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FOREWORD

The three papers which this interim report comprises were wriiten under
Contract AF 33(£15)-2818 entitled "Research in Experimental Design and
Estimation Theory”. ‘he work, which is documentsd under Prejact 7071,
Researeh in Appli.a ~schematics, was sponsored by Aerospace Hesearch
Laborstories, Ofry:e n¥ Lerosvace Hesearch, United States iir Force,

and was monitored by Dr. #. L. Harter of these laboratories.

The first paper, entitled "Conatruction and Coamparison of Non-Orthogonal
Incomplete Factorial Designs" was prepared for presentation at the
Eleventh Conference on thie Design of Experiments in Army Research,
Development, and Testing, held in October of 1965 at Foboken, and appesrs
in the proceedings of that conference., The second paper "Non-Orthogonal
Designs of Even Fesolution,™ was presented at the annual meeting of the
American Statistical Association at Los Angeles in August 1966. The
third paper, "Saturated Sequential Factorial Designs," represents
simplification and generalization of work contained in the paper "Desigms
for Studying One Factor at a Time"” which was presented at the Berkeley

meeting of the Institute of Mathemsticsl Statistics in July of 1965.
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ABSTRACT

This report consists of three distinct but related papers. Experience in indus-

trial consulting indicates that the requirements of s real test plan often differ

TR b

from textbook examples in the number of levels for the factors, the interactions

(RS A

which must be esiimated, snd the total number of runs which can be allocated to

the experiment. The firast paper is concerned with methods for constructing designs
to meet such reguiremente and with criteris for selecting s design from a number of
alternatives. Various construction techniques are illustrzted by examples. Two
speeific numerical criteria are developed, and s convenient computer routine for
evaiuating them is described. Examples of designa are given which were constructed

for actual experiments.

In genersl, designs of even resolution have the property that nct all the parameters
are eatimable, but those of primary interest are estimable with none of the remain-
ing parameters as aliases. The most important are designa of reaolution 4, which
are such that the main effects are estimable with no two-factor interactions aa
aliases. In the second paper it is shown that the smallest resolution 4 designs

for n factors at two levels must contain at least 2r runs, and that "foldover"”
designs are available with 2n runs. It is conjectured that the only minimal
resolution 4 designs are foldover designs. The case of resolution 6 deaigns is

alsao discussed.

Statistical designs which very one factor at a time are inefficient and suffer
from lack of opportunity for randomization. In spite of these deficiencies, they
may be useful designs early in experiments because they yield information after
each run. The third paper givea variance bounds for estimates of main effects

using one-at-a-time designs, and characterites thcse designs which achieve the
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lower bounda. Situations in which runa are conducted a block at a time (rather
than aingly) are discussed. Finally, it is shown that incluslon of intersction

terms in the model improves the main-sffect eatimates of factors involved in the

interactions,
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CONTTRUCTION AND COMPARISON OF NON-ORTHOGONAIL
INCOMPLETE FACTURIAL DESIGNS

INTRODUCTION AND SUMMARY

Very often in industrial research an experimental progran must be planned for
which existing fractional factorial designs are inadequate. The most common
reasons for this inadequacy are
1) the available designs contain too many runs,
2) the fuctors to ve eveluated in the experiment do not all appear at the
same numoers of levels, and -
3) the particular set of interactions which cannot be ignored in the

analysis of the experimental resulits dcoes no® appeur in any of the

published designs.

In such cuses the consulting statistician may nave & tendency to try to slter
the thinking of the experimenter so thut one of the stundurd published designs
can be used. This is, of course, undesireble from the experimenter's pouint of
view and increases the probability thut the desi . will not bde carried out as
originally planned. As uan alternative, the statigtician is fuced with the prob-
lem of developing an ad hoc test plan which satisfies the actual objectives and
conatraints of the real situstion. Using his intuition sunplemented by a meager
amount of theory he must come up with a design with sutisfuctory statisticul

properties.

CRITERIA FOR COMPARING DESIGNS

The -esponse from an experiment will be denoted by the l-component vector Y,
and -ts expected value by EY = XB, where 8 1is a p-component vector of paru-

meters. Generally speaking, & gcod design will have low rarameter-estimate
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varisnces, wnich are proportional to the disconal elesents of (X'K)4 . Fora
given experimental situation, thet is, specificution of the nurber of {actors,
nusbers of levels for euch factor, and the interactions to be estimuted, &
particuluar finite set of desiyns is available. In case one of thease designs
leuds to the winimization of the varisnce of each estimute, then there is no
selection problem. This does not often happen, hovever, except for fractional

fgctorials with ull factors at two levels.

In rere cases the relative importance of the varaneters to be esntimated may be
known gquantitatively well enough in advance so that a realistic criterion can be
established based on the variances. This would usuanlly taize the form of a weighted
average of the variances. MNost often, howsever, the reluative importunce of esti-
muting the parameters with low variances will depend on their as yet unknown

valiues.

A criterion for selecting the design often proposed is the gererulized vuriance,
-1
defined as the determinant of (X'X)” . A confidence set for the parameters is
P | ~
the set for which (B-p) (X'X)(38) <K. The volume of this ellipsiod is
hi 1
V= 2“’1? ij
m(spviet(X'X)

which is seen to be releted to the deaign only throuzh the determinuant of the

croge-product matrix. It is convenient to ccnsider the determinant in the form

of en index, called the estimution index, defined by
= afx P
Ip = det(x'x)/ (W n‘i’=1w1) .

The weignts "i are definel us follovs. Let Z be tl.¢ coufficient nutrix

agsociasted with the full f'ectorial; that is, if Y* were a vector of responses
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for a& full factorial then EY* = Zp. (The standard parameterization is such

o AR gyl i A

that 2'2 im a diagonal matrix.) Let d, represent the i-th diagonal entry

of Z'2 and let M represent the total number of runs in the full factorial.

L

Then w, = di/M .

Often the purpose of un experiment is to obtain overall information about the
response. In these cases the appropriate ¢riterion is based on the average

varicnce of a fitted response, where the average is taken over all M points

of the full factorial. The average varisnce is proportional to zyivi, where
the Vi are the diagonal elements of (X°X)-‘. A convenient representation is

through the "fitting index"

IF = p/(NEL‘lvivi) .

Fore generally, an index could be based on the integrated variance of a fitted
response. Such an index would in general involve off-diagonal elements of

-l
(X*X)” ', and would be difficult to define in a way which is general enough for

both quantitative and qualitative factors. Experience has showed IP to be &

very useful index. )

Consider the class of models which is "complete™ in the sense that if any inter-

actions between a pair of factors appear in the model, then all interactions

between them appear. It has been proved (1] that for models which are complete f
in this sense, the maximum value of both IE and IF is unity. In [2] it ias

shown that the maximum is achieved if certain combinations of levels appear with

equal frequency. An equivalent criterion is that the cross-product matrix X'X

is proportional to the cross-product matrix Z'Z for the full factorial. All

regular fractional factorials have this property. If interaction parameters do i
3 t




not appear in complete sets, either or both indices may be greater than unity.

Thus far nothing has been said about the parameterization used to describe the
responge, thut is, how § is defined in terms of the expected responses &t the
various treataent combinations, or equivalently, how the eleuents of the X
matrix are defined. Since the parameterization is to a lurge extent arbitrary,
a particulerly appealing property of the two indices is thut they are invariant
under nousingular reparameterizations. That is, suppose Z2Y = XB = XAo, s&ud

similarly EY* = 2B = ZAs, * vhere A is nonsingular. It cun be demonstrated

that IF and IE are identical vhether calculated under the paruzeterization
g or o. Thus, the parameterization is iomateriul us far as these criteria

are concerned.

