GUIDE FOR ESTIMATING MAXIMUM ANCHOR LOADS ON AIR-SUPPORTED STRUCTURES

by

Thomas C. Strain

and

Ronald F. Tumeinski

RECEIVED
JUL 21 1967

JUL 16 1967

March 1967

UNITED STATES ARMY
NATICK LABORATORIES
Natick, Massachusetts 01760

General Equipment & Packaging Laboratory
Distribution of this report is unlimited. Release to CFSTI is authorized.

TECHNICAL REPORT
67-34-GP

GUIDE FOR ESTIMATING MAXIMUM ANCHOR LOADS ON AIR-SUPPORTED STRUCTURES

by

Thomas C. Strain
and
Ronald F. Tumeinski

Project No. 1M642101D503

March 1967

General Equipment & Packaging Laboratory
U. S. ARMY NATICK LABORATORIES
Natick, Massachusetts
FOREWORD

This report was prepared by the Shelters Division, General Equipment and Packaging Laboratory, U. S. Army Natick Laboratories, Natick, Mass. The work was performed under Exploratory Development Project 14842101D501, "Tents and Organization Field Equipment," Task 01, Studies in the Structural Mechanics of Tentage, Work Unit 003, Review of Design Manual.


The intent of this report is to provide the design engineer with a complete, concise guide for planning the ground support and anchoring devices required for stabilizing air-supported structures.

The authors wish to acknowledge the guidance, encouragement and support of Mr. C. J. Monego of the Shelters Division in the preparation of this work.

EDWARD A. NEBESKY, Ph. D.
Acting Director
General Equipment & Packaging Laboratory

APPROVED:

DALE H. SIELING, Ph.D.
Scientific Director

W. M. MANTZ
Brigadier General, USA
Commanding
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbols</td>
<td>v</td>
</tr>
<tr>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Anchor Load Calculations</td>
<td>2</td>
</tr>
<tr>
<td>a. Forces Creating Anchor Loads</td>
<td>2</td>
</tr>
<tr>
<td>b. Definition of Anchor Load Coefficients</td>
<td>8</td>
</tr>
<tr>
<td>c. Formulas for Calculating Anchor Loads</td>
<td>9</td>
</tr>
<tr>
<td>d. Sample Calculations</td>
<td>13</td>
</tr>
</tbody>
</table>
### List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Single-Wall, Spherical</td>
</tr>
<tr>
<td>2.</td>
<td>Single-Wall, Cylindrical</td>
</tr>
<tr>
<td>3.</td>
<td>Double-Wall, Cylindrical</td>
</tr>
<tr>
<td>4.</td>
<td>Variation of Impact Pressure with Air Speed, Sea Level Standard Atmosphere</td>
</tr>
<tr>
<td>5.</td>
<td>Impact Pressure Correction Factor, ( k_p ), Variation with Altitude &amp; Temperature</td>
</tr>
<tr>
<td>6.</td>
<td>Variation of Anchor Load Coefficient with Shape (Spherical)</td>
</tr>
<tr>
<td>7.</td>
<td>Variation of Base Anchor Load Coefficient with Shape</td>
</tr>
<tr>
<td>8.</td>
<td>Variation of Guy Line Load Coefficient with Shape</td>
</tr>
<tr>
<td>9.</td>
<td>Single-Wall Sphere</td>
</tr>
<tr>
<td>10.</td>
<td>Single-Wall Cylinder</td>
</tr>
<tr>
<td>11.</td>
<td>D-W Cylinder</td>
</tr>
</tbody>
</table>
SYMBOLS

\[ A_f \] Floor area, sq ft

\[ A_p \] Planform area (max. horizontal cross sectional area), sq ft

\[ AL \] Anchor Load, lbs

\[ AL_e \] Anchor load due to internal pressure, lbs

\[ BL \] Base anchor load, lbs

\[ CAL \] Anchor load coefficient, single-wall

\[ C_{BL} \] Base anchor load coefficient, double-wall

\[ C_{GL} \] Guyline anchor load coefficient, double-wall

\[ a \] Reference length - tent diameter, ft

\[ GL \] Guyline anchor load, lb

\[ h \] Tent height, ft

\[ l_h \] Length of tent, ft

\[ P_{AL} \] Total anchor load, lbs

\[ P_e \] Shelter enclosure pressure, lb/sq ft

\[ q \] Dynamic (impact) pressure, lb/sq ft

\[ r \] Tent radius, ft

\[ U \] Velocity, ft/sec

\[ W \] Tent width, ft

\[ \rho \] Density of air, Slugs/cu ft

\[ v \]
This report contains all the graphs, tables, mathematical formulas, and design data necessary to estimate the maximum loads on anchoring systems used with air-supported shelters subjected to winds up to 105 mph. The design data are presented in non-dimension coefficient form. Sample problems are included to illustrate the use of the data and their application to both single and double-wall structures.
1. Introduction

In October 1950, a Design Manual for Spherical Air-Supported Radomes was published as Cornell Aeronautical Laboratory Report: N.A.U.B-664-D-1. After its publication, the radome was adopted as standard by the military on many ground-mounted radar installations. Hundreds were built and considerable experience with their design and operations had been gained in the field.

