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FOREWORD

The three papers which this interim report comprises were written under

Contract AF 33(615)-2818 entitled "Research in Experimental Design and

Estimation Theor-i". -'he work, which is documented under ProJect 7071,

Research in Appl•,s, Yhematics, was sponsored by Aerospace Research

Laboratorieis, 0fr-&..t- nf Aerosnace Research, United States Air Force,

and was monitored by Dr. H. L. Harter of these Laboratories.

The first paper, entitled "Constriction and Comparison of Non-Orthogonal

Incomplete Factorial Designs" was prepared for presentation at the

Eleventh Conference on the Design of Experiments in Army Research,

Development, and Testing, held in October of 1965 at Eoboken, and appears

in the proceedings of that conference. The second paper "Non-Orthogonal

Designs of Even Resolution," was presented at the annual meeting of the

American Statistical Association at Los Angeles in August 1966. The

third paper, "Saturated Sequential Factorial Designs," represents

simplification and generalization of work contained in the paper "Designs

for Studying One Factor at a Time" which was presented at the Berkeley

meeting of the Institute of Mathematical Statistics in July of 1965.
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ABSTRACT

This report consists of three distinct but related papers. Experience in indus-

trial consulting indicates that the requirements of a real test plan often differ

from textbook examples in the number of levels for the factors, the interactions

which must be estimated, and the total number of runs wh'ch can be allocated to

the experiment. The first paper is concerned with methods for constructing designs

to meet such requirements and with criterie for selecting a design from a number of

alternatives. Various construction techniques are illustrated by examples. Two

sppnific numerical criteria are developed, and a convenient computer routine for

evaluating them is described. Examples of designs are given which weor constructed

for actual experiments.

In general, designs of even resolution have the property that not all the parameters

are eatimable, but those of primary interest are estimable with none of the remain-

ing parameters as aliases. The most important are designs of resolution 4, which

are such that the main effects are estimable with no two-factor interactions as

aliases. In the second paper it is shown that the smallest resolution 4 designs

for n factors at two levels must contain at least 2n runs, and that "foldovero

designs are available with 2n runs. It is conjectured that the only minimal

resolution 4 designs are foldover designs. The case of resolution 6 designs is

also discussed.

Statistical designs which vary one factor at a time are inefficient and suffer

from lack of opportunity for randomization. In spite of these deficiencies, they

may be useful designs early in experiments because they yield information after

each run. The third paper gives variance bounds for estimates of main effects

using one-at-a-time designs, and characterizes thcee designs which achieve the

iii
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lower bounds. Situations in which runs are conducted a block at a time (rather

than singly) are discussed. Finally, it is shown that inclusion of interaction

terms in the model improves the main-effect estimates of factors involved in the

interactions.
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C1N-rRUCTION AND COMPARISON OF NON-ORTHOGONAL

INCOMPLETE FACTORIAL DESIGNS

INTRODUCTION AND SUMMARY

Very often in industrial research an experimental program must be planned for

which existing fractional factorial designs are inadequate. The most common

reasons for this inadequacy are

I) the available designs contain too many runs,

2) the factors to be evaluated in the experiment do not all appear at the

same numbers of levels, and

3) the particular set of interactions which cannot be ignored in the

analysis of the experimental results does not appear in any of the

published designs.

In such cases the consulting statistician aay have a tendency to try to alter

the thinking of the experimenter so that one of t he stndard published designs

can be used. This is, of course, undesirable from th.e exoerim'nter's point of

view and increases the probability that the desiJn will not be carried out as

originally planned. As an alternative, the statistician is ffced with the prob-

lem of developing an ad hoc test plan which satisfies the actual objectives and

constraints of the real situation. Using his intuition supplemented by a meager

amount of theory he must come up with a design with satisfactory statistical

properties.

CRITERIA FOR COMPARING DESIGNS

The :esponse from an experiment will be denoted by the N-component vector Y,

and ,ts expected value by EY = X0, where 0 is a p-component vector of para-

meters. Generally speaking, a good design will have low -arameter-estimate
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variAncvs, w.hich are proportional to the diagonal eleo:nnts of (X*)' 4  For a

given experi,•actal situation, that is. specification of the number of factors,

numbers of levels for each factor, and the interactions to be estimated, a

particular finite set of designs is available. In case one of these designs

leads to the minimization of the varihnce of each estimute, then there is no

selection problem. This does not often happen, however, except for fractional

factorials with all factors at two levels.

In rare car-es the relative importance of the paranoters to be estimated may be

known quantitatively well enough in advance so that a realistic criterion can be

established based on the variances. This would usually take the form of a weighted

average of the variances. Most often, however, the relative importance of esti-

mating the parameters with low variances will depend on their as yet unknown

values.

A criterion for selecting the design often proposed is the ger.eralized variance,

defined as the determinant of (X'X)-F. A confidence set for the parametern is

the set for which (.*-'(x'X)(-) < K. The volume of this ellipsiod is

which is seen to be related to the design only through the determinant of the

cross-product matrix. It is convcnient to consider the determinant in the form

of an index, called the estimation index, defined by

IE = det(X'X)/(NP-il? i .

The weights wi are defined as follows. Let Z be <'.e cot.fficient matrix

associated with the full i'actorial; that is, if Y* were a vector of responses
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for a full factorial then EY* = Zý. (The standard parameterization is such

that Z'Z is a diagonal matrix.) Let di represent the i-th diagonal entry

of Z'Z and let M represent the total number of runs in the full factorial.

Then wi=di/M .d

Often the purpose of an experiment is to obtain overall information about the

response. In these cases the appropriate criterion is based on the average

variiance of a fitted response, where the average is taken over all M points

of the full factorial. The average variance is proportional to DiV,, where

the V. are the diagonal elements of (X'X)-'. A convenient representation is1

through the "fitting index"

IF P/ =1 w i Vi •

More generally, an index could be based on the integrated variance of a fitted

response. Such an index would in general involve off-diagonal elements of

(x'x)I, and would be difficult to define in a way which is general enough for

both quantitative and qualitative factors. Experience has showed I to be a

very useful index.

Consider the class of models which is "complete" in the sense that if any inter-

actions between a pair of factors appear in the model, then all interactions

between them appear. It has been proved [i] that for models which are complete

in this sense, the maximum value of both I. and , is unity. In [2] it is

shown that the maximum is achieved if certain combinations of levels appear with

equal frequency. An equivalent criterion is that the cross-product matrix X'X

is proportional to the cross-product matrix Z'Z for the full factorial. All

regular fractional factozials have this property. If interaction parameters do

3



not appear in complete sets, either or both indices may be greater than unity.

Thus far nothing has been said about the parameterization used to describe the

response, thut is, how 0 is defined in terms of the expected responses i t the

various treatment combinations, or equivalently, how the elements of the X

matrix are defined. Since thf parameterization is to a large extent arbitrary,

a particularly appealing property of the two indices is that they are invariant

under nonsingular reparameterizations. That is, suppose ZY = X0 = XA&, a-d

similarly EY* = ZA = ZA, * where A is nonsincular. It c~a. be demonstrated

that 3ý and 1 are identical whether calculated under the parameterization

Sor o'. Thus, the parameterization is immaterijl as far as these criteria

are concerned.

