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ABSTRACT

This report presents an approach to point target tracking based
on sequential filtering techniques. The tracking problemis defined
in terms of a nonlinear vector differential equation and an appro-
priate state vector. A Bayesian formulation for the problem is
selected which results in a least-squares filter solution., Linear-
ization techniques essential to this approach are incorporated into
the development of the solution. A computer program which im-
plements the complete solution algorithm is presented. As part of
this computer realization, numerical integration of the equations
of motion and numerical evolution of the estimate covariance ma-

trix are discussed in detail.
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AN APPROACH TO TARGET TRACKING

1. INTRODUCTION

In the past several years a number of publications in the control theory literature has dealt
with the problem of estimating state variables associated with nonlinear systems. Much of this
work is based on the early linear estimation techniques established by Kalman and Buc‘y.i'z

In an engagement betwcen a missile attack and a defense system, onc of the crucial modes
of the defense system will be point target tracking. As will be shown, thc problem of tracking
a point target with a radar is a nonlinear parameter estimation problem. The purpose of this
report is to apply the techniques of modern control theory to that problem. A variety of topics
essential to understanding thc philosophy of nonlincar, recursive estimation techniques is pre-
sented, with application to a specific re-entry tracking problem.

The problem considers a missile trajectory which may be described by the nonlinear vector

differential equation

X = f(x) (1-1)

where x = x(t) is an n-dimensional vector whose components dcfine the trajectory of the approach-

ing missile. Obscrvations on this target are availablc in the form

yit ) =y, =hix )ty (1-2)
where h(x) is an m-dimcnsional vector function and Yy is Gaussian white noise. The estimator
-',\Ek of X will be required to utilize the observation Yx along with the information inhcrent in f

and h and a previous estimate gk_i to obtain the best (in some sense) estimate. In particular,
we will give explicit equations for the problem and obtain a solution for the case of a seven-
dimensional state vector with three position components, three velocity components, and the
drag-to-weight ratio. The observation W is four dimensional with range, azimuth, elevation,
and range rate as components.

Each of the following five sections presents a particular facet of nonlinear estimation prob-
lems. Section 1l presents the general linearization techniques which are used to modify the non-
linear expressions and establish approximate cxpressions amcnable to computer processing.
Scction 111 considers the specific problem of obtaining an estimator and its covariance. Sec-
tion 1V briefly discusses the actual computcr algorithms used to estimate the state variables.
Section V tabulates the actual state vectors and matrices dcfined for the ballistic missile re-
cntry problem. Section V1 trcats in detail the techniques used in the numerical integration of

the nonlinear system of equations (1-1). Also decscribed in Sec. V1 is an incremental linearization



technique used to update the estimate covariance matrices. It is this particular area of co-
variance estimation which is least developed in the field of nonlinear estimation problems. Much
work remains to be done before all phenomena involved in such estimation problems can be fully

understood,

1I. LINEARIZATION ABOUT A TRAJECTORY IN NONLINEAR SYSTEMS

In the general nonlinear estimation problem we are confronted with the set of equations (1-1)
and (1-2). Unfortunately, the ability to obtain closed-form solutions to such problems is severely
restricted by the techniques presently available. As a rule, we must resort to numerical meth-
ods and computer techniques in order to achieve satisfactory solutions to such problems. This
section presents some of the linearization techniques useful in preparing nonlinear problems for
computer solution.

Let the system under consideration be described by the vector differential equation

% = f(x) (2=1)

where
x = n-dimensional state vector
f = n-dimensional vector function of x

It will be assumed that f satisfies conditions for unique solutions to (2-1) to exist. A solu-

tion starting at time t() and initial state X, will be denoted by

xO(t) = xit, t ,x ) . (2-2)
== c O TO
Equation (2-1) can be rewritten in the form of a nonlinear integral equation
[} "t
)= x4 \ Lx(r)] dr (2-3)

[
(@]

which is more convenient when solutions are obtained by numerical integration, as is the case
here. 1n the subsequent discussion it will be assumed that such a solution corresponding to X
to has been found, i.e., g)(t) is known. (An algorithm for the numerical solution of (2-1) is given
in Sec. VI1.)

Algorithms for the estimation of state variables of dynamic systems trom noisy data (ob-
servations) require that the covariance matrix of io(t) be found, given the covariance matrix of
x . For nonlinear systems this is usually not possible directly, so that linearizations have to
be introduced. Thus the equation of motion (2-1) is linearized about the nominal trajectory l“(t).
Consider the effect a small change in 3 has on i()(t)‘

L.et

% = x + 0x
=6 =0 =0

e

and

x#(t) = xO(t) + 6x(t) = (b, t, 23) = x(t,t

Then, assuming that af/dx exists,

[¥¥]



X¥(t) = f [x®(t)] = £ [S’(t)] t oo 6x(t) + higher order terms
Bl
or, since x#(t) = x°(t) + 6x(1),
af
ox(t) = '8—3 ‘()(t) 6x(t) + higher order terms . (2-4)

" ] 0 . y ’
Since it was assumed that x (t) is known, (2-4) can be rewritten as

6x(t) = A(t) 6x + higher order terms (2-5)
where
af
A(t) = a_ii:io(t)

Now for small enough 6x, the higher order terms can be neglected in (2-5) so that
6%(t) = A(t) x(t) . (2-6)

By restricting 6._\0 to be small enough, 6x [and hence x*(t)] can be approximated arbitrarily close
to its true value by (2-6). The basic assumption made in nonlinear estimation problems can now
be stated. 1f x*(t) denotes the true state of the system and io(t) the estimate at time t, based

on the estimate x at time t , then
=0 o
P(t) = Efx(t) - x(0)] [x*(t) ~ x°(0)]")
= E{{ox(t)] [6x(1)]'} . (=1

