,t(g )P(n1 . (3.38)

M-0 =0 S

20
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v
THE NEUMANN PROELEM

4.1 The Iteraiion Scheme

The appropriate integrocifferential equation for the Neumann problem is

(2.20b) which we repeat here,

(00) +1 (\"n
w(pl) = -21k02 d€ dn\x d¢G (pl p) Eg‘ -I)MEE Fn —1)—‘)(;,2)
0
(\+1 27
+(€7 )w(—)‘+ c(€2—1) d d¢G ( ) w( ) (4.1)
-1 0

. N . . -
with Go(pl, p) given by (2.22). The appropriate boundary condition is given by
(2.10b), which through equations (2.17) and (2. 18), may be written,

. ikc(gstn)
u(ps)+e w(psZ] = 0. (4.2)

Excluding the case in which the prolate spheroid degenerates to a wire of finite

length (Es = 1), we can write

FR 1Lc(€s n)
3§ u(p )+e w(psﬂ =0 (4.3)
from which
aulp) -ikele_*n) au'(p)
) = -1kcw(ps)-e ags (4.4)

Substitution of (4.4) in (4. 1) leads to
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(] 1 27
w(pl) = -2ikc2S dg dng d¢G§(p1,p) E§2_ I)MP_) : (nz- 1)M22

o o
£ -1 0
8
+1 2n
+(ELnmuip)|- ikc2(§2- D\ dn| dpulp )GN(p p)
s s o '1'"s
-1 0
N+1 27 i
PR3 PPN | - au (p )
2 ngs +iken N s
= c(Es- l)e dn\| dfe Go(pl’ ps) ags
-1 0
Denote by Is(pl) the second surface integral in (4.5)
" .
. -ikeE _ o o TS du'(p )
I (pl) = -c(Ss-l)e dn\ dfie Go(pl,ps)—a-é— .
-1 Jo 8

In Appendix F we show that Is(pl) may be written in the following form

-ikeé&
o) =c  ° (-ike)"' 15 (p)
M-=1
where
M 1
8¢y M,m m m
L(p,) z :z :Al (€ )P, (n,)Q; (€ )cosmf, ,
1=0 m=0
with

27
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(4.8)
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5 _COSG) ({- m)

m —
(B)= e M+1(M 17r<M+f )Q (€ ) s ”(u m)!
§,cos0_ | : - scoseoi'l
+ +
<g +cos9 "2 [l(gscoseo_l)l’f ﬁ_—gs_coseo
S

(3 cosG T
-(l+m)(€ *cos6 )Pm/ j]} for M+ £ even,

I\E cosB
(4.9)

M, m

Ay

(Es) =0, for M+/ odd. (4.10)
From now on, the procedure for developing an iteration scheme paraliels that of

the Dirichlet problem. After writing

ike€

dp)) =e sw(pl) (4.11)

and assuming a low frequency expansion in powers of k for u’/(pl),

[00] "
w(pl)= Z , (-ike) cM(pl), (4.12)
SED)

we substitute (4.11) in (4.12) and the resulting expression together with (4.7) in
(4.5). Eguating coefficients of equal powers of k, we cbtain the following iteration

scheme:

Lo(pl) =0 (4.13:1)1
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10 4] +1 (27r ] , W’M(P.‘ L &(/M(p)
d/Mﬂ(pl):zc d€ dnJ d¢Go(p1,p) (£7-1) 3 T (n°-1) =
£ J-i Vo
8
+1 27
2 N
+(E;n)¢/M(p]+ o€ ~1)\ dn dﬁGo(pl.ps)wM(ps)
-1 0
+1§{+1(Pl) : M=0,12,... (4.13b)

4.2 The Recurrence Relations

The procedure we shall follow here is practically identical to that for the
Dirichlet case. We assume wM(pl) to be of the form

M M _t
_ } E Z "M i 2 S _
UmP = Ll D% (£)Q (E )P, (n)costp , M=0,1,2,...

(4.14)

which we substitute in (4.13b) and solve for ¢ If v (pl) turns out to be

M1 P Y
of the form (4.14), then because of x/zo(pl) being zero we can conclude that (4.14) is
true.

The volume integral of {4.13b) is practically identical to that of (3.10b) ex-

cept for the Green's function. From equations (2.21) and (2. 22) we see that these

two functions are identicai except for their dependence on the surface coordinate & .

v

If we denote the volume integral of (4.13b) by IM o5

(pl), we can use the result of

(3.19) and write
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M+i \I+1 t
£(t-1).
\I+1 -2 Z__, z LGN Ty P {(n )cosf¢
t=0 r=C¢ £=0
nr-1) Mf t(t-£) M, f + (L+INt+i11) M, £
{21‘ 1 r—l t(g )= 2t-1 Dr,t—l(g‘s)- 2t+3 Dr,t+1(Es)
(s3]
{r+ 1 r+f+1) \It { _
= 9713 r+ (5 } dt‘l\ (£, ¢ £ )Q (4.13)
£
s
where
£ .~ e
. P {5,)Q,(8) Pf(z: " §25
K(£,£,8)= <= Q(E )Q (&) (4,16)
t 1" ’s £ 1
£ £ Q&)
Pt(E}Qt(E_l) t s £<E :

. PP M, . . .
1t is understood in (4.15) that Dr t(Ec) is identically zero whenever r, t or { is

greater than M.

From Appendix G,

(03]

r{r+1)-t(t+1) (t-£)! (€ )

I
, t . CQ ()

. £ (-1) (t+£) ] “r s’ 4

dEK (£,8,,£)Q (€) = ; ‘ L ; Qt(gl)-Qr@l] )
£ Q{5

r#t.  (4.17)

Furthermore, through ar inductive argument identical to that given in Appendix D

for the Dirichlet case, we can show that

(s )= “’f@) (4.18)

’

E.ploying (4.17) in (4.13), we obtain
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M ML ¢
v =_2 Z Nr-£) M,!
Lan'Py) = Z r(r+1) t+1) | 2r-1 D1,
t-O r=0 =0
- Ht-2) M J + t+12(t+l+1 M, !
* o1 P8 T T ates - Pp 'Sy
QLE ) a
_{r+iNr+t+1) Ml rs 1 | ]
2r+3  Drel, t(gzl[Q'(g . Qt(gl)-Qr(gl)_l Py(nyJoosth,
t’s (4.19)

Having evaluated the volume integral of equation (4.13t) we now turn to the surface

integral of the same equation and we denote it by I(pl).

+1 2%
Ip,) = olEo-1)| dn)\ dpG Moy Myglp) - (4.20)
-1 0

Substituting equations (2.22} and (4.14) in (4.20), we obtain

p)) = - 5 (€2 -1)_;_ ,E -10%e_(2n +1)[}“+“;_] P (n,
M M s m
P ()
M, ¢ 2 m m n
2202 e palie oy En(ss)- L Qn(";';l

5=0 r=0 £=0 Qn (Ss)'
+1 2n
X dn P;n(n)Pi(n) df cos m(¢-¢1)cosl¢ .
-1 0

Using equation (B.4) for the Wronskian ard at the same time performing first the
integration with respect to § and ther the integration with respect to n according

to (3.18), we obtain

31




THE UNIVERSITY OF MICHIGAN

7133-5-T

RCUEAN Q=)
h ) £,
ip,) = ZZ_JZ D:I't‘(:s)—f—i Qt(El)Pf(nl)cosigbl . (@.21)
t:O r:O £=0 ’ Ql(gs)l

From equations (4.19) and (4.21), it is clear that ¢ (pl) of (4.13b) is of the form

M+l
given by (4.14). At this point, then, we not only have concluded the inductive argu-

ment that the representation (4. 14) of LM(pl) is correct, but in exactly the same
fashion as in the Dirichlet problem we end up with the following recurrence relation-
ships:
M+, { _ 2 r{r-£) M, £ ,_ . - t{t-£) M, £
Dr,t (gs) rir+1)-t(t+1) [2r-1 r--l,t(gs)+ 2t-1 Dr, t-i(gs)
.|
+(LHINL+E+1) M, 2 (r+1)0r+f+1) M,{ l
2t+3 D 8" ore3 Dr**l,t(gsl] ’
M=01,2,.
r#t (4.22a)
M+1 L M £
' Q) Q(€)
+1.f M+ £ S M £ M+1 £
D:\Itl’ (gs) - I; : Drltl, (gs)+ T D;I’t (gs)+A:I ; (gs) '
! r=0 Q (&) r=0 Q (¢ )
t t s
M=0,12,... (4.22b)
with
D% )=0, (4.22¢)
0,0 S

2

where Ai“' [(Fs) is given by (4.5%a,b). The prime on the first summation in (4, 22b)

ldenotes that the term r =t must be deleted.
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The scattered field us(pl) for the Neumann problem is given by the same
expressions as for the Dirichlet problem (equations (3.27) and (5. 28)) with the under-
standing of course that the coefficients I)if'{l(Fs) are this time given by equations
(3.22). The same is true for the far ficld and the scattering cross section expres-
sions (sce Section 3.3).