Without the use of electronic computers, the cowputation of th.: indices would

be extremely tedious. & cowmputer code has been written for routine and con-

venient “~omparison of alternutive incompletc Tuctorial designs. A detailed

description of this code and its use is wv.iludle EB].

Any number of deaigna

may be evaluated simultaneously by rezding into the coxputer the treatment com-

binations ian each. The evaluation will be zade for up to five models (specifi-

cation of interaction %erms to be included in the model). A number of options

is available to the user, including changing the purameterization used for two-,
three~, or four-level fuctors, or chunging the weighta used in computing the

indices. A Fortran Jis.ing is included in reference [3].
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METHODS OF CONSTRUCTION

. Exhaustive Enumeration

Por a few simple experimental situations it is feasible to snumerate all poasible
designs. The optimum design can then easily be chosen. As an example, consider
ag an experimental situstion a 23 in 5 runs with no interactions. There are
exactly eleven nonsingular designe, which together with their properties are
given in Table 1. Clearly, the best designs are the eighth and ninth, for which

each variasnce is winimized.

2., One Parameter at a Time

It is always possible to construct a saturated design (although they are very

inefficient) by allocating one run to the estimation of each parametsr. For

example, & 32 X 22 with the linear-by-linear interaction between the two three—

level factors is as follows

0000 mean

100 0:] effects of first factor
2000

010 0.] effects of second factor
0200

2200 interaction

010 effect of third factor
0001 efrfect of fourth fuctor ,

where we have indicated the parumeter eatimated from each run. The fitting and

eatimation indices are .24 and .025, respectively.
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3. Correspondence
The theory for mixed factorial desipns is less wel) developed than that for
desigus in which sll factors appear nt the same nuxber of levels. A useful

technique is %o construct a design with all factors at the same number of

levels, then replace scome of the factors with ones of real interest using

& fixed correspondence between sets of levels, The best-known exunples of
this technique are the proportional-frequency designs of Addelman [4]. To

demonstrate this approach consider a Graeco-Latin Square of side 3.

000
11
22
12
20 ;
01 :
21 '
02
10

—

NN~ - e 0 OO
N - O - OP

The lest two factors may be replaced by two-level factora by using the corre-

apondence

0=-0
1 =1
2 =1 ' l

which results in the desigm

. i sy -
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LAV I M)

0060
1t 11
211
o011
110
201
11
i 01
210

This design is quite efficient, having a fitting index of .93 and an estima~

tion index of .79. A number of different types of correapondences ia givsn

by Addelman in [4].

4, Permutation-Invariant Designs

The salient property of permutation-invariant designs, defined in [5]. is that

estimates involving factors which appear at the same number of levels have the

same variznce properties. More formally, the cross-product matrix X'X remains

unaltered if factors appearing at the same number of levels are permuted.

3

example of a 32 X 2° main effect design, for which IP = .80 and IE = .47,

0
(o)
(4]
1

'y

1
2
2
2

010
100
201
000
111
211
001t
111
210

0

1
0
0
1
1
1
C
i

If one uses a standard parameterization, the X and X'X matrices for

this design are:
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rom

T B SR B TR SR B (9 0 0 00 1 1 1]
1 =1 0 1e2-1 -1 1 O 6 006 0 2 2 2
R 0 6600 2 2 2
1 0 =1 =2 1ol ~f =1 0 0 018 0 =2 =2 =2
Xaft 0 0-2-2 1 1 1/,(xx)= |0 00 018-2-2-2
1 0 12 1 1 1 1 1 2 2~2-2 9 1 1
11 = 1 tet 1t 12 2-2-2 1 9 1
11 0 1.2 1 1 -t (1 2 2-242 1 1 9
SRR B T SR B t_i - -

Permutation of factors appearing at the same nupbers of levels hus the offect of
permuting rows and columns of the submstrices in the partitioned cross-product

matrix. Jince the submatrices are invariant, the design is permutation-invariant.

This principle has been used* to construct a series of as yet unpublished satu-
rated second-order designs for three—-level factors. FPor five factors the design
containg the treatment combination 0 G O O 0, the five treatment combinations
which are permutations of 1 1 1 1 O, the five permutstions of 2 22 2 0, and

the ten permutations of 2 2 0 0 0. For this desi;n the fitting index is .66

and the estimation index ia 2.35. Relutive to the full factorial but adjusting
for the difference in the number of runs, the efficiency of the estimate of the
pean is 828, of the linear main effects is 114%, of the quadratic main effects is
25%, and of the linear by linear intersctions is 171%. The reason that the linear
effects and interacticns are 80 efficient is that the points of the design tend

to be concentrated sround the outside of the hypercube.

*Thig work was carried out by R. L. Rechtschaffner of Rocketdyne's Statistical
Test Design Unit.
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Se Balancing Levels

A very useful technique for constructing designs is to start vith an ordinsry
foectorial astructure for the first group of factors, snd then insert the remain-
ing fazctors in such w way that pairs of levels appear togeihier with nearly equal
frequencies. For example, the following two designe are obtained by adding another

two~level fuctor to a bvasic 2x3 full factorial:

Design 1 Design 2
000 000
c11 011
101 101
110 111
200 201
211 210

Their variance properties are given in Table I1I.

EXAMPLES

Three ad hot designs which have been used successfully at Rocketdyne will be
mantioned briefly. The first involved determination of char formation rate in
ablative heat-shield material under simulated reentry conditions. The testing
vas done in & small stationary hydrogen-oxygen rocket engine. The experimental
variables were rocket engine comzbustion chamber pressure, propellant mixture
ratio, and the angle of the sample in the rocket exhsust. The experimental

design chosen was one of the optimum 23

designs in 5 runs discussed earlier.
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Target |
Chanmber { Jarget ’ Inclination
Run Pressure | HMNixture | Angle
Number (Psia) | _Ratio | (degree
|
1 170 L4 § 0
2 250 L4 C 12k
3 170 , 16 ‘ 128
4 250 P16 : 0
5 250 ;16 f 123

Another such design was used on a Signul Corps battery program. The experimental
work involved screening 4 cathode materials, 3 solvents, and 4§ salta. The design !
was constructed by balancing the levels of the second four-level factor within

the framework of the 12-run 3 X 4 factorial.

1

Run ; ! .
Numbex ; Cathode . Solvent Salt
1 ! 0 , 0 0
2 0 1 1
3 o] 2 3
[ ]
4 1 0 1
5 1 1 o]
6 1 2 2
7 2 0 2
8 2 1 3 :
9 2 , 2 g 1
10 3 Q o P03
1 3 1 D2
12 ) 2 0

Although there was no justification for sssuming interactions did not exist, they
could reasonably be expected to be less important than main effects. It was

intended that this experiment be used to eliminate from ccntention some of the

13




candidute materials with just a few tests, a0 thet lailer teosts could concentrate

on th® better ones, The actunl decision made from these tests was th:t none of

the four cathode msterials was satisfactory, and later testing should be directed -
at finding additional materials. If all interactiona ! 4 been considered, 48

tests, using these four unsatisfactory materiala, would have been required.

Tue balancing technique vas used effectively to construct a 34 b 4 23

design in 27
rung for a program concerned with the evelustion of fiber-reinforced plastic

laminates. The veriables are as follows:

Variable Code Levels
Bondirg Pressure A 3
Bonding Temperature B 3
Resin Concentration c 3
Poat-Cure Tenperature V] 3
Bonding Tiune E 2
Post-Cure Time F 2
Piber Quality G 2

It was established that the linear interactions AB, AC, BC, BE, and DF sre
expected to ve important. Since the {actor D does not interact with the other
three three-lrvel factors, the stariing point was a 1/3 replicate of a 34 using

as defining contrast I = A2 Ba C2 D. 7For the 23 part of the design three repli-

3

cations of the 2° plus three additioral points were used. The 25 part was asso-
ciated witin the 34 part a nunber of ways, and the vest desi;n selected., The
third and fourth designs were singular. The first, and best, design is presently

being implemsrted.