In March 1956, the Cornell Design Manual was revised to incorporate information accumulated since its original publication. This revised manual, is designated as: "Design Manual for Spherical Air-Supported Radomes (Revised) Report No. UB-909-D-2."

Air-supported shelters were being developed for the military, varying in shape from spherical radomes to cylindrical structures with spherical or flat ends. Although the spherically shaped radome had been subjected to aerodynamic testing, no studies were made for other shapes. The design of other configurations was based on fragmentary information available from various sources. The need for reliable design information was obvious.

To obtain aerodynamic data on flexible, cylindrical, air-supported structures, a limited wind tunnel study was conducted at the Massachusetts Institute of Technology on a one-tenth scale model of the Army's standard, tent, air-supported, single-wall, nike-hercules, above-ground launcher. As a result, a final report was prepared by Raffi J. Bicknell entitled, "Wind Tunnel Test on an Air-Supported Tent Model" Report No. 1024, Department of Aeronautics and Astronautics, Wright Brothers Wind Tunnel, MIT, June 1963.

Beginning in July 1963, the U.S. Army Natick Laboratories contracted a program with the Hayes International Corp. for extensive wind tunnel studies on spherical and cylindrical single-wall* structures and cylindrical double-wall** structures.

*Single-Wall – A flexible structure consisting of a single membrane usually in the shape of a sphere or cylinder. It is supported by a continuous flow of high volume, low pressure air enclosed between the membrane and mounting surface.

**Double-Wall – A flexible structure consisting of two membranes usually in the shape of a half cylinder. The two membranes form an envelope containing air, which resembles an air mattress bent into a "U" shape. The structure is supported by a flow of low volume, high-pressure air.
This program consisted of analytical and wind tunnel studies on 26 scale model air-supported structures. This contract resulted in a design manual entitled, "Design Manual for Ground-Mounted Air-Supported Structures." It provides design criteria to facilitate engineering of aerodynamically stable air-supported structures. Included in the design manual are data for estimating maximum anchor loads to be expected in winds up to 106 mph. The contents of the present report are based on the data contained in the Hayes report. It is prepared for the convenience of engineers whose primary interest is the anchoring of military shelters.

2. Anchor Load Calculations

a. Forces Creating Anchor Loads

Fabric shelters subjected to winds of high velocity can experience aerodynamic forces of considerable magnitude. In order to estimate the magnitude of these forces, twenty six single and double-wall shelter models were tested in a wind tunnel with winds up to 105 miles per hour. The aerodynamic force data obtained, were reduced to non-dimensional coefficient form by dividing the force data by a reference area and the dynamic pressure.

Several very important facts should be emphasized at this time. The aerodynamic force data used here were maximum values so that the anchor loads calculated by techniques in this report will be maximum loads. The second fact is that no attempt has been made to ascertain the effect of wind gusts. The impact pressure used is for a wind of constant velocity.

The tent planform area $A_p$ was selected as the reference area and is defined as the maximum cross sectional area in a horizontal plane. Planform areas are given by the following expressions for common tent types:

Sphere

$$A_p = \pi \left( \frac{w}{2} \right)^2$$

Cylinder with spherical ends:

$$A_p = \pi \left( \frac{w}{2} \right)^2 - w \left( 1 - \frac{w}{h} \right)$$
Figures 1 through 3 are examples of air-supported structures.

Figure 1. Single-Wall, Spherical

Figure 2. Single-Wall, Cylindrical

Figure 3. Double-Wall, Cylindrical
Cylinder with flat ends:

\[ A_p = W \cdot l_h \]

where:

- \( A_p \) = planform area, sq ft
- \( W \) = width of tent, ft
- \( l_h \) = length of tent, ft

The planform areas for tents with radii up to 80 feet are shown in Table I.