4.3 Nose-on Incidence

When 6 =0, (4.9a) becomes zero unless m =0. This is so because of the
definition of the Legendre function P (u) for |u-1| <2, equation (2.24). Conse-
quently, when the incoming plane wave propagates along the z-axis, there is no de-
pendence of the scattered field on the azimuthal angle §, a result we should expect
since the z-axis is the axis of symmetry of the prolate spheroid. Du2 to the sub-
stantial amount of simplification, we redefine our results for the Meumann problem
as follows:

Equation (4.8) becomes

M
E(p)= E aMiz )P (n)Q(2) M=1,23 (4.23)
M1 t st 1"t 17 :
t=0
where
(2e+1)e T
- n + r
. \/—M M+1 \I-t> r‘ \I+t, , M+t even
Wi ) - 2e,

(4.24)

0, M+t odd.

s , .
The scattered ficld u (pl) is given by (3. 36) with D:1 t(FS) given by

y

)
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2 2
M+l 2 rr M M
Dr,t (Es) T oHr+1)-tt+1) [:2r-l Dr—l,t(gs) w7 2t-lDr, t-l(gs)

2 2 _
4+ (t+1) DM (£) (r+1) DM (E_;I M=0,12,..

- 2t+3 T, t+l s 2r+3 T+t s_]' ! r#t St

M+1 M
'QU(E) Q ()
M+1 r s M+1 r s M M+1
D (E)=-E: - D (g)+§:——,n (€)+A (£),
t,t s 0 Qt(ES) r,t °s o Qt(gs) r,t°s t s
M=0,12,... (4.25b)
with
o -
D (£)=0. (4.25¢)
0,0 °S

The expression for the far field is the same as the one for the Dirichlet problem

(equation (3.37)) with Dzi t(E s) as above. The same is true for the coefficient of the

scattering cross section, urslf(pl), which is given by (3.38).
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THE OBLATE SPHEY?OID AND THE DISC

The method employed in the preceding sections to determine the field scat-
tered by a prolate spheroid can be employed in a straightforward manner to deter-
mine the field scattered by an oblate spheroid. This is not necessary, however,
since we can transform the prolate spheroid into an oblate spheroid and utilize the
results aiready obtained to determine the field scattered by the oblate spheroid.
Specifically, if we let £ = i§ and ¢ —-ic, the prolate spheroid is transformed into
an oblate one with the axis of revolution (minor axis 2b) coincident with the z-axis of
a rectangular coordinate systems (cf. Morse and Feshbach, 1953, p. 1502). The

ranges of the variables now are 0§ <w, -1<n<+l, and 0K ¢ £ 27. Moreover,

FIG. 5-1.

if we let ES—> 0, the oblate spheroid degenerates into a disc of infinitesimal thick-
ness, radius c (the semifocal distance), and coplanar with the x-y plane. In the

remainder of this section we shall treat each body separately.
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5.1 The Oblate Spheroid

With the incident field given by (see equaticn (3. 3)),

2
}‘I —. + . -1 - ]
e'i' cos® _ . 1kc[cos@0§n smB0 RE Jl n cosf ‘

the scattered field is given by (3.28) with £ = i§ and ¢ = -ic and can be written as

ui( p) =

follows
n-M M M t

s ikc&l Em n En (1§ +M) ) E E E M, ¢
u (pl) =e (-ike) (-i)" (n M)' Dr ,t (i&s)
n=0 M=0 £1=0 ’

4 { -
Qr(iEI)Pt(nl)cosl¢l , (5.1)

where, for the Dirichlet problem, the recurrence relations (3.26a, b, ¢) hold among

1
the coefficients Dr't (iifs), with

»

i€ cosf t1
M P ——:—L—
( (iEsi’cosG) (t-1)! t\ i€ Zcosf
- + o
' M+ A TEY <M-t),r/M+t+§) L)
ML 2 /T2 T2/ Qs
Ay (163)-
M+t even
0
L0 M+t odd (5.2)

M, !
For the Neumanan problem the coefficients 1)r ;t (i&s) are related through equations

(4.22a, b, ¢c) with
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(1§ tcos0 )

M, !
A, (g ) = -e \l_ M+1<_L> ,,,(Mﬂ )Q(E )
i cos® 3 1 iEscoseofl
+
MP (ig +coso I_t(lE cos§_*1)P (——;———g cosGo>
z igscoseotl 1
o+ _8 o
- (t+l)(1§s- °°890)Pt-1<igstcos 90>]),

M+t even, (5.3)

{t-1):
(t+1)

(2t+1) ——=

and

1
Af”’ Gg) =0, M+t odd (5.4)

The prime on Q (1§ ) in(5.3) 1mphes differentiation with respect to 15
The Legendre function Q (1§ ) in (5.1) must now be redefined since E can
now assume values between 0 and 1 as well as values greater than 1. This has
been done in Appendix H where we show that
1

1y 2 ~2f
-1) Ce+m+1)(1/2) (£7+1)

Q7iE) =
n iu+12m r.(n_’_%) @+ ’§2+ 1)n-m+1
1

1 3
- F Q}-m+l —-m: n+—:; - ) £E20.
» 1 2: 2 2 E] .
21 2 <s+J§ +1)

(5.5)

The far field is given by (5.1) by letting §, >,
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o ll\Cc E—‘ (lg +1’71)
u (pl)= E (1kc) (-i oM
‘\l
M, ¢ -
A z (= 1)' D (15 )P (nl)cosl¢ . (5.6)
t=0 £=0

The scattering cross section is given by (3.30) and
be written in the forn:

® 2n
2 g +
6 = dzc E e E S ot |
2n-m "1
n=0 m=0

u (p, (5.7)

, inthe present case, can

where we have taken k to be real, and

n-M

(16 )
sf _, .n-1 , ML {
u (pl) = (-1) E (n M)’ ; 2 (- 1) L o, ¢ (155‘(;)Pt(r;1)cosl¢1

M-=0

(5.8)
Nose-on Incidence:

When 90 = 0, we can rewrite (5.1) as follows:

. 1l\cE - (15 +r7) —
u"(Pl) =e E (-ike) } (n M) > Z (15 )Q (15 )P(n ),
M=0

(5.9)
where, for the Dirichlet problem,
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2 2
oMHL ) 2 r M
r t (1‘5) T OHr+1)-t(t+1) [Zr-l r—l t(lg )+ 1Dr,t—1(lgs)

2
s (D) M (r+1)” 1) r#t
- D (i€ )- r+; JiE ):I 3

T 2t+3 Tr,t+l s 2r+3 M=0,1,2,... (5.10a)
M+1
Q (hS )
D Z DY T tig )+ AN E) s M =0,1,2,... (5.10)
0 Q(hS ) s
0 ..\ _ .0
DO' O(lé's) = Ao(xé's) , (5.10c)
with
= (2t+ 1€ _* M
-7 M+t even
M+l (M-t), ~/ M+t ﬁ '
AM(i§)= 2 <2>.F< y Q(xg)
0, M+t odd (5.11)

The corresponding expressions for the Neumann problem are,

2 2
M+l,.. . _ 2 r M t
g UE) = r(r+1)—t(t+1)|: or-10r1, {165 * 3 1D YE)
)’ M e ) (r+1)° ) = A (5122
- t+3 Or 118 " Tare3 P r+1t M=01,2,.. 2
M+1,
Q (1§ )! Q (1§ )
M+l . - _ _r s \'I+1
Dt,t (155) = ; Q(lg ), (E )+ Z (1§ )+A (16 ) ;
M=012,... (5.12b)
p° (i£)=0, (5.12¢)
0,0 'S

¥
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with
2N M-l
M+t even
M+l + '
AMe ) - <M t <M t 3@)(15 )
t s
o, M+t odd
(5.13)
In both the Dirichlet and Neumann problems the far field is given by
fkef, . n-M
1 (i§_¥n)
s -
u f(pl) = £ 3 (-1ke)" E -)" l—§(n_—-llti)—'— DMt(igs)Pt(nl) ,
1 'n=0 M=0 =
(5.14)

and the scattering cross section be equation (5.7) where in the present case,

n-M M

n
(1€ _¥n.)
sf _ n-1 s 1 M .
u, {py) = (-1 Z (n-M)! ZF Dy, {18 Py{ny) - S lls)