1t the error in the estimate ;‘io(t) is sufficiently small, we can use (2-6) to evaluate 6x(t). lL.etting

the transition matrix associated with (2-6) be denoted by o(t,to), 6x(t) is given by

Sx(t) = ¢(t,t ) 6x . (2-8)
ftence
P() = E{{sx(t)] [6x(1)]'}
= E{lo(tt ) ox | [o(t,t)) 6x]')
= ¢(t,t.) E(0x 0xL) ¢'(t, t,)
.
P(t) = ¢(t, t ) Pt ) ¢'(t,t ) . (2-9)

The same result is found by obtaining the differential equation for ¢(t, to) directly. To do this,

note that from (2-8) it follows that

ax(t)
(2-10)

¢ (t, to) el
-0

Therefore, taking the partial derivative indicated in (2-10) in (2-1) yields



9 dx &
{ R (&)
— —) = — Ifix
o~ (dt) TS

-0

or

d (H,_\_> of(x) 0x

S 1
dt \ox ax  Ox iy
=) s )
or rewriting (2-11) using {2-10) yields
d af(x)
r t.‘(t,t”\ = e c(t,t“] . (2-12)
-

Since ¢(t, t,) is to be evatuated along the nominal trajectory 50(t), [of(x) ';5’5(,' hasg to be evaluated

along that same trajectory. Hence, using the notation of (2-5),

d .
5 Pl t) = At eltt ) . (2-13)

Equations (2-13) and (2-6) are equivalent in that for linear systems, the transition matrix satisfies
its own differential equation. From (2-13) it is not apparent where approximations were intro-
duced, since it was not necessary anvwhere to neglect higher order terms as it was for (2-6).
However, it is quite easy to see that in order to use the solution of (2-13) to evaluate the co-
variance matrix P(t), the assumption that 6x(t) is small has to be made again. For in that case,

it fotlows directly that

Ox = o{t,t ) ox
o O -0
and hence

-14)

rJ

Pt) = ¢(t,t )Pt ) o't ) . (

1It. DERIVATION OF THE TRACKING EQUATIONS

In Sec. 11, discussion centered about a system which could be described by a nonlinear vector
differential equation (2-1). 1n this section, it will be assumed that an exact solution to such a

nonlinear system of equations is available and can be expressed in the discrete form

s g Tl 4 ‘ =
Xy T BN g) Py e
An expression relating these state variables X to the observations may be written as
.=l Y+ ¥ . 3-2
¥y = hixg) + vy Laa

A separate report will discuss some implications of the transition from the continuous to the
discrete domain.
It is now possible to derive an estimator for Xy utilizing the observations y, if the following

assumptions are satisfied:

Uk, vV, = \\'hit(‘, zero mean, Gaussian random variables with
I‘( 'I‘)
niu, u =

=k=k Qk

T
Iu(kak)— R



and g, h, and the noise u, and v

2 = k k
Bg(§)
SR | TR
22Ky
oh{x)
by %% . 6%,
XXy

are such that for incremental changes, the equations

hold. This in effect assumes that the x process is Gaussian with a mean whose evolution in

time is given by a nonlinear equation. Under these assumptions

s b e 1 4 1., o gk e = .
Py, %) = p— 3 7z eXPi- 3 1Yy —h(x1 Ry Iy, — s (3-3)
(2m IR, |
—k
o |y - 1 w L. .2 &
P Yy y) 2n™?|s g g Ay < By )
2K, k-1
v g1 5 B ) (3-4
$ By g1 — By gl (3-4)
oy ! i1 . T
Py Y y) ™2 |y s 2T o T exp =3 1y, Kk, k-1)!
: —k=k, k-1=k =k
X (H, S B 48 iy, ~nl 1} (3-5)
Hedyp By F B Ly — 0 gy
where
n = dimension of x
m = dimension of the observation vector e
Yk-i = set of all observations yJ., i=1,2,... k=1
D = =i/
Xy k-1 " BEyy)
A - e : . . . . o
L P state estimate at time tk-i based on all observations Yy
B 2 e = 4 (e \‘k-i)
- B ) e I
Spoie-a =B IR =3y o q) S~ By )]
ah(x)
S
==K, k-1
["ollowing Ho and I,<>o,3 p(,_xk;"\'k) is given by
plx, 1Y, )
| o k-1 ;
B | 8i=
) Py, | %) {3-6)

p(g'kl\'k_1 <



or

. T 12
| o+ IR b
o ¥ 1w =R, k—iLk {—\l\| S 1 iy, — hix )|l I -1
PLx Y VT e TS 1 7z eXPl= 7 Uy —hix )l Ry
(27) |1 S
=k =k, k-1
v il I A =il - ~ ?
Wy — RO (3 = Xy g By g (X T By g
— [y, — h(& 0r pE.B HY + B! [y, ~ hi& 113 (3-7)
=k —<k, k-1 ‘—k=k, k-1=k = —k zk ==k, k-1"" ’
Because X, occurs nonlinearly in {3-7), it is in general not possible to solve directly for gk the
conditional expectation of X However, assuming that the true state X is close to f_\*k i and
N ; -
assuming appropriate properties of h(x), the term b(_}gk) can be expanded about Qk -1 in the form
A i) A
() = hix + G — X -8
Bl ) Wl oet¥ ¥ B | = U =l g (38
27 k-1

t.e., only up to first order terms of Q(,-\:k) are retained in its Taylor series. This implies that

)
in the quadratic form

£ |

(¥ —hix 1 R 1y, = hixp)] (3-9)

k

up to second order terms should be retained.

