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ABSTRACT 

This report presents an approach to point target tracking based 
on sequential filtering techniques. The tracking problem is defined 
in terms of a nonlinear vector differential equation and an appro- 

priate state vector. A Bayesian formulation for the problem is 
selected whicli results in a least-squares filter solution. Linear- 
ization techniques essential to this approach are incorporated into 

the development of the solution. A computer program which im- 
plements the complete solution algorithm is presented. As part of 
this computer realization, numerical integration of the equations 
of motion and numerical evolution of the estimate covariance ma- 
trix are discussed in detail. 
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AN   APPROACH   TO TARGET  TRACKING 

I.      INTRODUCTION 

In the past several years a number of publications in the control theory literature lias dealt 

with the problem of estimating state variables associated with nonlinear systems.    Much of this 
1   > 

work is based on the early linear estimation techniques established by Kaiman and Bucy. ' 

In an engagement between a missile attack and a defense system, one of the crucial modes 

of the defense system will be point target tracking. As will be shown, the problem of tracking 

a point target with a radar is a nonlinear parameter estimation problem. The purpose of this 

report is to apply the techniques of modern control theory to that problem. A variety of topies 

essential to understanding the philosophy of nonlinear, recursive estimation techniques is pre- 

sented,   with application to a specific re-entry tracking problem. 

The problem considers a missile trajectory which may be described by the nonlinear vi 

differential equation 

x = _f(x) (1-1) 

where x = x.(t) is an n-dimensional vector whose components define the trajectory of the appi 

ing missile.    Observations on this target are available in the form 

y(tk) = yk= h(xk) +Yk (1-2) 

where h(x) is an m-dimensional vector function and v,   is Gaussian white noise.    The estimator 

x,   of x,   will lie required to utilize the observation v.  along with the information inherent in f 

and  h and a previous estimate x, _,  to obtain the best (in some sense) estimate.    In particular, 

we will give explicit equations for the problem and obtain a solution for the case of a si 

dimensional state vector with three position components,   three velocity components,   and the 

drag-to-weight ratio.    The observation y,   is four dimensional with range,   azimuth,   ele. 

and range rate as components. 

Each of the following five sections presents a particular facet of nonlinear estimation prob- 

lems.    Section II presents the general linearization techniques which are used to modify the non- 

linear expressions and establish approximate expressions amenable to computer processing. 

Section III considers the specific problem of obtaining an estimator and its covariance.    Sec- 

tion IV briefly discusses the actual computer algorithms used to estimate the state variables. 

Section V tabulates the actual state vectors and matrices defined for the ballistic missile re- 

entry problem.    Section VI treats in detail the techniques used in the numerical integration of 

the nonlinear system of equations (1-1).    Also described in Sec. VI is an incremental linearization 



technique used to update the estimate covariance matrices.    It is this particular area of co- 

variance estimation which is least  developed in the field of nonlinear estimation problems.    Much 

work remains to be done before all phenomena involved in such estimation problems can be fully 

understood. 

II.     LINEARIZATION    \ I» >i   1    A   TRAJECTORY   IN   NONLINEAR  SYSTEMS 

In the general nonlinear estimation problem we are confronted with the sei of equations (1-1) 

and (1-2).    Unfortunately,  the ability to obtain closed-form solutions to such problems is severely 

•icted by the techniques presently available.    As a rule,   we must resort to numerical meth- 

and computer techniques in order to achieve satisfactory solutions to such problems.     This 

• nts some of the linearization techniques useful in preparing nonlinear- problem 

computer sol 

Let the system under consideration be described by the vector- differential equation 

x=f(x) (2-1) 

where 

iional state \ i 

f     n-dimensional vector function of _x 

It  will be assumed that X satisfies conditions for unique solutions to (2-1) to exist.     \  solu- 

tarting at time t    and initial state x    will be denote;! by h o —o 

x°(t) -  x(t, t   , x  )       . (2-2) 
— —       ()  —11 

Equation (2-1) can be  rewritten in the form of a nonlinear integral equation 

r £„ x°(t) = XQ H    \ [X(T)| dr 

is more   convenienl when solutions are obtained by numerical integration,  as is thi 

here.    In the subsequent discussion it will be assumed that such a solution i orresponding to x , 

t    has been found,   i.e.,   x_ (t) is known.     (An algorithm for the numerical solution of (2-1) is given 

:. VI.) 

Algorithms for the estimation of state variables of dynamic systems from noisy dati 

ns) require that the covariance matrix of x (t) be found,   given the nee matrix of 

x   .     For nonlinear systems this is usually not possible directly,   so that linearizations I 

i-iiduced,    Thus the equation of motion (2-1) is linearized about the nominal trajectory x_ (t). 

small  change in x    has on x  (t). 

Let 

and 

•  <5x 
—o      —o        —o 

x*(t)  = x°(t) + 6x(t) = x(t,to,x*) = x(t,to,xo + 6xQ) 

Then,   assuming that 9f/9x exists, 



Bf(x] 
x*(t)     f [x*(t)]     1 [xw<t)| +  -5 

9x x=x (t) 
<5x(t) + higher order terms 

or,   since x* (t)     x (t) + <5x(t). 

6x(t) 
»I 
Sx öxjt)   1  higher order terms 

x (t) 
(2-4) 

Since it  was assumed that >;  (t) is known,   (2-4) ean be rewritten as 

ö\(t) = A^(t) 6x_ + higher order terms 

where 

3f 

x=x°(t) 

Now for small enough 6x,  the higher order terms can be neglected in (2-5) so that 

öx(t) = A(t) 6x(t) (2-6) 

Stricting öx    to be small enough,   öx [and hence x_#(t)] can be approximated arbitrarily close 

to its true value by (2-6).    The basic assumption made in nonlinear estimation problems can now 

be stated.    It' x*(t) denotes the true state of the system and x  (t) the estimate at time  t,   based 

on the estimate x    at time t  ,   then -o o 

P(t) = E{[x*(t) -x°(t)] [x*(t) -x0(t)]'} 

=  E{[öx(t)] [öx(t)]'}       . (2-7) 

It' the error Ln the estimate x (t) is sufficiently small,  we can use (2-6) to evaluate 6x(t).    Letting 

thr transition matrix associated with (2-6) be denoted by 0(t, t   ),   <5x(t) is given by 

<5x(t) = <Mt, t   ) <5x — o     —o 
(2-8) 

I [ence 

P(t) = E{[6x(t)l [<5x(t)]'} 

E{[«(t,to) öxol \<p(t,to) 6xo]'} 

)(t, t   ) K(6x  ox' ) tf'(t, t   ) o -0-0 o 

P(t) = <t(t, tQ) P(to) (T(t,to) 

The same  result is found by obtaining the differential equation for <>(t,t   ) directly.    To do this, 

note that from (2-8) it follows that 

3x(t) 
c'U.t ;<\ 

(2-10) 

rherefore,  taking the partial derivative indicated in (2-10) in (2-1) yields 



-(1     x ' —11 

9x v        8f(x)    9x / cix_ \       "Hiv    ox 

x   —n' —        — o 

or rewriting (2-11) using (2-1 

9l(x) 
^ *(t.t0)=  —  <Mt,to)       . (2-12) 

—o 

Since 0(t, t   ) is to lie evaluated along the nominal trajectory x (t),   [8f(x) 'ox   I lias to be evaluated 

almig that same t] .     Hence,   using the notation of (2-5), 

ft  <Mt,t0) = A(t) . (2-13) 

Equations (2-13) and (2-1 ilent in that for linear ms,   the transition matrix satisfies 

\vn differential equation.     From (2-13) it is not apparent where approximations were intro- 

duced,   since it was not necessary anywhere to neglect higher order terms as it was Cor (2-6). 

