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I. INTRODUCTION

In the past ten to fifteen years considerable emphasis has been placed

on "proper" methods of planning and controlling a decentralized firm. It

we postulate that the firm's objective is to maximize profits, the problem

becomes one of allocation of scarce resources. Decentralization is intended

to combat the inefficiencies inherent in a large centrally planned and

controlled organization: decision-making with time-lagged, incomplete

information by the central control unit (corporate headquarters) and

implementation after another costly time lag by personnel at the sub-unit

(divisional) level far removed from the decision process. By risking each

division a profit center, thus responsible for its own planning and con-

trolling, the informational flow is greatly reduced and decisions are more

in keeping with the current state of affairs. If there were no dependencies

between divisions, a simple division of the firm into smaller independent

operating units would be highly advantageous.

Decentralization loses some of its efficiency, however, when divisional

operations are not independent. Section II discusses some of the most

obvious types of dependencies. When this situation arises, some coordinating

mechanism between divisions must be introduced to insure joint profit

maximization, and the obvious plaze for the coordinating mechanism to house

itself is at corporate headquarters. Needless to say, a desirable charac-

-teristic for the coordination mechanism is that it minimize the informational

flow between the divisions and corporate headquarters, hence minimizing the

complexity and time dependency of the Information. Economists have long

recognized that demand and supply schedules in a market (simple price and

Ali
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quantity relations) suumiarize enormous amounts of information with respect

to the costs of producing and benefits derived from obtaining the good in

question. If a market device can be introduced, planning and control can

be left to the market clearing mechanism, with each division attempting

to maximize its own profits, bidding for scarce productive resources held

by the firm as a whole (e.g., working capital) or produced by other divisions

of the firm as intermediate products. Thus, the coordinating mechanism,

operated by corporate headquarters, would be a set of markets, one for each

good in question; the role of corporate headquarters would be to find the

price for each market thac would equate total supply to total demand. This

price is called the "transfer price" for the good in question. When this

set of prices has been found, an optimal allocation of scarce resources has

been attained, and profits for the firm as a whole are at a maximum.

This paper develops an effective method (algorithm) for generating

transfer prices under more general conditions than previous methods have

allowed. The firm can be operating in imperfect markets, where the price

it pays for inputs and the price at which it sells outputs depends upon

the quantity it purchases or sells; it can also be selling products which

compete with one another for market share or complement one another in their

final usage. The algorithm is a quadratic decomposition algorithm;

section II describes how the quadratic form can be used to take these imper-

fections into account. Following the development of the algorithm and a

simple numerical example, its behavioral implications will be explored and

compared with two other transfer pricing models (a linear decomposition

algorithm and another quadratic decomposition algorithm) to evaluate its

F.: 7
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relative potential applizability.

II. CLRRENT STATE OF TIT ART

There are numerous phenomena which dictate the need for a planning

and control function in a decentralized firm. The four most prevalent

types are (1) demand dependence, (2) variable cost dependence,

(3) corporate resource limitations, and (4) corporate policy. Examples

of each are:

(1) competing goods produced by separate divisions being

sold in the same imperfect market;

(2) discounts for large quantity buying when the input is
used by more than one division; intermediate products;

(3) limited supply of working capital;

(4) a policy restricting the total output of the firM for

one market when similar products ore produced and sold
in that market by more than one division (arising, e.g.,
from fear of anti-trust action).

Normative work in the area of decentralizad decision-making has

grown primarily through extensions of the basic theorem of welfare

economics: under certain assumptions as to the utility function and the

productive process, a competitive equilibrium can be identified with ar

economic optimum. The market place can be viewed as a prozess for solving

the economic problems of coordination (equating demand and supply in all

arkets) and satisfying wants efficiently (i.e., in a least-cost manner

in all markets) by successive approximations to the equilibrating prices.

Prompted by the development of linear programming, economists began to

analyze and extend this coucept.
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Until a 1960 paper by Danzig and Wolfe [5] on linear dcomposition,

the adjustment mechanisms for finding efficient prices were based upon a

gradient adjustment mechanism, and convergence to an optimum takes an

infinite amount of time; in the linear case, convergence is guaranted in

a finite number of Iterations. Whinston [16] explored the transfer pricing

pr.,blem in the general non-linear case vis-a-vis the Kuhn-Tucker conditions.