Without the use of electronic computers, the computation of th,. indices would

be extremely tedious. A computer code has been written for routine and con-

venient "omparison of alternative incompletL factorial designs. A detailed

description of this code and its use is 'v:.i 0.le L3]. Any number of designs

may be evaluated simultaneously by readin,; into the computer the treatment com-

binations in each. The evaluation will be made for up to five models (specifi-

cation of interaction terms to be included in the model). A number of options

is available to the user, including changing the parameterization used for two-,

three-, or four-level factors, or changing the weights used in computing the

indices. A Fortran iis-ing is included in reference 13].
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METHODS OF CONSTRUCTION

I. Exhaustive Enumeration

For a few simple experimental situations it is feasible to enumerate all possible

designs. The optimum design can then easily be chosen. As an example, consider

as an experimental situ~tion a 23 in 5 runs with no interactions. There are

exactly eleven n'nsinaglar designs, which together with their properties are

given in Table I. Clearly, the best designs are the eighth and ninth, for which

each variance is minimized.

2. One Parameter 4t a Time

It is always possible to construct a saturated design (although they are very

inefficient) by allocating one run to the estimation of each parameter. For

example, a 32 x 22 with the linear-by-linear interaction between the two three-

level factors is as follows

0 0 0 0 mean

1 0 0 0] effects of first factor
20001

0 1 0 0l effects of second factor

0200 j

2 2 0 0 interaction

0 0 1 0 effect of third factor

0 0 0 1 effect of fourth factor

where we have indicated the parameter estimated from each run. The fitting and

estimation indices are .24 and .025, respectively.
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3. Correspondence

The theory for mixed factorial designs is less well developed than that for

designs in which all factors appear at the same number of levels. A useful

technique is to construct a design with all factors at the same number of

levels, then replace some of the factors with ones of real interest using

a fixed correspondence between sets of levels. The best-known examples of

this technique are the proportional-frequency designs of Addelman [4]. To

demonstrate this approach consider a Graeeo-Latin Square of side 3.

0000

0111

0•222

1012

1120

1 201
2021

2102

2210

The lna'. two factors may be replaced by3 t'wo-level factors by usir=• the corrje-

spondence

0-40

2-.1

which results in the design

2 0 2 1



0000
0111

0211

1011 •

1110 1
1201

2011

2101

2210

This design is quite efficient, having a fitting index of .93 and an estima-

tion index of .79. A number of different types of correspondences is given

by Addelman in [4].

4. Permutation-Invariant Desipns

The salient property of permutation-invariant designs, defined in £5), is that

estimates involving factors which appear at the same number of levels have the

same variance properties. More formally, the cross-product matrix X'X remains

unaltered if factors appearing at the same number of levels are permuted. An

example of a 32 x 23 "ain effect design, for which 1 = .80 and I1 - .47, is,

001 00

01 001
02010

1 000 0

11111

12111

200 1 1
2.1110

22101

If one uses a standard parameterization, the X and X'X matrices for

this design Ire:

I

9l
i

2III 1 1 1



-1 0 1 -2 -1 -1 1 06 0 0 0 2 2 2

1 0-1 -2 1 -1 -1 -1 0 0 018 0 -2 -2 -2

S1 0 0 -2-2 1 1 1 1 xW X) 10 0 0 018 -2 -2 -2

1 0 1 -2 11 1 1 1 2 2-2 -2 9 11

- 01 -1 1-1 !1 2 2-2-2 1 9 1

1 1 0 1 -2 1 91 1

Permutation of factors appearing at the same nunbers of levels has the effect of

permuting rows and columns of the submatricas in the partitioned cross-product

matrix. Since the submatrices are invariant, the design is permutation-invariant.

This principle has been used* to construct a series of as yet unpublished satu-

rated sezond-order designs for three-level factors. For five factors the design

contains the treatment combination 0 0 0 0 0, the five treatment combinations

which are permutations of 1 1 1 1 0, the five permutations of 2 2 2 2 0, and

the ten permutations of 2 2 0 0 0. For this desijn the fittind index is .66

and the estimation index is 2.35. Relative to the full factorial but adjusting

for the difference in the number of runs, the efficiency of the estimate of the

mean is 82%, of the linear main effects is 114%, of the quadratic main effects is

25%, and of the linear by linear interactions is 171%. The reason that the linear

effects and interactions are so efficient is that the points of the design tend

to be concentrated around the outside of the hy?ercube.

*This work was carried out by R. L. Rechtschaffner of Rocketdyne'e Statistical
Test Design Unit.
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5. B alancinig Levels

A very useful technique for constructing designs is to start v'ith an ordinary

factorial structure for the first group of factors, and tl'en insert the remain-

ing factors in such a way that pairs of levels appear together with nearly equal

frequencies. For example, the followinu two designs are obtained by adding another

two-level factor to a basic 2x3 full factorial:

Design 1 Design 2

000 000

011 011

101 101

1 10 1 1 1

200 201

211 210

Their variance properties are given in Table II.

EXAMPLES

Three ad hoc designs which have been used successfully at Rocketdyne will be

mentioned briefly. The first involved determination of char formation rate in

ablative heat-shield, material under simulated reentry conditions. The testing

was done in a small stationary hydrogen-oxygen rocket engine. The experimental

variables were rocket engine combustion chamber pressure, propellant mixture

ratio, and the angle of the sample in the rocket exhaust. The experimental

design chosen was one of the optim'im 23 designs in 5 runs discussed earlier.

11?
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Target
Chamber Inclination

Run Pressure Mixture n e

Number (Psia) Ratio (dgegEees)

1 170 4 0

2 250 4 12J

3 170 16 12

4 250 16 0

5 250 16

Another such design was used on a Signal Gorge battery program. The experimental

work involved screening 4 cathode materials, 3 solvents. and 4 salts. The design

was constructed by balancing the levels of the second four-level factor within

the framework of the 12-run 3 X 4 factorial.

Run
Number -Cathode Solvent- Salt

0 0 0

2 0 1 1

3 0 2 3

4 1 0 1

5 1 1 0

6 1 2 2

7 2 0 2

8 2 1 3

9 2 2 1

10 3 0 3

11 3 2

12 2 0

Although there was no justification for assuming interactions did not exist, they

could reasonably be expected to be less important than main effects. It was

intended that this experiment be used to eliminate from cr.ntenzi*a some of the

13



candidate materials with just a few tests, so thý-t later tests could concentrate

on tha better ones. The actu.l decision made from these tests was that none of

the four cathode materials was satisfactory, and later testing should be directed

at findi.ng addi.tional materials. If all interactions i A been considered, 48

tests, using these four unsatisfactory materials, would have been required.

.,•e balancing technique was used effectively to construct a 34 x design in 27

runs for a program concerned with the ev-luation of fiber-reinforced plastic

laminates. The variables are as follows:

Variable Code Levels

Bonding Pressure A 3

Bonding Temperature B 3

Resin Concentration C 3

Post-Cure Temperature D 3

Bonding Time E 2

Post-Cure Time F 2

Fiber Quality G 2

It was established that the linear interactions AB, AC, BC, BE, and DF are

expected to be important. Since thu factor D does not interact with the other

three three-l'vel factors, the star:ing point was a 1/3 replicate of a 34 using

as defining contrast I = A2 B2 C2 D. For the 23 part of the design three repli-

cations of the 2 plus three additional points were used. .he 23 part was asso-

ciated with the 34 part a number of ways, and the best desi(:n selected. The

third and fourth designs were singular. The first, and beat, design is presently

being implemented.