I h".'. ever,   it is quite easy to see that in order to use the solution of (2-13) to evaluate the < o- 

matrix P(t),   the assumption t lai ÖN.(t) is small lias to   ie made again.     For in that  i 

it follows di rectly that 

.  it, t  ) <5x — —o 

and I 

P(t) = 0(t,tQ) P(tQ) 0'(t,tQ)       . (2-14) 

111.   DERIVATION   OK  THE  TRACKING   EQUATIONS 

.11,   discussion centered about a system which could lie desc ribed by a nonlinear vector 

rential equation (2-1).    In this section,   it will be assumed that an exact solution to such a 

nonlii ;tem of equations is available and can be expressed in the discrete form 

^k = I^k-l) + ük      • 

sion relating tin i   variables x,   to the obsei may be writ: 

yk   ^h(2k)+vk      . (3-2) 

\  separate report will discuss some implications of the transition from the continuous to the 

domain. 

It is now possible to derive an estimator for x.   utilizing the observations y     if the following 

assumptions are satisfied: 

u, , v,   = white,   zero mean,   Gaussian random variable's with 
-k   -k 

E(ukuk
T) = qk 

E<^kT) = ak 



and   ^,   h,   and the noise u    and y    arc such that for incremental  changes,   the equations 

9g(x) 
Ox 
-k i)x 

6x 
k-1 

-k-1 

8h(x] 
6v,   ~ 
^k 3x 6% 

hold.    'This in effect assumes that the   x  process is Gaussian with a mean whose evolution in 

time is given by a nonlinear equation.    Under these assumptions 

p(ik^k)= „ W21,   ,1/2 exp{~2 ^k-^^k»1' ^k1 i>:k-y^k)1} 

P^k|Yk-l» 
1 1 

(2^ TJl exPl-I^k-^k,k-ir 

k, k-1 

•' Sk.k-itek-2k.k-i» 

(2*) |Hk§k.k-lSk   +^k 

-1 

„Txn    ,1/2   eXP {- 2   &k " ^k, k-1» 

x (HkSk( ^^   +Rk)-    l^-h«^^)» 

limension of x 

m = dimension of the observation vector  y, 

Y,    .   = set of all observations v.,   i = 1.2,... k — 1 
k-1 ^j'   J 

A .A 
*k,k-i = S(W 

(3-4) 

(3-5) 

x,    .  = state estimate at time t,    . based on all observations y 

j= 1,2.... k-1 (i.e...   Yk_4) 

5k. k-1      K ^k-^k,k-l,(^k-^k, k-1 

;ih(x) 

% = "~äx~ 
*=*k,k-i 

Following Ho and Lee,   p(x./Y. ) is given by 

,   ,v ,    PtekiVk^) 
PteklYk)= P^IY^,) ^k^k> 



ll\^k  k-lük
r + likl'   

2 1 T      -1 
P(*k   Yk» "   (2r)n'2     H     1/2   |s -J72   eXpl"2   fak"^!     Sk 

,T 
Mv^iKVI^ik-k.k-i1   ^k,k-i(ik    ^k.k-i1 

-[yk-^k,k-1
)lT<"'Ä)k-ilikr^krl^k-^k,k-i^l (3-7) 

use _x,   occurs nonlinearly in (3-7),   it is in general not possible to solve din ctlj  for x, ,   the 

conditional expectation of x   .    However,   assuming that the true state x    is close to x.    ,        and 

assuming appropriate properties of h(x),   the term h(x. ) can be expanded about x.    ,    .  ii 

8h( x) 

^k'^k.k-i'4 ^T (^-^k, k-i1 (3-8) 

-k, k-1 

inly up to first order terms of h(x. ) arc  retained in its Taylor scries.    This implies that 
—* K 

in the quadrat Lc form 

[vk-h(xk)]TH^1y^h(xk), 

up to second ordei ihould lie retained. 

Expanding the term y,   - h(x,.) up to second order yields 

ik - ^k' - ?k~ &K k-i»    äk(xk - xkj k_4) 

i(x) _9_ 
8x   I l-k     -k, k-1 

-k, k-1 

(^k - ^k.k-l' 

(3-9) 

(3-10) 

Using (3-10) and retaining all terms up nd order in x   — x yields for (3-9) 

T 
[yk-li(xk)l' iik   [yk-wxk)|-[yk-h(xk)k.,)i   HR   [yk -h(xkj..,)! 

; <*k - k k-l)T ük
TRk

_1Hk(xk - *k> k_t) - 2 [yk - h(£k> k.,)l
T 

"Sk'^Xk-^nl-^Sk-^..!! 

9h(x) 
(x,, - x. ax        9x       -k     -k, k-1 

-k, k-1 
Sk     l>'k-^k,k-l>l 

1   i , i* „T ,. - t 
2 iyk-^k,k-i)] ak 

9h(x) 
(x, 9x   I    9x      -k     -k, k-1 

-k. k-1 

X<2k-2k,k-l> 
( (-11) 



riting the last two expressions in (3-11) in terms of the components of the various vectors, 

it can be shown that they are equivalent to 

f8h(x)lT , -\ .T / 8 
^k-^k.k-l»       ^ <)x H;1 [yk-h(2 -k, k-1' (3-12) 

mplify the subsequent analysis,   define 

,,  A! 
^k=  ax 

rah( x)i T 

brl ü 
k   i2k   ^k,k-i)l 

-k, k-1 

(3-13) 

-1 1-1 
As long as (S + H    R,    II,   - B, ) is positive definite,   (3-7) can be rewritten as 

P(xk! Yk) * a exp [- i {(xk - $k k_/ (S^ + U£K\ " 2k> (^ - *k, ,.,) 

T „T„ -1 
-Z(2k-2k,k-lJ    ükSk    tek~h(5kik.i)] + tek-W«k.k-l1 

x [R;1 - (Ukski k_,Uk
r + Skf'] [yk - h(2,  ^j)!}] (3-14) 

i 'i insider the term 

-1 
% «Mk. k-i^k + iik»"1 = 'UÄ, k-iiik" ' ^k»"1 Mk, k-iSkfik1 (3-15) 

which ran be rewritten as 

<iik4, k-iiik
T + %)_1 aksk> k.tts^Vi+ sk Rk

4Hk) 