He concluded that if the functions defining the problem were not separable,

i.e., if externalities--at least in cettain forms--existed, pure price guides

would no longer give sufficient information to guide the individual decision-

makers in making correct decisions even on their own accounts, much less in

terms of over-all crganizational goals and constraints. Utilizing the

decomposable linea, programming framework (where functions are separable),

he was able to Penerate, through the use of chadow pricing, a systematic

method of alte:ing input and output prices and fixing prices for trans-

ferred goods so as to achieve joint profit maximization with decentralized

decision-making. Baumol and Fabian [21 review this approach and present

a numerical example.

With respect to application, it is the general corcensus that most

industries are oligopolistic in nature; consequently, the flat demand and

supply curves required by linear programming are not truly representative.

The linear decomposition model also fails to take into account any type of

demand or supply dependence, whic'h involve, at a minimum, the product of

the interacting variables in their mathematical formulation.

With Wolfe's simplex method of quadratic programming [18] and Dorn's

analysis of duality in quadratic programing [8], the stage was set for 4



the extension of decomposition to quadratic programming, Quadratic decom-

position remedies, to a limited extent, all of the aforementionee deficiencies

2/
of the linear decomposition algorithm. A quadratic form, as well eq any

linearities desired, combine to form the objective function. Hence, downward-

sloping demand curves and upward-sloping (or downward-sloping) supply curves

of the form

px = a + bx,

where p is the price of good x and a and b are constants, are per-

mitted; any demand dependency which can be expressed in such a way that the

total revenue (1r) expression is a polynomial of degree two or less is

permissible, e.g., when the amount of goad y sold shifts the demand for x:

PX = ay + bx + c,

so that

7(= pxx = (ay + bx + c)x = axy + + cx,

is an acceptable expression. Similar.y, supply dependencies (e.g., quantity

discounts), of the form

Pz = a - b(cx + dy),

where c and d are technological coefficients relating the amount of

input : used to produce a unit of x or y, are permissible since the

total cost for input z, C , is

C z = [a - b(cx + dy)] (cx + dy)
z P

2 2 2 2
•acx + ady -bcx - 2cdy - bdy.

Furthermore, all the dependencies which can be incorporated into the strictly

linear decomposition algorithm are still legitimate. We, therefore, have a

more complete devicP for generating optimal behavior in a decentralized

- ~------- .--------.--



organization through transfer pricing, a devibe which brings the mathematical

model of the firm's operations one step closer to reality.

At least two decomposition algorithms have been developed to date.

One was derived by Whinston [17] arid the other appears in the next section

of this paper. While their objectives are identical, their u'ithods, and

consequent implications, are different; these will be explored in section V.

It is worth noting at this point, however, the unique concept in control

demonstrated by the algorithm discussed here. The standard description of

the methodology behind all decom.position algorithms is that the intent of

the central planner is to (1) erase the monopoly-monopsony conditions
3_/

inherent in the transfer of gao4&i for which no external markets exist,

(2) proceed in an orderly fashioi. through price manipulation and rusponse to

extract from each subordinate decision-aker his feasible production region,

and (3) to choose the optimal production points within these regions and,

when possible, find the demand and supply curves for all products that will

allow each subordinate decision-maker to act independently in maximizing

his own profits, and thereby maximize joint profits.

An alternative description exists, however, which is more in keeping

with traditional economics. Above we spoke of finding "efficient" transfer

prices, prices under which all activities in the decentralized subdivisions

will be carried on in an efficient and coordinated manner. As noted,

Whinston has shown if the functions are separable, such prices exist, and

if the functions are linear, it is a task of finite length to find them.

When separability is not present, a pure pricing mechanism breaks down--

someching more is needed. In quadratic programming, we look at one type of
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non-separability, a relatively simple type of non-separability in the

objective function. In this case we find that there exist "efficient"

functions, not efficient prices. Here the functions are linear, e.g.,

demand curves of the form a - bx. When a firm is operating in imperfect

markets, a supply curve does not exist in the usual sense for any given

output; e.g., a monopolist does not produce a quantity simply in reference

4/
to a price: he reacts rather to the whole demand curve he faces. Here

we find a set of pure prices for scarce corporate resources and a set of

specific taxes and bounties. If no dependencies were present in the

objective function, the latter set would be null, and we would have an

"efficient" pricing mechanism. With dependencies, however, the latter set

is not the null set, and what we are in effect doing is shifting demand and

supply curves, finding "efficient" linear functions. Thus, the subordinated

decision-makers can make independent decisions while joint profits are

maximized because all externalities have been taken into account in the

information with which they make their decisions. The algorithm which

follows may be interpreted in this fashion.