M=0

5.2 The Disc

As we mentioned earlier, when § <" 0 the oblate spheroid degenerates to a
disc of radius c in the x,y plane, with c;nter at the origin (Morse and Feshbach,
1953, p. 1292). It is easy to verify from the corresponding formulas for the oblate
spheroid that the scattered field due to the presence of the disc is given by

ikeE [¢0] n ( n-M
s, . X% . o Fn) M,
u (pl) =e (-ike) -i)" o (0)
n= M=0 r— l 0 0
f {
'Qr(iEl)Pt(T}l)coswl , (5.16)
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where, for the Dirichlet problem, the recurrence relations (3.26a, b, c) hold among

the coefficients Dr ! (0) with

1 1
- (tcoso ) (t-1): P, \cose>
—e )T ———"—(2t+1) . ,
- 3 oM+ (t+10)! (M t) <M+t )Q )
At '(0) = 4
M+t even
Lo , M+t odd (5.17)

M, £
For the Neumann problem, the coefficients D:Lt (0) are related through equations
(4.22a, b, c) with

M-1

+
aAM A (0) = ¢ [T cos6 Ml At
t ! o MM [M-tY), n(M+t. 3 L (t=0)
2 5 )t PS5 +3) Qor

, 1 T\ 1 1
L(d -t(i- l+1)Pt+1<osOO> HMEe+iNe ”Pt-l<coseo>:] ’

M+t even, (5.18)
1
Aiﬁ' 0 =0, 3+t odd . (5.19)
From (5.16) the far field is
ikc&1 (0.4) n (in )n-M M t
S 0, a1 0t E i Z ' !
uSI(p1)= 2 : (-ike)™ / ( i) (ho M) (- l)l DMt (0)
1 n=0 M=0 Tot=0 =0 0,
. Pf(n Jcos £ (5.20)
t 1 1° :
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The scattering cross seciion is given by (3.7) with

L(-.H) )n-M Mt
wip) = (P! § —— E E -0t DN ()P, (n,Jeos 19,
M=0 T Tt=0 £=0
(5.21)
Normal Incidence:
When 90 = 0 , we can write, as we did in section 5.1,
ikcE (+r )n -M ?M—' M .
u (pl) =e E (- lkc) 2 1) (n M) -‘U"E Dr,t(O)Qr(lgl)Pt(nl)
rs t=
(5.22)

where, for the Dirichlet probleni, the coefficients D (0) are related through

l

equations (5. 10a, b, ¢), with

2t+1
-\ﬂ( 1) ~ , M+t even
M (\,1- <M+t 3>Q(O)

M ——
A (9) =

0, M+t odd
(5.23)

For the Neumann problem the coefficients Dr (0) in (5.23) are related thrcugh

(5.12a,b, ¢), with

M-1 2t+1
( _ +
\lw (ti) M 2M+1<M-t>, r‘Cw't+§ o , M+t even
2 ) '\ 2%

Mg =
At(O)—

0, M+t odd .
(5.24)
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Equations (3. 23) and (5.24) were derived from (5.17) and (5.18),(5.19), respectively,

by letting 60 =0 and £ =0, andthey are in agreement with the corresponding
equations (5.11) and (5. 13) for the oblate spheroid.

For both the Dirichlet and Neumann problems the far field is given by

ikc& n-M M
Z (+n) S M
u® (pl) = —g"— ( ike) {- 1) T 2{:0 Do, t(())Pt(nl) s

(5.25)

while the scattering cross sectica is given by (5. 7) with

n
(£ n,)
n-1 ; 1 M -
u® (pl) = (-i) i: (- M) Et: Do,t(o)pt(nl) . (5.26)

In Appendix I, we give the first six terms of the far field expansion for both
the Dirichlet and Neumann problems.

n-M M
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NUMERICAL CV;LCULATIONS
As a demonstration of their usefulniess, the theoretical results have been
employed to calculate the scattering cross section of some representative prolate
spheroids for both Dirichlet and Neumann boundary conditions. The prolate spher-
oids considered bad major to minor axis ratios of 10:1, 5:1, and 2:1. Back scat-
tered and forward scattered cross sections were determined as functions of wave-
length, and complete polar diagrams of bistatic cross section were obtained for a
few special values of kc. All calculations were carried out for a plane wave incident
along the axis of symmetry of the spheroid.
The expressions employed for this calculation, which we repeat here for con-

venience, were equation (3.32)

Q0 2n
2 2n n+m s{ sf
¢ =4rc (ke) 2 (-1) u (n)u” (n,) (6.1)
2n-m 1" m '1
n=0 m=0

and equation (3.38)

(§ +Tl ]
u (nl)-Z}: T Di,i‘gs”’i‘”l’ (6.2)

where Di),i in (6.2) is given by (3. 35) for the Dirichlet problem and (4.25) for the
Neumann problem.

The series in (6.1) was terminated at n=10 for the 2:1 and 5:1 spheroids
and at n=9 for the 10:1 spheroid. Thus the cross section values included terms

up to and including (kc)20 and (kc)18 respectively. The back and forward scattering
results were also cbtained for smaller values of n so as to reveal the manner in

which the inclusion of higher order terms improves the Rayleigh approximration.
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Figures 6-1 and 6-2 present the back scattering (r)1 =1) cross sections of soft]
and kard spheroids respectively. The cross section values are normalized with re-
spect to thz geometric optics value

2 2
9 («SS -1)

§2
s

(6.3)
g.0.

c = ﬁ =7nc
a2
The number associated with each curve indicates the value of n at which equation
(6.1) was terminated. The Rayleigh curve (the curve obtained by terminating (6.1)
at the first nonvanishing power of kc) is denoted by n =0 for the soft spheroid and
by n=2 for the hard spheroid. The exact result shown in Figures 6-1 and 6-2 was
computed from the proiate spheroidal function series (Senior, 1966). Also included
in each figure is the maximum value of ka (= kc&s) for which the series in (6. 1) con-
verges, i.e. the radius of convergence, as estimated by Darling and Senior (1965).
The present low frequency calculations have no precedent except in the case of the
10:1 hard spheroid where similar calculations (though not as extensive) were re-
ported by Sleator (1964),
Figures 6-3 and 6-4 present the forward scattering (n1 =-1) cross sections of]
the same spheroids. The cross section values are normalized with respect to the
limiting form of the bistatic geometric optics value

o = 7ra2 = nczgz . (6.4)
g.o. 3

As before, the number associated with each curve designates the value of n at which
he series in equation (6. 1) was terminated. No exact results were available for
omparison in this case.

Figures 6-5 through 6-3 present polar diagrams of the bistatic cross sections

of the same spheroids. Since the polar diagram is symmetric for nose-on incidence,
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which is the only case considered, each figure includes data for both hard and soft

spheroids. The back and forward scattered cross sections lie on the heavy vertical
line bisecting the figure with the back scattering (6l =0) value on the upper part and
the forward scattering (61 =7) value on the lower. The values of the cross section

are normalized with respect to the geometric optics cross s=ction, viz.,

-2
_ 4 2"2 2 j
og.c. =47b a |2 (l+nl)+b (l-nl)_j
2% 1)2 -9
2 ’s°s
=4nc >
(ZES-Hnl)
with nl = cos()l .

As noted previously, the values presented for the 2:1 and 5:1 spheroids were ob-
tained aiter terminating the series in (6.1) at n =10 while for the 10:! spheroid the
series was terminated at n=9,

Similar calculations have been carried out by Spence and Granger (1951) for
hard spheroids though the values of ES and kc were different from those employed
here. In the few cases where comparison was possible (kc=1, a/b =5, 10), good

agreement was obtained.
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FIG. 6-1a: BACK SCATTERING CROSS SECTION OF SOFT, 2:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-1b:

BACK SCATTERING CROSS SECTION OF SOFT, 5:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-1c: BACK SCATTERING CROSS SECTION OF SOFT, 10:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-2a: BACK SCATTERING CROSS SECTION OF HARD, 2:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-2b: BACK SCATTERING CROSS SECTION OF HARD, 5:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.

2.0

-

£3




.01

L05¢

THE UNIVERSITY OF MICHIGAN
7133-5-T

L 4 rYT'

W O OO =I0Ww

T'TT"

L4

.02 1 | 1 | | 1 1 | 1

v .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8
ka

FIG. 6-2c: BACK SCATTERING CROSS SECTION OF HARD, 10:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-3a: FORWARD SCATTERING CROSS SECTION OF SOFT, 2:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-3b: FORWARD SCATTERING CROSS SECTION OF SOFT, 5:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FI1G. 6-3c: FORWARD SCATTERING C.XOSS SECTION OF SOFT, 10:1
PROLATE SPHEROQID FOR [IOSE-ON INCIDENCE.
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FIG. 6.4a: FORWARD SCATTERING CROSS SECTION OF HARD, 2:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-4b: FORWARD SCATTERING CROSS SECTION CF HARD, 5:1
PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-4c: FORWARD SCATTERING CROSS SECTION OF HARD, 10:1

PROLATE SPHEROID FOR NOSE-ON INCIDENCE.
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FIG. 6-5: BISTATIC CROSS SECTION OF 2:1 PROLATE SPHEROID
FOR NOSE-ON INCIDENCE,
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FIG. 6-6: BISTATIC CROSS SECTION OF 5:1 PROLATE SPHEROID FOR
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FIG. 6-8: BISTATIC CROSS SECTION OF 10:1 PROLATE SPHEROID
FOR NOSE-ON INCIDENCE.
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FIG. 6-9: BISTATIC CROSS SECTION OF 10:1 PROLATE SPHEROID
FOR NOSE-ON INCIDENCE.
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APPENDIX A

k(£
THE REGULARITY OF THE FUNCTION wip) = ¢ ¢~

p)

Ip this 2ppendix we offer a proof that the function w(p) in (2. 14) is regular
at infinity in the sense of Kellogg, that is

t
<

2 aup)

rar

Iini | rw(p)l <w and lim <w, g

r— o r —»

6

27 .
(A.1)

The proof is based on an expansion theorem (Wilcox, 1956) which guarantees ihat

NN

6
p

NN

the field scat:ered by the prolate spheroid may be writlea in the form

I o)
ikr fn(G, ¢)

uS(p) = g;__ T r>a (A.2)
n=0 r

where the series is uniformly and absolutely convergent for all r,8,§ provided
r >a, a being the radius of the smallest sphere completely enclosing the prolate
spheroid.