-1 T     -1        -IT     -1 
x (S,    .    ,  4 H.   R.     H, )       H.   R, —k, k-1      —k —k   —k       -Ht —k (3-15a) 

\lter some matrix manipulation,   (3-15a) simplifies to 

-1 T -1 -1 -1 T    -1        -1      T    -1 
R.     -(H.S.    ,    ,H,    + R, )      = R.     II, (S,    ,    ,  + 11,'R,    H, )      H,   H, —k —k-k, k-1 —k       —k —k   —k -k, k-1      —k —k   —k       —k —k 

(3-16) 

Define 

Sk"1*<Si1k-i+Hkr3k"1Hk-Ik)     - 

Add and subtract from the exponent in (3-14) the term 

tek - »4. k-i"T fik^k(^k.Vi+ SkSk'^k)"1 MkSffik1 [^k - ^k, k-i»i (3-17) 

'["hen the quadratic term in y.   - h(x     k   •) bee 

t2k-^k.k-i)lT Bi^s^Vi + Sk3k~V (1+ Bksk) 

xHk
TRk

1[yk-h(xkjk.1)]-Eq.(3-17,       . 

\!tci- simplifying,   this reduces to 

^k-^k,k-i>iT H^iW-'kV ttk-^k-i1 (3-18) 



Since B.   is proportional to U,      [y,  - h(x.    ,      )],  the term (3-17) is of third order in R~    \\ 

h(x,    ,    .)].    furthermore,   every term in the expansion of (3-17) contains second order derivatives 

of the components of h(x),   so that in (3-18),  the term given by (3-17) can be neglected.    With this 

assumption the exponent in (3-14) can be written as 

exponent  -       \   <(xR - 5R> R_ ,) '   S^f xR - ^  ^ ) 

• [yk-h(Skjk.1)]TRk-1HkskHk
TRk'1lyk-^k,k-i)l^ (3-19) 

By multiplying out the quadratic form below,   we can verify that (3-19) can be written as 

exponent * ~ f" [(*k - (£k, k_,   ' S^R^1 [yk " h<2k, k_4)1)>'  S,?1 

•  ( 

•T„ -1 
^k-\k-i+WSk-   Llk-h^k.!»})! (3-20) 

From (3-20) it follows that the estimate x,   (the conditional mean) is given by 

sk 
= K k-i+ %ükr^k1 ^k - ±{K k-i" 

and the eovariance of x,   is given by 

Sk=K[(xk-2k)(xk-2k)Tl (3-21) 

ion (3-211 can be rewritten 

/   -1 T    -1 If ii(x>] I       _! 
«k^4,k-l+ük

]Hk   Hk-^    11-^]     Hk     [ykh(xk_k^! 

or,   using tin   definition of H. , 

4 = kVi-| (RTF tyk-h(x)i  A      ) * 

-k, k-1 

(3-22) 

and x    is given by 

k    ^k.k-i^k^X"1^-^,.,)! (3-23) 

•mine S ,   expand (3-1) about x,    - to yield 

6*k 9x 
ö2k-i + sk 

-k-i 

(3-24) 

where 

65c k-1 =   -k-1      ^k-1 

6x,   A x,   - g(x.    . ) -k -   -k     s -k-1 



Keeping only up to first order terms in the expansion of ox,  yields 

... dg ag T 
Kföx.ö^,1) & S, _q S,    ,   -=| + Q (3-25) —k  -k -k, k-1       9x'/\        -k-1   9X'A — 

-k-1 -k-1 

where we use the fact that u,   is independent of ox,    ,  and the mean of u,   is zero.     By similar 

reasoning,   it is easily established that 

C0V<ZklYk-l'      HkSk> k.^ + Rk       • (3-26) 

This completes the derivation.    It will be noted that,   analogous to the continuous case,   the co- 

variance matrix given by (3-21) contains the additional term B,    [defined by (2-13)] which does 

not occur it' linear filtering theory is applied to the linearized system.    For this report,   u    -  0 

een assumed in later sections. 

[V.    COMPUTER   REAUZATION   OF  THE   ESTIMATOR 

\ computer realization for (3-23) is now desirable.    Since (3-1) is not readily available, 

part of the computational algorithm must be devoted to obtaining a solution to (2-1).     \ detailed 

discussion of this specific problem is presented in Sec. VI.    The present section will brieflj 

describe the complete program for obtaining the state variable estimate. 

The algorithm used is in fact a valid result for three different approaches to the estimation 

problem     that of Sec.Ill and those of Mowery4 and Cox.     The similarity in the solutions for 

all three cases is due to the fact that the assumptions made in each case reduce the problem in 

final stages to minimizing a quadratic form involving the observations,   predicted values of 

tor,   and functions of that predicted state.    Also of interest is the flexibility of pro- 

gramming the solution in two different ways (see part C of this section). 

[uations describing the system are given by 

x=f(x) [Eq. (2-1)] 

yk # y(tk) = h(xk) + vk [Eq. (3-2)1 

w here 

x = state vector 

y,   = observation vector at time t, 

x,   = state vector at time t, —k k 

i, h = vector valued functions 

v,   = white,  Gaussian,   zero mean noise 
—k 

In Fig. 1,  an overall block diagram is given for the routine.    Figures 2 and 3 show the detailed 

flow diagrams for the problem.     The following definitions have been used: 

x. ,.   ,   = state estimate (prediction of state) at time t.    .,  based only 
—K+l, k K+i 

on the estimate at time t, 

x,        = state estimate at time t,    ,,   based on yk+1 and xk+1   k 



INITIAL CONDITIONS 
|3-42-10371 | 

A 
>       ,     x       ,     S o                o              -o 

k = 0 

ERRAN 

k = k+ 1 

" 
CONDITIONAL  INTEGRATION  ROUTINE 

OBSERVATION 
Integrate previous estimate fat time t^) for- 
ward in time until next observation occurs 
at time tiK+ ^.    Start with initial  conditions 
for k = 0. 

riMEfk+, 

i 1 

-k+1 

UPDATE  ROUTINE 

Update covarionce matrix. 

OBSERVATION Update state estimate using updated 
covanance matrix and observation y, . 

-yk 

Fig. 1.     Esl itnation routine. 
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INPUT FROM  UPDATE  ROUTINE  I 
3-4M03/2 

o      ~k     '        ok 

• = I     ;      i = «L 

=   0       ;        I  =   ] 

OBSERVATION 

TIME  t 
lc+1 LE 

WTo + (i + ,)Ak 

A = A, 

b-Kz.) 

A  =|i 

<|i. = I-AA'. + A„   A'.2 

I -|       2  -| 

• = *.* 

^ZZ> 
t = z. + Ab. +     =   A.b. 