14
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NON-ORTHOGONAL DESIGNS OF EVEN RESOLUTION

INMTODUCTION AND BUN34A T

Incomplete factorial designs for estimating all main effects or all

main effectb and all two-factor interactions have received considerable

treatment. in the literature. An Intermediate category, which has re-

ceived much less attention, contains desians from which the main effects

can be estimated unbiased by two-factor interactions, but the inter-

actions themselves cannot be estimted. Such designs, said to be of

resolution 4, are the most Important of the designs of even resolution,

and consequently receive the most attention in this paper.

Within the more restricted class of fractional factorials, properties

and construction technique for designs of all resolution numbers are

well known. Such design may be constructed imnediately from a defining

contrast, in which case the resolutio. is equal to the minimum number

of letters in the elements of this contrast. An effect of order

q (q - 0 for the grand mean, q - 1 for main effects, etc.) in a frac-

tional factorial design of resolution r has as aliases terns of order

r - q and higher.

Outside of the family of fractional factorials, as one might expect, the

situation is not as straightforwar4. The following definition of reso-

lution for such designs wa provided in LI2: F_ design of odd resolution

r is such that all effects through order *(r-1) are estimable Ignor-

ing higher order terms; a design of even resolution r is such that

18



effects of order *(r-Z) rr lower are estimable ignoring those of order

*(r + 2) or higher. For design of even resolution those effects of

order j r are not estimable but do not appear as aliases of those

which are.

The analysis of designs of odd resolution is straightforward. The

ordinary least-squares technique is used to estimate 0 , the vector

of parameters. Letting EY - X 0, where Y is the vector of responses

from a design, we have • u (X'X)3-X'Y , and Var • - (XX) '10. A

design is of the required resolution if and only if the corresponding

cross-product matrix X'X is nonsingular. A necessary condition is

that the number of runs N be at least as large as the number of para-

meters.

This paper reviews previous work on designs of even resolution. The

estimation theory for such designs is developed. It is proved that a

2a design of resolution 4 contains at least 2n runs. The method of

proof gives insight into the structure of minimal designs of resolution I,

and leads to a characterization of resolution 4 designs. The "foldover

principle," due to Box and Wilson E2z3, is discussed in detail, and it is

shown that this principle may be used to generate minimal designs of

resolution 4. It is conjectured that the only minimal designs of

resolution 4 are foldover designs. Designs of resolution 2 and 6 are

discussed briefly.
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PREVIOUS WORK

References to fractional factorials of even resolution are scattered

throughout the standard literature (for examle, [53 , and [41).

The first comprehensive treatment of such designs was given by Box and

Hunter [5J, who introduced the term "resolution." They shoved that eight

factors could be accommodated in 16 runs, twelve In 24 runs, and in

general 4k factors in 8k runs. The designs are constructed by the

"foldover" principle from saturated resolution 3 (Plackett-Burmnn)

designs Vhich exist if the number of factors is of the form 4k-I for

k s 25 £6]. This principle can best be described by means of the design

matrix for a Plackett-Burman design; for example, consider the 23 in

4 runs:

11[I0
ol1 0•

The "mirror" image of this matrix is formed by interchanging 0 and 1;

in the example we have:

101

The completed foldover design consists of" the oxiginal design and its

"image" as submatrices, augmented by a new factor at its high level in

the first half and its low level in the second. In the example being

20



considered, the complete 24 resolution 4 design in 8 runs is

"1 O0 O" 0

1 1~ 0 1
0100

LOO~ 0 •

Box and Wilson L2] provide a proof that the foldover procedure yields

designs with the property that first-order effects (i.e., main effects)

have no se'.ond-order effects (interactions) as aliases. ýlthough this

is proved in the context of response surface experiments, it is equally

valid for incomplete factorials and is proved in this context in a sub-

sequent section. An even simpler proof is available if the initial

design is a fractional factorial. For the first half of the design the

defining contrast contains the first factor A plus additional terms

none of which has fever than three letters. In the second half the alias

structure is the same, except that all elements of the defining contrast

with an o-- number of letters have their sign changed. The defining

contrast of the entire design, obtained by adding those of the subdesigns,

contains only terms containing an even number of letters, all with four or

more. In the present example the defining contrasts are I - A = -BCD

-ABCD and I = -A = BCD = -ABCD for the subdesigns and I a -ABCD for

the whole.

An alternative procedure for constructing fractional factorials of

resolution 4 is also given by Box and Hunter. Starting from a full

factorial involving a subset of the factors, new factors are included

by e 4uating them to interactions involving an odd number of the original
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factors. For example, to a comlete 2 can be added E - ABC,

F - ABD, G - ACD, and H - BCD, to couplete the eight-factor 16-run

resolution 4 design.

Recent unpublished work by Cuthbert Daniel 171 motivated me to initiate

the study which resulted in this 21aper. He showed that non-orthogonal

resolution 4 designs exist and gave minimal designs for 3 factors in

six runs and for 5 factors in 10 runs. Scrutiny of Daniel's designs

reveals that they may be considered as having been constructed from

minimal resolution 3 designs by the foldover technique.

ESTIMATION 0N EVX-IR&SOLUTION DESIGNS

Ordinarily from a model of the form EY = X one can obtain the least-

squares estimate of 0, which is given by (X'X)"I X'Y. In even-

resolution designs the matrix X'X, however, is singular so that this

procedure is not applicable. Let the model be rewritten in the form

f a X1 'B + X202 + X 3 ,3 where Y is the N x 1 vector of responses,

A is the p x 1 vector of parameters to be estimated, and S2 and 05

are respectively q x I and r x 1 vectors of parameters which are not

to be estimated. Furthermore, let the selection of the parameters in

the vector P. be such that the matrix KX1, X21 is of full rank p + q.

Since this matrix is of full rank, there must exist matrices H1 and H2

such that X can be expressed in the form XK X 1I + X2-. From
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the requirement that the design be of even resolution it can be shown

that the matrix H must be zero. Let be given by J Y. We

have E 01 which can be rewritten

E JY = (XA + X ÷

Therefore we must have - :i:, is JX2 n 0, and JX 3, 0. But

-/3 0 JXIH + JXA2 H2 -.i + CH = aIl so that H, must be the zero

matrix.

Analysis of even resolution designs can be facilitated by an appropriate

partitioning of the unestimated parameters into P. and 3. Let X'X

be written in the form

X'fX I C C
XX t FG

where the partitinLng corresponds to that of X into •1' •Z and X3 .

The normal equations may now be expressed in the form

A + B + D '3 X! Y

B 1+ C 0,+ F - Y

D , +F Oz + G• =x Y3 .3
By the assumptions made previously, the matrix . a C1 is nonsingular;

let its inverse be given by , • By the usual rules for Inverting

partitioned matrices we have
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U -(A-BC
1 B')'

V - -U B C-1

VaCB C V.

A particular solution to the normal equations is given by

Ux.Y + V X` Y Sx2 1 2

&Z X! Y + W X2Y

S= 0.