The dynamic pressure, \( q \), due to wind velocity is defined by the following expression:

\[ q = \frac{\rho \cdot U^2}{2} \]

where:

- \( q \) = dynamic pressure, lb/sq ft
- \( U \) = wind velocity, ft/sec
- \( \rho \) = density of air in (slugs/cu ft) \( \frac{1 \text{ lb} \cdot \text{sec}^2}{\text{ft}^4} \) = 0.00238 for a standard day at sea level

The variation of impact pressure with wind speed at sea level and 59°F is shown in Figure 4. An impact pressure correction factor as a function of pressure altitude and temperature is shown in Figure 5.

In single wall shelters, the lift due to internal pressure must be added to the aerodynamic lift. The load on the anchors due to internal pressure can be calculated from the following expression:

\[ A_{L_e} = P_e A_t \]

- \( A_{L_e} \) = anchor load due to internal pressure, lbs
Table I
TENT PLANFORM AREA, $A_p$
SPHERICAL AND CYLINDRICAL TENTS WITH HEMISPHERICAL ENDS

<table>
<thead>
<tr>
<th>Tent Radius, $r$ Ft.</th>
<th>Tent Planform Area, $A_p$, Sq. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spherical $A_{h}$</td>
</tr>
<tr>
<td>10</td>
<td>314</td>
</tr>
<tr>
<td>12</td>
<td>452</td>
</tr>
<tr>
<td>14</td>
<td>615</td>
</tr>
<tr>
<td>16</td>
<td>804</td>
</tr>
<tr>
<td>18</td>
<td>1017</td>
</tr>
<tr>
<td>20</td>
<td>1256</td>
</tr>
<tr>
<td>22</td>
<td>1520</td>
</tr>
<tr>
<td>24</td>
<td>1809</td>
</tr>
<tr>
<td>26</td>
<td>2122</td>
</tr>
<tr>
<td>28</td>
<td>2463</td>
</tr>
<tr>
<td>30</td>
<td>2827</td>
</tr>
<tr>
<td>32</td>
<td>3216</td>
</tr>
<tr>
<td>34</td>
<td>3631</td>
</tr>
<tr>
<td>36</td>
<td>4071</td>
</tr>
<tr>
<td>38</td>
<td>4536</td>
</tr>
<tr>
<td>40</td>
<td>5026</td>
</tr>
<tr>
<td>42</td>
<td>5541</td>
</tr>
<tr>
<td>44</td>
<td>6082</td>
</tr>
<tr>
<td>46</td>
<td>6647</td>
</tr>
<tr>
<td>48</td>
<td>7238</td>
</tr>
<tr>
<td>50</td>
<td>7853</td>
</tr>
<tr>
<td>52</td>
<td>8494</td>
</tr>
<tr>
<td>54</td>
<td>9160</td>
</tr>
<tr>
<td>56</td>
<td>9852</td>
</tr>
<tr>
<td>58</td>
<td>10568</td>
</tr>
<tr>
<td>60</td>
<td>11309</td>
</tr>
<tr>
<td>62</td>
<td>12076</td>
</tr>
<tr>
<td>64</td>
<td>12868</td>
</tr>
<tr>
<td>66</td>
<td>13684</td>
</tr>
<tr>
<td>68</td>
<td>14526</td>
</tr>
<tr>
<td>70</td>
<td>15393</td>
</tr>
<tr>
<td>72</td>
<td>16286</td>
</tr>
<tr>
<td>74</td>
<td>17203</td>
</tr>
<tr>
<td>76</td>
<td>18145</td>
</tr>
<tr>
<td>78</td>
<td>19113</td>
</tr>
<tr>
<td>80</td>
<td>20106</td>
</tr>
</tbody>
</table>
Figure 4. Variation of Impact Pressure with Air Speed, Sea Level Standard Atmosphere
Figure 5. Impact Pressure Correction Factor, $k_p$, Variation with Altitude and Temperature
\[ P_e = \text{internal pressure, lbs/sq ft} \]

\[ A_f = \text{floor area, sq ft} \]

To summarize, the total force that must be resisted by the shelter anchoring system is created by the:

1. Aerodynamic load for double wall shelters
2. Aerodynamic load PLUS internal pressure for single wall shelters.

b. Definition of Anchor Load Coefficients

The general definition of an anchor load coefficient due to aerodynamic forces is:

\[ C_{AL} = \frac{AL}{qA_p} \]

where:

\[ AL = \text{anchor load, lbs} \]

\[ C_{AL} = \text{anchor load coefficient} \]