"I        "I        2  -|-| 

i - i + 1 

1 = 0 

A = t       -T   - |A. 
k+1        o K 

4 = z.   . + 2Ab.   . + \ A2(A.  ,b.      + 2A.b.) 
-     "I"' "I"'      3        -|-l-|-l       -|"l 

z.   . -*. + f-(b. +b.   .) + T^ A2(A.b. -A.    b.     ) 
-|+1     -|     2   -|     -|+1       12        -\-\        i+l  i+l 

TO  UPDATE  ROUTINE  I 

Fig. 2(a).    Conditional integration routine I. 

1 1 



INPUT FROM  UPDATE  ROUTINE  II 
| 3-42-10373 

+ = 1 

1 = 0       ;        ( 

OBSERVATION 

TIME t, k+1 1 t 
i = i* 1 

k+rV
(i + ,)Av ( = o 

A = A, A = t,    , - T   - JA. k+1 o k 

I   •  I 

A  =  Ü 
i      3? 

I 

.2 
V- = I - AA. + =j- A. 

I I        2      | 

*      *.'!' 

^Z3 
z.  • Ab. +  -TT A.b. 
"I I       2    i 

i = z.   . + 2Ab.   . + ? A2(A.   ,b.   , + 2A.b.) 

= ,+,"!&> 

A     =M 
-j+1      3z 

i.   . + z. + £(b. + b.     ) + ± A2(A.b. -A.    b.     ) 
-|+1     -|     2   -|       i+l       12        -|-|     -|+1-|+1 

1 
-1+1     -|+1 

y 
<5^I> 

GE> 
¥k+i,k = ?i 

W* 

TO  UPDATE  ROUTINE   II 

Fig. 2(b).    Conditional integration routine II. 

12 



1 3-4M03T4 

INPUT FROM CONDITIONAL  INTEGRATION  ROUTINE  I 

' 
3h(x) 

-k+1 * "TT /•v 

-~¥k+l,k 

-k+l,k     *k+l  k   *k+] 

INPUT R~', -k+1 
 •> e-'    -S"'        4  HT    R-'   H 

-k+1   ?k+l,k   -k+l-k+A+1 

' 

INPUT yk+) /    ERRAN:   0   V— 

*!    • = *,    i  i   + S,    , H.    ,R,    , [y,    , — h(x.    ,  . )] -k+1     -k+l,k     -k+l-k+l-k+1 ^k+1      --k+l,k 

9g(s) 
-k+l = ~Jx~ 

=k+l 

5k+l = ?k+l5k+l?k+l 

k = k + 1 

TO CONDITIONAL  INTEGRATION 
ROUTINE  I 

OUTPUT IN RADAR OUTPUT IN RECTANGULAR 
COORDINATES COORDINATES 

Fig. 3(a).    Update routine I. 
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|i-4MMT5| 

INPUT FROM CONDITIONAL  INTEGRATION  ROUTINE  II 

INPUT R.    , 
-k+1 

9h(x) 

-k+1 =    3K 

=k+l,k 

S = *      S  * 
-k+l,k        k+l-k   k+1 

wi    i = 5,    ,  , H.T ,(R,       + H.    ,S,    ,  , H,T ,)"' 
k*l     -k+l,k-k+l -k+1     -k+l-k+l,k-k+l 

5k+1=q-wkMHk+1)sk+ 

INPUT yk+] 

1 
ERRAN:   0 

^k+l^k+lA^k+l^k+l+^k+l,^1 

I 

rk+i-?l5k+i 

ag(x) 
a 

k+1        3x 
=k+l 

-k+1     9k+rk+l?k+l 

k = k 

TO CONDITIONAL  INTEGRATION 
ROUTINE  II 

OUTPUT IN RADAR OUTPUT  IN RECTANGULAR 
COORDINATES COORDINATES 

Fig. 3(b).    Update routine II. 
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Sk+1, k = E l^k+1 -*k+l, k] (\U - *k+l, k1'!   = «.variance of the error 

in the estimate x. , ,   . 
—k+1, k 

5k = E I(xR+1 
_2k+1' <2Sk+1 ~Sk+1)'l = covariance matrix for the 

estimate at time t, 
k 

The various blocks in Fig. 1 arc described below. 

A. Initial Conditions 

It is assumed that initial conditions for the state estimate and the covariance matrix oi 

initial state estimate are known at some time t  ;   it is at this time that the estimation routine 
o 

starts.    The first observation after (or at) t    will produce the first estimate-.    The index  k  keeps 

track of the estimates x, :   the zero estimate x    is simply the initial estimate of the state (i.e., 
-k -o ' 

prior to any observation after or at t   ).    The parameter ERRAN is included to allow the same 

program to be used for error analysis;  it is set equal to one if the routine is used for i 

analysis anci to zero otherwise. 

B. Conditional Integration Routine 

In the conditional integration routine,   a predictor-corrector method for numerical  integra- 

tion is used.    The specific method chosen is described in Sec. VI and will not be discussed here. 

However,   certain modifications had to be included to permit observations at any time rather 

than only at an integral multiple of the step size in the numerical integration.    The routine is 

equally well-suited for real-time estimation and post-flight analysis.    If the observation til 

.nown,   they can be included as data in the program.     For real-time analysis the integr 

will probably be one step size behind time;   i.e.,   the state equation is integrated om 

•nly after a check is made that no observation occurred during the time interval [t.,   t    t A   j, 
J     J k 

where t. is the time to which the state equation has been integrated,   and A    is the step sizi 

the integration in the interval [t. , t,    , ].    If an observation is made at t,    .  ( [t., t. + A, ],   the 

integration is carried forward in time with a step size t,    , — t..    Because the predictor- 

method chosen requires a constant step size,   a slightly modified predictor has to be used.    In 

particular,   this is the same predictor as the one needed to start the numerical integration 

algorithm.    The index j   keeps track of the number of integration steps,   ano the index   f   is used 

to exit from the loop when an observation is received.    The reason for having two slightly dif- 

ferent routines (Figs. 2(a) and (b)] is given below. 

C. Update Routine 

The function of this routine is to update the state estimate and the covariance matrix when 

an observation is received.    Both the updated state estimate and the covariance matrix 

tained for the rectangular coordinate system.    Since it may also be of interest to have these 

quantities in radar coordinates,   such a conversion has also been included in the routine. 

The updating of the state vector is conditioned upon the parameter ERRAN.    If ERRAN = 0, 

the routine is used for estimation,  and hence the state estimate will be updated using the current 

observation.    When an error analysis is performed,   i.e.,   ERRAN = 1,  the evolution of S.   along 

a given trajectory and for a given set (R.) is found.    This is accomplished by letting xk+1      x.k, (   , , 

1 5 



as shown in Pigs. 5(a) and (b).    These figures represent alternate ways of solving the estimation 
4 ^ -IT 

equations as given by Mowery   and Cox.    In Fig. 3(a),   tl - (*     )    is computed directly,  whereas 

in Fig. 5(b),   *   is computed first. 

ion 111 and Refs. 4 and 5 give derivations for the state estimates and the appropriate co- 

variance matrices.     Figures 2(a) and (b) show the conditional integration routines thai are used 

with tin- updating routines of Figs. 5(a) and (b),   respectively.    The functional form of all matrices 

and vectors used in the actual algorithm is given in Sec. V. 

