FUZE-TELEMERTY ANTENNA-TRANSMITTER

Howard Bassen

Harry Diamond Laboratories
Washington, D.C.

February 1967

Processed for...

DEFENSE DOCUMENTATION CENTER
DEFENSE SUPPLY AGENCY

CLEARINGHOUSE
FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION

U. S. DEPARTMENT OF COMMERCE / NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY
NOTICE TO DEFENSE DOCUMENTATION CENTER USERS

This document is being distributed by the Clearinghouse for Federal Scientific and Technical Information, Department of Commerce, as a result of a recent agreement between the Department of Defense (DOD) and the Department of Commerce (DOC).

The Clearinghouse is distributing unclassified, unlimited documents which are or have been announced in the Technical Abstract Bulletin (TAB) of the Defense Documentation Center.

The price does not apply for registered users of the DDC services.
A FUZE-TELEMETRY ANTENNA-TRANSMITTER

by
Howard Bassen

February 1967
ABSTRACT

An integrated antenna-transmitter was developed to telemeter data from in-flight artillery fuzes with minimum modification of either fuse or shell. The strip transmission line antenna provides a wide, uniform radiation pattern while providing stability to a rugged and easily fabricated VHF transmitter. Incorporation of the antenna as the tuned circuit of the oscillator stage of this FM transmitter proved to be the optimum utilization of this compact ring antenna.

1. INTRODUCTION

In an effort to produce an artillery fuse telemetry system which would not require major modifications of either fuse or shell, a quarter wavelength VHF ring antenna was developed by the author (ref 1). Figure 1 shows this antenna mounted on a shell, and graphically illustrates how size, space, and location problems are overcome.

A reliable, inexpensive, and easily reproducible RF transmission system, utilizing this antenna, is the subject of this report. The antenna's high-Q properties are used to enhance the stability and reliability of the system.

The conventional approach of treating the antenna and transmitter as separate systems, which must be precisely and individually matched, was found to be unnecessarily complex. With a separate, narrowband antenna, a transmitter must incorporate stages of output buffering, thus implying many tuned matching stages, each with selected or variable components. Stability over a wide temperature range implies that both antenna and transmitter be temperature insensitive. Even more perplexing is the variation of component parameters, especially those of the active devices. A gun-rugged environment of as much as 30,000 g creates several design restrictions because of the necessary encapsulation of the electronics. Encapsulation materials of sufficient mechanical strength have a dielectric loading effect that complicates RF design as the number of tuned circuits increases. While several RF adjustments are common in most RF circuitry, none may be used in the gun-launched environment without laborious multiple encapsulation and readjustment operations. From previous experience, one can realistically assume that every antenna and transmitter must be tediously tuned and matched. This creates a severe drawback for economical production when technical supervision is not readily available.

In contrast with the "separate system" approach is the integrated RF system approach. The high-Q antenna can be used as the radiating tuned circuit of a single-stage oscillator. Automatic

tracking of changes in antenna and active-device parameters are assured because only one tuned circuit exists. The single-stage oscillator can be designed so that component and active-device variations are insignificant, thus enabling the practical fabrication of a simple, reliable, and reproducible RF transmission system.

2. ANTENNA

The quarter-wave antenna (ref 1) can be analyzed as a quarter-wavelength, shorted-termination, strip transmission line. When excited at its resonant frequency, a wide variety of real impedance values may be realized at the antenna input depending upon the driving point selected. The area near the shorted end of the stripline represents an area of low impedance. The high impedance available at the input (open) end is transformed to a lower value as a function of the ratio of total stripline length to tap point length (measured from the termination).

