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shells under hydrostatic loading has been a problem to designers for many

years.

strength is considerably less than predicted by classical linear theory.
The lower strength is generally attributed to the effects of initial im-
perfections, residual stresses, and adverse boundary conditions which the
theory neglects.

have had to resort to high factors of safety and to accept the associated

T . T T R T T T

ABSTRACT

Eight, 66-in.-diameter, fabricated HY-80 steel hemi-
spherical shells designed to fail by inelastic buckling were
tested to observe the effects of initial imperfections and
residual stresses on elastic behavior and collapse strength.
The results demonstrate that the effect of secondary moments
and residual stresses on coliapse strength diminish as the
ratio of elastic to inelastic buckling pressure increases.
It was possible to predict the collapse pressures. of these
models within +10 percent by utilizing imperfection analysis
and extrapolating previous test results of less stable
shells. Fairly good agreement was also obtained by using
the same imperfection analysis to predict the membrane
stresses in the center of the flat spots. Addition of the

results of these tests to those obtained on shells in the less

stable regions provides a basis for a reasonable collapse

equation for practical spherical shells over the range of shell

stability of interest to deep submergence.

ADMINISTRATIVE INFORMATION

The work described in this report was conducted under the sponsor-
ship of the Special Projects Office, Subproject S-F013 01 03, Task 0214,
and the Naval Ships Systems Command, Subproject S-F013 03 02, Task 1960.

INTRODUCTION

The lack of adequate criteria for designing fabricated spherical

it is well known that under such loading the elastic buckling

weight penalties.

has emphasized the need for more adequate criteria.

the David Taylor Model Basin has conducted extensive studies of machined

Interest in deeper diving submarines and small research vehicles

Thus, in the absence of adequate criteria, designers

In the past few years,
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shells to develop the necessary background.l'4 These ied to development
of an analysis for near-perfect and initially imperfect, stress-free
spherical shells.5 The investigations were subsequently extended to
realistic, large-scale fabricated shells in a parametric study of the
buckling strength of HY-80 sueel hemispheres.6 On the basis of these
tests, a collapse equation for fabricated shells was proposed, by which
collapse strength would be calculated on the basis of measured local im-
perfection geometry. In the course of this study, it became evident that
further tests of wmore stable shells were required. Thus, eight additional
models were designed to investigate the behavior of spherical shells
possessing a ratio of elastic-to-inelastic collapse strength of about 2.5
to 4.0. This report discusses the fabrication, test procedures, and

results for these eight models.
DESCRIPTION OF MODELS

The eight, 66-in,-diameter, hemispherical shell models were fabri-
cated by the Lukens Steel Company from HY-80 steel (nominal yield strength
of 80,000 psi). Each model consisted of seven pressed and welded seg-
ments; six, 60-deg, orange-peel segments and a 60-deg polar cap. Four of
the models (Models 75, 76, 79, and 80) had a nominal thickness to radius
h/R ratio of 0.024 and the other four (Models 77, 78, 81, and 82) had an
h/R ratio of 0.030. Models 76, 80, 78, and 82 were tested in the as-
fabricated condition; Models 75, 79, 77, and 81 were tested after stress
relieving., In stress relieving the model, the furnace was preheated to a
temperature of 1025 F. The model was then inserted in the furnace and
stress z¢lieved for 1 hour, after which the model was removed from the
furnace and air cooled.

An internally ring-stiffened cylinder was welded to each model prior
to testing., Because of the tolerances involved in fabricating spherical
shells of this size and the need to employ nominal dimensions in design, it

was not practical to utilize cylinders that would ensure membrane

1References are listed on page 40,
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boundaries at the juncture of hemisphere and cylinder. Thus, each plating
of the cylinder shell was arbitrarily increased in thickness by approxi-
mately 10 percent over that which would provide membrane conditions.
Figure 1 shows a model and cylinder assembly and presents nominal model
dimensions.