V.     STATE   EQUATIONS   \M>   MATRICES   DEFINED   FOR   THE   BALLISTIC 
Mil;   RE-ENTRY   PROBLEM 

A.     D; 1  Equal ion f(x) 

A  spherical earth is assumed with the radar at zero altitude.     The X-y-z coordinate system 

dar with the x-y plane tangent to the earth (x east,   y   north) and   /.   vertical 

<ix 
dt = fjte) 

dt - f
2<*> = y 

dz 
dt f3(x) 

dx       -  ,   .      ,2 p. 2   ,   .2  ,.2.1/2.,,.. ,    • 
-T7-      t ,(x)   • (w    - g  ) x — Tfs (x    + y    + z   ) x +   2wy sin </> — 2wz cos ,. 

.,.,2.2 . p   ,.2      .2      .2.1/2  .      ,    •     . 
-^  = f5(x) = (w    sin   <.   - gc) y - fs (*    + y    + z  ) '     y - 2wx sin <. 

2 2 
Sin <p  cos <p — w   r     suit'  cost' 

, ,   ,      ,   Z 2 . p   ,.2      .2      .2.1/2  . 2 
—      '^'^O      (w    <,(>s   v — g   ) z — 775  (x    +y    +z) z — w  y sin , 

,22 
OS    t •   — g   ) 

'1(1.V) 
at f„(x) = depends on the specific assumption on the functional dependence 

of ß (= 0 for  /3   constant) 

m 
,   2 2 ^     2.3/2 
(x    + y    + z   ) 

latitude of 

radius of earth 

p = weight density of air 

ß weight-to-drag ratio 

w = earth's angular rotation rate. 

11» 



B.     A -   9£(x)/8x Matrix 

ail = a!2 = ai3= °      • ai4 = 1 

a15 = ai6 = °      • a21 = a22 = a23 = a24 = ° 

a25  = 1      , a26 = 0 

a31 =a32 = a33 = a34 = a35 = °      •       a36 = 1 

,2 . 9gc       .,.2      .2      .2,1/2   3   ,  p , 
a41  =(W    ~ gc> ~ X IbT ~ x(x    +y    + z   > 9^<Ä' 

9gc       -,.2  ,   .2      .2,1/2    8   ,p, 
a42 = -x ^7-x(x  +y  +z '      57<2?> 

9gc       •,.2       .2       .2,1/2     3   ,   p , 
a43 = -x -8F "X(X    4 y    +Z   > ^(Zß] 

_p_      2        2        2 1/2 _ _p_  if  
44 -      2/3   (X        y        Z   » "  2/3   (.2 + 72 +  .2}l/2 

a45 = ~ 2ß   772 .2^   .2,1/2   + 2w sin * 
(x    + y    + z  ) ' 

a46 = " Zß  ~2 .2XZ   .2,1/2  - 2w cos <" (x    + y    + z   )  ' 

9gc       ., -2.2^  .2,1/2' a   ,  p , 
a5i =-y -aT-y(x   +y   +z >       a^(2^) 

,2.2 , 9gc       .,.2.2      .2,1/2    3   ,   p , 
a52 = (w    sin   <p - gc) - y -^ - y(x   + y    + z  ) ^ ( $ ) 

9gc       •, -2      .2      .2,1/2    a   ,   p , 2 
a53 = _y ~aT _y(x   +y   + z)       ai(2/3)_w   sin(/1 cos*' 

a54 = - Iß  -1 .2*   .2,1/2 - 2w sin * 
(x    + y    + z   )  ' 

2 f y_     .  ,.2  .   .2  ,   .2,1/2] 
772—i  .2,1/2+(x +y +z » L x    + y    + z      ' I 

a       = -J. 55 2/3   . 
l(x   + y    + z  ) 

a^ "      '«  ,.2      .2      . 
(x    + y    + z  ) 

2/3   ,.2      .2      .2,1/2 
x    + y   + z  ) 

,       x    ,   9gc       -,-2 ^  .2  ,   .2,1/2    3   ,   p , 
a6i=-(ro + z) ^r"z(x   + y   +Z >        ta (#J 

9gc       -,.2      .2      -2,1/2    3   ,   p , 2    . 
a62 = -(ro + Z)  ^y" ~Z(X    +y    +Z) 8y"(27)_w    sin*cos? 

,2 2 ,      ,       ^    ,   9gc       ...2.2    .2.1/2    a   ,  p . 
a63 = (w    cos   v-gc)-(ro + z) — - z(x    + y    +z   ) ^ ( ^) 
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a,     = 2w cos <f - 
(x    + y    + z   )  ; 

a     - -_£. yz 
65 2/3  772      72      .2 1/2 

(x    + y    + z   ) 

p    f z2 ,.2      .2      .21/2 
a66 = " Zß   \~Z 1 ^172  + (x    + -v    + z   ' 1 (x    + y    + z   )  ' 

The dimension n of A  as well as 

a..      ,       i = 1, 2,. . . n;   j > 6 

a..      ,       i < 6;   i = 1, 2, .. . n 
i.) 

will depend on the specific functional form assumed for a = 1//3.    The additional elements of   \ 

for a - constant are (n = 7,   with the seventh state variable x    = a): 

a1? = 0      ,       a2? = 0       ,       a3? = 0 

p   , .2      .2      .2,1/2   . 
a4? =  | (x    + y    + z   ) x 

p   ,.2       .2       .2,1/2   . 
a5? = •§- (x   + y   + z  )        y 

p   ,.2       .2       .2,1/2  . 
a,„ = £   (x    + y    + z   ) z 

a71 = a72 = R73 = a74 = a75 = &76 = a
77  =  °       ' 

('.     Observation Relation h(x) 

L.   -   > ,22 2,1/2 h.(x) = r = range = (x    + y    + z   ) 

-1   x iu(x) = o = azimuth = tan       — 
2 - y 

-1               z 
h,(x.) = e = elevation = tan       —^ .,  . >- 

(x    + y ) ' 

h (x) - f -        xx + yy + zz 
V-   "       "',   2 2 21^2 (x    + y    + z   ) 

I).     H  Matrix 

9r v 
h,,  =   -7T- 11 9x  "  ~2~     2~     TTTI   "   r (x    + y    + z   ) 

9r       y      _  y^ 
12 "   8y       ,   2        2        2.1/2   =   r J        (x    + y    + z   ) 

h13 "   8z   "   .   2 2 ^     2.1/2   "   r 
(x    + y    + z  ) 

h. . = h.c = h/ = 0 14        15        16 
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h21 =   3x" =     2 '     2 
x    + y 