From (A.2) it is clear that uS(p) satisfies the first of conditions (A. 1) but
not tae second and, consequently,is not regular at infinity. The function w(p), how-

ever, which by (2.14) and (A.2) may be written

@D

NS £ (6, )
wp) = ¢ i -ren 1 ZL— (A.3)

r n
n=0 r
can be shown to satisfy the Kellogg conditions. The proof is as follows:

The variables £ and n are related (v the spheroidal coordinates by the

1t' n 2 r2
equations - . _ -2ic Urz-'r 2crcosf+c + Vr -2crcos@+c2j] ;
2
n= -2% [\ﬁ-2+2crcose+c2 - ﬁ —2crcos6+c2j]

The factor c(£tn) appearing in the exponential of (4.3) can now be written
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c(€tn) = Jr2i2crcose+c2 =r Jli’ 2cosG(c/r)+(c/r)2

., (A.49)
and, if r is large,
c(€tn) =rtccosf+0(1f/r), r—ow. (A.5)
We can then write for the first Kellogg condition
®
<. 6,9
lim Im(p)lz lim e+1ckcosB+0(1/r) E n
r— o r—>w = r
| Fikccos@
=|e f|<o . (A.6)

To show that the second condition is satisfied we need the derivative of w(p)

with respect to r

[e8)
aup) _ -ik{c(§%n)- r] { l:l_ 1*cosble/r) j, Z {(6,9)
\(1 =0

s *2cos 9(c/r)+(c/r) ol

G

Z (u+1)fn(0, #)
L T . (A.7)

For r large

- = - s cosO(c/r)+0(l/r2) , r—ow (A.8)
\/1f2cose(c/r)+(c/r)

so that for the bracketed expression in (A.7) we can write
+
1- —_1Zcosble/r) __ _ 1- [l'fcosf)(c/r):) E-?-cose(c/r)+0(1/r2)]
\/11’2cose(c/r)+(c/r)
2
=o(1/r7) . (A.9)
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Employing (A.5) and (A.9) in (A.7) we have that

-‘kaccosﬂ+0(l/r) {GI)Z . (6 P

! (G m:}\ 1kc050

which shows that the second Kellogg condition holds also.

2 3uwlp)
' 73

= lim
r —> 00

lim
r—»m

THE UNIVERSITY OF MICHIGAN —

(A.10)
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APPENDIX B
THE SURFACE INTEGRAL FOR THE DIRICHLET PROBLEM

In this appendix we evaluate the surface integral of (3.4). Repeating the ex-

pression,
+1 27
S 2 J D
I S Pulp )— : :
(pl) c( 3 1) dn (¢U(ps)8§ Go(pl,ps) (B.1)
. s
-i 0
From equations (3.2) and (3.3),
+ . 2 h 2
-ike(f’s_n) —ikc(cosOOES:;+~sinOOv&S-1 yi-n" cos ¢)
w(ps) = -e e (B.2)
and from (2.21), with ES < El,
W n :
3 D ] E m (n-m)!
—_— = o —— = 2n+ e (-
o€ Go(pl’ ps) NG U an— 4( 3 (m("n 1){(n*km)'. cos m(§ ¢1)
5 n=0 m=0 =
m m m m P:](gs) m m
R I ' £ R v
Pn (nl)Pn (n) Pn( S) Qn(:l) m Qn (ES) Qn(gl)
Qn (Eq)

a
1 ' (n- m):
= — E “ cm(2n+1)ﬁ,ﬁl))—._ cosup-4)

m

Q (£))
- )Py A (B.3)

Q (£) 7
n s

where, above, we used the Wronskian relation

wEQm(g) P™e)] - PT(Er QT () - QMie) Pe) = CUZ nrm): (B.4)

n "’ 'n n n i n - 2 (n-m)' )

£ -1
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Substituting (B.2) and (B. 3) in the integral (B.1), we have

-1kc§ ® m
' Q (£))
Is(pl) = - 442_16 (2n+ 1) e m; m nl) r;n 1
Qn (ES)
(‘+1 -ike(€ cosGoil)n m 27 -ikc sin@ V‘Ei-l \’1—112 cos P
.\ dne s P (n)\ dfe ° cos m(¢—¢l).
! e (B.5)

The functions involved in the integrands are continuous in the intervals of integration
and the only @:ssumption we made in interchanging integration and summation is the
uniformity of convergence of the series (cf. Whittaker and Watson, 1952, p. 78).

We now use the expansion (Magnus and Obcrhettinger, 1949, p. 155)

[80)

ikocosf .m ’
e = E i eme\kp)cosm¢ . (B. 6y

m=0

Utilizing (B.6) in (B.5), with kp = -kec sin9o \}Ei—l Jl -n2 , results in

-1kcE @ _ n Qm(g)
p)) = - > D> > ¢ (-i'e,(2n +1>§“+m;: Py ) L
v E 0 n0 m0 Q (§)
n s

27

-ikc(€ cos® T1)n
2
dne S ° P;n(r;)Je@csinBO 82-1 \’1-11} d?)cosm(ﬂ—ﬂl)coslﬂ.
-1 0

(B.7)

The integration with respect to § can be simply performed, while to integrate with

respect to n we use the relation (Morse and Feshbach, 1953, p. 1325),
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7T
iz cosvcos Hpm

due
0

- 2/‘
(cosp)l (zsinvsinu)sinu = i ‘/ P (cosu)J 1,(2) .
m 2 7
(B.8)

In this expression we let
n = cosu
scosv = -kel€ cosO T1)
I3 o
. 2
/zsiny = kesin0 Vc -1
oV s
so that
9 £ cosfH -1
2=ﬁgc(? T cosn ‘T; COSV:—;‘S‘;,_—C)__'
L s 0]

€ T cosf
0

We can then write

_ikc(gscosooil)n . - 5
dne P (n)d (kcsinB /(E_ -1N1-n )>
n m\ 0 S
-1
- gu=um o m E’s cos Gofl
= % <1 _s__ o +
\ﬁ(c(%sfcoseo) Pn gsfcosgo Jn+1/2 kC(gs—COSQO)‘J. (B.9)

Performing the § integration in (B.7) and using (B.9), we obtain

+1

-ike& S @ n

Q (5 )
e < n (n-m)' n
I'(p,) = - € (-i) (2n+1)—-———' P (r; ——-—cosm¢
1 2 0 50 ™ {(n+m)! IQ(E) 1
cosG _1
Cg _COSG ) n+l/2 [kC(g —COSG )]\/kC(g —FCQSG ) ’ (B.IO)
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where, above, we used the relation (Magnus and Oberhettinger, 1949, p. €3)

+
p:‘(-x) = (-n" "‘p:‘(x) . -lgxgl.

(B.11)

We now expand the Bessel functioe in (B. 10) according to (Magnus and Ober-
hettinger, 1949, p. 16),

_ m E _tizf2)" 2) e
J (Z) (z/2) f'F(m+l+1) , largz| <7 (B.12)
to get
® n n+2!
-ikeE . [ike(€ Tcoso
Is(pl) - e s _g ? E E . (_l)n(2n+1)§n;m;: [_ 82 OT]
0 n=0 m=0 AL B
+ m
m §scos90-1 1 m Qn (Sl)
‘P T Toose 5 P (n)) — cosm¢1
s~ ) 1!P(n+1+§) Q (§£)
n s
ikeE w (n/2] n-2¢
s T n (n-20-m)!
= -e ; > Z [atn-200+ | et
n=0 (= m=
. + A n + .~
[ lkc(E -cosuo)] om (Escost)o_l\ i
- _ o
2 n-2\ F51¢030 /) 41 ra- 1+—)
m
m Qn-2l(gl)
n—21(n1)—;1—_ cos mf
Qn-2l(gs)

This last expression may be written as follows:
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Is( ) = -ikcgs ' i( ik )M(E tcos6 )M'% l : (2[+1)“;mu
P/ =-€ 2 4= -1kc g-cosf ‘%z—()"m: cm (Fm)
€ cosf t1
- (S m
£ <E Zcos 6 QM)
S 0 m 11
" TMIMALS, ML 3N e ) T cosmpy (B.13)
2 k_2—>'r‘<_é—+§/ Q (€)

where in the above series in k the only nonzero contributions to the coefficients are

made by terms for which M+£ is an even integer.