Expanding the term y, — !_1(§k) up to second order vields

k
. B . 0
F = Bl %3y <BEL )= An 8 4]
, oh(x)
& s (%, =X ) f % ) 5-10)
2 Jox | ox BT Ek k-1|| A T Xy e a2
273K, k-1
Using (3-10) and retaining all terms up to second order in Xy~ -/l\k K1 vields for (3-9)
: B Mo e s e o S R
[;k Q(lk” Bk [ll\ l_l(lk‘l [’—\k l_l.(lk’ k-1 N Kk ll}\ h(lk, k-1 )
_ A I T, -1 N N . ly
iy, =y el B By, TEG I = % g g9 0 (B DG g0yl
e o A o
Kl o, < ™ 7 W~ 2 pu!
g 8@ LA 7
5% [ B &y k4] [ B =3 .4l
X, k-1
. aoh( x)
1 A -1 )e [222 4
=7 Wiy o 4N B 15 ’ TS k—l)] o
S k-t
N
K~ ) (3-11)



By writing the last two expressions in (3-11) in terms of the components of the various vectors,

it ean be shown that they are equivalent to

—(x, — % )T £
B T I k1! \ax

> (Kk “ik, k-i)

oh(x) 4
[35] R Iy —h& )
S, k-1

To simplify the subsequent analysis, define

oh(x)1'T
& & = .
By = 5 [ o ] Ry Iy~ 0y 1”’
g k-1
As long as (S =3 + {ITR _1{1 — B, ) is positive definite, (3-7) can be rewritten as
k, Je=q T Epduy By TA) S P .

- e v M A e P 0
Plx |Y ) = o exp-— 5 {(x, ﬁk,k-i’ (“kki He By B -Bp oy —% )

T T T

_Z(ﬁk—ﬁk, k—l) [_Ik k [yk h(—k k- 1)1 i [zk h(\k k- 1)]

-1 ) T -1
X (B Sy By + BTl Ly —hE 1)
Consider the term
T -1 ) T 1
—k — (H Sy 4He + By H Sy w8 *BY B Sy 1B Ry
which can be rewritten as
T -1 oot T -1
(Hy Sy poly + By Bi5y (18 g + Hy By By
-4 To oy ol T i
X By peq tE Ry Hy) B By
After some matrix manipulation, (3-15a) simplifies to
T -1 I T S S
By = (B8 yqH, +BY) =Ry ”ﬁskk y THR By By Ep By
Define
-1 - y
o <1 A
S 88y oy tHYR I - B
Add and subtract from the exponent in (3-14) the term
ol N T -1 "
¥y~ MEp g *{(Sk - ”k By HY) B S H B, [~ Ha o)
el 3 4 e D ey
T'hen the quadratic term in ¥y Ll(zk' k-i) becomes
A T T.,-1.-1
[y —Blx 1" R *‘“m g tHp By ) LT ES)
T -1 .
x U By Iy, —hE 1 —Ea.(3-17)

(3-12)

(3-13)

(3-14)

(3-15)

(3-15a)

(3-16)

(3-17)

(3-18)



since ]—;k is proportional to l_{_k_l [-};k - }_1(2
N
a8

; " . -1
i, k-i”’ the term (3-17) 1s of third order in l_{k [_}_'k -
X k-l”' I'urthermore, every term in the expansion of (3-17) contains second order derivatives

of the components of h(x), so that in (3-18), the term given by (3-17) can be neglected. With this
assumption the exponent in (3-14) can be written as

q T -1
exponent = — 5 {(ﬁk h ,l\}\ k_i)l Sy = gk k-1)

. 2 B (T T
. Z(Qk N ék, k—l) Hk Kk l_fk l_](ﬁk' k-1 )
o ol | Tk e — \ e
¥ [:Y}\ = b.(l}\’ 1_(_1” E}\ le‘:k‘l‘lk l_{}\ [-}—l\ D(“\‘k,k-l”'l . (=30

By multiplying out the quadratic form below, we can verify that (3-19) can be written as

1 I =
exponent = — > [(lk - {gk k-1 + Skuklﬁk1 [Xk . l_l(g}\ k_i)H)I §k1
e N L RN, -
< By PSRy R i) (3-20)

From (3-20) it tollows that the estimate gk (the conditional mean) is given by

n A T.. -1

: B
By =¥y gy T e B 1~ HE

K, k-]

and the covariance of X, is given by

W - i _2
X, hk) (_.\_k ék) || (3-21)

Fquation {3-21) can be rewritten

P T U | L) LT
S =\ 3y kg THE R H - 50 ox By [ =blE 0¥

=9
2
2k, k-1

or, using the definition of I_lk,

y o [[ensn T
Ek = ::k, k-1 E [ X ] [zk_ b(i)]

and X, is given by

k
L =2 ol g S =Y il N Ry
2k T 2k, k-1 © Fk=k—k kT =2k, k-1
: : g . B n "
[o determine :k, VTR xpand (3-1) about X, _qto yield
og N
6§k = = P (3-24)
T1¥g_y
where
6A )
S B T G N
0 A R
0%y £ X, — 8X, o)



Keeping only up to first order terms in the expansion of 6gk yields
T og ag T
b7l SVl A e = 3 =
B6X, 0%, ) € 8 ko1 = Bxly Skt Faly @ (S=28)
k-1 -1

where we use the fact that u, is independent of 6,_xk and the mean of u is zero. By similar

k 1
reasoning, it is easily established that
SR R < ik :
Cov (i) Tpt) = By poglly ¥ By (3-26)

This completes the derivation. It will be noted that, analogous to the continuous case, the co-
variance matrix given by (3-21) contains the additional term B-k |defined by {2-13)] which does
not occur if linear filtering theory is applied to the linearized system. Ior this report, u, = 0

k
has been assumed in later sections.

IV, COMPUTER REALIZATION OF THE ESTIMATOR

A computer realization for (3-23) is now desirable. Since {3-1) is not readily available,
part of the computational algorithm must be devoted to obtaining a solution to (2-1), A detailed
discussion of this specific problem is presented in Sec. VI. The present section will briefly
describe the complete program for obtaining the state variable estimate.