8Q 
22 3y 2 2 

X     + V 

23 = h      = h,t = h,, = 0 
24        25        26 

3e   _ — xz — xz 
^1   "    ax   "   7~2 2~~     2, ,   2 2,1/2   "      2,   2 2,1/2 

(x    + y    + z   )(x    + y   )  ' r  (x    + y  ) ' 

h„=   |1 _Jii 
32 "   3y       7~2 Z-"     2, ,   2  ,     2~T72   "     2.   2   '    2.1/2 J       (x    + y    + z  ) (x   + y  ) r(x    + y ) ' 

,   2        2,1/2       .   2        2 1/2 
3e   _   (x    + y•   ) _   (x    + y   ) 

33       3z       T        2~     2   " 2 
x    + y    + z r 

h34 = h35 = h36 = ° 

2        2        2 
, 9r       x(x    + y    + z   ) - x(xx + yy + zz)   _   xr - 

41       3x 2        2        2 3/2 " 2 
(x    + y    + z   )  ' r 

2 2 2 
h      _  ££ _   y(x    + y    + z   ) - y(xx + yy + zz)   _   yr - ry 

42       3y 2 2 2  3/2 2~ 
^ (x    + y    + z   ) r 

43       3z 

2        2        2 .... 
Or        z(x    t y    + z   ) — z(xx + yy + zz)   _   zr — rz 

.   1 ±    2 A    2,3/2 
(x    + y    + z  ) ' 

44       3x ^ 2~     2,1/2 
(x    + y    + z  )  ' 

h    = 5E = z  _ y 
45       3y       ,   2 ^    2"       2,1/2   "   r J       (x    + y    + z  ) 

<>r 
46       9z   "   ,   2 ^     2 2,1/2   "   r 

(x    + y    + z   ) 

E.     Relation Between Coordinate Systems g(x) 

,2        2 J     2,1/2 
g  (x) = r = (x    + y    + z   ) 

.   , -1  x 
g2(x) = a = tan     — 

g3(x) = £ = tan"1      2/2,1/2 
(x    + y  ) 

,   ,      . xx + yy + zz 
g4(x) = r =       2     ^     2 

(x    + y    + z   ) 72 

t g(x) as defined here bears no relation to g(x) in (3-1). 
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„   /    I        •      vz - XV g5(x)   • 0   ^ £ 
(x    f y   ) 

g6K-' ~2~227~7       Ti^Z 
(x    + y    + z   ) (x     I   v   ) 

F.     B 

b<l  =  " 11      r 

b14      ° 

b 

r 

0 

b22^ 
- X 

2   2 
x + y 

b25 
(1 

21 2~     2 

,        _  - xz .  — yz 
>3i       rV + yV/Z      ' 32 =  r2(x2 + yV/2 

b35     0     , 

rx-xr r-y - yr 
II 2 ' "42 2 

r r 

x = y 
•t-t       r 45       r 

bcj  =   2XÖL+1      , br 
2       • "c,2 ;T 

\ x 

 I  b        =        ~x 

2 2 ' SS 2 2 
x x 

- xi 2r   ,        _  zx  
2 2  " r    °31 2,   2 ^     2,1/2 

x    + y r (x   + y ) 

b13 = 
/ 
r 

bl6 ; 0 

b23 = 
11 

b26 = 
0 

b33 
x2 + y

2 

2 
r 

b36 = 
0 

b43 
rz — zr 

2 
r 

b46 = 
z 
r 

b53 0 

b56 0 

^^5   -   —   b 2,2 r 22        2TT72 
x r  (x    + y  ) 

.        _      vj_       r   .  - xz 
63 " 2        r     33       *        b64 =  D31  =      2,   2 2.1 '2 

r r   (x    + y   ) 

2 ' .        _   -yz . ,        _   x    + y 
32 2,   2   '    2,1/2       '        "66 "     33 2""~       ' 

r   I r 

VI.    NUMERICAL  INTEGRATION   OF    THE  EQUATIONS  OF  MOTION 

ID Sec. 11 we considered a system described by the nonlinear state differential equation 

x=f(x) (6-1) 

w hen 

x(t   ) = x -   o        -o 

2 0 



and  x is an n-dimensional .statt' vector.    Discussion was limited to the general concepl of linear- 

izing the nonlinear equations about a nominal trajectory.    In this section these concepts will be 

extended to obtain a specific algorithm for solving the system of equations presented in Sec. V. 

Tins algorithm is then used to compute the x.    .    ,  or conditional estimate term of (3-23). 

In addition,   there is a requirement to update the covariance matrix (2-9) or (3-25).    The 

integration algorithm given hen   satisfies this need.    Part n presents details concerning com- 

putation of the incrementally linearized transition matrix used in updating covariances. 

I.ei  the solution of (6-1) with the initial condition x    be denoted by 2L (t).    There are a  n 

of schemes available which use numerical integration to obtain the solution x (t).    Since in the 

present case it will also be necessary to find a solution to the linearized incremental differential 

equal ion 

1 9f 

x°(t) 
6x(t) (6-2) 

only methods which make use of higher than first derivatives (in particular,   second derivatives) 

of x(t) at  various times will lie  considered. 

\.     Taylor Series Predictor 

The simplest way of using the knowledge of  x is by means of a Taylor series expansion. 

Assume that the value of x(t) is known at time t, .     For simplicity,   it will be assumed that x(t) 

will be found at equally spaced points along the time axis.    Let 

A = t,   - t,    .  = constant for all  k 
k       k-1 

dx 

t=t, 
i(xk) 

then 

x,    . = x,   + x, A + 5c,   —T-  + higher order terms 
-k+1      —k     —k        -k    2 

3f 

-k =   fbc -k =   3x l(xk) 

^k+1 xk + Kxk) A +   - 
9f 

f(x. ) -5- + higher order terms 

x,    .  can be approximated by 

8f 

xk+1 = *k + I(xk) A +   gi 
ik 

flsk> %- 
(6-3) 

, it h t he 1   ' component of error 1%. = (A /3) x.     (a.) t,  < a. < t^+1. 
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B.     Predictors Based on More Than One Point 

It' only the values of \,   and its derivatives are to be used,   then the Taylor series expansion 

is the liest polynomial approximation.     However,   by using appropriate previous values of  x and 

rivatives,   an improvement over (6-3) is possible.    A number of such predictors exist which 

can be generated in several ways.    Four predictors are given below,   together with the derivation 

for the predictor used  in the algorithm described in part I). 