In all calculations, Young's modulus E and Poisson's ratio v were
assumed to oe 30 by 106 psi and 6.3, respectively. Yield strengths as
determined from uniaxial compression tests of the original plate material
are presented in Table 1. For the stress-relieved models, the coupons cut
from the original plate were stress-relieved along with the models. In
all tests, the specimens were 1/2 in. in diameter by 2 in. in length. A
typical stress-strain curve of the original plate material of Model 82
(not stress relieved) is presented in Figure 2, In addition to these
tests, samplings of yield strength were taken from Model 82 after the
hydrostatic test to observe the effect of forming on strength, Locations
of specimens and results are presented in Figure 3. Typical stress-strain

curves from three different areas of the segment are presented in Figure 2.
PROCEDURE

DETERMINATION OF INITIAL IMPERFECTIONS

The analysiss for initially imperfect, stress-free spherical shells
requires the accurate determination of initial imperfections over the
entire surface of the shell. It was therefore necessary to take approxi-
mately 1000 radius measurements on each model from a fixed point within
the shell to the inside surface. The results of these measurements are
presented in the form of contour maps (Figure 4) that represent the inside
view of a hemisphere unfolded into a flat surface whose radial scale
remains constant. This scale can be determined by dividing one-half the
circumference of the sphere by the diameter of the contour map. As in the
case with the problem of mapping, the scale in all other directions varies,
depending on the distance from the center of the plot and the orientation
with the radial direction. To overcome this problem, arc-length scales
were utilized together with the contour maps for out-of-roundness

analysis. A typical arc-length scale is presented in Figure 5.
(Text continued on page 17.)
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Models | Models
Dimension | 75,*76 | 77,* 78
79,480 | 81,* 82
a 3174} 33/8
b 11/4 13/8
¢ 11/8 15/16
d 16 3/4 | 175/8
e 11/8 15/16
f 21/2 | 23/4
g 64 5/8 | 64 9/16
h 13/16 1
33/4 | 41/8
k 58 1/2 |57 3/4
*Stress Relieved
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Figure 1 « Model and Cylinder Assembly
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TABLE 1
Compressive Yield Strengths
*

Hadel Pounzie;grsggiggzhlnch

754" 87,500

79*™ 37,500

76 87,600

80 87,600

AT 87,700

81* 87,700

78 92,700

82 92,700

*

Yield strengths for stress-
relieved models determined from
specimens which were stress relieved
with model.

* %
Indicates stress-relieved models.
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60°

NOTES:

1 02 F;ERCENT OFFSET YIELDS STRENGTHS GIVEN
IN KSI

2. YIELD STRENGTH OF ORIGINAL PLATE WAS
APPROXIMATELY 93 KSlI,

*PLOTTED IN FIGURE 9.

Figure 3 - Distribution of Yield Strength from a Typical Formed
Segment of Model 82 after Test
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Figure 4 - Deviations from Sphericity

h, =0.805 Mismateh l
Ryn =1.i0 ¢i2d++0.18I [
§120240.095 l
Rnom=33.317in, Mismotch = r
8, 4=40.128 Ne =0.802
e - 10092 Rim=1.10
§ 180 ’ ‘

Figure 4a - Model 75

The surface enclosed by the solid circle represents a hemisphere unfolded into a
flat surface whose radial scale remains constant. Contours are plotted in mils.
Minus contours indicate inward deviations, e.g., -10 indicates distance from
center of sphere is Rnom - 0,010 in,




Figure 4b - Model 79










RNOM’ 33.327

Figure 4e - Model 77

g 12










Figure 4h - Model 82
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1 Figure 5 - Arc Length Scales

The surface enclosed by the solid circle shown represents a
hemi sphere unfolded into a flat surface whose radial scale
remains constant.
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Mismatch in terms of the deviations from sphericity are also given
in Figure 4. It should be noted that in these plots no attempt was made

to correct the midsurface shell contours for variations in shell thick-

ness. In addition to the sphericity and mismatch readings, approximately

125 thickness measurements were taken on each model (see Table 2). These

measurements indicated that during the pressing operation, the segments
tended to thin out at the center and thicken at the edges. Moreover,

grinding the welds also caused thickness variations at the edges of the

segments. Thus, part of the variations in shell contours is attributable
to thickness variations rather than to out-of-roundness of the shell. "
The thickness measurements and contour maps were utilized to examine
3 each model for critical local geometry. Each flat spot area was defined 1
by its local thickness ha ard ratio of local to nominal radius RI/R‘ A g

detaiied description of the procedure is available in References 6 and 7 i

e e

and is omitted here. Thickness variations were considered in utilizing the

contour maps for cut-of-roundness analysis., Although thickness variation

-

influenced the overall shell contours, its effect over a critical arc

length could be neglected in most cases.