We have then written the surface integral (B. 1) as a power series in ke of

the form

-ikef
*p)=e ° E (-ikc)MIlsw(pl) (B.14)
M=0

where l]SVl(pl) is given by

M £
5 _ M,m m m
IM(pi) = Z —Z- A, (ES)PI (nl)Ql (’g'l)cosmlﬁ1 , (B.15)
=0 ==
with € cosf T2
M po( -8 0
(€ tcosh) (£-m)" £ <§Stcoseo>
e 1 — O — (2041) ;2L ,
m 2M+1 (£+m)" (M—_l) F(‘M+§>Qm(€ )
2/ 2 2 £ s
A ) =
! s M+{ even
LO s M+£ odd
(B.16)
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APPENDIXC
f
EVALUATICN OF THE INTEGRAL cf(s, £ ES)Qr(E)dg .

@® §1 @
g scle e ek =\ dwqlErrieq’ e+ \ aple leqle
t 7’1" °s ‘r° t 1t r t 1t '
£ : 3

S S

Pf(s ) (“”

o

dEQ,(£,)Q (E1QL(E) . CRY
Q () tor
t s JES

From Legendre's associated equation we have that

{
dQ (§) 2
d[_ 2 r —]
dE {(1-87) & :}+E(1+4‘.)-1-F2-‘;Q(§)—0

dQ (&)] [ 2‘J
d 2 ¢ ‘
— {(1-£&7) t(t+1) - Q. (§) =0
5[ ) p-god

¢ yi
Multiplying the first of these equations by Qt(E) and the seeond by Qr(E) and sub-

traeting the seeond from the first we obtain the following:

dQ Gh . ) de(s)
— —r— o E et —
Q ('s) a5 (1-€ ) | -Q (E) & (1-£7) T :}

# [srr 1) - 1) ] QUEIQ(®) = 0

Integrating this expression we have that
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E f00)

) dQ (£)
QN1 -£)
£ ¢ d
s’°1

q X6

1 Q(®)
T Hr+1)-tt+1) [2r+1 [(r IH)Q 8- (rﬂ)(r“)Q (‘5)__1

£,

£
Q6 1

T oot+1

2 8,
Similarly,

5

r(r+1)-tt+1)

P! (8)
_ 1 t ‘ 2
T or(r+1)-t(t+1) [2r+1 Er-l-Fl)(‘.‘)rl-l(“s)'(1"*'1)(r+l)Qr.1(“sa

Q (5) -
r ] {
- el [t-£F VP (E)- (t+1)(t+l)P l(sil ; T#t#0 .,

Substituting (C.2) and (C.3) in (C.1), we obtain

{
2 dQ (8) dP, (&) 7°1
I (£“-1) { { t
d€ Pt(E)Qr(E) = [P (§) —— g Qr(E) & :Ig

7133-5-T

§po r er(s)

dsQ(s)Q (&) = r(r+1) ST Q(s (1-£9) = J
£ € .
s’ 1

{
4, dQ®T)
-q 65 |0-£H—; h

E m}
I

1

L(t-l + 1)Qf+1(£) - (t+l)(t+l)Qf_l(EZ|] ; T#t#0. (C.2)

3

S

(C.3)
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(o0
Q(€,) da(€,)
1 L. _ t 1 1 _r’1
S dEC(£,€ . E)Q (8) = —— e {(e 1)E>(e> )

13
1 1 1
dP (. )7 dQ (£ ) dP (£ )
1 t 1 2 1 __r’s 1 t 8
-Qr(el) :]-(es-l) l}t(ﬁs) dgs - Q (6 ) dg :l}

8
dg,

1 1
Plg) [ dQL(g)) dqQ; (£,)
t 1 2 r °1 J t 1
+ t(e 1)EQ €) e - Q) — ]}

1 1
L
Q, () P(g) dQ'(£) dQ(E)
[(g -I)I—Q(E) — -Q’(e) gs]}

r(r+1) t(t+1) Q (g) L Lt s 5
] | /]
Q,(5.) dP (£,) dP (£ )
_ t 1 2 1 t°1 2 Al t s
= ATl otrD) {-(El-1)¢?zr(El)————-dE1 +(ES l)Qr(es) —dgs }

plie.) daQl(e,) QE)
N I L P T e U O t\S1
r{ir+1)-t(t+1) 1 r-i d{,—'l r{r+1)-t(t+1)
PE) |, dQ ()
(€2-1) =% Qe ) ——
Q (§ ) s

.
€2 - 1R (€)) apl(g,) aqQ,(£,)
_ r-l l(g—') t Pl(g-') t "1
= Hr+D-ttrn @ dg, o1 dE

2 1 £
(€-1Q ) QUE) [, dP(E) dQ(ES)}

¢

r s t S

’ Q (£ )—— P (6 e
rir+1)-t(t+1) Qf({,—' ) t s &'S &'S

1 { 1
%) (L) ( 1)1+ Q5 . Qs (t+ ) (_1)1
T Hr+l)-tlt+1) (t-2)! (r+1)-t(t+1) ¢ (t-£)!
QE)
{cont'd)
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!

_ (-l)l C(e+e)e Qr(gs) Q‘(g )-QI(E 4 r#t

T orr+1)-tt+1)  (t-1)! Ly U Tl [ agt
Qt 8

Also,

[0 0]
f f
S Ct(§.§1.§S)Qr(§)d§—0 for L3>t
£

°s

1
since Ct =0 for £ >t.
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APPENDIX D
DERIVATION OF RELATION (3.21)

In this appendix we give a proof of the statement of equation (3.21), that is

o™ ey = (£1)tpM !

et Eg D, (5) . LrtgM. (D.1)

The choice of sign is determined by the sign chosen in (2.18).

The proof follows an inductive argument. First we show that (D. 1) is true
for M = 0 and then that if it is true for any M it is true for M+1i.

Since r=t=0 when M =0, equation (D.1) is certainly true for M=0.
Assume next that it is true for M. We can then integrate (3.19) and, following the
same procedure as we did there, end up with the recurrence relations (3.26a,b, c).
We are interested mainly in (3.26a) since for r =t equation (D. 1) is obviously true.
Repeating here (3. 26a) and subsequently employing it in (D.1) which is assumed to

hold for M, we obtain

M+1,1 _ 2 rr- 1) )3 Ht-£)
r t (E ) r{r+1)-t{t+1) [Zr 1 r-l t(gs 2t-1 r, t l(gs)
+ (tHINt+2+1) M, £ € )- (r+1)r+2+1) (g )
- 2t+3 r,t+l °s 2r+3 r+l t°’s
B 2 r{r-f) +qyrHt-1 M, £
T orr+1)-t(t+1) [Zr R Dt,r-l(gl)
t(t-£) 4+  r+t-1 Ml + UHINt+E+1) L T M {
+ ot 1( D tl (g) 2t+3 (Z1) t+1, (gs)
) (r+19)(r+1'+1) (+1)THL ML (g—)]
2r+3 t r+17°s |
{cont'd)
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™ 2 [t(t LMt (¢ g HE=D ML

t{t+1)-x{r+1) | 2t-1 t-l r°s -1 T, r-1°8

+ (r+l)(r+l+l) (§ )-
2r+3 t l"'l s 2t+3

(t+1Xt+2+1) M Ji

&lrs‘;]

(€

= (tpFtpML ’(gs) . (D.2)

t,r

So (D.1) is true for M+1 if it is true for M. Since it is true for M =0, it is true
forall M (M=0,1,2,...).
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APPENDIX E
DERIVATION OF EQUATIONS (3. 24a, b)

In order to arrive at equations (3.24a, b), we start with (3. 22) and (3.23)

which we repeat here

M+l M+l t

- r{r-1) M, ¢
M"’l Py 2? Z Zﬁr+l) t(t+l)[2r-l Dr-l,t(gs)
t(t- l) + (t+1)t+2+1) M, ¢
* 501 Dy, t- (‘5 T r, 4185
Q (§)
(r+1Xr+£+1) M { r’s A ]
- o D, t(gsq [Ql(g ) Q (€)- (Elﬂ Pt(nl)coslyi1
(E. 1)
M+l M+l ¢
e ) = 7 7 YEM 1"(& )Q (£, )P’ (1 )eostf . (E.2)
t=0 r=0 =0

When r#t, a comparison of these two equations gives (3.24a). When r=t, we re-
write the above equations as follows.
Equation (E. 1):

M+1 M+l t

_ 1 l‘(r-f) M:l
M+1 ) < Z—J rZ—-' L r{r+1)-t(t+1) [2r-1 Dr-l,t(gs)

- t(t-1f) pM £ ( )+ (t+1)t+£+1)
2t-1 r,t-1" 2t+3 r, t+l

(" )
(r+ 1 r+f+1) M { { J;
T 2r+3 Dy (& ﬂ Q€ )P, (n )cos 1§,
M+l M+, t

-2 Sﬁ —' 1 [ﬂr-“DM’l )
t:Oi r:o' [0Jr(r+l) tt+1) | 2r-1 “r-1,t°s

(cont'd)
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- Ht-1) DM,I my+ (EF1NEHLH1) M, 2
+ 2t-1 “r,t-1"°g

2t+3 r, t+l(§s)

Q ()
(r+1)(r+1+1) s 1
2r+3 r+1 t(gsil I(E ) Q (€ )Pt(nl)coslﬁl

Equation (E. 2):
M+l t

1M+1(pl) - Z Z EMH' (€ )Q (, P! L (n,)cos 1p, .

t=0 =0

A comparison of (E.3) and (E. 4) gives

which is equation (3.24b).