14
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NON-QRTHOGONAL DESIGHS OF EVEN RESOLUTION
INTRODUCTION AND SUMMARY it

Incomplete factorial designs for estimating all main effects or all

main effects and all two-lactor interactions have received considerable
treatment in the literature. An intermediste category, which bas re-
ceived much less attention, contains designs from which the main effects

can be estimated urblased by two-factor interactions, but the inter-

ections themselves cannot be estimated. Such designs, said to be of

resolution L, are the most important of the designs of even resolution,

and consequently receive the most attention in this paper.

Within the more restricted class of fractiomsl factorials, properties

and construction technique for designs of all resolution numbers are

well imown. Such designs may be constructed immediastely from a defining

contrast, in which case the resolutic. is equal to the minimum number 3
of letters in the elements of this contrast. An effect of order

g (@ = C for the grand mean, q = 1 for main effects, etc.) in & frac-

tional factorial design of resolution r has as aliases terus of order

r - q and higher,

Cutside of the family of fractional factorials, es one might expect, the
situation is not as straightforwara. The following definition of reso-
lution for such designs was provided in [1]: = design of odd resolution
r 1is such that all effects through order #(r-1; are estimeble ignor-

ing higher order terms; a design of even resoirution r 1s such that
(oo ¥
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effects of order %(r-z) ¢r lover are estimable ignoring those of order
#(r + 2) or higher. For design of even resoluticn those effects of
order % r are not estimable but 4o not appear as aliases of those

which are.

The analysis of designs of odd resolution is straightforward. The
ordinary least-squares technigue is used to estimate B , the vector
of parameters. Letting EY = X B, where Y 45 the vector of responses

from a design, we have f = (x'x)'lx'x ,and Var B = (x'x)’l e,

A
design is of the required resolution if and ocnly if the corresponding
cross-product matrix x'x is nonsingulsr. A necessary condition is
that the number of rms N be at least as large as the number of para-

meters.

This paper revievws previous work on designs of evea resolution. The
estimation theory for such designs is developed. It is proved that a

2" design of resolution 4 contains at least 2n rupns. The method of
proof gives insight into the structure of minima)l designs of resolution &,
and leads to a characterization of resolution 4 designs. The "foldover
principle,” due tc Box and Wilson (2], is discussed in detail, and it is
shown that this principle may be used to generate minimal designs of
resolution 4. It is conjectured that the only minimal designs of
resolution 4 are foldover designs. Designs of resolution 2 and 6 are

discussed briefly.
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PREVIOUS WORK

References (o fractional factorials of even resolution are scattered
throughout the standard literature (for example, [3], and [4]).

The first comprehensive treatment of such designs was given by Box and
Hunter (5], who introduced the term "resolution."” They showed that eight
factors could be accommodated in 16 runs, twelve in 24 runs, and in
general L4k factors in 8k runs. The designs are comstructed by the
“foldover” principle from saturated resolution 3 (Plackett-Burman)
designs which exist if the number of factors is of the form 4k-1 for
k =25 [6]. This principle can best be described by means of the design
matrix for a Plackett-Burman design; for example, consider the 25 in

4 runs:

beoo!
POMO

)

1

1l

o1 .
The "mirror” image of this matrix is formed by interchanging © and 1;

in the example we have:

OCOr
OHOM
OO

The completed foldover design consists of the original design and its

"image” as submatrices, sugmented by a new factor at its high level in

the first balf and its low level in the second. In the example being




congidered, the complete 24 resolution 4 design in 8 runs is

OO rt bt pt 4t (DO
O QOO

O OOOR W
OO Qe O

Box and Wilson {2} provide a proof that the feoldover procedure yields
designs with the property that first-order effects (i.e., main effects)
bave no sesond-order effects (interactions) as aliases. flthough this

is proved in the context of response surface experiments, it is equally
valid for incomplete factorials and is proved in this context in a sub-
sequent section. An even simpler proof is available if the initial
design is a fractional factorial. Por the first half of the design the
defining contrast contains the firat factor A plus additional terms
none of which has fewer than three letters. In the second half the alias
structure is the same, except that all elements of the defining contrast
with an o.? number of letters have their sign changed. The defining
contrast of the entire design, obtained by adding those of the subdesigns,
contains only terms containing an evern number of letters, all with four or
pore. In the present example the defining contrasts are I = A = -BCD =
-ABCD and 1 = ~A = BCD = -ABCD for the subdesignas and 1 = «ABCD for

the whole.

An alternative procedure for constructing fractional factorials of
resolution 4 is also given by Box and Hunter. Starting from a full
factorial involving a subset of the factors, new factors are included
by ejuating them to irteractiona involving an odd number of the original
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factors. For example, tO a complete Zb' can be added B s ABC,

F= ABD, G = ACD, and H = BCD, to complete the eight-factor l6-run

resolution 4 design.

Recent unpublished work by Cuthbert Daniel [7] motivated me to initiate
the study which resulted in this paper., He showed that non-orthogonal
resolution L designs exist and gave minimal designs for 3 factors in
six runs and for 5 factors in 10 runs. Serutiny of Daniel's designs
reveals that they mey be considered as having been constructed from

minimal resolution 3 desigans by the foldover technigue.

ESTIMATION IN EVEN-RESOLUTION DESIGMS

Ordinarily from a model of the form EY = Xf one can obtain the least-
squares estimate of B, which is given by # = (x'x)'l X'Y. In even-
resolution designs the matrix x‘x, however, is singular so that this
procedure is not applicsble. Let the model be rewritten in the form

EY = XlSl + xzea + XSBB’ where Y is the N x 1 vector of responses,
Bl is the p x 1 vector of parameters to be estimated, and 32 and ﬁ5
are respectively g x 1 and r x 1 vectors of parameters which are not
to be estimated, Furthermore, let the selection of the parameters in

the vector B, be such that the matrix D(l, X,] s of full rank p + q.
Since this matrix is of full rank, there must exist matrices H

1

such that X can be expressed in the form 11{3 = xlnl + leia. From

3
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the requirement that the design be of even resolution it can be shown
that the matrix Bl must be zero. IlLet 51 be given by J Y. Ve
have E ﬁl = 31 vhich can be rewritten

EJY=J (X5 + X6, + xja_,,) =By
Therefore we must have JX, = I, JX, = C, and JX, = O. But

3

ij = Jxlﬂl + szaz = ml + CBZ a Hl, &0 that Hl must be the zero

matrix,

Apalysis of even resolution designs can be facilitated by an appropriate

partitioning of the unestimated parameters into 52 and 53. Let X'X

be written in the form
. A B D
XX = B' Cl F
D F G
vhere the partitioning corresponds to that of X into xj_, xz, and xj.
The normal eguations may now be expressed in the form

~ - -~ '

= X

Y

B'él+c82+1-'§

3 Y

s
2
'

1 ' a
Dﬂl+FB2+G°3=X5I.

By the assumptions made previously, the matrix rﬁ-ﬂ is nonsingular;

let its lnverse be given by [g-:] « By the usual rules for inverting
partitioned mmtrices we have

23
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9
Uw(a-sctp)t ;
va-uBct
vactctr'v, '
A particular solutlion to the normal equations is given by
- t ) ] .
aluuxlx+vx2¥ -
2 1] ] L]
SZ-V X1Y+HX2Y
65 = 0.
This may easily be verified by substituting this solution back into the
normal equations. By the definition of estimability of 3l, every
solution of the normal equations has the same value for 5 ; that is,
its value 1s independent of the way in which the unestimated perameters
are partitioned into Ba and 53.
MINIMAL RESOLUTION 4 DESIGNS
The development in the last section can be used in proving that the
smallest resclution 4 designs for n factors must contain at least 2n
runs, The proof is accomplished by showing that certain interaction
parameters must be in the vector 52 since under the assumption that
55 = 0, BJ. and Ba are Jjointly estimable.
THEOREM 1%,
A resolution 4 design for n factors at two levels must contain at
least 2n runs.,
L 2
Barry Margolin, Harvard, independently developed an identical proof
for this theoren.
24
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PROOF .