The algorithm used is in fact a valid result for three different approaches to the estimation

4 and Cox.> The similarity in the solutions for

problem — that of Sec. 11l and those of Mowery
all three cases is due to the fact that the assumptions made in each case reduce the problem in
the final stages to minimizing a quadratic form involving the observations, predicted values of
the state vector, and functions of that predicted state. Also of interest is the flexibility of pro-
gramming the solution in two different ways (see part C of this section).

The equations describing the system are given by

x = f(x) (Eq.(2-1)]
Sy = h(x ' 2q. (3-2
b PR AL & R R (Eq. (3-2))
where
X = state vector
B, = observation vector at time tk
R = state vector at time tk
f, h = vector valued functions
Vi © white, (Gaussian, zero mean noise

In Fig.1, an overall block diagram is given for the routine. Figures 2 and 3 show the detailed

flow diagrams for the problem. The following definitions have been used:

n S o " P b g "
3k-+1, 7 state estimate (prediction of state) at time tk+1‘ based only
on the estimate at time tk
0 — o = . : ~
X, 44 - state estimate at time t, ,, based on Hipsd and .



OBSERVATION

INITIAL CONDITIONS
A
t , X p D
o ) %o
k=0
ERRAN

I k=k+ )

CONDITIONAL INTEGRATION ROUTINE

TIME L

-1
Bl

Integrate previaus estimate (ot time t, ) far-
ward in time until next observation accurs

at time t,,1. Stort with initial conditions

for k = 0.

UPDATE ROUTINE

OBSERVATION

Update covarionce matrix.

Update state estimate using updated

7y

covariance motrix ond observation Y

IF'ig. 1. Hkstimation routine.
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INPUT FROM UPDATE ROUTINE I 3-42-10312

OBSERVATION
TIME ¢
k+

1

b. = f(z.)
af
A7 8z

A 2
= [-AA"+ & A
i : o2
lP=lPilP
jt:0 2
4
Al &2 b t=z.  +26b,  +2 %A b +24b)
A e A e o s
b,y = f®)
of
A1 = 2z
§
A =2
2720 g brb ) g ATAk -AL L)
l TO UPDATE ROUTINE [

Fig. 2(a). Conditional integration routine I.
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INPUT FROM UPDATE ROUTINE II REETECE

Lo T N To='k
=1 g =he
8,
i=0 , =1
OBSERVATION T
TIME 1 i
kel ‘
2 + { H S s
b By A DA li=(0
1
e i
b. = f(z.)
| I
| L 2t
i i az’z.
i
2
! gomil g & S a2
| 2
|
‘ b=g b
)
i€:0
Ab g=z_ +20b_ +20%A b +28b
i 1 -1 3 =1 =
\
bi&]=f(g)
A ook
=j+1 al‘ ¢ = .
T li0l
44 =*
B+ 38 ok BT g b )
= il 12 ST Tt
| TO UPDATE ROUTINE Il

Fig. 2(b). Conditional integration routine Il.
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INPUT FROM CONDITIONAL INTEGRATION ROUTINE |

-1
INPUT R

dhix)

Bes™ "o

l

e,k

o -1
Benk =M% M

P T o=
31 = 31k T BB By

£

{ ERRAN: 0

INPUT y,
A A T -1 A A A
- WIS WRL. WL LIl L WO Bl ™ Bieat k

il ]

A
Yy =96
3g(x)
gk*l i ax |A
L
T
Sy &=
Sieer = B Bl Bt

l

OQUTPUT IN RADAR
COORDINATES

Fig. 3(a).

 /

QUTPUT IN RECTANGULAR
COORDINATES

Update routine I.

43

TO CONDITIONAL INTEGRATION
ROUTINE |



INPUT FROM CONDITIONAL INTEGRATION ROUTINE 11

|

ah(x)
Bol™ o |.s
X,k
i

- R WO )

INPUT R, T T -
—_——— e T S e B Benden ey

S =0 - B 80 4

N

< ERRAN: 0

INPUT y,
A ~
Mot = et Yoot Wiear * D8

[ 3 5 |

A
) el T 2ee1,k

>t k=k+ 1
A -
ey =90,
aglx)

Bk*l 2 73)_(_ A

214 L

Y
StV amiBi .S BT
ka1 Tk+17k+17k+1 TO CONDITIONAL INTEGRATION
ROUTINE 11
l
OUTPUT IN RADAR OUTPUT IN RECTANGULAR
COORDINATES COORDINATES

Fig. 3(b). Update routine II.
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s = E [(

=k+1, k = covariance of the error

et Bt B Wy o
Bped ™ By 0 W = By )|

£ o . N n
in the estimate .S Lk

S, = E [(x }') = covariance matrix for the

~8 ) (5, - 8
k1 T D! Bpaq T Epyy

estimate at time tk

The various blocks in Fig. 1 are described below.

A.  Initial Conditions

It is assumed that initial conditions for the state estimate and the covariance matrix of that
initial state estimate are known at some time to; it is at this time that the estimation routine
starts. The first observation after (or at) to will produce the first estimate. The index k keeps
track of the estimates gk;
prior to any observation after or at to). The parameter ERRAN is included to allow the same

the zero estimate go is simply the initial estimate of the state (i.e.,

program to be used for error analyvsis; it is set equal to one if the routine is used for error

analysis and to zero otherwise.