III. A DECOMPOSITION ALGORITHM FOR QUADRATIC PROGRAMMING
5/

Let us consider a firm with two divisions: the first division's

input-output vector is denoted as X, the second division's input-output

vector is denoted as Y; the input-output vector for the firm is denoted

as Z - (X:Y). The firm's problem is to find the Z which maximizes profits

('); it can be written

max I(X,Y) = P'X + Q'Y + Z'OZ

-TA
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subject to:

CZ < R

f i() < Si, i-l,... ,a

gi(Y) <S tip i=l,.... b

XY > 0

where P and X are m-component column vectors,

Q and Y are n-component column vectors,

Z (X:Y), a (m+n)-component column vector,

0 is a (m4-n) x (re-n) symmetric, negative-definite matrix,- -

C is a k X (m4+n) matrix,

R is a k-component column vector

8 and ti are constants, and

f and gi are convex functions of X and Y, respectively.! /

We can partition 0 and C into four and two stbmatrices, respectively,

with dimensions corresponding to X and Y:

( €1 : 03

(x) (axn) " 1 C
0 . . . . . and C = kxm) (kxn

03 02

(nxm) (nxn)

The vextor P and the matrix 0I, together form that portion of the

objective function involving only the inputs and outputs of the first

division: P'X + X' 1X. The vector Q and the matrix 02 do the same

for the second division. The matrix 03 contains the profit function

interdependencies between the input-output vectors of both divisions:

2X'03Y. There are k corporate constraints involving both X and Y in a

linear fashion: C IX + C2Y < R, i.e., in producing (utilizing) one unit

of xi, an amount c of scarce resource r is utilized (produced). The

constraint set fi(X) si i=l,...,a defines the production possibility

W
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set for activities X at the division one level of operations. The set

gi(Y) S ti, i=l,...,b performs the same function for division two.

If C and the off-diagonal blocks of 0 are null matrices, then there %re no

externalities or profit function dependencies; if each division knows, or is

informed of, the appropriate diagonal matrices, they can proceed to maximize

their own profits, and the plans they derive will be optimal for the firm.

But let us assume that C and the off-diagonal blocks of 0 are not null

matrices, so that dependencies exist, and proceed. In order for the algor-

ithm to oper.ite, corporate headquarters must have knowledge of P, Q, 0 and C.

We can reflect this condition as a matter of company organization by sup-

posing that marketing research (the function that derives the demand curves

that the firm faces and the demand dependencies that exist between products)

and purchasing (the function that determines the supply curves the firm

faces) are both housed at corporate headquarters. In addition, the rela-

tions, C, that exist betweetv the usage (or production) of the scarce cor-

porate resources, R, and the values of the input-output vectors, X and Y,

must be known by corporate headquarters.- / The first division has knowledge

of the fi set of relations and their corresponding limits, si; the second

division has knowledge of the sets gi and ti.

Briefly, ti algorithm consists of iterating over solutions proposed

by divisions in response to demand and supply curves continually being

manipulated by corporate headquarters in such a fashion as to proceed in

an orderly manner toward the set oi demand and supply curves that will lead

each division, In their attempts to maximize their own profit, to the

optimal X and Y for the firm as a whole. Figure I describes the algorithm

in flow-chrt form.
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FIGURE 1

Sart

Corporate headquarters sends

market supply and demand
curves to each division.

Divisions maximize profits
under given supply and demand
curves and report associated
input-output vectors to cor-
porate headquarters.

Corporate headquarters re-
views plans and determined
if any will increase cor-
porate profits over the ex-
isting level. Are any of
the new plans profitable
under existing prices?

yes no .

Solve corporate Terminate: optimal
problem with the most solution has been
recent plans as accept- obtained.
able alternatives and
find the correction
factors for the supply
and demand curves.
Adjust the curves and

send them to the divi-
sions, requesting new
production plans.

IV I



We initialize the algorithm by assuming the null production plans

X 0 0, Y = 0. Since no scarce corporate resources are being utilized0 0

and the current value of the interaction terms in the objective function

is zero, corporate headquarters sends the market demand and supply

curves P + 0 X to division one, and Q + 0 2Y to division two. They

respond by solving theii respective profit-maximization problems:

max %7(X) - (P + OIx) 'X

s.t, fi(X) _< si, i = 1,2,...,a; X 2t0

and

max 12(Y) = (Q + 02Y)'Y

Soto gi(Y) :< ti, i =  1,2,..,b; Y > 0 .