When this antenna was first analyzed, the antennas under study were driven at the 50-ohm point since this value was most compatible with laboratory RF equipment. It was found that the losses of the dielectric ring on which the antenna was plated were directly related to bandwidth. An epoxy fiberglass antenna had a bandwidth (VSWR of 2:1) of approximately 5 MHz at a center frequency of 227 MHz while a PPO (high temperature plastic) unit had a bandwidth of slightly over 1 MHz. The loss tangent of epoxy fiberglass is approximately 0.017 at 300 MHz while the loss tangent of PPO is approximately 0.016. Implied by these observations is the fact that dielectric losses represent a significant portion of the real impedance of the antenna, thus directly reducing the Q of the device. Antenna patterns in figure 2 illustrate the wide, uniform pattern coverage of 120 deg in the elevation plane (3-dB points) and a highly circular azimuthal plane pattern. The patterns are those of a PPO antenna driven as the tuned circuit of a 400-mW, 250-MHz transmitter. A lumped capacitance, machined in the antenna's open end, provides a means for establishing a specific operating frequency with a fixed diameter ring. A higher dielectric material such as epoxy fiberglass would not require a lumped capacitance to bring an antenna of the same size to the same resonant frequency, but PPO was found more desirable from a mechanical standpoint.

The flexibility of design with this type of antenna is graphically illustrated in figure 3. Pictured are several units all operating at a center frequency of 238.7 MHz, with resonance characteristics being controlled by either dielectric loading, lengthening of the stripline by geometric means, or a lumped capacitance. While most units have a radiation pattern very similar to those in figure 2, the transverse ladder configuration illustrated in figure 3 provides a highly directional, rearward-looking elevation pattern as shown in figure 4. All units provided radiated signal strengths of approximately 13 to 18 dB below a standard dipole, a figure judged quite adequate in comparison with other VHF radiators of similar size.

3. TRANSMITTER

The high-stability transmitter was first designed using adjustable coaxial transmission lines. This oscillator was then translated into a lumped parameter circuit. In this manner, an optimum efficiency value was established under the exact operating conditions desired; i.e., large signal or dynamic parameters. The best emitter and collector input admittances were then measured for a grounded-base oscillator utilizing a ZN3553 VHF transistor (fig. 5). These parameters closely represent the optimum, large-signal circuit values at the exact DC operating conditions required. A 13-V, negative-ground, DC supply was available, and a maximum current of 100 mA was decided upon because of the battery size limitations. Since the antenna was to be the resonant collector circuit, a driving point on the antenna was determined so that its input impedance would very closely approximate the measured collector load previously determined on the coaxial oscillator. The quarter-wave ring antenna was found to be ideal for this design approach. It was found to be readily adaptable due to its wide range of input impedances. By selecting the proper driving point, a high-Q tuned circuit of the proper impedance was available without additional tuned matching networks which would complicate an otherwise simple design.

An equivalent lumped-parameter circuit was then designed. Figure 6 illustrates this circuit schematically, while figure 7 shows hardware. The lumped parameter circuit was evaluated by the substitution of the coaxial oscillator's output circuitry for the antenna. Measurement indicated performance as follows:

- DC supply: 13 V at 75 mA
- Power out: 350 mW
- Frequency: 258 MHz

A second check was thus provided since these results confirmed a successful transition from distributed- to lumped-parameter circuitry.

Ten units were constructed using printed circuit boards with standard components and transistors; all operated within approximately one percent of the center frequency of 252 MHz and exhibited virtually no performance changes from pre-encapsulation to the final epoxy-encapsulated assembly. A heat sink was incorporated in the final assembly to provide reliability and thermal stability and to facilitate uniform assembly.

Temperature and supply voltage variations and their effect on transmitter performance were studied. Table I shows the
excellent frequency and current stability over the military temperature range. No attempts were made to temperature-compensate the transmitter other than the use of standard biasing and feedback techniques incorporating only standard resistors. The only area in which frequency and DC stability changed moderately was in the low temperature region. Since the nicad batteries to be utilized in the fuse telemetry system are inoperable at sub-zero temperatures, temperature compensation in this region was postponed until better power supplies become available. The fuse telemetry system was designed to accept a plug-in fuse, the fuse being independently temperature conditioned. The PPO antenna dielectric was selected partially because of the temperature insensitivities of its electrical parameters. Table II illustrates the insensitivity of oscillator frequency to supply voltage changes. A voltage regulator was added to the lid of the transmitter to provide uniform modulation sensitivity during varying supply voltages. The frequency shifts due to proximity loading effects were found to be nonexistent for distances of more than several centimeters from the ring antenna. This factor is of great significance when data from a fuse near impact is required, as is usually the case.