B. Conditional Integration Routine

In the conditional integration routine, a predictor-corrector method for numerical integra-
tion is used. The specific method chosen is described in Sec. V1 and will not be discussed here.
However, certain modifications had to be included to permit observations at any time rather
than only at an integral multiple of the step size in the numerical integration. The routine is
equally well-suited for real-time estimation and post-flight analysis. 1f the observation times
are known, they can be included as data in the program. For real-time analysis the integration
will probably be one step size behind time; i.e., the state equation is integrated one step at a
time only after a check is made that no observation occurred during the time interval [tj, tj A

i

K is the step size for

1f an observation is made at t € [tj' tJ. + A

where tJ. is the time to which the state equation has been integrated, and A

the integration in the interval [t the

K ket k+1 Kl

integration is carried forward in time with a step size t tj. Because the predictor-corrector

method chosen requires a constant step size, a slightly l:idificd predictor has to be used. In
particular, this is the same predictor as the one needed to start the numerical integration
algorithm. The index j keeps track of the number of integration steps, and the index ¢ is used
to exit from the loop when an observation is received. The reason for having two slightly dif-

ferent routines [Figs. 2(a) and (b)) is given below.

C. Update Routine

The function of this routine is to update the state estimate and the covariance matrix when
an observation is received. Both the updated state estimate and the covariance matrix are ob-
tained for the rectangular coordinate system. Since it may also be of interest to have these
quantities in radar coordinates, such a conversion has also been included in the routine.

The updating of the state vector is conditioned upon the parameter ERRAN. If ERRAN = 0,
the routine is used for estimation, and hence the state estimate will be updated using the current
observation. When an error analysis is performed, i.e., ERRAN = {, the evolution of ’—C’k along

a given trajectory and for a given set (Rk) is found. This is accomplished by letting X " N0y ke

15



as shown in Figs. 3(a) and (b). These figures represent alternate ways of solving the estimation
equations as given by ﬁ\low('ry4 and (‘ox.S In Fig. 3(a), ¢ = (¢-1)'l‘ is computed directly, whereas
in Fig. 3(b), ¢ 1s computed first,

Section HI and Refs. 4 and 5 give derivations for the state estimates and the appropriate co-
variance matrices. Figures 2(a) and (b} show the conditional integration routines that are used
with the updating routines of Figs. 3{(a) and (b), respectively. The functional form of all matrices

and vectors used in the actual algorithm is given in Sec. V.

V. STATE EQUATIONS AND MATRICES DEFINED FOR THE BALLISTIC
MISSILE RE-ENTRY PROBLEM

A, Dynamical Fquation f(x)

A spherical earth 18 assumed with the radar at zero altitude. The x-y-z coordinate system
is centered at the radar with the x-y plane tangent to the earth (x east, y north) and z vertical

to the x-y plane.

dx .
At A

o .
(?!'\f £,(x) =¥

O p e
at "=t
% £,(x) = (w? — Bl %= % 5 voo+ R 2wy sing — 2w7 cos ¢
dy g R N . 2. 02 e
Ti!‘\z fo(x) = (w sin’ ¢ — 27~ % (" + )‘2 + 35)1/2 ¥ — WX Sing
Z ; 2 .

~w7z sing cos¢ —w r_ sing cose¢
iz s ’ . SR y A
L_lt : t()(;\;) = (\\'2 m)sz @ — ;_{(.) T % (xz + yz + zz) = Z— \\'Zy sin¢ cos ¢
( L

; 2 2
+2Wwx cos@ +r (w cos ¢ —g)
o &
51“-".})')

0 f_{x) = depends on the specific assumption on the functional dependence
C =

of B (= 0 for 3 constant)

. (1n]
£ 2 7, 2.0/
(T A 2
¢ = latitude of radar
e = radius of earth

p = weight density of air
A = weight-to-drag ratio

w = earth's angular rotation rate.
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g4 = IW COS¢ — 55 — SN
="y )
265 *% T AT
(%" +y- +2)f"
2
. ) 2 2. ,2,1/2
6 =~ 28 | .2 oS S

The dimension n of A as well as

Qe
1]

il i = N2 oren- ol

a.. |,
3
will depend on the specific functional form assumed for o = 1/8. The additional elements of A

for ¢ = constant are (n = 7, with the seventh state variable X, = o)

B B0 o B8 . B0
: P o 2102
a4q 7(\ +y +2z2) X
_p 2 2 22
agq 5 (x" +y +27) y
. 2.1/2
a67 =i (x" +y +27) z
a.,, = & = —3- - = a 3 3 0

C. Observation Relation h(x)
}11(5) = r = range = (.\:2 + }'2 + 22)1 &
3 -1 x
h. (%)= @ = azimuth = tan -~
2 = ¥
h.(x) = € = elevation = tan | :
1,(x) = € = elevation = tan > )
(x~ +y)
e e = NX + VY + zZ
hyfsli=w 2. 2. 21]2
G oy )
D.  H Matrix
h o X _ X
SR 2 2 2172 ° T
11 ax (x" 4+ y“ 429 r
B O e i . D
= = = 75 < =
12 oy (x2+y2+22) / r
B ar _ 2 T
T az 2 2.1/2 ~ ¢
13 0z (2% +y2+z i it
h,,=h =h,, =0
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o _ Y

dw : —X

X ty
| = =
B h24 B h25 h26 ¢
o 2€ _ — X7 _ — Xz
Coax 2 2 2 172
Mk T (2,020 2, yz) s 22052 4 y2)1/2
h = E)_( = — ¥z 5 i
27 8y T (7, yz s 22) (2 4 y2)1/2 RN y2)1/2
y o B (x2+yz)1/z ” (Xz+y2)1/2
83 8 @ 2 2 2 2
x ty +z r
Dig, Wy, = gy = I
h _E_S:(.\:2+_y2+7.2)—.\:(x§(+y\'1+z'z)_ir—r"x
41 ox 7 2 BBy . 2
(x +y +2) 1
s s B 2 8 S 5
hz‘,a—l:'yh +y‘2+z)—v(xx+'vy+zz):yr—2rx
4 dy (X i, yZ i ) / i

ho - ar 2(.\:2 + yz + zz)—z(xk+ yv +zz) _ 2r —rz
43" 3z ° 21 a5 3

(X +Y i

h _or X . X

E — = 75, @ 22
47 (22 12 Ty
b o - y _y

Ty 1/2 - 17
45 oy (x2+y2+ ZZ) 2 I
i z .z

= = = 51
46 ¥4 (_‘(2 i y2+22)1,2 r

I.. Relation Between Coordinate Systems E_{(g_))r

2! A
gi(_{):r':(x2+_‘,'2+z)’2

g,(%) = a = tan~?