TEST PROCEDURE

Each model was instrumented with approximately 70 foil-resistance
‘ strain gages. Areas for gaging were selected on the basis of flat spot
calculations, mismatch data, and thickness readings. In some cases, gages
were also placed near the juncture of sphere and cylinder., Strain-gage
locations are presented in Figure 6.

The models were statically tested in oil in the 6-ft testing tank
at the Model Basin. The test setup is presented in Figure 7. Generally,
each test consisted of three pressure runs--the first and second to
approximately 70 and 90 percent, respectively, of the collapse pressure
and the third to collapse. Pressure was applied in increments, and each
§ increment of pressure was held approximately 5 min. The final increment

prior to collapse was less than 2 percent of the collapse pressure.

(Text continued on page 27.)
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RESULTS AND DISCUSSiON

Experimental collapse pressures for eacn model are shown in Table 3.
Strain sensitivities are shown in Figure 6, and typical pressure-strain
plots are given in Figure 8. Figure 9 shows the models after collapse.

Nordimensional plots of experimental results for the eight models
are presented in Figure 10; the abscissa is the ratio of elastic buckling
pressure P,;” to the yield pressuvre Py‘, and the ordinate is the ratio of
the experimental collapse pressure Pc to Py‘. 1t should be noted that
>

local geometry in the area of failure was used to calculate P3‘ and P -~

which are defined by the expressions

h \¢
& a
P3 = 0.84E(m> for v =(¢.3 [1]

. 2 °y ha le
Y TRt £
10
where ha is the average thickness at the flat spot,
R10 is the local outside radius,
le is the local midsurface radius,
E is Young's modulus, and

Uy is the yield strength.

Results of Reference 6 have been included for comparison. It can
be observed that the present results are in excellent agreement with
previous trends for both as-fabricated and stress-relieved models. The
difference between the yield line and the lower bound for the stress-
relieved models is attributed to the effect of secondary moments. It
appears that this effect becomes negligible as the shells attain margins
of stability (Ps’/Py‘) of three and greater. The difference between the
lower bound trends for stress-relieved and as-fabricated models is
attributed to the presence of residual stresses. As the shells become
more stable, the effect of residual stresses on collapse strength decreases.
It is significant to note the collapse pressures obtained in the.e eight
tests could be predicted within 10 percent by utilizing the imperfection

analysis and simply extrapolating test results of Reference 6.
(Text continued on page 34.)
27

i o st e . rnmt ittt Tt




6L T9POW - Qg aan314

HINI HONI NI NIVYLS

SL T9POW - ®Bg 2andtg

£5z 83\.\ £61 39vo // soz 3gve <01 39v9 (21 39v9 \w 12z 39v9 \\ £11 39v9 \ tz3ov
4 /
P A e A L
\. x\ / \\ /
/ g g ? ¢
| ¢ g 7 A
d ¢ g J
d d 8 d -
%\,\ % % d d
u & £
000v
YSRZ3OY9  vsol 39¥9 vaasvs S vizaows [ wuzees [ vazasws, i
\ r
e \\o ..mm \m \\m 0001
/ ‘ !
3 8 4 d
o & S A 4 0002
M\ ¢ d d
g 8 g g oo
nTIAthTDDQW« OQ 3 %& ?
s £ &
ocor
ol uﬂq& \ \ 02 39V P01 39v9 %21 39v9 \.\ %2 39v9 x. i uoqu\ uz39v9 ¢
/ /
Nu ..m xm \o i
/ / / /
\. \ \ ¢ 7 i 3
f —— & m 000z
\ d d J g
mM\ d £ 4 -
- - £ NN O 2 ;
ot 8 pood Ll 2w 0 § & & riwr
000y

§10T4 UTBI1S-9Inssaxd [ed1dA] - g aandt4

-

ISd NI 34NTS3¥d

28




demm

9, T9POW - 98 2andt4g

e uud_u% 1L 39v9 YZ0Z 32¥9 |

{4

s h‘.
o
60Z 39Y9 ! 601 39v9 oz 39v9 z01 39v9
r ino ino
g m,_,.k
u
oo on o9 NN €N O NN
=000 | 2 una o ~zo00-]
b 1 LNNY ¥

EB%&S; st i

(ponutiuo)) g 2Indryg

000Z

009€

1Sd NI 3¥Nss3¥d

o))
o~




18 TPPOW - 3@ aandt1y

HIMNI HONI NI HIVHLS

||-.. . e mr.l. 4 . .
9z 39v9 911 39vo wawe! 3w az aovs /et |y ]
Y "~
\ i # 3o
= . et 2 s |‘ﬂr A ...MN!. Jw v
¥ _,._,*_ ! m_