This may easily be verified by substituting this solution back into the

normal equations. By the definition of estimability of 1i, every

solution of the normal equations has the same value for that is•,

its value is independent of the vay in vhich the unestimated parameters

are partitioned into 0 sad 03

MINIMAL RESOLUTION 4 DESIGNS

The development in the last section can be used in proving that the

smallest resolution 4 designs for n factors must contain at least 2n

runs. The proof is accoMlished by shoving that certain interaction

parameters must be in the vector P since under the assumption that

B0= 0, 0i and 02 are jointly estimable.

THEOREM I*.

A resolution 4 design for n factors at two levels must contain at

least 2n runs.

Barry Margolin, Harvard, independently developed an identical proof

for this theorem.
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PROOF.

Let X1, ... , X be the colusn vectors of the matrix X associated

with the n main effects. Let Zip ... , Zn represent the colutAn

vectors associated with the grand mean and the interactions of the first

factor with the second, third, ... , n-th, in that order. Note that

zLj, the i-th compoent of Zj, is given by zlj = xrl xij, where x is

I i-th component of Xi. Since main effects are estimable, X, ... ,Xn

are linearly independent. Because of the nature of the Z 's it

follows that the Zj's are also mutually independent. It will now

be shown that the requirement that the design be of resolution It implies

that the X's and Z' s are also independent of one another.

Suppose the design contains N < 2n runs. Select any vectors

wr *..., WN_ such that U1r ... , •,%, W1, ... , W N_ is of full rank N.

Since the design is of resolution 4 all the Z s are expressible in the

form Z = XH1 + WHZ, using the obvious definitions of the matrices

Z, X, and W. Since the matrix H must be equal to 0, Z = WH?; but

there are more linearly independent Z's than W's, which is a con-

tradiction.

Essentially the same proof can be used to give a characterization of

resolution 4 designs.
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'I•EOIg.M 2.

In addition to the main effe-:s, the grand me&n and all two-factor in-

teractions involving a given factor can be estimated from a resolution 4

design under the assumption that the remaining interactions are zero.

Conversely, if it is true that for each choice of a single factor all

two-factor interactions involving it, the gr;tnd mean, and main effects

are estimable ignoring the remaining interactions, then the design is of

rebicýution 1ý.

PROOF.

In the preceding proof it was shown that in any resolution 4 design the

vectors Lx1, "'1 Xn' Z1, " "* Zn) are mutually linearly independent.

Since the designation of which factor was used to define the Z's was

arbitrary, the first part of this theorem follows.

To prove the converse, let Z4I), "'" Z()n be the column vectorsI n

associated with the grand mean and two-factor interactions involving

the first factorI " Z(2)n be associated with the grand mean

and two-factor interactions involving the second factor;

Z Z ,n) Z(n. be associated with the grand mean and two-factor

interactions involving the n-th factor. The hyýothesis is that for

each choice i the vectors LU1, ... , xI , Zi I..."I Z()] are mutually

linearly independent. Therefore the space spanned by the set
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LZ .. .. Z( Z( is independent of that spanned

by the X's. Select any basis for the former eubspace and assign the

corresponding parameters to the vector P2" The columns for the re-

maining parameters are all expressible as linear combinations of those

in the bisis, so that the matrix H, is zero, which in turn implies

that the design is of resolution 4.

Although the characterization of resolution 4 designs provided 1y this

theorem is not particularly useful for verifying whether or not a given

design is of resolution 4, it does have the fol>;wing corollary,

COROLLARY.

Augmenting a design of even resolution by additional treatment combina-

tions does not reduce the resolution number.

Although this corollary appears trivially obvious, a direct proof with-

out using Theorem 2 is frustratingly involved.

THE FOLDOVER PRINCIPLE

The foldover principle, described above, can be used to generate a wide

variety of designs of even resolution. If a design is of resolution 3.

the foldover design made from it is of resolution 4. A proof in the

context of P designs ie as follows:

Suppose U is the coefficient matrix for a resolution 3 design. The

coefficient matrix for the foldover design is of the form
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I- U V

Vbere e is an appropriately dimensioned vector of l's. The coeffi-

cient vectors for themain effects are in the U part of the parti-

tiosed matrix. and those for two-factor interactions are in the V part.

The negative of appears in the second half of the design by defini-

tion of the foldover principle. In the first half, each element of a

column of V is zhe product of the corresponding elements in two

colums of U; in the second half, the matrix V is du~licated since

the negative of each column of U is involved. The cross-product

matrix is

:2 ele 0 2 e'V

X'X 0 2 UlU

2V'e 0 2 VI .

Since the m-in-effect part ZU'U of this matrix is nonsingular and

orthogomnl to the reminder, the design is in fact of resolution 4.

Thus, for foldover designs the subspace spanned by the collsna asso-

cia-ted with the main effects (the vectors X1, *.., Xn in the notation

of the previous section) is not only independent of but also orthogonal

to the subspace spanned by the remaining colums (the vectors

M ** Z(I) ***,
,Z i e n n e•

The foldover technique my be ealoyed on n-rum, (n-i) -factor designs
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of resolution 3 to yield Zn-nm, n-factor designs of resolution 1.

By Theorem 1, such designs will be the sonllest possible designs for

this experienntal situation. Designs which are minimal and which appear

to be emong the mst efficient possible are given bela-. Only hal the

treatment cbinations are given for each design, the other half being

obtained by "multiplying" in the usual fashion each of the listed

treatment combinations by the tresient combination with all factors at

their high level. The first design is due to Draniel 17.- Practioaal

factorials are available for 4 and 8 factors. In the colmn labeled

"variance" is given the multiple of W giving the variance of each

main-effect estimtor.

Nubmer Number Runs In Half
of Factors of runs Variance of Design

3 6 1/4 a, b, c

5 10 1/9 a, b, c, d, e

6 12 1/10 ab, ac, be, d, e,
L 7 14 !11/100 a, b, c, d,. e, f, g

3ased an the work to date with non-orthogonal designs of resolution 4,

the fo]lloin conjecture is made.

Foldover designs form a comlete class of minial 2 designs of reso-

lution 4. IM at Is, there exist no resolution 4 designs with Zn runs

and n factors except those constructed by the foldover technique.
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The conjecture has been proved for n = 2 5, and 4. For the case of

two factors the only resolution 4 design is the full factorial, which is

itself a foldover design. For three factors it is relatively easy to

enumerate all possible six-run designs and note that the only designs

of resolution 4 are foldover designs. For the case of four factors a

proof that the only resolutimn 4 designs are foldover designs has been

constructed. In order to prove this result, consider the submatrix

consisting of the columns of X associated with the parameters

I, AB, AC, and AD. There are eight possible combinations of values for

the elements in the rows of this submatrix. In the X matrix the

elements of the columns of X associated with BC are simply the product

of the elements in the columns AB and AC. If a design is of resolu-

tion 4 then the elements of BC must also be linear combinations of the

elements of the four columns I, AB, AC, and AD. Under these restric-

tions only four of the eight possible combinations of values for

AB, AC, and AD may appear in the design. This fact in turn itplies

that the design must be a foldover design.