R Fd

gylx) = €= tan” " ——Eor
(2" +7%)

o XX + yy + 22
Byal = T = gt
(x 4y ¢z )

72

i g(;) as defined here bears no relation to g(;) in (3-1).
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VI. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

In Sec.1l we considered a system described by the nonlinear state differential equation

where

q:,(l) (8} 'VZ _—x ;
(x“+ v
2 2 - : .
A T (x  + YV )z —z(xx + yy)
goln) = ¢ T ¢ 2.2, 24]2
(ESGE T SR A I G i )
x)/ dx Matrix
£ b . P4 )
(4 2 I
(8] 1)1; 8] 2
= v - X
il baz T
X +Y¥ X 4+
0 | (s P 0
X2 b =y .
o 2172 d B2 2, 2 2172
r {x +y) = )
0 bs; = Q) R
_ X — XTI _ry —yr
: ' Py2 z ‘
P o
S vV
v })45 = ’
2xa + v \ X — 20y
3 e 5 9
2 4 ) Z
¥ Ty T ey
y B — X
ey ® bes =3 2 -
X + Yy SR e
x€ 2r P
n 2 P Ak
e Ehey e ro(x + ¥y )
yé _ R — ZY
= 2 r 32 PIEN PR )
X *Yy r (x +vy)
N [ big = B =t o
' 2 k88, Y “b4 i 2, R 2
r Tl

2= H(x)

20
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53 -

56
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Iz — zr
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and x i1s an n-dimensional state vector. Discussion was limited to the general concept of linear-
1zing the nonlinear equations about a nominal trajectory. In this section these concepts will be
extended to obtain a specific algorithm for solving the system of equations presented in Sec. V.
This algorithm is then used to compute the gk kot OF conditional estimate term of (3-23).

In addition, there is a requirement to upd’atv the covariance matrix (2-9) or (3-25). The
integration algorithm given here satisfies this need. Part D presents details concerning com-
putation of the incrementally linearized transition matrix used in updating covariances.

i.et the solution of (6-1) with the initial condition 50 be denoted by ._\'_”(t). There are a number
of schemes available which use numerical integration to obtain the solution 50(1). Since in the
present case it will also be necessary to find a solution to the linearized incremental differential
equation
of
ox(t) (6-2)

d
= [6x(t)] = ==
dt |0 X

oxX _.\_'O(l)
only methods which make use of higher than first derivatives (in particular, second derivatives)

of x(t) at various times will be considered.

A. Taylor Series Predictor
The simplest way of using the knowledge of X is bv means of a Taylor series expansion.
Assume that the value of x(t) is known at time t, . 17or simplicity, it will be assumed that x(t)

k
will be found at equally spaced points along the time axis. Let

A= tk o tk—i = constant for all k
X = §(tk)
dx
o S . -
Tk
then
AZ
¥eq T 1 E.kA e + higher order terms
since
of of
2T by, Tk Ax|, f{x),)
& &%
of | AZ
Xpuyq = X 4 _(§k) A+ Frvy ﬂ‘—‘k) oty higher order terms
= iy
=k
Hence, X4 can be approximated by
of AZ
. S 0 == £t 6-3
Bpg T Yty A gg M) S ey

=k

3 ) :
with the ith component of error Ei =AY xi( )(oi) tk & o, &L tk+1'
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B. Predictors Based on More Than One Point

If only the values of Xy and 1ts derivatives are to be used, then the Tavlor series expansion
is the best polvnomial approximation. Ilowever, by using appropriate previous values of x and
its derivatives, an improvement over (6-3) is possible. A number of such predictors exist which
can be generated in several ways. [Four predictors are given below, together with the derivation
for the predictor used in the algorithm described in part D.

The following predictors involve only Xpq ik—l' Xy ._ﬁk, Sk’ Xk_lz

)
5o B e S
Blopy =My Ty Pl g B g MR Y TRy o) Lo
1 A 5
. & . L2 s o o ey e
Bpyg ® 7 B v gl b g T — R Sy Ry, MR Fe-20
2
X P + 2% w EL (4X, + 2X A (6-6)
o1 T Bkod T R N N
~aeld o N = . B B 0 g o
\ predictor using Xp oo Xy g0 X Xp_y. K18
N T o
By S Epop ¥ IE TR V0 U mE gl - el

To derive (6-6) we use the Taylor series expansion for Xpipr Xy and its first and second deriv-

atives. hquations (6-4), (6-5), and (6-7) can be derived similarly, and in fact, by using the

same method, an infinite variety of predictors can be generated. The various series are |[assum-
(S

. ) _
g X' (s) continuous]

'As_' {3) A (4) (6-8)

B .
where the 1 component of 34 s given by

"
)f k+1 {53}, _, o £t
R, 751 x!8) (1, - )" ds (6-9)
K
2 3 4
e S aR i R -
B d =B =88, Ty T, T e iy Ul
R.), = — \ﬂk* ) o)t as (6-11)
Bahi =37 ) R U, g = SIS
t
k
and
3 1
PR R (N ) U S ) < ix
Sy g SO~ 8 X+ o7 B - & TEy o
T S R C — 5)° ds (6-13)
[—4]i_ 3,~t X (s (Lk—l s ds
k
2 3 030 &% gy
- . . I : A b
2 X1 A X A Xy + > }-k +l_{_4 (6-14)



}”" = éj jtk'i (5)
Byl = 3 .