The following predictors involve onH   \,    .,   x,    ..   x, ,   x, ,   x, ,   x,    .: 
•   -k-1    -k-t    -k    -k    -k    -k-1 

A A2 

*k+l=*k+-Z   <3*k_i       -•:'   '   TI  (1744   7*k-l' (6'4) 

*k+i   i <% ^k-i» • T
(7

4-I-4
)
 

+
 T4 <33^k 

+ 154-i' (6-S) 

*k+1  %-i<2A%-i* T 
i4h + zh-i]   • (6-6) 

A predictor using xk_2,   xk_r   xR,   x),_1,   xR is 

*k+i =*k-2' ^\-\-i) + ^h-h-i]   • (6-7) 

To derive (6-6) we use the   raylor xrpansion for x,    ,,   x,    .  and its first ond deriv- J —k41     —k-1 
atives.     Equations (6-4),   (6-5),   and (6-7) can be derived similarly,   and in fact,   by using the 

same method,  an infinite •. predictors can be generated.    The various series are [assum- 

ing x     i si continu 

where the i      component of H,  is given by 

[R4].= i Jk   ' '»(s) (tk+1 - s)4 ds (6-9) 
' 'k 

^ ^-^^h-4^ + 4-^*^ 

B^li = jr   \   k_1   x.(5)(s) (tk_j      s)4,ls (6-11) 

A4-i - A4 " A\ '4^]~TT 44) + W (6"12' 

[R^'li = £ I k_1 xi5)(s) (tk-i - s)3 ds (6_15) 
l
k 

A 
2- ,2.. . 3   (3)       A4      (4)      _.,, ,,    . ., A   Sfc-i  -^   ik-A  4   ' + —   xk      +R4" (6-14) 
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BW^C"-' •,">(.) «M-.* I. (6-15) 

Multiplying (6-10) by-1,   (6-12) by-2,   (6-14) by - 2/3,   and adding them to (6-8) yields 

xi^< - xi   . - 2Axi   * - T A
2

*,   4 = I A2k, 4 R^ - R!, - 2RV - 4 RV —k+1      -k-1 -k-1       3        —k-1       3        —k     —4     —4        —4       3  —4 

2k+l ^k-l + 2A4-l + f A2
(%-I 

+
 

2
%

W
^ (6-16) 

where 

R*   : R . - H', - 2R'' - -| R'" 
—4     —4     —4        —4        3  —4 

laji. (*fcfi x( 
Jt, 

5) 4 
'(B)   <tk+1   -   B)*   ds Jt, 

1 x,'5'... i<v, - °>4 

+ 8A(t,    ,  - s)3 + 8A2(t.    , - s)2] ds 
k-1 k-1 ' 

(6-17) 

(Consider now the term 

[(tk-l ~ S)4 + 8A(tk-l _ S)3 + 8A2(tk-l ~~ S)2' 
(6-18) 

In (6-18) it is clear that since (t,    . - s) < A 

8A(tk-1 - s)3 -i  HA2(tk_1 - s)2 >0       ,        t^i«3^^ 

,   (6-18) is non-negative in the interval of integration.    By using the mean value theon m 

of integral calculus,   (6-17) can be written in the form 

ro*i !       <5>^ i   Ctk+1 ft [R|li =   4i  x.     (a.)   \ (tk+1 
>4   , 1 s)    ds + -^ •« v £ k 

k-1 

X ((tk-l " S)4 + 8A(tk-l " S)3 + 8A2(tk-l " S)Zl ds 

A5      (5),     . ^   A5      (5),      .  ,,       8X  5   ,   8X5 
= TT  Xi     (ai) + TTXi    (<pi)(1 " ^T  + T-» 

i ir 

ISlU-frl^V^^Vl (6-19) 

where tk< cr. < K+i'  *k-l < ^ • < tk 
for i = 1, 2, ... n.    Assume now that 

xi<5)(CTi) = xii5)(<pi] + hi 

then 

li 



%h =   STxl   lK/S)'SM  3h + 13x.<5><„.) 

[I6x.(5)(c   ) + 3h.] 

16A5   ,    (5).     . 5   .   . 
=   ISO-  lx!     <LV  '   16  hi' 

but x ll vill be a value between x.     u .) and x;    (rr.).    Hei iuse of continuity 
li l liii 

there exists a   t,   such that 

[fiiii= Axi(5)^i)A5 

"k-i -• --1^tk+i for [ = i----n • '" •''" 

Hence,   if the | T (6-6) 

*k+l     Vl 4 2A^k-i + T
A2(

%-I 
H
 

24> 

rror) term is given by (6-20). 

( .     (lorn 

ile to improve the accuracy of numerical integration. For- 

mulas used for the iterations are called correctors, since they all require a startin which 

is then "corrected" in sui                                ins.    To obtain such formulas a procedure identical to 

i d.    In particula v 

*k+i -^
+ A44 4 h+ 4 45) + 4 44)' ^s (6-2D 

As,,,       Ax,   +A
2x.   + ^  x'3)-,   ^  x(4) + H' (6-23) 

— k ' 1 —k — k        2    —k 3.   —k —5 

1      r w+i   (si 3 
[HL).   =  jr A j   K+1   x*    '(s) (t,.+ 1 - s)    ds (6-24) 

*k 

A2xk+1      A^ + A^'+^x^'+R'' 

l&iV  7rJk+1   x.(5)(s)(tk+1-s)2ds       . (6-26) 
*k 

Multiplying (6-23) by-l/2,   (6-25) by 1/12,   and adding them to (6-21) yields 

^k+i = ^ + T (4 + 4+i'+ u A'(4 - 4+i'4 H (6-27) 
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sr^-7fi5 + ii»5 
,.i 

111,1,       £ ]( 
k+1   x<S\s) [(tkH , - s)4 - 2A(tk+1 - s)3 + A2(tk - s)2, ds 

41 Jt, 

SVs)l(tk+1-s)2-A(tk+1-s),Zds 

^gain applying the me in value theorem of integral calculus to (6-28) yields 

rH   . 1      (5).fl . /A5       AS  J   A
5\ 

(6-28) 

mh = #o *i(5)<v 
when < t.    ,  for i = 1, 

k        l 
Hence,   if 

-k+1 *k ' T (^k +W+ T7 A2(4"4+I) 

(6-29) 

(6-30) 

is used as tin- corrector,   the remaining (or error) terms are given by (6-29). 

I).      algorithm for the Numerical Solution of a Differential Equation 

It is now  possible to give a complete algorithm for the solution of the differential equation 

x   - f(x) 

x(0)      x (6-31) 

The predictor-corrector method is used,   with the corrector being of the form of (6-30).     For 

the pn (6-6) was selected.    Recall from Sec. II that it is also necessary to evaluate the 

transition matrix for the linear time-varying equation 

d a- 
dt = (s*>  3x" 

fix (6-32) 
2£(t) 

in order to update tin- covariance matrix.    This is easily incorporated into the presenl algorithm. 

The fl (Fig.4) shows the sequence of operations.    Since (6-6) requires x_,    ..   x,  has to 

be evalua ither means.    As indicated in the flow chart,   this is done by using a Taylor 

series expansion about x  . 