DESIGNS OF OTHER RESOLUTION UNUBERS

A design of resolution 2 is such that an estimate of the grand mean is

available which is unbiased by main effects. For any number of factors,

such a design It provided by any two runs which are ccmplementary, in

the sense that each factor appears at its high level in one and at its
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low level in the other. The variance of the estimated grand mean is

½ •' using any such design. Such designs are the only minimal designs

of resolution 2, and may be considered as uwluvtr d"sigxna.

Fractional factorials of resolution 6 may be constructed by the fold-

over principle from fractional factorials of resolution 5. The argument

involving defining contrasts given in an earlier section for designs of

resolution 4 is easily extended to encompass this situation. Indeed,

the foldover principle can be used to construct a design of any even

resolution number from a fractional factorial of the next lover (odd)

resolution number. The resulting designs are, of course, also fractional

factorials.

The foldover principle may be applied to more general designs of

resolution 5, but the result need not satisfy the definition of a de-

sign of resolution 6 given in the first section of this paper. Let

the coefficient matrix for a foldover design constructed from a resolu-

tion 5 design be represented by

-U V-w

Here the U part corresponds to main effects, V to two-factor inter-

action, and W to three-factor interactions. The cross-product matrix

is
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"2es 0 2ev 0

0 2 U'U 0 2 U'V
ItI a

2 1'. 0 2 V1 0

0 2 W'U 0 2 W'W

It in clear that estimates of the grand Pean and of the two-factor

interactions are available vhich are unbiased by three-factor inter-

actions. The estimates of the main effects will in general, however,

have three-factor interactions as aliases. In order not to have such

aliasing, the columns of V must be linearly independent of those for

U.

Outside the class of fractional factorials nothing appears to be known

about designs which are truly of resolution 6 (that is, for which both

two-factor interactions and main-effects have no three-factor Interac-

tions as Jiasees). An argment analogous to Theorem 1 can be used to

show that the minimum number of runs in such a design is 1 + (,)+(,)+ (nl1) =

n2 -n+2. For three factors the only design of resolution 6 is the full

factorial (which is of resolution 7). For four factors there is avail-

able a 15-run design of resolution 7, but there does not seem to be a

14-run design of resolution 6. It is not known whether there exists a

five-factor design of resolution six containing between 22 runs, the

minimum by the above formula, and 26 runs, the minimum number for a

resolution 7 design. For the case of six factors, the half-replicate

is a minimal resolution 6 design.
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SATURATED ZKQUZ:TIA1. FACT-aRIAL DESIUNS

INTRODUCTIUN AND SUMARY

in the early phases of an experimental investigution, the experimenter may be

utaware or have only a general idea of some of the variables which have important

influences on the important responses. Typically he vill reject the apparant

rigidity of a formal statistical test plan and do exploratory experimentation. The

result of such experimentation may well be a sequence of runs each of which intro-

duce a new variable or a new level for an old variable.

It has become axiomatic in the statistical experimental design literature to

discourage the practice of varying one factor at a time. For the case of factors

each at two levels, an excellent exposition o" the statistical arguments against

such designs was given by Fisher in The Desip of Exneriments, Sections 37 and 38 I].

He bases his attack on the fact th..t the variances of the main-effect estimates using

such designs are considerably larger than with orthogonal designs, and on their lack

of information about interactions.

On the other hand, the experimenter often likes such designs because he finds

out more rapidly whether a new factor has any effect. He continually receives

information rather than having to wait till the entire experiment is completed. If

the magnitudes of the effects he is interested in are several times as large as

experimental error, if he does not need to describe these effects precisely, and if

there are no interactions, there is no particular disadvantage in experimenting in

this way. Cuthbert Daniiel [21 has presented these positive aspects of such designs,

and pointed out that they can often be augmented to form a half replicate plus one

additio.;.l run, in which case th.e lost efficiency is for the most part regained.
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In an earlier paper [31 I introduced the concept of contractible designs,

which have the property th,'t much of the informAtion in the experiment will be avail-

able even if the experiment im prematurely halted or the course of the experiment is

si•rnificantly altered. One-at-a-time designs represent an extreme class of contract-

ible designs, in that some information is available no matter when the experiment is

terminated.

The first few sections of this paper 4evýelop a theory for one-at-&-time designs

for estimating the main effects of two-level factors. It is shown that f2 is a

lower bound for the variance of a main-effect estimate from a saturated one-at-a-

time design. (This result was previously given in [4].) A characterization of

designs for which the lower bound is achieved is presented. The results on two-

level factors are extended to the case in which there is no restriction on the num-

bers of levels for the factors. Situations may arise in which the factors can safely

be introduced in small sets, rather than one at a time. Details are derived for

block sizes of 2, 3, and 4. Finally, inclusion of interaction terms in the model in

considered. It is shown that the estimates of main effects of factors involved in

interactions are improved.

VARIANCE BOUNDS FOR ONE-AT-A-TIMZ DESIGNiS FOR TWO-LEVEL FACTORS

The first run of a one-at-a-time design has all factors at their initial levels,

which for convenience will be considered the low levels, denoted by 0 or -1. Each

successive run introduces the high level, denoted by i or *1, of one of the factors.

The factors will be considered as being ordered in such a way that the ith factor

first appears at its high level in the (i÷!)at run. After a factor has been intro-

duced (i.e., after it appears for the first time at its high level) it may stay at its

high level, revert to its low level, or be varied between its two levels on subsequent

tests. Thus there is a wide latitude of possible one-at-a-time designs.
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Experiments for estimating the main effects of two-level factors are conven-

tionally analyzed in terma of the coefficient matrix X as follows. The first

eolvim of X corresponds to the grand mean and has all its components equal to 1.

Each of the remaining columns corresponds to one of the factors, and each row corres-

ponds to a run. According to whether a given factor is at its high or low level in a

given run. the corresponding element of X contains the entry +1 or -1.

Suppose a vector Y of N responses is obtained from the experiment. Under

the anssmption that there are no interactions we may write Y = XO + e, where 8 is

the vector of the unknown parameters and e is a vector of independent random errors

2
having mean zero and common variance O . The least-squares estimate A of R

is f= (III)-'ixY . The covariance matrix of t is 02(X'X)-I .

In addition to working with the traditional coefficient matrix X, it will be

convenient to introduce a reduced matrix R . Wihere X has an element 1, R also

has 1; where X has a -1, R has a zero. It may be verified that X and R

are related through the triangular transformation matrix T according to the equation

X R IT, as in the following example:

"I-1 -1 -1 -1 -1• 1- 0 0 0 0 0- 7 -1 -1 -1 -1 -1--

I 1 -1 -1 -1 - j I1 0 0 0 0 0 2 0 0 0 0

1 1 1 -1 - -1 1 1 ] 0 0 0 0 0 2 0 0 0

I-1 I -1 -1 1 0 1 1 0 0 0 0 0 2 0 0

I 1 1 1 1 1 -1 1 1 0 1 0 0 0 0 0 2 0
I-1 -1 1 1 1 1 0 0 1 1 1 0 0 0 0 2Lngira~i II~ LLO 00 0

In general, t ij is given by the following rules:

tlj =-1 (j2. , n+ 1)
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tj= 2 Qj 2, n + o ÷i)

tij = 0 (otherwise).