In double wall shelters the anchor load is carried by anchors at the base of the shelter, as well as, by anchors securing the guylines. The coefficients associated with these two loads are:

\[ C_{BL} = \frac{BL}{qA_p} \]

\[ C_{GL} = \frac{GL}{qA_p} \]

\[ C_{BL} = \text{Anchor load coefficient for base of shelters.} \]

\[ C_{GL} = \text{Anchor load coefficient for guy lines.} \]

\[ BL = \text{Anchor load on base, lbs.} \]

\[ GL = \text{Anchor load on guy lines, lbs.} \]

\[ q = \text{Dynamic (Impact) Pressure lbs/sq ft} \]
Anchor load coefficients as a function of width/length and height/diameter ratios are plotted in Figures 6, 7 and 8.

c. Formulas for Calculating Anchor Loads

Using Figures 6, 7, and 8 it is a simple matter to estimate the maximum anchor load on an air supported structure. The problem resolves itself to geometry and substitution into formulas. The items of information required are:

- Shelter geometry
- Design wind speed
- Enclosure pressure (single wall only)

(1) Single Wall Shelters

\[ \text{Total Anchor Load } P_{AL} = C_{AL} q A_p + P_e A_f \]

(2) Double Wall Shelters

\[ \text{BL} = C_{BL} q A_p \]
\[ \text{GL} = C_{GL} q A_p \]

\[ \text{Total Anchor Load } P_{AL} = q A_p \left( C_{BL} + C_{GL} \right) \]

The way the calculated load is distributed is a matter for the tent designer. If the anchoring system consists of individual anchors equally spaced around the shelter and the holding capability of the anchor is known, the total load divided by the anchor holding power will determine the number of anchors to be used. If the shelter is to be continuously held down along the floor perimeter, the total load divided by the shelter perimeter determines the load/foot.

The U.S. Army uses several types of anchoring systems such as concrete pads with metal hold down bolts, steel hold down rings on towers and arrowhead ground anchors. The arrowhead anchors, as described in MIL-A-3962A, Anchors, Ground, Arrowhead, 4", 6" and 8" with Auxiliary Equipment, are generally used for field installations. Considerable work is being done by the Natick Laboratories to determine the holding capabilities of the 4" arrowhead anchor in various types of soil. This work will be reported separately after it is completed. To give an indication of the order of magnitude of the holding power, 4" anchors, when driven to their full depth of 28" will hold about a 1000 lbs in sand and about 2000 lbs in sandy gravel.
Figure 6. Variation of Anchor Load Coefficient with Shape
Figure 7. Variation of Base Anchor Load Coefficient—Shape
Figure 8. Variation of Guy Line Load Coefficient with Shape
Another fact of interest is that for anchors driven 28-30" the minimum distance between anchors should be at least 30 inches. These figures are presented for illustrative purposes only and will indicate the type of information required concerning the anchoring system to be used on the shelter being considered.

d. Sample Calculations

(1) The following calculations are for the single-wall, spherical shape (Fig. 9):

![Figure 9. Single-Wall Sphere](image)

Width = $W = 30$ ft = $2r$
Height = $h = 22.5$ ft
Sea level
Temperature expected + 60 to -30°F
Wind velocity = 90 knots
Enclosure pressure = $q$

Geometric Considerations

Length of chord = $2y = 2\sqrt{r^2 - (h-r)^2}$

$y = \sqrt{2hr - h^2}$

$y^2 = 2(22.5)(15) - (22.5)^2 = 169$

$y = 13$ ft

$A_f = \pi y^2 = 169\pi = 531$ sq ft

Perimeter = $2\pi y = 2 \pi (13) = 82$ ft

$A_p = \pi r^2 = \pi (15)^2 = 709.5$ sq ft
**Determining impact pressure, q**

Figure 4 - at 90 knots, q (standard) = 27 psf (lb/sq ft)

Figure 5 - max correction factor = 1.21

Actual q = 1.21 (27) = 32.7 psf

**Anchor loads**

Aerodynamic load

\[ h/d = 22.5/30 = 0.75 \]

\[ w/l_h = 30/30 = 1.0 \text{ (sphere)} \]

Figure 6 - \( C_{AL} = 1.5 \)

Wind load = \( C_{AL} qA_p = 1.5 (32.7) (709) \)

= 34,700 lbs

Inflation pressure load = \( P_e A_f \)

= \( (32.7) (531) \)

= 17,400 lb

Total Load = 34,700 - 17,400 = 52,100 lb

**Distributing Anchor Load**

Assume an anchor holds 1500 lb

No. of anchors \( \frac{32100}{1500} = 35 \)

Anchor spacing \( \frac{82}{35} = 2.34 \text{ ft} \)
The following calculations are for the single-wall, cylindrical shape with spherical ends (Fig. 10):