Let Xy5 ooy X!1 be the column vectors of the matrix X associated
with the n main effects. Let Zl’ aeey Zn represent the column
vectors associated with the grand mean and the interactions of the first
factor with the second, third, ..., n-th, in that order. Note that

ziJ’ the i-th component of ZJ, is given by zij = X4 xi.j’ where xi,j is
the i-th component of Xj. Since mein effects are estimable, X;, sev, X

are linearly independent., Because of the nature of the 2 J's it

follows that the Za'a are also mutually independent. It will now
_be shown that the requirement that the design be of resolution & implies

that the X's and Z's are also independent of one another.

Suppose the design contains N < 2n runs. Select any vectors

Wi, eee, Wy =~ such that [xl, cons Xy Wiy een, "n-n] is of full rank N.
Since the design is of resolution 4 all the z's are expressible in the
form Z = XHI + WHZ, using the obvious definitions of the matrices

Z, X, and ¥W. Since the matrix H, must be equal to O, Z = V}{z; but
there are more linearly independent Z's than W's, which is a con-

tradiction.

Essentially the same proof can be used to give a characterization of

resclution 4 designs.
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THEORZM 2.

iIn addition to the main effests, the grand mesn and all two-factor in-
teractions ipvolving a given factor can be estimated from a resolution &
design under the assumption that the remaining interactions are zero.
Conversely, if it is true tnat for each choice of a single factor all
two-factor interactions involving it, the grand mean, and main effects
are estimable ignoring the remaining interactions, then the design is of

resclution .

PROOF ,

In the preceding proof it was shown that in any resolution 4 design the
vectors (Xl, vrey Xy Zys oves zn} are mutually linearly independent.
Since the designation of which factor was used to define the Z's was

arbitrary, the first part of this theorem follows.

To prove the converse, let Zgl), ese, Zgl) be the column vectors
associated with the grand mean and two-factor interactions involving
the first factor; zg"), cen, zr(f) be pssociated with the grand mean
and tvwo-factor interactions involving the second factor;
A

acs 3 Zgn), ceny Zgn‘ be associated with the grand meen and two-factor
intersctions involving the n-th factor. The nygdthesis is that for

¢ (1)

l 2

each choice 1 the vectors Lxl, esey, X , Z

n . Zgi)] are mutually

linearly independent. Therefore the space spanned by the set
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inn, ey zil), ceer z§“). cecy zi")l is independent of that spanned B
by the X's. Select any basis for the former subspace and assign the .
correapending paraseters to the vector Bye The columus for the re- 13

maining parameters are all expressible as linear combinations of those
in the basis, sc that the matrix H1 is zero, which in turn implies

trhzt the design is of resolution 4.

Although the characterization of resolution 4 designs provided »y this

theorem is not particularly useful for verifying whether or not a given

design is of resolution 4, it does have the follwing corollary.

COROLLARY.
Augmenting a design of even resolution by additional treatment combina-~

tions does not reduce the resolution number.

Although this ecorcllary appears trivially obvious, a direct proof with-

out using Theorem 2 is frustratingly involved.

THE FCLDOVER FRINCIPLE

The foldover principle, described above, can be used to generate a wide
variety of deasigns of even resolution. If a design is of resolution 3,

the foldover design made from it is of resolution 4. A proof in the

context of f’desigﬂs ie as follows:

Suppose U is the coefficient matrix for a resolution 3 design. The

coefficient matrix for the foldover design is of the form

B 2 —
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e U V¥
X =
e"U v 2

vhere e is an appropriately dimensioned vector of 1l's. The coeffi-

clent vectors for the'main effects are in the U part of the parti-

tioned matrix, and those for two~factor interactions are in the V part,

The negative of appears in the second balf of the degign by defini-
tion of the foldover principle. In the first half, each element of a
column of V 1is the product of the corresponding elements in two
coluwms of U; in the second half, the matrix V I1s duplicated since
the negative of each colum of U is involved. The cross-product
matrix is

'z e'e o 2 e'Vv
X'X = o zUuUu ©

g‘_Z-V'e 0 2 V'V_: .
Since the main-effect vart 2U'U of this matrix is nonsingular and
orthogonel to the remainder, the design is in fact of resolution &.
Thus, for foldover designs the subspace spanned by the colwms asso-
ciated with the main effects (the vectors Xy, +es, X in the notation
of the previous section) is not anly independent of but also orthoganal

to the subspace spanned by the remaining columns (the vectors
1 1
Z(l ), l.l, Z(n ), ..-, Zgn)).

The foldover technique may be employed on n-run, (n-1l)-factor designs

28



of resolution 3 to yield 2n-run, n-factor designs of resolution k.

By Theorem 1, such designs will be the smallest possidble designs for

this experimental situation. Designs vhich are minimal and which appeer

to be among the most efficient possible are given below,. Only half the
treatment combinations are given for each design, the other half beilng
obtained by "multiplying” in the usual fashiom each of the listed
treatment combinations by the treaument combipation with all factors at
their high level. The first design is due to Duniel (7). Fractiomal
factorials are avallable for 4 and 8 factors. In tne column labeled
“variance" is given the multiple of o giving the variance of each

main-effect estimator.

Nurberx Number Rups in Half
of Factors | of runs i Variance of Design
3 6 /L a, b, ¢
5 10 1/9 a, b, ¢ d, e
6 12 1/10 ab, ac, be, 4, e, f
7 14 ! 11/100 |a, b, ¢ 4,6 &

Based on the work to date with non-orthogonal desigms of resolution k,

the following conjecture is made.

CORJECTURE ,

Foldover designs form a caxplete class of minimal 2n designs of reso-
lution 4, That is, there exist no resolution 4 designs with 2n runs

end n factors except those canstructed by the foldover technique.

I
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The conjecture has been proved for n = 2, 3, and 4, For the cese of
two factors the only resolution b4 design is the full factorial, which is
itgelf a foldover design. For three factors it is relatively easy to
enumerate all possible six-run designs and note that the only designs
of resolution 4 are foldover designs. For the case of four factors a
proof that the only vesclutiun 4 designs are foldover designs has been
constructed. In order to prove this result, consider the submetrix
consirting of the colums of X associated with the parameters

I, AB, AC, and AD. There are eight possible combinations of values for

the elements in the rows of this submatrix. In the X matrix the

elements of the columns of X associated with BC are simply the product

of the elements in the columns AB and AC. If a design is of resolu-
tion 4 then the elements of BC must aléo be linear combinations of the
elements of the four columns I, AB, AC, and AD. Under these restric-
tions anly four of the eight possible combinations of values for

AB, AC, and AD may appear in the design. This fact in turn implies

that the design must be a foldover design.

DESIGNS OF OTHER RESOLUTION NUMBERS

A design of resolution 2 is such that an estimate of the grand mean is
available which is unbiased by main effects. For any number of factors,
such & design ir provided by any two runs which are camplementary, in

the sense that each factor appears at its high level in one and at its

P . s
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low level in the other. The variance of the estimeted grand mean is

> 3 o° using any such design. Such designs are the only minimal designs

of resolution Z, and may be considered as [uwiduver desigos.