79

(E.3)

(E.4)

M+1
M+, ¢ _Z -2 Nr-1) M,! 5 Wt-0) M,
Et.t (Es) B py r{r+1)-t{t+1) [2r 1 r—l t(gs) 2t-1 Dr t-l(gs)
Que,)
s DY) M (rdIrELrD) M, 2 (gﬂ 5
2t+3 r,t+tl1 °s 2r+3 ri-lt 8
Q (§B)
(E.5)
Using (3.24a), the above expression can be written
M+1
' Q (§ )
eyl =- 2, e e (E.6)
r=0 Qt(E )

a 1y W
o
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APPENDIX F
THE SURFACE INTEGRAL FOR THE NEUMANN PROBLEM

The integral to be evaluated in this appendix is that of equation (4.6)

+ .
s 9 -ikc&s ! 27 ik N aul(p )
= o - 1KCn
I (p}) c(ES De dn\ dfe Go(pl, ps) 3 (F.1)
-1 Jo S
By equation (3.3)
aui(ps) [ SS —' i
= -ikc|cos 8 n+sind cosf|u(p)
8§s o o gi_ 1 i s

2 2
|" ss\/ 1- n2 -ikcE:os 6 En+sind \[£ - 1,/1 -n cosa
= -ikc {cos§ n+sinf cosfle .
L 0 0 ;52- 1
S

Substituting the above expression together with the appropriate part (€ <& 1) of
(2.22) in (F.1) we have

£ipp = - K0 2 s ZZ( D™e (2n+1) AL e )Q (E,)
Py = (n+m)' M n M’ ‘51

m +1
P (¢ ) -ikc[g' cos 6 il]n
-[P:’(gs)——l‘-—s— Q:’@S] dn P2 (n)e s o

m, 0
Qn \ES) 1
2; 2 2
e £ 1-n° 7 -ikesing & -1 ‘jl-n cos
df|cusB n+sinf —F===—cosf |e
0 £s”

xcosm(¢—¢1) . (F.2)
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Using (B.4) for the Wrnnsklan and the expansion (B.6) with
ke = -kesin9 \} -1 y1- n , we can write for equation (F.2)

ike€ , Qe.)
e SIS( = _k_. 1)l€ € (20+1) {n-m). Pm(n )_2__1.
1 4n £ £ m (n+m)! "n 1 Mee ),
Qn 8
*1 o 5 5 -ick(EScos 001' )n
. COS m¢1 dryPn (n)JchsmOO‘/Es—l \/1 -n )e
-1

27

3
d¢<cosG n+sin@
0 o

SJ—_ cos¢> cosffPcosmf . (F.3)
g

To perform the integration with respect to § we employ the identify

cosfcosif = 1 I;os(l+1)¢+ cos{f- I)QE]

2 =
the result being
@ n m
ikcE . Q (£)
e =-15£§ 6(1) (2+1)(—n—n-1l-P(n)n 1cosmjl)
2 7 &5 m)! 1 Qm(E ) ]
n s
+1 . +
-ike(€ cos9 T1)n 5
s o m . 2 2
dine nPn (n)JchsmOO\/ES—l \/l—n >
-1
£ sin€ S , Q™(E.)
+ 5 Tt ™ 2 ) B P ) L coem,
Es-l n=0 m=0 Qn(gs)'
1 ike(s cosd *1)n
s o ’ 2 _m ) /2 / 2
dne 1-n Pn(n)Jm_'_chsmOo Es-l 1-n>
-1
(cont'd)
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g sing_ , Q (£.)
+— Z'Z )™ 1(2 +1):n+m;' "n ) ; L cosm¢1
Qn (§s)'
+1
-ike(€ cos8 t1)n _
e  ° - P:n(n)Jm_chsinGO £§-1 ﬁ_-~n2>.

-1 (F.4)

To perform the integration with 12spect to n we employ the following recurrence

relations (Magnus and Oberhettinger, 1949, p. 62)

(2n+1)np:‘(n)=(n-m+1)p (n)+(n+m)P L, mgn, n=0,1,... (F.5)

(20+1) |1- nzpm( )= Pl - P ), mgn, n=0,1,2,...  (F.6)
(2n+1) (J1-p Pm(n) (n-m+1)n- m+2)P (n) (n-m- 1)(n+m)Pmll(n),
mg<n n=0,1,... (F.7)

Substitution of these expressions in (F.4) and a simple rearrangement of the terms

leads to

. [0 0} n m

ikef ke @-m: Qn-.‘-.(gl)

e Iip)=3=cos6 € m' D (n+m)" n-l )
n=0 m=0 Q (§ )

Q (E )

(n-m+1)! m n+l

Tarmr Fon™) Tm ( )’}cosmﬁl

Qn*b-l gs

+1 +

-ike{€ cos8 _1)n —_—
dne S ° Pm(n)J Gcsin(') \/;32-1 ‘,l-n2>
n m o' ’s

-1
(cont'd)
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©_ n-1 m
lkc Essm o m+1 (n-m+1)! P () Qnﬂ(El)
e (n+m+1)! o+’ &b
Qn+1 s
+1 . +
' (€.) -ikc(E coz6 Z1)n
_(n-m-l): p™ ( n-l 1 _l c08m¢ ane S o) Pm+1(n)
(n+m-1). "np-1 l (& )'_] n
Qn 1°s -1
. {2 2
JmHQ(csmGo Es-l ll‘-r; >
: o ntl _ o
+ike Essmeo T‘T(_i)m-l{(n-m+l)! e )Qn I(El)
2 )1‘5?_1 E et (+m-1! "ol om
= n-1"s
(£,) T ike(g_cost *1)
(n-m+1)! m ( )Qn+1 1 q TREls geosou =1
"o mo1: Pan'™ —"‘_( y osm;ﬁ1 ne
Qn+1 Es -1

m-1 w0 (71 it
P (n)Jm_IchmGO\/gs-l 1-n> )

To perfr. m the integration with respect to n we employ (B.9) in Appendix B, the

result being

ikcE .
e SI“(r ZGZG (-1 )D\F; (z)P ")

(n-m)! m Qn-l(sl) (n-m+1)! Qn+1(51)
' {rﬁ-m-l)! Pn-l(nl) m ' + (n+m)! Pnﬂ(nl)-——-' cos m¢1
Q&) (€)

Qn+1 s

° (cont'd)
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m m

L {{o-m+1): P2 )Qn+1(gl) (n-m-1)! P )Q (E) P

(n+m+1)! o+l 1 (n+m-1) ‘01" cos mf,
Qn l(gs)'

QL (£ )

ntl °s

£ Q@ ntl
ikc s n 21r

+2€ 5ing_ ZZ( i) (2P \(p)
2 "0 TS Ly g T

m
{ _ ' Q ,(§) _ ; Q (E )
. :n m+1)! p™ (n.) n-1"1 (n m+1)! Pm (n.) nt+i }cosm¢l,

n+m-1)! n-1"11 “n+m-1)! “n+l 1

Qn I(Es)' . Q +1(§s)
(F.8)
where
z = ke(§ *cosh ) (F.9)
s o
Escose T
2 (F.10)

= § tcush
s 0

Equation (F.8) is now put in the following form

ket @ n
s.s, . _ ike E § 0+l ,glr m (n-m+1)!
= : (pl) T g ¢08 60{n= L em(-l) z Jn+3/2(z) Pn+1(B) (n+m)'

Q (E )
- PMn,) cos mf
n 1 , 1
Q, (ES)
® _ n m
e Q_(§))
I I R A T TR
n=0 m- . Q, )