4. FIELD TESTS
First operational tests were carried out on an 81-mm mortar fuse. Test firings were performed over the extremes of range for this weapon. A central receiving station was used for a series of minimum range flights, where flights of 13 sec and 3000 ft occurred after an initial acceleration of approximately 1000 g. A stationary helical receiving antenna yielded complete telemetry coverage from launch to impact with a received signal of at least 20 dB above minimal receiver requirements. For maximum range flights of 12,000 ft and 40 sec, two receiving stations were used. Telemeters experienced force levels of 10,000 g and reached an altitude of 5000 ft during these flights. Complete coverage was obtained, but because of low level interference caused by trees, a second receiving station near the impact point was needed to maintain a 20-dB receiver margin. Telemetry units which were accessible (short range flights) were recovered and found to be in good working order. These units were fired several times without difficulty.

5. INTEGRATED ANTENNA-TRANSMITTER
As a further refinement of the fuse telemetry transmitter, a successful effort was made to insert the electronic rf assembly within the antenna ring. A cutout of 7/16 x 1 1/2 x 1/10 in. was placed on the inner surface of the PPO antenna under the open end. A lumped capacitance, very similar to the one incorporated in the earlier ring antenna, resulted. No noticeable degradation of antenna performance was encountered. Circuit modifications were necessary due to the use of a flat pack 2N3866 transistor. Figure 8 illustrates the integrated antenna-transmitter assembly, while figure 9 shows the circuit schematically. Preliminary tests indicated equal or superior radiated power is possible from this unit due to a more efficient transistor. With this integrated configuration, the goals of the fuse telemetry transmitter are truly met.

6. CONCLUSION
An integrated antenna-transmitter was developed and fabricated to fulfill the need for a compact telemetry system which could be mounted on standard artillery fuse hardware. The unit operated very satisfactorily in field tests, providing reliable transmitted data without interfering with fuse performance. Low cost and easy fabrication are maintained while good performance over the intended fuse test conditions is assured.

Table I. Temperature Evaluation of the Fuse Telemetry Transmitter

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Frequency (MHz)</th>
<th>Supply Current (mA)</th>
<th>ΔF (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>258.1</td>
<td>72</td>
<td>-0.04</td>
</tr>
<tr>
<td>+75</td>
<td>258.0</td>
<td>84</td>
<td>+0.36</td>
</tr>
<tr>
<td>+165</td>
<td>259.0</td>
<td>50</td>
<td>+0.36</td>
</tr>
</tbody>
</table>

Table II. Effects of Supply Voltage on Center Frequency

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Frequency (MHz)</th>
<th>ΔF (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>258.25</td>
<td>+0.1</td>
</tr>
<tr>
<td>13.0</td>
<td>258.00</td>
<td>-0.1</td>
</tr>
<tr>
<td>20.0</td>
<td>257.75</td>
<td>-0.1</td>
</tr>
</tbody>
</table>
FUZE UNDER STUDY
RING ANTENNA
UNMODIFIED 81 mm MORTAR SHELL

Fig. 1 Ring Antenna Mounted on 81-mm Mortar Shell.
Figure 2 - Field Strength Patterns for Quarter Wave Ring Antenna at 227 MHz

Measurements with Helical Receiving Antenna
Standard Dipole = 0.08

Figure 3 - Fuzing Telemetry Antennas Operating at 215 to 265 MHz

1. Double Ring
2. Transverse Loaded
3. Transverse Loaded 2.40 λ
4. Epoxy Filled Glass 2.40 λ
5. Porcelain Loaded 2.40 λ
6. Epoxy Filled Glass 2.15 λ
Figure 4. Transverse ladder ring antenna elevation pattern.

Figure 5. Coaxial oscillator

Figure 6. Lumped parameter oscillator circuit
An integrated antenna-transmitter was developed to telemeter data from inflight artillery fuzes with minimum modification of either fuze or shell. The strip transmission line antenna provides a wide, uniform radiation pattern while providing stability to a rugged and easily fabricated VHF transmitter. Incorporation of the antenna as the tuned circuit of the oscillator stage of this FM transmitter proved to be the optimum utilization of this compact ring antenna.

Figure 9. Integrated antenna-transmitter circuit.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINE A</th>
<th>LINE B</th>
<th>LINE C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telemetry transmitter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHF transmitter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>