Fractional factorials of resclution § may be constructed by the fold-
over principle from fractional factorials of resolution 5. The argument
involving defining contrasts given in an earlier section for designs of
resolution 4 is easily extended {0 encompass this situation. Indeed,
the foldover principle can be used to construct a design of any even
resolution number from a fractional factorial of the next lower (odd)

resolution number. The resulting designs are, of course, also fractional

factorials.

The foldover principle may be applied to more general designs of
resolution 5, but the result need not satisfy the definition of a de-
sign of resolution 6 given in the first section of this paper. Let
the coefficient matrix for a foldover design constructed from & resolu-
tion 5 design be represented by

e U V W

X =
e -U V- HI

Here the U part corresponds to main effects, V to two-factor inter-

action, and W to three-factor interactions. The cross-product matrix
is

|

;-.4§-.}; et i o SR

1

. g B T B e
Y ot R W



o -
2 o's Q 2 e'v 4]
0 20 O 20'W g
'K = =
2Ve 0 2VV O «
L ¢ 2¥U 0 2WW

It is clear that estimates of the grand mesn and of the two-factor
interactions are available which are unbdiassed by three-factor inter-
actions. The estimates of the main effects will in general, however,
have three-factor interactions as aliases. In order not to have such
aliasing, the columns of W wmust be linearly independent of those for
u.

At L.

Outaide the class of fractional factorials nothing appears to be known
about deasigns which are truly of resolution 6 (that is, for which both
two~-factor intsractions and main-effects have no three-factor interac-
tions as aliuses). Ain argurent analogous to Theorem 1 can be used to
shov that the minimum number of runs in such a design is 1 + (:)+(;)+ (n;l) =
nz-n+2. Por three factors the only design of resolution 6 is the full
factorial (which is of resolution 7). Por four factors there is avail-
able a 15-run design of resolution 7, but there does not seem to be a
14-run design of resolution 6. It is not known whether there exists a
five—factor design of resolution six containing between 22 runs, the
minimum by the sbove formula, and 26 runs, the minimum number for a
resolution 7 design. Por the case of six factora, the half-replicate

is a ainimal resolution 6 design.
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SATUKATED SEQUENTIAL FACTURIAL DESIGNS

INTRODUCTIUR AHD SUMMARY

in the early phases of an experimentsl investigution, the experimenter mey be
unawars or have only & general idea of some of the variables which have important
influences on the impertant responses. Typically he will reject the apparant )
rigidity of a formal statistical teat plan and do exploratory experimentation. The
result of such experimeniation may well be a sequence of runs each of which intro-
duce a new variable or & new level for an old variable.

It hus bYecome axiomatic in the statistical experimental design literature to
discourage the practice of varying one factor at s time. For the case of factors
each at two levela, an excellent exvosition of the statisticzl arguments againsat
such designs was given by Fisher in The Design of Experiments, Sections 37 and 38 [1]-
He bases his attack on the fact th.t the variances of the muin-effect estimates using
such designs are considerably larger than witl orthogonsl desi,ms, and on their lack
af information about interactions.

On the other hand, the experimenter often likes such designs because he finds
out more rapidly whether a new factor has any effect. He continually receives
information rather than having to wait till the entire experiment is completed. If
the magnitudes of the effects he is interested in are several times as large as
experimental error, if he does not need to describe these effects precisely, and if
there are no interactions, there ig no particular disadvantage in experimenting in
this way. Cuthbert Daniel [2} has presented these positive aspects of such designs,

and pointed out thet they can often be augmented to form a half replicate plus one

additio..al run, in which case thLe lost efficiency is for the most part regained.




In an earlier paper { 3] I introduced the concept of contractible designs, -
which have the property thut much of the information in the experiment will be avail-
able even if the experiment is prematurely halted or the course of the erxperiment ia
simmificantly altered. One-~at-a~time designs reoresent an extreme class of contract-
ible desisme, in that some informution is available no matter when the experiment is
terminated,

The first few sections of this paper develep a theery for one-at-a-time designs
for eatimating the main effects of two-level facters. It is shown that %oz is &
lower bound for the variance of a main~effect estimate from a saturated one-at-a-
time design. (This result was previcusly given in {4].) A charascterization of
designs for which the lower bound is achieved is presented. The results on two-
level factors sre extended to the case in which there is no restriction on the num-
bers of levels for the factors. Situations may arise in which the factors can safely
be introduced in small sets, rather than one at a time. Details are derived for
block sizes of 2, 3, and 4. Pinally, inclusion of intersction terms in the model is
considered. It is shown that the estimates of main effects of factors involved in
interactions are improved.
VARIANCE BOUNDS FOR ONE-AT~-A-TIME DESIGNS FOR TWO-LEVEL FACTORS

The first run of a one-at-a-time design has all factors at their initial levels,
which for cornvenience will be considered the low levels, denoted by O or -1. Each '
successive run introduces the high level, denoted by 1 or +!, of one of the factors. |
The factors will be considered as being ordered in such a way that the ith factor
first appears at its high level in the (i#1)st run. After a factor has been intro-
duced (i.e., after it appesrs for the first time at its high level) it may stay at ita
high level, revert to its low level, or be varied between its two levels on subsequent

tests. Thus there is a wide latitude of possible one-at-a-time desigmns.
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Experiments for estimating the main effects of two-level factors are conven-
tionally analyzed in terus of the coefficient matrix X aas followa. The first
column of X corresponds to the grand mesn and has all its components equal to 1,
Bach of the remaining columns corresponds to one of the factors, and each row correa-
ponds to a run, According to whether a given factor is at its high or low level in a
given run, the corresponding element of X contains the entry +1 or -1.

Suppose & vector Y of N responses is obtained from the experiment. Under
the aasumption that there are no interactions we may write Y = X8 + e, where B is
the vector of the unknown parameters and e is & vector of independent random errors
having mean zero and common variance o2 . The least-asquares estimate R of R
is 8= (X*1)"'X'Y . The covariance matriz of B is QQ(X'X)"' .

In addition tec vorking with the traditional coefficient matrix X, it will be
convenient to introduce a2 reduced matrix R . Where X has an element t, R alsc
has 1; where X hasa -1, R has a zero. It may be verified that X and R
are related through the triangular transformation matrix T according to the equation

X = BT, as in the folloving example:

™Y -1 -1 <t -t 471 T4 0 0 0 O 0'1 1 =1 =1 =1 -1 =17]
1t 1 -1 -1 -1 - t 1+ 0 00 O © 2 0 0 0 0
vt 1t -t vl dr v 000} Jo 0 2 0 0 0
1 =1 1 1 - A 1 01t 1t 00O 0 0 0 2 0 0
 JE T R B RS | 1t 11010 0O 0 0 0 2 O
MLt B R I . 1 0011 1| |O 0 0 0 0 2| .

In general, t.. 1s given by the following ruless

a1 (j=2,...,n+1)
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t 2{3=2, ... ,n+1)

33
tij
It may be verified that T | has the following form

0 (otherwise)-

]

B 2 2 B 3
o ¥ o o . . . o
¢ 0 ¥ o . . . o0
! 19 0 o ¥ .. . o
:‘i- * - . .
o o 0 0 o

If R is the reduced coefficient matrix for a one-at-a-time design, then {a) the
first column of R consists solely of 1's; (b) the main diagonal of R consists
of 1's, since the ith factor appears at its high level in the (it1)st run; ana
{c) the elements above the wmain diagonal are all 0, since the ith factor remains
st O until the (i+1)st run. Since R is lower triangular and has 1's down the
main diagonal, the determinant of R is unity. Since the elements of R are inte-
gers any minor is integral. Since the elements of an inverse are by definition an
appropriate minor divided by the determinant of the original matrix, R" also con-
sists of integers., It follows from the form of ™' that each element of

. i

must be a multiple of 1.