— A

i moﬁ.l\.qﬁ 39v9/ ﬂ. N

u

w

[ f s >
ﬂ’i[|ul%‘.. R i - y _ IW.MWL.M . Au...u_.\.M

m
HJ% -‘.Mmf?ll -

LL TOPOW - 88 aand1y

wiasvs [ 7°
/ M
\lw - 00
4
o 12 . 0002
F Mu
Ty
= —ome
¥
LA~
fol
Feon - 000w
—  ten

]
qco_ wu(u \l 7

|\.\L~..‘ - 00a1

- ||T.ﬁ| ~ 0002

/
_x_. ——o0x

—_— ||||.39w

gmu!.._ M w

- m b/ [@FM\N |
J“{ w th%ﬁ.i_j o 7

1z 39v0 | oo | %0Z 39v9 %91 39v0 52z 39vn sz1 39v0 o0z 39vo //
/1l °f
; I
_ _
) |

IM‘WI i

_‘NTJJ_ vt

v ——
)

O

(penutiuo)) g mh:mﬁm

1Sd N 3UNSS AN

30

e e s

e e e Wy St e ey o s




-

Wmn g vy 1

Z8 T9POW - yg 2and14

HONI/HDONI NI NIVY¥L1S

8/ T2pOW - 8y eandtd

402 39Y9

| £0L 39Y9
I

602 299

601 39Y9

-9
‘¥

(penut3uo)) g aindtyg

i

39v9, !

0

ooov

; 000$
- ; g *H0
(922:39v9, 971 39v9 [ v80Z 3OV | vEOL
_ /] W[ 39ve, |
- —= - 0001
! .q. { ¢ i |
b : — -5 000z
i ‘ ‘_
{ it~ — — oooe
sy I it Wy
Ip q P /8
e b & — 000¥
7 i 0005
1 Tll o 1o
_ 80L ; 4

¢+ 0001

D— JSON

000¢

1 000¥

©00s

1Sd ~* 3¥NSSINJ

31

B O ¥




ey o

PSD 318951 8

Figure 9 - Models after Collapse

Figure 9¢ - Model 76 Figure 9d - Model 80
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Figure 9g - Model 78
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Figure 9f - Model 81
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Mismatch on the models could be considered excessive from the view-
point of possible submarine fabrication tolerances. In most cases, a maxi-
mum mismatch of approximately 0.1 in., or rovghly 10 percent of the shell
thickness, was observed. This caused bending stresses which ranged from
20 to 45 percent of the membrane stress. Unfortunately, the effect of
mismatch on collapse strength is somewhat obscured by other variables, and
to try to separate its effect is not practical at this time. It should
be noted, however, that any effect of mismatch on the strength of the
models is reflected in the curves of Figure 10.

On Model 82 (not stress relieved), the question may be raised as to
why the result was plotted using the local geometry at IV rather tion I
(minimum ha/RIO)’ since both are included in the failure envelope (see
Figure 6). Strain measurements taken in these two areas suggest that
failure was caused by the flat spct at IV. The higher elastic membrane
strains were recorded at IV, and the inelastic strains in this area started
to "run" just prior to collapse. Thus, the result for Model 82 was plotted
utilizing the local geometry at IV,

The imperfection anaiysis utilized in evaluating these models ad-
mittedly has limitations. For example, failure of some of these models
did not occur in the geometrically critical area (minimum ha/Rlo). This
may be attributed to such factors as varying residual stresses, yield
strength, shape of the stress-strain curve, shape of the imperfections,
mismatch, and boundary conditions which, at present, are neglected in the
analysis. However, the presentation of the data in the form of Figure 10,
where each datum point is plotted utilizing the geome*ry in the area of
failure, makes it possible to observe the combined effect of the variables.