It may be verified that T-1 has the following form

0 0 ½ . 0

If R is the reduced coefficient matrix for a one-at-a-time design, then (a) the

first column of R consists solely of V's; (b) the main diagonal of R consists

of I *a, since the ith factor appears at its high level in the (i+J)st run; and

(c) the elements above the main diagonal are all 0, since the ith factor remains

at 0 until the (i+_•st ran. Since R is lower triangular and has 1'm down the

main diagonal, the determinant of R is unity. Since the elements of R are inte-

gers any minor is integral. Since the elements of an inverse are by definition an

appropriate minor divided by the determinant of the original matrix, R-1 also con-

sists of integers. It follows from the form of T-1 that each element of

71- T= R-1 must be a multiple of -.

T'dZORE 1. For a one-at-a-time design containing n+1 runs and n factors at two

levels, a lover bound for the variance of any estimate is iv2.

PROOF. The variances of the estimates are a times the diagonal elements of

(XtX)-'. Because X is square (X'X)-l reduces to (X71)(X-1), . The diagonal

elements are therefore the sums of squares of the elements in each row of XI . We

know already that the elements of X- are all multiples of 1. The sum of squares
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of the elements in a row must therefore be a positive multiple of -. If the value

were k, then a:1 the elements would be zero except one which was equal to 4 .

The inner product of a row of Z-I and a column of X must of course be either 0

or 1. since the elements of X are all either +1 or -1, the inner product of

any column of X with a row containing a single I would be -+ . Therefore a lower

bound to the sum of squares of elements of any row of X-1 is ½, and the theorem

is proved.

C:ARACTERIZATION OF OPTIMUM ONE-AT-A-T]Y4E DESIGNS

The most fa:dliar family of one-at-a-time designs are those in which each factor

returns to its low level after it has first been introduced. The general form of the

natrices R, Rk-, and XI in this family are exemplified by the following tive-

factor c"sez

r10 0 0' 0 0 00 0 +.-~-+
10000o 000 ooo o j-4 +0o00 o -

1 o 0 0100 01 0 0 0 0 0

R =L 1 01000 R_1 -10 1000 X1 14 0 00
R0 0 0 _0 0 ol-200010 oI- oo
1 0 o 0 1 0 -1 0 0 0 0 0 0 0 0 -
S0 0 00 1 1 0 0 0 0 L 0 000 L

It will be noted that the variance of each main-effect estimates is TC2, t1.2 theo-

-etl.:al lower bound. The variance of the grand mean is a 2(n2 -3n+4)/4 for tie

n-factor case.

It is of interest to inquire whether or not there is a family of designs in

2
which the variance of the grond mean is also at the minimum level of +c . The

family of designs in which eazh factor is maintained at its high level aatisfifa this

requirement. Again using a five-factor example to illustrate the general case, R,

and X are as follows:
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r- oooo" - ooooo-- -o

1 O 0 00-1 1 00 00 0 00 0

1 0 0 oooo 0 -1 10 0 o 0 04 0 0 o0

I i• 1 o 0 0o00-1 1 0 o0 o0-4- 0
1 1 1 1 1 0 0o 0 0o-1 1 0 0 0- 0

0 0 0 0-1 1
Li 1 11 1[_ 1 L o-100oo -0•

These two classes of designs are two extremes in which all factors are either returned

to their initial level or are held at their new level. , classes are special cases

of a more general class of one-at-a-time designs, al' .. hich hava variances of i2

for all the main-effect estimates. This class consists of designs in which for every
kc • 2 the kth run differs from some previouis run, say the 4 th only in the level

of the (k-_)st factor. The estimate of the effect cf the (k-1)st factor is

times the kth response rinus the .kth . For the former of the two classes pre-

viously discussed I a 1 and for the latter L k . This heuristic argument will

now be formalized.

THEORHM 2. In a one-at-a-time design the variance of the main effect of a tvo-lev-i

factor achieves the lower bound of 102 if and only if the run in. which that factor

is introduced differs from some Drevious run only in the level of that factor.

PROOF. The variance of the estimate of the effect of the (k-1)st factor will be

1C2 if an only if the kth row of S - R-I contains a single nonzero off-diagonal

element, whicn must be equal to -1. Assume that the kth row of S is of this

form and that the single element equal to -1 appears in the Ath column (I < k)

Thus we have sk1=, , kk =I and s 0 for j A and J 0 k . Formal multi-

plication of the kth row of S by the matrix R = S yields the system of equa-

tions _2=1 3kmrnj = I6j , which reduces to -r£j ÷ rkj =kj , where '-j is the

Kroneoker 6 . It follows that the Ita and kth rows of R are identical except

for the value corr..pondin. to the level of t".e (k-h st factor.
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Now assume that the Ith and ith rows of R are identical except that

r Ak 0 and rkk = I. Formal multiplication of the _4th rows of R by the columns

of s yields the two systems of equations n r -a M6 and e
2= m j Li &I k'jýk'

Substraction of the former from the latter yields L= (rk - r s = =9

or kk = I, aks = -1, and skj = 0 for j = k and j = A . The proof is now com-

plots.

Often an experimenter may prefer to determine which level of each factor is better,

and conduct the remaining experiments at the more desirable level. Thus, in general

after a factor is introduced it will either be held at its high level or be returned

to its low level for the remainder of the experiment. It can be verified that for this

type of design the conditions of Theorem 2 are satisfied, and the lower bound is

achieved for esch main-effect estimate.

In the kind of experiments in which a one-at-a-time design might be useful, there

smy or may not be interest in obtaining a good estimate for the grand mean. The vari-

ance of the estimate of the grand mean will achieve the lower bound in a saturated

design only if the treatment combination with all factor at their high levels is in the

design. The only one-at-a-time series that can have this property is the one in which

all factors remain at their high levels.

ONE-LT-A-TDIK DESIGNS FOR MULTLPLE-LEVEL FACTORS

The results for two-level factors can be extended to the case in which each factor

may have more than two levels fairly easily by a proper choice of parameterization.

For a factor with s levels there are m-I parameters necessary to describe its

response. These main-effect parameters are defined as contrasts among the expected

responses at the levels. Let the levels be designated by jt1'p2''" '.ma ; then the

parameterization will be 1 = P2 - 1 )" 82 = +(W - '1 )... 1  (a - P1)

For an appropriate definition of the grand mean, the coefficient matrix X associated
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with this paraseterization takes the form of the X matrix for a one-at-a-time

design for aIm two-level factors. Consider one five-level factor. The design

with one run at each level has the X matrix

I 1 -1 -1 -

X.

Kmj

It is apparant that this is identical to the coefficient matrix for a one-at-a-time

desiga for 4 two-level factors.

In many t.actical situation an experiaenter may be interested in comparisons

other than binary comparisons between the levels. For example, it may be natural to

use as parameters for a five-level factor (a) a comparison of the average response

at the first two levels with the average response at the last three levels, (b) an

intercomparison of the iirst two levels, and (c) two intercomparisons of the last

three levels. Given any such specific parameterization, a theorem analogous to

Theorem 3 below can probably be proved. In order to avoid a commitment to a special-

ized parameterization, the theorem is given for simple binary comparisons only. Other

parameterizations can be studied by resolving them into simple binary comparisons.