TAEOREM 1. Por a one-at-a-time design containing n+1 runs and n factora at two
levels, a lover bound for the variance of any estimate ia %02.

PROOF. The variances of the estimates are 02 timea the diagonal elements of
(x'x)“. Because X ia square (x'1)”"  reduces to (171)(X_')' . The diagonsl

elements are therefore the sums of squares of the elements in each row of Xf‘ . We

know already that the elements of X-' are all multiples of §. The sum of squares
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of the elements in a row must therefore be a positive multiple of +. If the valuse
were 4, then a:l the elementas would be zero except one which was equsl to £,
The inner preduct of a row of I'I and a column of X =must of course De either O
or 1. 3ince the elements of X are sll either +1 or -1, the inner product of
any column of X with a row containing a single % would be 2} . Therefore a lower
bound to the sum of squares of elements of any row of X-1 is %, and the theorem
is proved.
CHARACTERIZATION OF OPTINUM ONE-AT-A-TIME DESIGRS

The moat faailiar family of one-at-a~time designs are those in which easch factor
returns to ita low level after it has first been introduced. The genersl form of the
satrices R, R“, and 1—1 in this family are exemplified by the following tive-

factor cuses

[0 0 0 © &) ™1 0 0 0 0 &) 1+ ¥ 3 ¥ ¥ £
11 0 0 0 O -1 1 00 0 O -1}4_;000-1!
101 0 0 0 ; |-t o1 000 , -+ 0 % 0 0 !
R = 1 B = 7 X = .
1001 0 of} -t 001 0 0f° -+ o0+ o |
10 0 0 1t O -1 000 1 0 -+ 000 ¥
(10 0 0 0 1 1 090 0 1 -+ 0 0 0 0 %]

It will be noted that the variance of esch main-effect estimates is %02, tr » theo-
~etl:al lower bound. The variance of the grand mean is 02(n2-3n+4)/4 for tie
n-factor case.

It is of interes* to inquire whether or not *there is a family of designs in
which the variance of the grand mean is also at the minimum level of %ce. The
family of designs in which each factor is maintained at its high level aatisfivs this
requirement, Again using a five-factor example to illustrate the general case, R,

R"‘, gnd X' are as follows:

8

”



,
il

"1 00000 T 1 0 0 0O O O] ¥ 0 0 0 0 37 ;
110000 -1 10000 -4 ¥ 00 0 0 *
= (111000}, gt _ 1 0-1 1 000 ~t.j0o-¥ ¥+ 000 j
111100 0 0-1 1 0 O 0 0-% + 00 b
111110 0 0 0-t 1 0 0 0 0~ + O k
AR N | 0 0 0 D-1 1] [0 0 0 0% ¥_| =

These two claasea of designs are two extremea in which all factors are either returned
to their initial level or ure held at their new level. P *h classes are special cases
of a more genersl class of one-at-a-time designs, al® L. nich havs variances of %02
for all the main-effect estimates. This clase consists of designs in which for every
k 22 the kth run differs from some previous run, say the jith ,» only in the level
of the (k=1)st factor. The estimate of the effect cf the (k-1)st factor is ¥
times the kth response rinus the jkth . For the former of the two clasaes pre-
viously discussed ‘k =1 and for the latter ‘k =k . This heuristic argument will

now be formalieed.

THEOREM 2, In a one-at-a-time design the variance of the main effect of a two-lev»l
factor achieves the lower bound of %02 if and only if the run in which that factor

is introduced differs from some previous run only in the level of that factor.

Vo

Ty

PROOF. The variance of the estimate of the effect of the (k-1)st factor will be

£
%cz if an only if the kth row of § = R-1 contains a single nonzero off-diagonsl i
rd
elexent, whicn must be equal to =-1. Assume that the kth row of 8 is of this %
form and that the single element equal to -1 appears in the 4th column (2 <k) . § %
+ !
: !
Thus we have s , =1, 8, =1, and Sy = O for j#2 and j# k . Formal multi- 3 |
plication of the kth row of S by the matrix R = S-1 yields the system of equa- &

- & - - . . :
tions “m=13kmrmj akj , Wwhich reduces to r",“_j + rkj 6kj , where akj is the i
Kronecker & . 1% follows that the 4ti and kth rows of R are identical except
for the value corresponding toc the level of the (k-1)st factor. 5
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Eow assume that the J4th and x«th rows of R are identical except that
r, =0 and r = 1. PFormal multiplication of the 4th rowa of R by the columns

'S ki
of 8 yialds the two systems of equationa )y and 5

w1 Taa®aj = Cuj 2=1 Tka®mj = k§°
Substraction of the former from the latter yields E:zi(rkn - rln)smj =8y = 6kj'6£j'
or s, = 1. By = -1, and akj =0 for j=k and J = & . The proof is now com
plete.

Often an experimenter may prefer to determine which level of each factor is better,
and conduct the remsining experiments at the more desirable level. Thus, in general
after a factor is introduced it will either be held at its high level or be returned
to its low level for the remainder of the experiment. It can be verified that for this
type of design the rconditions of Theorem 2 are satisfied, and the lower bound is
achieved for ench main-effect estimate.

In the kind of experiments in which a one-at-a~time design might be useful, there
mpy or may not be interest in obtaining a good estimate for the grand mean. The vari-
ance of the estimate of the grand mean will achieve the lower bound in a saturated
design only if the treatment combination with all factor at their high levele is in the
design. The only one-at-a-time seriea that can have this property is the one in which
all facters remain at their high levels.

ONE-AT-A-TIME DESIGNS FOR MULTIPLE-LEVEL, FACTORS

The results for two-level factors can be extended to the csse in which each factor
may have more than two levela fairly easily by a proper choice of parameterization.

For a factor with =m levels there are m~1 parameters necessary to describe its

response. These main-effect parameters are defined as contrasts among the expected
responses at the levels. Let the levels be demignated by u1,u2,...,ul ;7 then the
parameterization will be 8, = v}-(u2 - u1). 8, = %(HB - u').....B-_1= %(u. - u‘) .

For an appropriate definition of the grand wean, the coefficient matrix X associated
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with this parameterization tukes the form of the X matrix for a one-at-a-time
design for =1 two-level factors. Consider one five-level factor. The design

with one run at each level has the X wmatrix

1 -1 -1 ~1 ~1

1 -1 -1 ~1
~1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1 .

e -

B A e |

It is apparant that this 1s identical to the coefficient matrix for s one-at-a-time
desiga for 4 two-level factors.

In many p.actical situation an experimenter may be interested in comparisons
other than binary comparisona hetwecen the levels. For example, it may be natural to
ugse as parameters for a five-level factor (a) a comparison of the average response
at the first two levels with the average response at the last three levels, (v) an
intercomparison of the iirst two levels, and {c) two intercomparisons of the last
three levels. Given any such apecific parametecrization, a theorem analogous to
Theorem 3 below can probably be proved. In order to avoid a commitment to a special-
ized parameterization, the theorem is given for simple binary comparisons only. Other
paramelerizations can be studied by resolving them into simple binary comparisons.
THEOREM 3. Suppose it is of interest to estimate + the difference between the
expected responses at any pair of levels for each multi-level factor. Then a lower
bound for the variance of such an estimate obtained from a fully saturated one-at-a=-
time design is inz .