In plotting the results of this series of tests for the as-
fabricated models, the yield strengths used in conjunction with Equation
[2] were determined from material of the original plate.* Discussion in

Reference 6 notes that the yield strengths of the original plate material

*
The data points in Figure 10, which represent the results of the 66-in.
diameter models of Reference 6 are based on values of yield strength

-determined after test, since available yield strength data for the

original plating is inadequate.
34




STTI9YS T1edt11aydg 19918
08-AH P23BOTIQE] I0F sS3[nsay (eIudWIIAdXy JO 3074 TBUOTSUSWIPUON - (O 8andtq

ld/&d
8€ 9¢ vf TE€ 0€¢ 8T 9T vT TT 0Z &L 9L vL TL 0L 80 90 ¥O Z0
%4/ aveo - ’d
- «o_m ) »n_
) { A3A3173¥ 341 LON O Ny oz -
lnmmmz&_xm: ¥yig .Sn Q3A3N3Y SSIYLS @ 3UNSSIV ISAYTT0D TVANIWINALXT = d
SMINASINGH W1q o | OFAT 1Y SSTULS LON o) @z - W)
- a3A3IT3Y SSIYLS @ 33N71v4 40 Y3YY NI SNIavy YO0
_ _ ANY °4 SSINNDIHL 39VYIAY NO 43sve
_ _ |
o T
SIYIHSINIH — o0
a3LYIINEYASY —
404 ANNOS ¥3MOT > _
P
e —7
\\‘
-
e e Y b
DWQ d — - = fn UL n‘—
S ol a2 9.0 | -.(“%9/4) 380 - d
-— —
@ | 8O s 08 QAL N $3¥3IHASINIH Q3AII3Y
g _ | $S34LS 404 ONNOS ¥IMOT
'l i 'l 1

e

Al

€0

vo

S0

90

{0

8'0

60

0l

|

t4°4




may not be representative of the material in place. The yield strengths
of the as-fabricated models were generally 10 percent higher than the

1 stress-relieved models. Since this would affect the position of the data
points in Figure 10, it was decided to make a limited investigation of
forming on the strength of the material. Specimens were taken from a

TR T,

skirt segment of Model 82 (not stress relieved) between the 0- and 60-deg )
generators, which appeared to be an area of relatively low stress. The

specimen location and test results are presented in Figure 3. Specimens

from the model and the original plate were 1/2 in, in diameter by 2 in. in
length., For each specimen location, except the center, the yield strength
was increased in the direction parallel to the proximate edge and was de-

creased in the direction normal to it. No significant change in strength

1
i

was observed at the center of the segment. These results appear to be in
contrast with the observations made in Reference 6. Although a maximum

{ncrease in strength of 11 percent in the circumferential direction was ’
i observéd, the strength of the segment in general was not increased by as

much as 10 percent. As a matter of fact, if the strength in both di-

rections is averaged for each location as was done in Reference 6, no

significant change in strength would be obtained. A closer and more

systematic investigation of the effect of forming on the strength of the

material is currently in progress. Spherical skirt segments 66 in. in

T

diameter and of varying thicknesses will be fabricated and tested. When
these tests are completed, a much clearer understanding of the effect of
forming will be obtained,

Typical stress-strain curves of the original plate and from the
material in place for Model 82 are presented in Figure 2. Note that in
each cas¢ cold working of the material altered the shape of the stress-
strain curve from one that was essentially elastic and ideally plastic to
a curvilinear type. It should be kept in mind that, in machining speci-
mens from the model after testing, stresses are relieved at the free
surfaces of the specimens thus making the resulting stress-strain curves
only approximate representations of conditions within the model. The
effect of residual stress on the elastic behavior of the shell can be ob-

served in the pressure-strain plots presented in Figure 8. The strains
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in the as-é;bricated models become nonlinear at fairly low pressures,
whereas the strains in the stress-relieved models remain linear at much
higher pressures.

Table 3 compares experimental membrane stress sensitivities at flat
spots with values calculated with local imperfection geometry. In most
cases the agreement was within 10 percent, with the calculated stresses
generally being higher than the measured values. The maximum difference
obtained was 14 percent. Considering the relative severity of some of the
assumptions made in the analysis (e.g., neglecting nonsymmetric imper-

At the

present time, further study is being conducted on flat spots upon which

fections), the agreement can be considered to be fairly good.

refinements to the analysis can be based.