TKEOREM 3. Suppose it is of interest to estimate + the difference between the

expected responses at any pair of levels for each multi-level factor. Then a lower

bound for the variance of such an estimate obtained from a fully saturated one-at-a-

2
time design is JIo

PROOF. By convention let the first level of each factor be the one used in the first

run. In the proof of Theorem 1 it was shown that the minimum sum of squares of a

row of X-1 is achieved when the row has two nonzero entries, each having absolute
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value j . This suffices to prove that ic 2 a the lower bound for the variance of

a COL parison of any level with the first. A comparison of any other two levels p

and is the difference of two comparisons Bi=(.i-k) and 8 = •(•-P)

The variance of the difference fi - Pj in the sum of the variances minus twice the

covariance. Since the rows of X71 are by definition orthogonal to the first column

of X the sum of the elements of any row of X- , except the first, is zero. Since

the elements of X71  are multiples of + , it follows that each row, in a sense,

contains an even number of +'s. The variances of and P. are therefore multi-

pler of +02. Similarly, the covariances between and ýj, the sum of cross

products of the corresponding rowe of X-, are multiples of a2/4. It follows that

V(;i) + -V( - 2C(AiAj) must be a multiple of +cy2 . We have now shown that the

variance of j the differmnce between the expected responses at any pair of levels

is a multiple of 42, so that the minimum value is fa 2, which completes the proof.

Theorem 2 once again can be used to characterize the class of designs for which

the bound is attained. In particular, the practice of maintaining the best level for

each factor for the rest of the experiment will result in an optimum design for main

effects. Note that it is permissible for intervening factors to be introduced before

all the levels of a single factor are considered.

FACTORS INTRODUCED IN BLOCKS

One-at-a-time designs are of practical importance since they provide a means

for minimizing the impact of a sudden unexpected termination of the experiment after

any run. It may often hanpen, however, that the experimenter is reasonably sure that

a block of runs can be completed before it is iikely that the experiment must be dis-

continued. In such cases one might inquire how much advantage can be taken of the

larger block size to improve the efficiency of the design. In answering this question

attention will be confined to two-level factors.

42



Previous work on contractible designs has been done under the assumption that

"a complete block could be completed L31. In that work a new factor is introduced in

"a block of runs of sufficient size that all interactions with old factors can be

estimated. A number of series of such designs, both saturated and unsaturated, have

been tabulated. Of necessity, each block must be of larger size than the previous.

In the present paper we limit our attention to fixed block sizes.

Consider first the case in which each factor is returned to its low level after

the block in which it is introduced has been completed. The matrix R for p blocks

has the following form:

1 0' 0' . • • 0'

rI R 11 0 0
r 0 R, 0

2 -2

r 0 0 . . a
L p pp

The inverse, call it S. is of the same form. We have immediately

Si.. R.. and a. = -s r Note that the elements in the _ith block of the inverse,

hence the variances of the estimates, depend only on the ith block of the R matrix.

Therefore, the problem of minimizing the variances using blocks of size k is equi-

valent to minimizing variances in complete designs of size k*1 . It was shown by

Plackett and Burman [5] that a lower bound for the variances is CT2 /(k+l), and that this

bound is attainable if k-s1 is a multiple of 4 (the case k=2 is discussed sepa-

rately in a subsequent section).

By analogy with previous results (when k=1 ), one would expect that a2!(k+1)

Ii sh*ould indeed be a lower b und for variances asing blo;ks of size k. Similarly, by

analogy Wit'L previous results, one would expect tht.t for k+1 a multiple of 4, the
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lower boind should be attained if factors are held constant after the olock in which

they are first introduced. At present these statements are only conjectures. The

next section illustrates why it may be much more difficult to complete the proofs

than in the case k=1.

Plackett-Burmar. Blocks

We will be moat concerned with blocks of size 3. The Plackett-Burman design for

three factors in fo-&r runs is as follows:

1 -1 -1

Ll -1 1

If the submatrix consisting of the last three rows and colurms is used as a block

(which we shall call a Plackett-Burman block of size 1), the R matrix takes the

following form:

1 0' ' 1. . 0'

r K 0 0

r 2  R K 0

r R R . K
ý- p 1 p2

where K is the matrix

K= 0

-11

The matrix R- = S may be partitioned in the same way:
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V!
1 0' 0' . . O f'

X8 0 0

E2 S21 X 0

- .p1 p*-12

The matrix K- is

any sI = -K-Irl -1-,•,b1 r If R = 0 for i > j , then si a and the

variances of the estimates of main effects are all 40) 2y2/4 = 02/4. Now suppose

R J for i > j, where J is a 3 x 3 matrix all of whose elements are unity.

We have -KK K -J4, 2 = -K r 2 -K-Js, = ri/4, and in general the ele-Wehv 21 2

ments of the rows in the saccessive blocks can be multiples of successively higher

powers of 1. Note, however, that the variances of estimated main effects from the

second block are [3(7)2 + 4(j)2 ]a 2 /4 = a2/4 . Similarly, the variances remain at

a2/4 for the main effects of factors in later blocks, even though the number of

nonzero entries increases with each successive block. For this reason, the simple

prjof of Theorem I vill not generalize directly and thus a proof that 02/4 is in

fact the minimum variance will involve treating a number of special cases.

The picture for blocks of larger size is quite similar. For k=7 each

diagonal block of the R matrix has the form
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[1 1 1 0 0 01
1 0 0 1 1 0

S0 *4 0 1 o) i
K7 1 0 0 1 0 1

0 I 1 0 0 1

0 1 0 1 1 0
Lo o 1 1 1 1 o

The elements of the inverse of this matrix are *i, and sI = -r,/4. In general the

elements of 321 are multiples of 1/16, the elements of S., are multiples of 1/64,

etc. The variances appear to have the minimum value of 1/8 whenever factors are all

held constant after the block in which they are introduced.

Block* of Size Two

Unfortunately, nothing is gained by introducing factors two at a time over intro-

ducing them one at a time. This can be demonstrated considering the class of all non-

singular 2 x 2 matrices whose elements are 0 and 1. Apart from permutations of

rows and columns, this class consists of only two elements:

Since these matrices are themselves lower triangular, and R matrix employing blocks

of size two is of exactly the same form as the R matrix for blocks of size one.

Therefore, the same variance bound applies to blocks of size two as to blocks of size

one.

Blocks of Size Four

It can be shown by an enumeration of possible desitns that, for studying 4 two-

level factors in 5 runs, the design whose R matrix is
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1 00

I I1

I 1 0 1

1 0 1 1 .I

simultaneously minimizes the variances of the estimates. Therefore; designa using

as blocks the ,natrix

K4 =I I 10

K 41 0

would appear to be of primary interest. The variances of estimates of factors in

the first block, obtained from

1i/3 1/3 1/3 -2/3
-1 1/3 -213 I/3

L-23 1/3 1/3 1/3

and si ±-r 1 /3, are ('/4 X 8/9)a 2 = 202/9, which is better taan can be achieved

with blocks of size 3. Note t:at 2o 2/9 is larger than the theoretical lower bound
of a 2Xk -=2/5; that bound is not attainable for 4 factor five-run designs.

By analogy with previous results, one would expect that as long as factors are

held fixed after the block in which they are introduced, the variances of effects of

factors in successive blocks would continue to have the same variance. Such is

certainly the case if all factors are returned to their low level. Surprisingly, if

some or all factors are held at their high level, variances actually decrease in sub-

sequent blocks. In the next paragraph variances are derived as a function of block
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number when all factors are held at their high level.