() (t,_, — ) ds . (6-15)

Multiplying (6-10) by -1, (6-12) by —2, (6-14) by —2/3, and adding them to (6-8) yields

g e BRI e Gl g G T R 0
341 T 2k 1 T3S B T3 [ TRy TRy T ARy T3 2
{a)ied
. . FERR. AT . wPH R 6-16
Bepg T Hpg P EAE L P T A (Fy T ax) By RS

where

= B e lv_£
R* =R R 254 3[

t t
= 1 k+1 ) 4 k-1 5 ~+
g * o gt "‘i( s) gy =B R S; Xi( Ys) [(t,_, =9
k k
3 2 2
+8A(tk_1—s) + 8BA (tk_1~s) ] ds (6-17)
Consider now the term
4 3 2 2
[((ty_q — )7 +8a, , —s)" + 8%, _, —8)] . (6-18)

in (6-18) it is clear that since (t =iis)SaA

k-1

: 2 2
8A(t, , — ) +8a%L, _, —s)" 20 , ¢ < B <t

k-1~ k

Hence, (6-18) is non-negative in the interval of integration. By using the mean value theorem

of integral calculus, (6-17) can be written in the form

t t
1 5) 4 1 5
i ey Xt M Gy - o as s grxPep § X

(R3], t
k k-1

2;

> [(tk—i — 5)4 4 E%A(tk_1 = s)3 + 8A7(t - s)z] ds

k_
A° (5) A’ (5) _8%x5 , 8%x5
N 5 Xy (94 g A
{0 8
13 (5) 19
GRS ) (6-19)

where tk< o Ty tk+1; tk—i Le. L tk fori=1,2,...n. Assume now that

then
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. (5) 5
“—(4].?. - C’,A_” [Sx{ )(Li' + 3h + 13xi( )(ci)]
E)

A 5

- e (1ex e ) 4 3y
.5
PO ) oo L
556 oy g g I

{(5)

(5) . . 5) A sif s
but X (@) + 3/16 hl will be a value between xi( (¢ .IJ and X, ((ri). Hence, because of continuity,

there exists a ¢ such that

DU DR L 5
Bl = g5 % o
beoq S S KNI s S| (6-20)
Hence, if the predictor (6-6)
=5 T2A% + éAZ(* + 2X,)
Fert = Bgd Bed* 3 Rp-q T "B

is used, the remainder (or error) term is given by (6-20).

C:. Correctors

By means of iterations it 1s possible to improve the accuracy of numerical integration. For-
mulas used for the iterations are called correctors, since they all require a starting value which

1s then "corrected” in subsequent iterations. ‘To obtain such formulas a procedure identical to

that in the previous section can be used. In particular

2 3 4
L =x + Ak + B g B ) 8 (B 5
B "B togt o S gy B " Y g K, Y8y Pl
1 (et _(5) 4
e i s _— 3 H-22
[_l_{_:’]i o i N, (s) (tk_H s)  ds (6-22)
k
and
A0 _tmy. a8
% & ) " t -
Lligpy = 0K, PR B ¥ 5 B TRy K, tEy {6=23)
. 1 e+t (5) . X
[B: T (s) (tlﬁi - 8) ds (6-24)
Ji
k
A% PG IR O 3—4 A ge (6-25)
2 2 2k 2 3 T A 5
2 ot
vy o 87 k+1 _(5), o = £ _oF
135]i T \i s) (Lk1L1 s)” ds (6-26)
'k

Multiplying (6-23) by —1/2, (6-25) by 1/12, and adding them to {6-21) yields

3 o

‘ R Y
2ptt - 2T 2

G b E b AT

bt It T 17 k ~ Spgqd T ES
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25 7 =5

. 4 3 2 2.
[l_{é]i = X (s) [(tk” — 5) " — 2A(¢t —-s8)" + A (tk - 8)7] ds

i k+1
LR
1t (et (5) 2 2
-+ 31 X US) [ty = )T = Ay, — 9] ds . (6-28)
K

5 5 5
o oo L By s aF A’
(BEL = 37 (B )( 5~z '3 )
or
S
: A {5)
[BZ = 735 & oy =t

where tk\\: ,x’i £ tkH fori=1,...n,

Htence, if

) {6-30)

",
FA

v — . . SRS o
Eepg = X TR LR Rl R

is used as the corrector, the remaining (o1 error) terms are given by (6-29).

b, Algorithm for the Numerical Solution of a Differential Equation
It 15 now possible to give a complete algorithm for the solution of the differential equation

&= i(x)

(0)=x_ . (6-31)

X
B0
The predictor-corrector method is used, with the corrector being of the form of (6-30). For
the predictor, (6-6) was selected. Recall from Sec. ]l that it is also necessary to evaluate the
transition matrix for the linear time-varying equation

of

Sy = ').- — .
(l) Jx| .o 6l

x (t)

in order to update the covariance matrix. This is easily incorporated into the present algorithm.