Up to the present time, designers of spherical shells have been
seriously hampered by the lack of raticnal design guidance. The pre-
liminary evaluation of the cight model tests, combined with the results of
previous tests in the less stable regions, provides the designer with some
of these critically needed tools. When the results are presented in the
form of Figure 10, the combined effect of the variables--such as residual
st. .s. mismatch, and boundary conditions--can be observed. The curves
presented emphasize lower bound strength of test results and are applicable
to the realistic design of fabricated spherical shells. At the present
time, the effects of flat spots, residual stresses, and mismatch are being
investigated both analytically and experimentally. On completion of these
investigations, the results of the fabricated HY-80 spherical shells will
be reevaluated, and the analysis will be refined. In addition to these
studies, the behavior of spherical shells fabricated from materials with

strain-hardening characteristics is being investigated.
CONCLUSIONS

1. It was possible to predict within 10 percent the collap§é-bressures
of the eight models tested by utilizing imperfection analysis and ex-
trapolating previous test results of less stable geometries.

2. The test results, when plotted in the form of Figure 10, provide

the designer with a reasonable collapse equation for as-fabricated and
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TABLE 3

Local Geometry and Comparison of Calculated and Measured Membrane
Stresses and Collapse Pressures

h Measured Max. | Ratio of .
Mods1 | Area 2 3 Calculated Max, Memb, Stress Calc. to | Experimental
inch _RL Meab. Stress Sens.® Sens.** Meas . Collapse
psi/psi psi/psi Stress psi
I 0.810] 1.12 23.5 22.2 1.06
750 11 0.807 | 1.11 23.4 out .-
11 0.805 | 1.10 23.2 21.0 1.08
vt | 0.802] 1.10 3.3 2.9 1.02 3800
1 0.809 | 1.19 4.9 out --
11+ ] o.817 | 1.15 3.9 3.0 1.c4 3650
79*** | 111 0.815 ] 1.14 23.7 22.3 1.06
v 0.808 § 1.12 23.5 out --
v 0.809 | 1.11 23.3 22,5 1.04
1t 0.789 | 1.25 26.8 out .- 3150
11 0.798 | 1.21 25.7 22,5 1.14
76 1 0.787 | 1.20 5.8 out --
v 0.800 } 1.10 23.4 24.9 0.94
1 0.797 ) 1.27 27.0 U6 1.10
11 0.799 1 1.26 26.7 24,2 1.10
80 11 0.789 | 1.23 26.4 23.5 1.12
1v 0.797 | 1.22 26.0 24.8 1.05
vt 0.787 | 1.22 26.3 No Gage -- 3340
14 1610 1.19 20.1 20.5 0.98 4490
11 1.000 { 1.14 19.5 18.4 1.06
77+ | 111 1.032 | 1.14 18.9 19.7 0.96
1v 1.022 1 1.14 19.1 19.8 0.96
v 1.006 } 1.13 19.2 18.3 1.05
11 1,020 | 1.20 20.0 18.3 1.09 4800
11 1.010 | 1.16 19.6 17.5 T2
81*+* | 111 1.040 | 1.15 18.9 out --
v 1.000 | 1.14 19.5 17.3 1.13
y 1.015 | 1.12 18.9 18.. 1.04
0.940 | 1.18 21.4 out -
1 0.991 | 1.18 20.3 17.8 1.14
78 111 0.930 | 1.17 21.4 out .-
1v¢ [ 0.970 | 1.15 20,2 out - 4670
v 0.983 1 1.15 20.0 17.7 1.13
1 1.02 1.20 20.2 17.9 1.13
11 1.03 1.12 18.7 16.7 1.12
82 n 1.06 1.12 19.2 18.5 1.04
w10 |in 18.5 out = 4750
v 1.01 1.08 18.4 18.5 0.99
'The calculated stress sensitivitles are determined from the equation
Ry’
Stress sensltlvity ¢ —___
z ha Rll
"*The measured stress senslitivities are based on the average of the strain-sensitivity
readings taken on the inside and outside surfaces of the shell. The strain sensitivity
1s deflned as the slope of the pertlon of the pressure-straln diagram which is linear.
Measured stress sensitivities are determined from the expression
Stress sensitivity = agz-[ﬁ =i (cl-:_,')2 . [2:2 - (‘1“3)2]
1-u Lty
where € g and €y are the average strain sensitjvities at the 0-, 45-, an¢ 90-deg
orientation in a three-alament rosatta,
'“Stress-relieved model.
*Failure area,
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stress-relieved spherical shells with initial imperfections covering the
range of geometries of interest to deep submergence,

3. The effects of secondary moments and residual stresses on
collapse strength diminish as the ratio of elastic to inelastic buckling
pressure of the shell increases.

4, The agreement between calculated and measured membrane stresses
at flat spots was fairly good. In most cases the agreement was within

10 percent, while the maximum difference was 14 percent.
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