**Figure 10. Single-Wall Cylinder**

- **Width**: $W = 50 \text{ ft} = 2r$
- **Height**: $h = 25 \text{ ft}$
- **Length**: $l_h = 100 \text{ ft}$

**Sea level standard atmosphere**

**Wind velocity**: 105 mph

**Enclosure pressure**: $q$

**Geometric considerations**

**Length of Chord**

$$2y = 2\sqrt{r^2 - (h-r)^2}$$

$$y^2 = 2hr - h^2$$

$$y = 25 \text{ ft}$$

$$A_f = \pi y^2 + 2y (l_h - 2r)$$

$$A_f = 625\pi + 50 (100-50) = 1962 + 2500 = 4462 \text{ sq ft}$$

**Perimeter**

$$50\pi - 100 = 256 \text{ ft}$$

$$A_p = \pi r^2 - 2r (l_h - 2r)$$

$$= 625\pi - 50 (100-50) = 4462 \text{ sq ft}$$
In this example the planform area equals the floor area which is not always the case.

**Determining impact pressure, q**

Figure 4 at 105 mph, \( q = 28 \text{ psf} \)

**Anchor loads**

Aerodynamic load

\[
\frac{h}{d} = \frac{25}{50} = .5 \\
\frac{W}{l_h} = \frac{50}{100} = .5
\]

Figure 6 \( C_{AL} = 1.6 \)

Wind load = \( C_{AL} q A_p \) = 1.6 \( (28 \times 4462) \)

= 200,000 lbs

Inflation pressure load = \( P_e A_f \)

= 28 \( (4462) \)

= 125,000 lbs

Total Load = 200,000 - 125,000 = 325,000 lbs

**Distributing Anchor Load**

Assume an anchor holds 2000 lbs

No. of anchors \( \frac{325,000}{2000} = 163 \) anchors

Anchor spacing = \( \frac{256}{163} = 1.57 \text{ ft.} \)

This spacing is quite close for a 4" arrowhead anchor system but might be suitable or other types. If arrowheads are needed, larger anchors, deeper emplacement or pairs of 4" anchors could be used to increase spacing.
The following calculations are for the double-wall, cylindrical shape with flat ends (Fig. 11):

Figure 11. D-W Cylinder

Width = W = 100 ft
Height = h = 50 ft
Length = l_h = 200 ft
Sea level, standard atmosphere
Wind velocity -105 mph

Geometric considerations

Length of anchored sides 2(200) = 400 ft

\[ A_p = \frac{W}{h} \]
\[ = \frac{100}{200} = 0.5 \text{ sq ft} \]

Determining impact pressure, q

Figure 4 at 105 mph q = 28 psf

Anchor loads

h/d = 50/100 = 0.5
W/l_h = 100/200 = 0.5

Figure 7, C_BL = 1.08

Figure 8, C_GL = 0.44
Total Anchor Load \( P_{AL} = qA_p (C_{BL} - C_{GL}) \)

\[
P_{AL} = 28 \times (20000) \times (1.08 - .44) = 856000 \text{ lbs}
\]

\[
BL = 1.08 \times (28) \times 20,000 = 607,000 \text{ lbs}
\]

\[
GL = .44 \times (28) \times 20,000 = 249,000 \text{ lbs}
\]

Two points to be noted are the extreme forces possible on an air-supported structure and the fact that the base of the shelter requires three times as much anchoring as the guylines. The latter factor is contrary to common belief but has been indicated consistently in the wind tunnel studies performed on model double-wall shelters.

**Distributing Anchor Loads**

Assume an anchor holds 4000 lbs

No. of Base Anchors \( \frac{607000}{4000} = 152 \)

No. of Guyline Anchors \( \frac{249000}{4000} = 62 \)

Spacing along base \( \frac{400}{152} = 2.63 \text{ ft} \)

Spacing of guyline \( \frac{400}{62} = 6.5 \text{ ft} \)
**REPORT TITLE**

Guide for Estimating Maximum Anchor Loads on Air-Supported Structures

**AUTHORS**

Strain, Thomas C. and Tuminski, Ronald F.

**REPORT DATE**

March 1967

**TOTAL NO OF PAGES**

18

**NO OF REFS**

18

**ABSTRACT**

This report contains all the graphs, tables, mathematical formulas, and design data necessary to estimate the maximum loads on anchoring systems used with air-supported shelters subjected to winds up to 105 mph. The design data are presented in non-dimensional coefficient form. Sample problems are included to illustrate the use of the data and their application to both single and double-wall structures.