X cos m¢1

(cont'd)
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g [08)
ike . 8 2 n- 1’_2£ (n (n-m)!
' ? smeo]gz_-l {n= : ;( ) l/( )P ( +m)!
S

m
Q
m n "1
‘P n) e )'cosm¢1
Qs
m
0 Q (£.)
Z‘Z( )nﬂlz—w ()P ):::Tm;—,P (nl) n_1 cosm¢1}
Q (E )
£ n+2
ike . S o+l (27 (n (n-m+2)!
T smGo ,EZ_I{Z Z( i) \/z— n+3/2(zlpn+1 (n+m)
s
Q™)
Pm(nl) 1 cosm¢1
Q (E )!
® n m
Q (£.)
n0-1 (27 {n-m)! _m . *p°1
-Z Z(-l) ‘j—z'J /( )P (B)—-———(n+m 51 Pn (nl) - cosm}
0=l m=l Q ()
n s
(F.11)
Substitution of the relations (Magnus and Oberhettinger, 1949, p. 16)
2n+1 d
Tpyla) = 5= Tt (D Gy T 2) (F.12)
2n+tl d
+3/2( z) = o n+1/2(z)-'(-i-z' Jn+1/2(z) (F.13)

in (F.11) and a regrouping of the terms leads to
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eikc&.sI S(p.) = - X¢ coqe 27 o 2n+1 (n-m)! (2)
p m 2z (n+m)! n+1/
n= 0 m- 0

m

Q ()

n "1

Ln+m)P (B) -(n-m+1)P +1(Bj|P (nl)

cos m¢1

Q(E)’

n m

®
'S ‘ : Q () )
+ E € (-i)n(2n+l)BPm(B)J (zprdnoml pme B L g
4n—=6' fg m n +1° (n+m)! "n 'l 1

Es—l n m=1
m
Q (€.)
[:m+1(5)+P (OJP:‘(r; ) L cosmﬁ1
Q (§ )!

Q_(5))
ZZ( i) (2n+1)(“ m’ ;'\}1 5° PMpp 2tn)

n=1 m-1 Q(E)'

n(2n+1) (n-m+2)! _m-1
. cosm¢ ZY‘( i) +1/2( z) atm) Pn+1 (B

n=l ms=
m,
Q (£))
+- (—“-'—“l—— P (3) P (n)-—L—l—cosm¢ (F.14)
(n+m-2) 1 Q (E ) 1

This expression can be simplified using the properties of the Legendre functions
mentioned above. After simplifying and collecting terms in Jn+ 1/(2) and its deriv-
2

ative, we have
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ikcE
e I(pl)--—,/z"{g e (-0"(2n+ 1)2“;2;, ey
2

Qm(E

\/ )
EScose + smeij BIP ( 1 cosm¢}
J Q (E )
-® _n _
ke |27 >_.‘ N 2n+1 (n-m)!
"2 \z {Zm £t o arm): n+1/2(z) Eose (n+m)P 218

m=u

-cosf (n m+1)P (43) smB 7=2= 1- ;32 P (B)
s m+l 5 m-1
+sinf BP (3)-(n+m)n-m+1)sin6 —ps=—= 3P (p)
o ,52_1 n ) 252-1 n
s s

m

Q _(£))
Pm(nl) ol cosm¢1}. (F.lsi
Q (E )

But by (F.10)

g 1-3°

Bcos@ Js_z— sinf_=1. (F.16)
-1
S

Moreover, from the definition of 3 and the recurrence relations (Magnus and Ober-

hettinger, 1949, p. 62)

1

+1 m m
(B) = [}n-m)BP (B)-(n+m)P (Ba , (F.17
’1-;32 n n-1 *
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= 1 . '
PUT) = ———= ,spnm(a)-p:iluﬂ.
(n+m) y1-." &
we have that
m m S 1-*32 m
cos0 (n+m)P ~ (3)-cosf (n-m+1)P_ (3)-sinf ——=—— P (3)
o n-1 o n+l 0 / 2 n
£ -1
s
3 3

+ sin6

o f!s_ B P;n+1(p)) -(n+m)}(n-m+ l)sm(,o];: BP::\-I(B)
15571 JE -1

f(Esfcoseo) m o om0
= —5—= [0-me 0P @ 5 £ PP (0t mP™ ()]

§ ~1
°s

Substituting (F.16) and (F.19) in (F.15) we have

® n
ike€ <
8.8 _ _kc (27 S N P (n- m)! , ol
e I (pl) =-%2 i3 né £ Em(-l) (2n+1) et Jn+l/2(z) Pn (3)
m
m Q&)
Pu(nl) m cos m¢1
{ '
Q) \ES)
X n + +
ke |27 g g e (i) catl (n-m)! 3 (2) (-1)(§S_coseo)
- - ' 1
2Vz £ odm 2z (n+m)! "o+l Ei-l
m m m m Q;n(gl)
ln-m+DP (D FE P ) -(n+m)P - () [P (n,) cos mf
nt+l s n n-1 n 1 Qm’E y
n'’s
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According to equation (B.12),

{ 22+n

m'ﬁ
2 E 1
f Jn+1/ (z) = ﬁ 21+( L 2
2 =0 2 L r'(n+l+§)

®
. E (- 1) (2t+n+— )
z Jlr*‘/(z)' T2 204n 3

2 1=0 2 L {n+e+ 5)

21+n

Substituting these expressions in (F.20) and using the formula

)( _Obz> Lgfakbn-zk i

n=0 k=0
we obtain
ikeE a [n 2} n-24 n
S_S, k N +1)
e 1 (p1 :-,ﬁfﬁ E ) / em(—i)n :H(zn 1 [Z(n 21)+1?_|
n=0 £=0 m=0 L'(n-£+= )
m
o (n-21- m)' ( yp™ )Qn 21(61) g
(n-2{+m)! n ‘71B n-21 " cosm 1

e

® n 2 n-2£
n

(n-2{-m)'
y>' € \—1) z 2An-20)+1 |7
2z <z L =5 ll' M- l+—) [ (n-2{+m)!

(+1)(§ tcos6 )
: 0 En 20-m+1)PT_ (5)
1

2 n-2641'"
-
m
Q ,[§)
= @ =201
3§ 2]Z(B) (n-2¢+m)p™ n-2f- l(ﬁﬂ P;n_ﬂ(nl) —  cos m¢1 .
Qn Zl(gs)'
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A simple inspection o this expression reveals that it is zero for n=90. We

can therefore write
-ikcE z—l
s _ s o (M.s .
I (pl) =e M:'iJ(-lkC) &‘(pl) (F.21)

where

s, ,_ -1 M-1 20+1 (1- m)!
IM p,) = M2 (5 cos 6 ) Z __, m (M 1>' '_,(MH +§> (2+m)!
"\2 "2

2

" (-)(Es-coseo) m m
g (2M+1)P R+ [(l-mﬁ)PH_l(B);E Pt (B
g-1 S

Q (E )
-(l+m)Pl 1(B] P ( cos m¢1 , M+{ even , (F.22a)
Q (E )

8
= 0 + ¥
Lp) , M+{ odd, (F.22b)

where above we have substituted (F.9) for z and we have rearranged the series.
Equation (F.22a) can be further simplified by taking into consideration (F.10) for

B and the relation (F.5). In this way we can write

£

M
8 _ M, m m m
IM(pl) = E E A, (ES)P!Z (nl)Ql (El)cos m¢1 (F.23)

where

90
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(E *cosH ) =0
M m o (£- m)! 1
(€2 =-€ V1 (20+1)
M+1 { U
9 (£+m)! <M1>,—~M+l 3>Q (€
cose ti ] m Escoseoi“l
+
MP)’ g T oost > 2 [l(gscoseo"l)Pl (g *cose >
Es-l S 0
o £ COaO 1IN
_ +
(l+m)(§s-coseo)P <§ *cosG ]j M+£{ even , (F.24)
AI;'I’m(gs) =0, M+{ odd . (F.25)
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APPENDD(G
THE INTEGRAL S dSK (€, 5 3 )Q (€)
3

S

According to the results of Appendix C,

N oo 3
F; ] !
S dg Kt(E.Sl,SS)Qr(S) = Qt(sl)
'3

@

1
T ! £ !
dg Pt(S)Qr(S)*'Pt(Sl)g d€Q, (£)Q (€)

8 Ss S1
{
Pt(ES)
N
t

0 4]
Q8 )K 45 Q, (E)QL(5)
Q r

(SS)' JE

S

Q,(€)) 2 (1 I ]
= Wttt D) (51-1) Pt(gl)Qr(gl) -Qr(gl)Pt(gl)

I}
P (£))

2  BURNN SURREY SUY S t 2
-(Ss-l) Pt(Ss)Qr(SS) -~Qr(§s)Pt(§s):]} MEFTTTRRTIET (Sl D

P (£ ) Q’(g )