As previously we will partition R and S R R in the form:

1 ' O' 00

r1 R 1 0 0

r2 R21 R22 
0

Lr P HP R p2 . .. p
rp Rp1 p2 . pp

1 0' 0' • * . o'
1 3 11 0 0

82 S2 1  322 0

S=

ap Sp1 3 p2 . . Spp

where the vecturs r. = (i,1,1,1)' as usual. We are examining the case in which1

R = K4 and Rij = J for i > j, where J is the 4 X 4 matrix all of whose

elements are unity (the subscripts 4 will be dropped). It is obvious that S

is equal to X-1 . It will now be shown that

si = (-1/3)ir1 , and

Sij = 1/3(-1/3)i-JJ, for i > j

Formally multiplying R by S, we obtain the equations

r 1 =0 1 i p

z R Skj = ; I *( i -p

k-i
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where 6 is the Kronecker 6. Substituting the values of R and a. intc,

ij ik

the left side of the first equation, we obtain

i-I

r+ (-i/3)JrI + (-i/3)
1 Xr

Since Jr= 4r 1  and Kr = 3r,, we have

[1+

[I+ 4 ' (t/3. +(1/)I
k=l

= (-1 )[ 1-(- 1 )i-lJ + 3(-1/3)i r, = 0.

The second of the above equations may be verified by a similar substitution for

Rik and Ski' The variance of a main effect of a factor in the ith block is r2/4

times the sum of squares of the elements in the rows of sa, Sil, S1 2 , ... Sii.

i-I 1This sum of squares is (1/9)i + E 4 (1/9 )'J+ + 7/9, which equals

[15 + (1/9)i-I/18. The variances, as a function of i, are as follows:

variance 1.2222a02 I.209802 1 208502 .208302.

Note that the asymptotic variance is still larger than the conjectured lower bound

of 02/5.

TREATING INTERACTIONS IN DESIGN FOR TWO-LEML FACTORS

Interactions between any 2 two-level factorc may bc included in the model by

inclusion of a single addiLional run. In this zection it is shown that the vi.riance

of each inL.sraztcn estimate is and that the variance of each main effect which

is included in an interactioL is reduced to icY
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The reduced coefficient matrix R for designs containing interactions will be

constructed in a lowei- triangular form ao as to take advantage of previous results

in thic paper. The portion of the R matrix relevant to two factors has one of

the two forms

I 0 or $

In order to estimate the interaction between the two factors it is necessary to

introduce the fourth possible combination of levels for the two factors. The inter-

action will be assigned the value 1 in the R matrix when the fourth combination

appears and 0 for the other three combinations. Thus, the portion of R corre-

sponding to two factors and their interaction has one of the two forms

0 0 0 - 0 0 o

(1)•,,. 1 1 0 0 (2) 1 ( 2 )

(iR or R 1
1 0 1 0 1 1 0

1 1 1 1J 1 0 1 1j

These are related to the traditional ooefficient matrices through triangular trans-

formation matrices as followaeI -I -1 _ 0 0 --
1() , 1.I 0 0 0 2 0 -2 0), (1)TI

-1 0 1 00 0 2 -2

0 0 C0

0 0 0 0 0X I,, 1 0 -X 0 0 2 2 o.

Ll - -1 1 0 1 0 0 0
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The inverses of these transformation matrices are respectively

= and (T() [

0 0 0 0 0 0

The transformation matrices for general one-at-a-time designs containing n

factors, m interactions, and n + m + 1 runs are of the general form

tl =1

t11=Itlj =-1 (j =2,...,n + 1)

t Ij =1 (j -- n + 2, .... ,n + m + 1)

t.. =2 (j = 2,...,n + I)

t =*4 =n + 2,...,n + m + 1)

t j ±2 (j. n + 2,...,n + m + I and the (i-).Ot factor is involved in

the interaction corresponding to the Jth column)

tij = 0 (otherwise).
i-1

The elements of V = T are of the general form

v11

v i- (j -2,...,n + i)

V + C (j n + 2,....n + m + 1 )

V b (j m2,...,n + 1)

vj -- (j n + 2,...,n + m + 1)

v = = n + 2,...,n + m + I and the (1.Dst factor is involved in

the interaction corresponding to the hith column)

v .j 0 (otherwise).

Since the variance of an estimated parameter is a times the mum Of squares of

the elements of a row of X-1 - T-1R"1, and since T"1  contains elements aM small

as +, an argument like that used to prove Theorem 1 can be used to show that a Y., .

St , ,•; ÷I
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variance could have a value as low as j(2. For those factors whic,i are involved in

no interaction, 'lowever, the corresponding row of T- centains only the values

and 0, so that the variance bound is the same as before.

It remains to determine whether or not designs exist for which the 2ound o I

is attained. Once again the answer is in the affirmative, and those designs for

which factors are returned to their low levels after their initial introduction except

for runs in which they are involved in the interaction have the optimum property.

As an example, consider a design for estimating the effects of four factors and the

interactions between the first and third and third and fourth. The R matrix for

such a design is ce follows:

0 0 0 00 0

1 1 0 0 0 0 0

R 1 0 1 0 0 0 0
11 0 G3 1 0 0 0
1 0 0 1 1 0

100 1 01 0
1 01 0 1 0 1

The matrix is easily inverted to obtain

1 0 00 0 0

-1 1 0 0 0 0 0l

-1 0 1 0 0 0 0

-1 0 0 1 0 0 0

0 0 0 -1 1 0 0

1 -1 0 -1 0 1 0
1/- 0 0 1 -1 0 I

which when multiplied by T- 1 yields
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4 . 040 J 0

4~l 0 4 - 0 0 0 04- 0 00j 0o

* k 0 4 0 * 0
z 0 0 0 -1 0 *_

The variance of the interaction estimates and of the main-effect estimates are all

-h2 except for the factor which is involved in no interaction, for which the vari-

ance is 402.

A WORD OF' WARNING

It has been the purpose of this paper to oresent general results on saturated

sequential designs such as one-at-a-time designs. It will be appropriate, however,

to make a few observations on their limitations.

By their very nature, the designs discussed have all their degrees of freedom

used in estimating effect parameters, so that no internal error estimate is avail-

able. Sometimer this may be no particular disadvantage. Either a good error esti-

mate is available from prior experience, or it is not required of the experiment to

test the significance the parameter estimates relative to the error. Alternatively,

the half-normal plotting procedure, ciue to Daniel [6J, may be used if only a few of .

the faitors are expected to have real effects.

Since the runs are conducted in a sequential fashion, with the possibility of

altering the experiment between runs, there is no opportunity to obtain a complete

randomization of the order of the rmns. Rather than attempting to obtain a "partial

randomization" by, for example, randomizing the order of introduction of some of the

factors, the experimenter should introduce the factors in the order of their potential

importance. It is obvious that in the absence of a complete randomisation, there is

IT'5i,• .:••

>4



no basis for the validity of tests for significance of the estimated effects. Thus,

these designs do not provide a statistical proof of the reality of effects. They

will, however, pive an indicati-n of what are apt to be the most important factors.

A standard design, fully randomized, can be run subsequently in order to provide

valid significance tests.

WI

5
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