(6-32)

The flow chart (Fig.4) shows the sequence of operations. Since (6-6) requires X Xy has to
be evaluated by other means. As indicated in the flow chart, this is done by using a Taylor
series expansion about X,

In the flow chart symbolism, ¢ denotes the transition matrix of (6-32). [IFor evaluating ¢,
the assumption is made that during the interval of time of length A, 9f/8x will be essentially
constant. Hence if the notation

of
0_5. ) = ék (6-33)
k

» : th :
15 used, the transition matrix at the k' point
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Fig.4. Flow chart of algorithm.
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) (6-34)

TR e Lo ) (6-35)

This follows from the fact that with the assumption of constant 2f/9x during the interval &, (6-32)
represents a plecewise constant system. 1t is also easy to see that

ARHA
d‘(tk+1,t()) dj(tlﬁi’tk) d(tk, to) = e ¢(tk, to) i (6-36)

Frquation (6-36) updates ¢ at each new b In order to evaluate oxp[ikHA], a power series ex-
2

pansion of the form exp (A Al =1+ A A+ _\}:‘

FFor A sufficiently small (which it has to be for the assumption

(AZ/Z) + (higher order terms) was used, with the

higher order terms neglected.
af/ 9x constant), this approximation will be valid. However, for increased accuracy we may
(1) Drop the assumption (9f/9x) o constant during the interval A. As an
x(t)
approximation it ecould be assumed for example that in the interval

[tk’tkH]‘ (6-32) takes the form
Ay, — A
Spoxt = A, + =K ey 16-39)

(2) livaluate the transition matrix o(t ,t.) = ¢, to powers in t higher
k+1’ "k k
than the second.
1t will be seen that in the flow diagram the correction iteration loop is made conditional upon
the size of the difference between successive approximations. This need not be incorporated,

although it is worthwhile to obtain and record the difference between the predicted value and the

value found by iteration. This will become clear in the next section.

E. Estimate of the Truncation Lrror

In the algorithm described previously, (6-6) was used as the predictor, and (6-30) was used
to obtain the final value of Xy 1f we denote the difference between the corrected and the pre-
dicted value of S by go, then (_‘0 represents the difference in the truncation error of (6-30)

and (6-6) or

go = predicted value — corrected value
- BB
32 .5 (5) A° (5)
Co)i = 720 275 W)~ 725 % () RUASE]

‘he i ri ~ o N N < ~
where it will be recalled that tk—i < U S tk+1 and tk§ Bi & tk+1 or

5]
€)= o 2% Py + B 5 @, -8y (6-39)

=

where x.(s)(x,’i) =5 x.l(

5
i )(Bi) was expressed as
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(5)
M.

) (S) \"i"j (6), {6) s
) — X, s : $) ds . . o — 1
i (q.e ut ()31) Xy (5) ds X; (“i)("i ;Ji]

B

and mm{ui, d].] S oS max(;,‘i, ;'i.l), llence

[C.] 5
ol 4 sy A (6)
3 720 &% W)t Jroamg Xy e (4 =8y
and
& 5
. o A% (5), . (5 1 () .
IRZ); [ 31]i 720 ¥ (Bp) = X700 = 53 % (ey) (9 = B)))
L-)
52 (6)
720 gy e =9
5 6
A R a3
€ Zo M ag WP sa5p M5
where it is assumed that
(6) (e o
] g™ < b BB
Thus
. N .
( (S 6
Gl . ¥ ¥ — |=2 SNMS - -
BE = 31| L |IRE} [41]i S 395 {6-40)

From {(6-4) it follows that

—~

=1 et
RT = =3 (6-41)

with an error of the order ._\.b.

In general, A will be chosen small enough so that only one iteration is required. Conse-
quently, a good estimate of the truncation error (with an accuracy of order (_'U) can be obtained
for the first pass through the iteration loop (see Fig. 4).

by recording e
- & “k+1

. Convergence of Iterations

Previously, it has been tacitly assumed that the iterations indicated in the algorithm will
S . " ) . chy :
converge. To find under what circumstances this will be true, consider the i iteration. Here

superscripts will denote the value of x obtained at the respective iteration, i.e.,

k+1

i1

B
2kt

A "
¥ ER

o
) & Ll

. %
X o+ K Ak'*i

k (& *

represents the value of X after the ith iteration. Then

221, i1 1 2 i1 1

144 i é( : it ; 5
7 gt T X B = Heaqgd

Bpat T By o




; ) i1
l,(tg.l g~ g, then

b
)

|

£ . (6-42)

dZ
(ll’.2 !

> A
B ® 3 3 Bgh=

(3]

in order to obtain dgi/(lt and dzgi/dt2 in terms of gi, the differential equation of motion (6-31)

will be used.

i i

Hepq = B
Hence
, . . af . .
el gili=dt L o L i il e
Bper ~ 3gq 7 I ) — x5 50 - (Xpaq ~ Xy 1545
x4
or
d L
at &)= &= &

FI

where 9f/0x is assumed continuous in the interval of consideration, and éi is a value of x such
that {(6-43) is satisfied. To simplify notation, the definition

of

E(g) = 55 (6-44)

54,

is introduced. To obtain the variation in the second derivative, the expression for §k41 will

first be obtained. 1t follows from (6-31) that

of af
- E!(x) - : (6-45)
41 N4
Hence
%', = glx) (6-46)
Rper T By
where g(- ) is defined by
of(x)
g(x) = 5 Hx)
Therefore
: . og .
il i-1 = i i-1 "
: S - . 6-4
B~ B T o (Eypq — Epyq ) (4
Sl

where 1t is again assumed that a;;_/a; is continuous, and o4 is chosen to satisfy (6-47). Defining

(6-48)
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(6-47) becomes

42
%
560 = Gln) 8,

(112 2 e
Hence, (6-42) becomes

&
B Tt B eh 4
Sopq ™ U DB = 3y Gl By Lol

Equation (6-49) represents a vector difference equation of the form

él‘i 'llél (6-50)

§)— 3z Gl
1f all the gi's are small enough, then L\_i may be assumed constant so that the condition for stability

becomes

where ,\__\ are the eigenvalues of A = _\1 = constant. The rate of convergence will also be deter-
mined by how close the magnitudes of the eigenvalues are to 1. Since it is rather tedious to
evaluate li and its eigenvalues, as well as to check the basic assumption that Ai is in fact con-
stant, the chief value of (6-49) is to show that if 1_-‘(§i) and (_}(Qi) are bounded, there alwavs exists
a A such that the solution to (6-50) is asymptotically stable, i.e.,

lim §1 =0

7o

and hence the iteration called for in the algorithm will be stable for sufficiently small A.
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