. 2
Q (€ )
t s
{ole )l - @l okt )]
l?t Ss Qrgs -Qrgs Qt Ss
2 1
(. -1)Q (£}
_ 1 r’l /] ! . f '
T or{r+1)-t(t+1) [Pt(EI)Qt(Sl) -Qt(gl)Pt(gl)_—J
(S -I)Q(S) [ Q(S )
Q, (€ )P(s ) - P(s )Q(S )_J ==
I‘(r+1) t(t+1) Q (g )1
(cont'd)
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- (-1)’ (t+1): Q’(g )+ (-1)‘ (t+1)
r(ir+1)-tt+1) (t-2)! “r°1" rr+1)-t(t+i) (t-2)

1
Q (&)
-~ q )
Qt(gs)
Qe ) -
- 1 1 (t+2) r°s 1 1 . l‘#t
(-1) r+1)-t(t+1) (t-2)! {Q‘(g )'Qt(El)-Qr(El{} et

-

S

®
1 1 .
S Kt(E.El.ES)Qr(E)dE =0 if  £>t.
§

8

(G.1)

(G.2)
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APPENDIX H m
REDEFINITION OF Qn

The original definition of Q:‘(u) as given by (2. 26) is

2 /2
Q) = )? Catm+Ora/2) @ -n™ C1+m+2 n+m+1-n+-3---l>
n 2n+1 r(n+g) ntm+l 271 2’ 2 ! 2’ #2 '
lu]>1, |arglu-D]<7.
(H.1)
Hobson {1953, pp 233-234) has shown that if
2
z=u+ju -1, (H.2)
then the function
1
(152-1)2.._m 1 3 1
u) = —y 2F1<72-+m,n+m+1;n+—2-;-—2> s
z z
[z]>1, |argu-1)]<nw (H.3)

satisfies the associated Legendre equation. Using this expression we can define a
new function Q[;n(u) which holds for |z|>1 cr equivalently |u|> 0, which is iden-
tical to Q:](M) givea by (H.1) in their comm~a domain of definition, |u|{>1. To do
this it is sufficient to compare (H.1) and (H.3) for 'arge values of |u|. The result-
ing relation between the two functions is

Qnm(“) ™™, Mo+m+1)7(1/2) o) (H.4)

r<n+§>

or
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l
m ,m F(n+m+1)l‘(1/2) (u -1)
f'(n+§) +m+1

QL = 1) ( i L

2’ 2
|z]>1, |arglu-1)]<7.  (H.5)
Letting u =i, £ >0, we have z = i@+ \’§2+1>, and

2 .m/2
2™ rtmayrajy  E D

/ 1
e F(n+§) Qg‘+ J§2+ 1>“+m+‘

Q?(is) =

X 1+ ,nrm+ +§; - . >
2F1<2 m,ntm+l;n 2 s /g_?;l)z' )
£>0 . (H.6)
Using the relation (Magnus and Oberhettinger, 1949, p. 8)
F_ (a, b;c;z) =(1_z)c-a-b F (c-a,c-b;c;z)
271 271 ' '

we can write

1 1 3.1
+ +m++ +_..__ o — 0 —
2F1<2 m, n+tm+1;n 9 2> ( > 2 IG m+l, = > -m;n+ 2, 22> .

(H.7)
Letting z= ié+ \fE2+ 1> and substituting in (H.6) we obtain

(-2 Co+rm+1)r(1/2) (g2 )™/ 2

i F(n+%) [@w g2+1>2+1]:""“<§+ /€2_+1>n-3m+1
" F : ; §;_ - > > .
2 1< m+1 2 -m n+2 mz— , £20 (H.8)

Qj‘(ig) =
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1 3
which holds at £ = 0 also since (n-m+1)+(§-m)-(n+§) = -2m <0 for
»=0,1,2, ... {Magnus and Oberhettinger, 1949, p. 7).
Equation (H. 8) can be rewritten to read

m

o |-

Qie) - DT Carme1Cq/2) (£%+1)
n ™ ) (e \/?+_1> ~m

N

/

1 3 1 >
- JF (n-m+l,--m;n+—-:- 5 , £20.
2 1< 2 2 §+¥/g +1\;2

(H.9)
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APPENDIX I
THE FAR FIELD FOR THE DISC

In this appendix we give the first six terms in the far field expansion for the
disc for both Dirichlet and Neumann boundary conditions with the incident wave at
normal incidence.

The far field in both cases is given by (5.23). This expansion involves the
coefficients ASI(O) given by (5.23) and (5.24) which contain the Legendre functions
of the second kind and their first derivatives with respect to i§s evaluated at §s =0.
Their values are determined as follows.

From equation (5.5),

i (n+1)l’”(1[2)

1
Q (if) = 6 1,o;r ;-—-——'——>,
n in+1 Mn+- ) (g+ lg2+ >“+1 21 2’ (g'ﬂ/gzﬂ)z
£20 (1.1)
Letting £ =0, we have
_ _1 rm+1)r(/2) 1. .3,
Qn(O) = o 3 2F1(n+1, 53 n+2,-1) . (1.2)
i F'(n+§)
Now,
(3
3
rn+—
JF (n+1, 35035 1) = ﬁl ~ < 121> . (1.3)
(e )r(3+)
Then (1. 2) becomes
_ 7n!
Qn(O) = . (1.4)

2
1 [ n :'
PG

* See, for example, Handbook of Methematicai Funciion:, National Bureau of
Standards, Applied Math, Seri /0. 55, p. 557 (June 19.:4).
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Or, we can write

(2n)'
Q, (0) = e ,
i 21y pra

n=9,1,... {1.5)

on+1)!
(0) = dleipsell) 5 . n=0,1,... (1.6)

n+1 3
(-4) [r(n+§>]

Turning now to the derivative of Qn' denote by QI'I(O) the derivative of Qn(iE) with

Q2n+1

respect to i§ evaluated at £ =0. From (I.1)

3 3

-1 P+ 1)(1/2) Y(n+1)2F1(n+1, l; n+=;-1)

) 3
it P\n+§)

Q) = 2073

2(n+1) 2 5
4 — = o -
o+ 3 2Fl(n+2, 2,n+2, 1)} . (1.7

Employing (I.3), (I.4) and the relatica

2i-"l(a,b;a-b;-l)=2.a(7(b—l)-ll"(a-b+2)[ N 13 1

F(Ea)F(E +Ea-b)

1
F(%+%a)f‘(l+%a-b)]’
(1.8)

which can be found in the same reference and page as (1.3), equation (I.7) becomes

_nlw [ n+1! _ 2 (1.9)
n o+l |0 n n l) (ﬂ l) T
i2 F(2+1)F‘(2+1) F<2+2 f“2+2__'

Q;I(O) = i(n+1)Qn(0)-

Finally, with the help of (I.5) and (I1.6), we obtain for (1.9),
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T 7 (2n)! _
an\O) . n=0,1,...

2
(-4)" I:P(n+ % )jlj

7(2n+1)!

(2i)2n+1 n'n'

! = =0,1,... .
Q2n+1( ) n » ’
We now employ equation (5. 26) and write:

For the Dirichlet Case

sf _ 2
uo(p )= T 1:'o(nl)

sf 4
u, (py) = 2 P tny)

sf 2 /8 4
u2(p1) v P(nl)+—\3 o5 Po(nl)

f
u; (pl) =-—7%P (n )- <— +—> Po(nl)
32 32 4

st
u (p) = oo Pyn)+ ( 105 Pyn)+ (ﬂs' or 37 Tr

f 4 16 92
ug (b)) = ——5 P fn)+ ( 5 2> Pylny)
5257 N 9r° 567

(1.10)

(I1.11)

P(n)

6
+<—g--@—+ 208 P (n,)

T 97r4 20257 2/

Substituting these results in (5.25) we obtain
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ikc€ —
1 2 ( 2 )

-= + — + —
{ - P (n ) ike , P (nl) k c l oy P2(n1’

4 33| 4 16
\ )Pml_J+1kc l:QP(nH 4 P(n:}

n

2 (8
= - P (n )+ > (nj,
[2 9” 105#)2

+ike [ SP,n )+ ‘64 F22 2> P,(n,)
97 567
64 80 5 R 61
(&, 508 2>p(n1)=+0(kc) . (1.12)
\77 Or 20257 — J

For the Neumarnn Case

sf
uo(pl) =0

sf
u, (pl) =0

sf 2
uy (py) = - 37 Pyny)

sf
Uy (pl) =0

2

_ 2 8
4 ™) = 757 B3+ 755 Pyng)
0 (pl)--——‘-*—zp(nl)

277w

and
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ikc€l _]
sf e 222 44| 2 8
ulp) = =% {k ¢ 37 Pyin)-ke [751 P+ Pl‘”l)_J

6
= iksc5 . 5 P_(n, )+0(k c6§ . (1.13)
11
277

The results given by (I.12) and (1, 13) are in complete agreement with those obtained
by Senior (1960).
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