PROOF. By convention let the first level of each factor be the one used in the first
run. In the proof of Theorem ! it was shown that tre minimum sum of squares of a

row of x" is achieved when the row has two nontero entries, each having abaclute

41

;,gu;ﬁ;#m% idorl ARG rde ¢ WO




value ¥ . This suffices to prove that %02 is the lower bound for the variance of

8 ¢coL parison of sny level with the firast. A comparison of any other two levels “i
and u, is the difference of two comparisons 8, = %(ui-u1) and 83 = %(uj—p‘) .
The veriance of the difference éi - §3 is the sum of the variances minua twice the
covariance. Since the rows of 1'1 are by definition orthogonal to the first column
of X the sum of the elements of any row of X-1, except the first, is zero., Since
the elements of 1-1 are multiples of +, it follows that each row, in a sense,
contains an even number of %'s. The variances of ﬁi and Bj are therefore multi-
pler. of 502. Similarly, the covariances between éi and éj' the sum of cross
products of the correspending rows of x“, are multiples of o2/4. It follows that
V(éi) + V(éj) - 2°(91'33) must be a multiple of Jo°. We have now shown that the
variance of % the difference between the expected responses at any pair of levels
ig a multiple of }cz. 8¢ that the minimum value is %cz, which completes the proof.

Theorea 2 once again can be used to charscterize the clasa of designs for which
the bound is attasined. In particular, the vractice of maintaining the best level for
each factor for the rest of the experiment will result in an optimum design for main
effecta. Note that it is permissibie for intervening factors to be introduced before
all the levels of a single factor are considered.
FACTORS INTRODUCED IN BLOCKS

One-at-a~time designs are of practical importance since they provide a means
for minimizing the impact of a sudden unexpected terminaiion of the experiment after
any run. It may often happen, however, that the experimenter is reasonably sure that
a block of runs can be completed before it is liikely that the experiment must be dis-
continued. In such casea one might inquire how much advantage can be taken of the
larger block size to improve the efficiency of the design. In answering this question

attention will be cunfined to two-level factors.
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Previous work on contructible designs has been done under the assumption that
a complete block could be completed [3]. In that work a new factor is introduced in
a block of runas of sufficient size that all interactions with old factors can be
estimated. A number of series of such designs, both saturated snd unsaturated, have
been tabulated. Of necessity, each block must be of larger size than the previous.
In the present paper we limit our attention to fixed block sizes.

Consider first the case in which each factor is returned to its low level after

the dlock in which it is introduced has been completed. The matrix R for p blocks

has the following form:

_h'

o* o' . . . 07

r, R1’ 0
r, 0 RQE 0
R = . - -

. . R

L. P PR

The inverse, call it S, is of the same form. We have immediately
S.. = RT? and 8, = -3,,r., . Note that the elements in the jth block of the inverse,

ii ii i iivi =

hence the variances of the estimates, depend only on the ith block of the R matrix.
Therefore, the vroblem of ninimizing the variances using blocks of size k 1{s equi-
valent to minimizing variances in complete designs of size k+t . It was shown by
Plackett and Burman [5] that a lower bound for the variances is 02/(k+1),and that this
bound is attainable if k+1 is a multiple of 4 (the cuse k=2 is discusaed sepa-
rately in a subsequent section).

By unalogy witn previous results (when k=1 ), one would expect that 02/(k+1)

snould indeed be & lower t und for vuriances using blocks of size k. Similarly, by

analogy with previous results, one would expect tn.t for k+1 a multiple of 4, the

43

.

: W" 3 Al L

W o A AT

o e o s —— et B




PR S S

lower boind should be mttained if f{uctors are held constuant zfter the nlock in which
they are first introduced. At present these stutements are only conjectures. The
next section illustrates why it may be much more difficult to complete the proofs
than in the case k=t.

Pluckett-Burmar Blocks

¥e will be most concerned with blocks of size 3. The Plackett-Burman design for

three factors in four runs is as follaws:

| s I
1

x- I 1 1 -
1 1 -1 1

oo~ .
If the submatrix consisting of the last three rows and columns is used as a block
{which we shall call a Plackett—Burman block of size 2Z), the R matrix takes the

folloving form:

1 o o . . . O
r, X 0 0
r, R, X 0
Cy R R . K
p p2 J°

where K 1is the matrix

i 1 0
K = 1 0
0 1 1 .

The matrix R-1 = 8§ may be partitioned in the sume way:
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Y o o . . . o]
s. X' 0o )
! -1
» °2 32‘ K 4]
Rl=g=1|. . ]
. s s . k!
__EP p‘ p2 - . . B -

The matrix K| is

L
| A
""I % % v

and s, = —K"x-1 = (55,4 . 1 R,

1 3 Q0 for i >}J , then 8, =8 and the

1

variances of the estimates of main effects are all 4(%)202/4 = 02/4. Now suppose
Rij =J for 1 >Jj, where J isa 3 x 3 matrix all of whose elements are unity.
We have 32‘ = -K‘-‘,JK.-1 = ~J4, 8, = —K—1r2-l(-1Ja1 = r1/4. and in general the ele-
ments of the rows in the successive blocks can be multiples of successively higher
povers of %. Note, however, thut the variannces of estimated main effecta from the
aecond block are [3(%)2 + 4(%)2]02/4 = 02/4 . Similarly, the varisnces remain at
02/4 for the main effects of factoras in later blocks, even though the number of

nonzero entries increases with each successive block. For this reason, the simple

proof of Theorem ! will not generalize directly and thus a proof that 02/4 is in

fact the minimum variance will involve treating a number of special cases.
! The picture for blocks of larger size is quite gimilar. For k=7 each

diagonal block of the R matrix has the form
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t 1 1 1 0 0o 07

t 1 0 0 1 0

t 0 Y 0 1 0 1
Ky=j1 0 0 1+ 0o 1t 1

0 1+ 1+ 0 0 1

0 1t 0 1t t 0 1

o 6 ot ot 1t 0] .

The elementa of the inverse of this matrix are *i, and 8, = -r1/4. In general the
elements of 5,  are multiples of 1/16, the elements of S5, are multiples of 1/64,
etc. The variances appear to have the minimum velue of 1/8 whenever factors are all
held constant after the block in which they are introduced.

Blocks of Size Two

Unfortunately, nothing is guined by introduecing factors two at s time over intro-~
ducing them one at a time. This can be demonstrated considering the class of all non-
singular 2 x 2 matrices whose elemente are O and 1. Apart from permutations of

roxs and columns, this class consiats of only two elements:

Y I (I
Y I P
Since these matrices are themselves lower triangular, and R matrix employing blocks
of size two is of ezactly the same form as the R matrix for blocks of size one.

Therefore, the same variance bound applies to blocks of size two as to blocks of size

one.

Blocks of Size Four

It can be shown by an enumeration of possible desi,ns that, for studying 4 two-

level factors in 5 runs, the design whose R matrix is

46

—— Cmm— e




Fsplpeiod dbmetaie |

- —
1 0 0 0 0 3
t 1t 10 i
11 1 0 ¥
 JS ' SRR

I R T B

simultaneously minimizes the variances of the eatimates. Therefore, deaigns using

as blocks the natrix

~1
[«

L]

4
-
©

lO—‘
- Q

would appear to be of primary interest. The variances of estimates of factors in

the first block, obtained from

1/3 1/3 1/3 -2/3

k' o | /3 /3 -2/3 1/3
/3 -2/3 1/3 1/3
-2/3 1/3 1/3 1/3

and s, = —r1/3. are (/4 x 8/9)02 = 202/9. which is better tzan can be achieved
with blocks of size 3. Note taat 202/9 is larger than the theoretical lower bound
of ozﬁk&ﬂ = 02/5; that bound is not attainable for 4 factor five-run designms.

By analogy with previous results, one would expect that as long as factors are
held fixed after the block in which they are introduced, the variances of effects of
factors in succesaive blocks would continue to have the same variaance. Such is
certainly the case if all factors are returned tc their low level. Surprisingly, if
some or all factors are held at their high level, variances actually decresase in sub«

sequent blocks. In the next paragraph variances are derived as a function of block .
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number when all factors are held at their high level.