In the flow chart symbolism,   4>  denotes the transition matrix of (6-32).    For evaluatir 

in is made that during the interval of time of length  A,   9f/8x.will be essentially 

constant.    Hence if the notation 

8x 
(6-33) 

th is used,   the transition matrix ai the k     point 



k = 0 

b   = f(x  ) -o     - -o 

df 

*   = T~- o     ox 

= I*A4»A24
T ) —o       —o    2 

+ = $ 

£ = x   + Ab   -    - Ab 
-o        -o       I    — o-o 

k = k + 1 

( 
I,  :k STOP 

\=^ 

3f 

-k= ä; 
-K 

»k'I + V + 42y 

* = *k* 

*-Sk-i+2i^-i + !AVifek.i+2*kfek' 

bk+1 =-'<<> 

3f 

-k+i = äx" 

3-42-10376 

~^\    '^|iC    ) 

v,=-!k + K*w4 i5AVic-Vi^i' 

Fig. 4.    Flow chart of algorithm. 
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*       <£(t. ,t   ) (6- 141 

ran be written as 

4>      e   K   e   K a    ...e   ° . (6-3S) 

This follows from the fact that with the assumption of constant 9f/Ox during the interval  A,   (( 

represents a piecewise constant system.    It is also easy to see that 

•«k+i-V   0(tk(r
tkW(tk'to^^k+1   ^w   • (6-36) 

Equation (6-36) updat<      *     t < a :h new t, -    In order to evaluate explA.    .A],  a power series ex- 
K ~ ~ K+l 

pansion of the form exp [A, Al = 1 + AU.A + A, (A /2) + (higher order terms) was used,   with the 

higher order terms neglected.    For A   sufficiently small (which it has to be for the assumption 

8f  3x constant!,   this approximation will be valid.    However,   for increased accuracy we may 

(1)    Drop the assumption (i constant during the interval  A.    As an o & 

x (t) 
approximation it could be assumed for example that in the interval 
[t, , t,    ,].   (6-3Z) takes the form ' k    k+lJ 

^ [öx(t)l       V   ~^A       (t-tk)6x(t)       . (6-37) 

(2)    Kvaluate the transition matrix <Mt.    ,, t, ) = d>,   to powers in  t  higher 
than the second. 

It will be seen that in the flow diagram the correction iteration loop is made conditional upon 

the size of the difference between successive approximations.    This need not be incorporated, 

although it is worthwhile to obtain and record the difference between the predicted value and the 

found by iteration.    This will become clear in the next section. 

E.     Estimate of the  Truncation Error 

In the algorithm described previously,   (6-6) was used as the predictor,   and (6-30) was 

to obtain the final value of \,    ,.    If we denote the difference between the corrected and the pre- —k+l 
; value of \,    ,  by C   ,   then ('    represents the difference in the truncation error of (6-30) 

—k4!    •   —o —o      r 

and (6-6) or 

i predicted value — corrected value 
—o 

-Sj 

where it will be recalled that t,    . •$;/.< t,    .  and t    < ß   < t.       or 

[C0U=   7^AS(V> + ÄXi(V><*i-'?i) (6-39) 

where x.     (it.) - x.     {ß.) was expressed as 
l l 11 
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,>-x;5\,v = <p x;"^,s x/^.u^/v 

and mm (i .,,!)< (i   < max(f, ß.).    Hence 

SI sfeA'V« TTNIS «,'%)(*,-(',) 
and 

111.I, SI 72^  I Ä «,"'<•• 

A 
720 |f *<6>«>.) («.-£.) 

<7^Mlf   l^i-^il<ÄMlf 
it is assumed that 

i   (6 
(t)| < 'k-l^^Vl 

'I'bus 

B§ 
i 
~o 
H 

N 

l5'i 
2.XMA 

1 395 (6-40) 

that 

31 

• A    . 

i,   A  will be chosen small enough so that only one iteration is required.    < 

quently, of the truncation error (with an accuracy of order C  ) can be obtained 

first pass through the iteration loop (see Fig. 4). 
k '   1 

F.     ( tions 

• been tacitlj t) e iterations indicated in the algorithm will 

! under what circum his will be true,   consider the i      iteration.    Here 

•ipts will denote the value of x.       obtained at the respective iteration,   i.e., 

i+1 ,   A  ,. . i 1.2...        ..i     , 
*k+l = *k + T (*k + W + 12 A  <*k~ W 

th represents the value of x,    ,  after the il    iteration.    Then 

i+1 i A_    . i 
-k+1      -k+1 "    2  (-k+l 

. i-1,        1    A2,..i-1 x,.. ,) + T^ A  (x 1 2 -k+1     -k+l; 
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(,t^., 4n-*k+i- tlu'n 

A . A2 I2 

, Ad A      d      ,,  . 
*i+i = 1 dt ^-"üTz <V 

dt 
(6-42) 

In order to obtain dö./dt and d  6./dt    in terms of 6.,   the differential equation of motion (6-31) 

u ill   be  vised. 

Hence 

4+i =^(W 

.   , .   . 9f 
• l l-l      ..   l     .      „l-l, 
x,.,, - x,..,  = f(x. x,) - f(x. ,,) =   7T- -k+1     -k+l     iv-k+l' sk+l' "   9x x=ii 

l-k+l      -k+l' 
(6-43) 

d '- 
dT (^i) = ax" 

^
=
M 

6 
-i 

where 9f   ci\_is assumed continuous in the interval of consideration,   and £.  is a value of  x  such 

thai  (6-43) is satisfied.    To simplify notation,  the definition 

9f 

2=ii 
(6-44) 

is introduced.    To obtain the variation in the second derivative,  the expression for x,    . will 

first be obtained.    It follows from (6-31) that 

9f 
sk4i = a^ 

31 

*k+i 

(6-45) 

k+l 

Hence 

*k+1 = g(2k+i» 

i'. here  g( • )  is defined by 

9f(x) 
g(x) = -T—    f(x) 9x  

(6-46) 

Therefore 

l-l 9g 
.. l 

^+1 - -k+l 
XrUi 

(*k+l-w (6-47) 

.here it is again assumed that 9g/9x is continuous,   and TJ. is chosen to satisfy (6-47).    Defining 

3g 

£<V = 9t (6-48) 

5. Hi 

.:;) 



(6-47) bei 

,2 
^J (ö;) - G(i, ) 6 
dt ' 

Hence,   (6-42) becomi s 

«i+1       [f F^-fic^JÖ.       . (6-49) 

•   equation of the form 

«i+1     A.6. (6-50) 

f £<£.)-   ^G(3i)       • 

If all the ö.'s ill enough,   then A. may be assumed constant so thai the condition for stability 

imes 

|xAl<i 

A       constant.    The rate of convergence will also be deter- 

! by how close the magnitudes of the eigenvalues are to 1.    Since ii  is rather tedio 

iaie A. and r .alues,  as well as to cheek the basic assumption that A. is in fact 

stant,   the chief value of (6-49) is to show that if F(£.) and G(ij.) are bounded,  there 

ich that the solution to (6-50) > ,   i.e., 

lim   ö 

and hence thi in the algorithm will be stable for sufficiently small   A. 
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