As previously we will partition R and S = 2! in the form:

1 o' o . . . o'
r, RH Q (4]
2 o By By e
=
r B R « e
LB pt p2 PP_|
1 o o . e o
s} 31 ' o] 0
8, S, Sy o
S =
S s - . .
__’p pt p2 Spp_

where the vecturs r, = {1,1,1,1)" as usual. We are examining the case in which
Rii = K4 and Rij = J4. for 1 >3, where J is the 4 X 4 mnatrix all of whose
elements are unity {the subscripts 4 will be dropped). It is obvious that Si

is equal to X', It vill now be shown that

i

s, = (-1/3)'r,, una

3y; = 1/3(=-1/3)1793, for 1> .
Forpally multiplying R by S, we obtain the equations
"1‘2“11:’1“0' 1 <31 <p
k=1
j .
Eanskabijl; 1 <i<j<p,
kui
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where 613 is the Kronecker &. Substituting the values of Bik and 8, intc

the left gide of the firat equation, we obtain

i-1
e S (_1/3)“.!;-1 + (—1/3)1111-1 .
i e
8ince Jr1 = 4r1 and Krt = 3r1, we have
i-1
=1 K
{1t +4 EJ (-1/3)" + 3(-‘/3)1}rt
k=1

a {1+ (=0D[=(=1/3)"] + 3(-v/3) ), = 0.

The second of the above equations may be verified by a similar substitution for
Rik and skj' The variance of a main effect of a factor in the ith block is c2/4
times the sum of squares of the e}ements in the rows of B 511' 812...., sii'
This sum of squares is (1/9)% + :g 4(179)Y9*" 4 9/9, which equals
[15 + (1/9)1_‘]/18. The variances, as a function of i, are as follows:

e | |-

variance | .22226% | .2098¢° | .20850 | .20830° .

i

Note that the asymptotic variance is still larger than the conjectured lower bound

of 02/5 .

TREATING INTERACTIONS IN DESICN FOR TWO-LEVEIL FACTORS

Interactions between any 2 two-level factorc may be included in the model by
inclusion of a single addi.ional run. In this cection it is shown that the viriance
ﬁ of eaca interazticn estimate is %02 and that the variance of each main effezt which

is included in an interaction is reduced to }02 .
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The reduced coefficient matrix R for designs containing interactions will be
constructed in a lowe: triangular form ao as to take advantage of previous results

in this paper. The portion of the R matrix relevant to two factors has one of

the two forma

t o 0 it 0o 0],
1T 10 1 1 0
1 0 1 or 4 1 1 .

In order to estimate the interaction between the two factors it is necessary to
introduce the fourth poassible combination of levels for the two factors., The inter-
action will be assigned the value 1 1in the R matrix when the fourth combination
appears and O for the other three combinations. Thus, the portion of R corre-

sponding to two factors and their interaction has one of the two forms

[ o0 o0 O] 1 0 o 0]
t 1+ 0 O 1 1 0 90
eI or B‘D.
1 2 1 0 1 1 1 0
RN lt o 1 1] .

These are related to the traditional coefficient matrices through trianguler irans—

formation matriceg as followsa:

1 -1 -1 1] T o o 0 T -1 -1 7]
MCOIN KRR T Y B A R B L =2 g{t)p(1)
1 - 1 - 1 0 1 0 0 2 =2
R L 1 A v 0 0 4
M -1 - 1] T 0 0 0] = IS T I
A FE T T Y I KT B B 0 2 2
AN =1 LI R R [0 0 0 -4
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The inverses of these transformation matrices are respectively

i o+ S T

(=1 _ |0 F 0 ()1 |0+ 0 %

R P B e T
o o o0 % o o o i .

The transformation matrices for general one-at-a-time designs containing n

factors, m interactions, and n + m + 1 runs are of the general form

ty =1

tyy = -1 (3 = 2y00a,m + 1)

tyy =1 (l=n+2,ce,n+a+1)

ty5 =2 (3 =2,000,n + 1)

tjj =% (j=n+ 2,000,n+m+1)

tyy = £2 (j=n+ 2,...,n+m+ 1 and the (i-1)st factor is involved in
the interaction corresponding to the jth column)

tij = 0 (otherwise).

The elements of V=T are of the general form

Vi = 1

Vg ¥ (J=2,000pn+ 1)

Vig ® + (j=n+2,0cc,a+n+1)
T ¥+ (J=2,00.,m+1)

VJJ = i% (J = N+ 200yt + 1+ 1)

v,, =% (§=n+2,..e,n+m+ 1 and the (i-1)st factor is involved in

ij
the interaction corresponding to the jth column)
viy = O (otherwise).

Since the variance of an estimated parameter ie 02 times the mum of squares of

-1 =1 1

the elements ¢f & row of X~ = 0"'R"', and since 7' contains elements as emall

es 1, an argument like that used to prove Theorem 1 can be used to show that a
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variance could have a value as low as %02. For those factors whica are involved in
no interaction, howaever, the correaponding row of 7! centaine only the values *
and O, =0 that the variance bound is the same as before.

It remaina to determine whether or not designs exist for which the bound of %02

ia attained. Once aguin the answer is in the affirmative, and those designs for
which factors are returned to their low levela after their initiul introduction except
for runs in which they are involved in the interaction have the optimum property.

As an example, consider a design for estimating the effects of four factors and the
interactions between the first und third and third and fourth. The R matrix for

such a design is cs follows:

M o o0 0 0 0 O]
1t 1+ 0 0 0 O O
R={! O 1t 0 0 0 0
1 0 6 1 0 ¢ O
1t 0 0 1 1 0 0
t + 0 1 o 1 0
i 0 0o 0o i o 1] .
The matrix is easily inverted to obtain
"1 o0 o o o o o
-1 ¥+ 0 0 0 0 0
3 < -1 0 1t 0 0 0 0o
-t 0 0 1 0 0 0
¢ 0 0 -1 1t 0 O
1 -t 0 -1 0 1 0O
-t 0 0 1« o 1

which when multiplied by T ' yields
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[~ + % o + 1 47
-+ % 0 -+ 0 } 0
-+ 0 ¥ 0o 0 0 O

x'al o0 -4 0 0o % %+ -%
-+ 0 0 -3 4+ 0 ¥
+ 4+ 0 -4 0o ¢+ o
|-+ 0 o0 ¥+ -& o | .

The variance of the interaction estimates and of the main-effect estimates are all .

%02 except for the facior which ies involved in no interaction, fcr which the vari-
ance is %02.
A WORD OF WARNING

It has been the purpose of this paper to vresent general results on saturated
sequeniial designs such as one-at-a-time deaigna. It will be appropriate, however,
to make a few observations on their limitations.

By their very nature, the designs discussed have all their degrees of freedom
used in estimating effect parameters, so that no internal error estimate is avail-
able. Sometimes= this may be no particular disadvantage. Either a gocd error esti-
nate is available from »prior experience, or it is not required of the experiment to
test the significance the parameter estimates relative to the error. Alternatively,
the half-normal plotting procedure, cue to Daniel [6], way be used if only a few of
the fastors eare expected to have real effacts. ?:

Since the runs are conducted in a sequential fashion, with the possibility of
altering the experiment between runs, there is no opportunity to obtain a complete
randonization of the order of the rums. Rather thun attempting to obtain a "partial
rendonization” by, for example, randomizing the order of introduction of some of the

factors, the experimenter should introduce the factors in the order of their potential

importance. It is obvious that in the absence of a complete randomisation, there is
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no basis for the validity of tests for significance of the estimated effects.

Thus,
these designs do not provide a statistical proof of the reality of effects. They

will, however, give an indicatio’n of what are apt to be the most important factors.

A standard design, fully randomized, car be run subsequently in order to provide

valid significance tests.
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