Let us designate X and Y as the first responses of the underlying

divisions to the demand and supply curves presented to them by corpor-

ate headquarters. By assumption, these X and Y values are optimal

divisional responses to these initially presented curves. They are then

presented as givens or known vectors of constants to corporate head-

quarters. The latter then solves the following problem:

d d

(X) max 7iUV) = Ou + ['X, + 5 (X101X u u

e e

+ Ov + 'Yh + (Y vh h~

d e
+ 2 u Yh)V

i=1 h=1
d e

(2) s.t. (ClXi)ui + (C2 Yh)vh < R

i=o h=o

°: .....
f'j AJ /

I --
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d

(3) 1u

i> 0e
(4) 2 =

h=v V

ui 1 0, 1 = 0 l ... ,d

vh > 0, h = ,1...,e

where 01, 02' 03' C1 and C2 are defined above, and d and e are the

number of accepted production plans by divisions one and two, respec-

tively. In the initial iteration d and e both equal one.

The solution to this problem is a set of u's and v's which can

be interpreted as weights each of the production plans Xi and Yh

receive in the optimal corporate solution as of the iteration in question.

To put it another way, each division has come forth with a set of produc-

tion plans, Xi, i=l,...,d and Yh' h-l,...,e; the corporate solution

finds the convex combination of each set which maximizes corporate profits.

The first two summations of the corporate problem are related to the profits

of each plan without any interdependencies taken into account. The last

summation of the problem adjusts the corporate profits for the demand

and supply interdependencies. The first set of constraints relate the

interdependency of divisional operations with respect to scarce corporate

resources.

In addition to the optimal set of u's and v's, a by-product of the

quadratic programming solution is a set of dual variables, or "shadow

prices," one for each of the k+2 constraints.2 / Let us denote the first k

of them as ?k,, ±-l...,k. The >'s can be interpreted as the marginal

(or revenues) associated with the use (or production) of the scarce resources;

L ~ -

~°
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thus, at any particular iteration, they can be used as an internal market

price for the scarce resource with which they correspond. Charging or

rewarding each division the internal market prices for their usage or pro-

duction of scarce corporate resources is, in effect, adjusting the extrernal

demand and supply curves for X and Y. In addition, since this is a marginal

analysis, each division should be fully rewarded or charged for the current

values of the dependencies it produces or imposes; these also take the form

of adjustments to the supply or demand curves. Hence, at each iteration,

the external market demand and supply curves for X and Y are to be adjusted

as follows:

IA

nf (P+0 1x - CX + 203 Y , for division 1,

Q + 0 2Y - C2X + 203X , for division 2,

where 1= l,...,k). The first two terms of a new set of curves is the

original market set, e.g., P + 01X, without the dependencies. The third

term, e.g., C'A, is a vector of dimension m for the first division,

pricing the k scarce corporate resources at X per unit and charging or

rewarding the first division for their usage or production the next time

it sets X. The last term is the current tax or bounty vector for prod'icing

or using an additional unit of each component of X or Y, given the most

A A
current and, consequently, best feasible solution at this stage, Y and X

This can be attained by applying the most recent set of weights, u and v,
I I

to the Xi s and Yh s previously generated by the divisions. It should be

noted that strictly internal markets are treated as if they were perfect.

Hence, all monopolistic and monopsonistic power originally inherent between

,1
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divisions is eradicated. This is demonstrated in the example given in the

following section.

Once the supply and demand curves for X and Y have been adjusted for

the current opportunity costs of the scarce resources and for the current

marginal values of the dependencies they impose or benefit by, these

revised curves are sent to the divisional headquarters and another set of

production plans is requested. When these plans are received by corporate

headquarters, it must be determined if any of them will improve the over-

all profitability of operations. Let us denote these plans by Xd+ 1 and Ye+l

and examine the accept/reject criteria for one of them, say Xd+ I . If Xd+1

were combined with Y , the profits of such a combination would be

If' Y #A Y 2 d +I 03
d+Y)=P Xd+l + Q Y + Xd+lOlXd+l + Y' + 2X'

if it were feasible. Viewing as change in profits associated with a

unit change in scarce resource i (-r = ), the change in X from X
ui

to Xd+ 1 implies what amounts to an increment or derement in R by the

A I/A
amount X cl(Xd +l - X). Thus, if '..> 0, an implicit change in Y from Y

I A

is anticipated, and its contribution or cost to profits is - >.Cl(Xd+l - X).

Since

jd(X =p X + X 0X - 2X 0 Y - X
1Xd+I  d+ d+li 1 d+1  d+l 3 1 d+l'

it will be profitable to consider Xd+ I if

A I #. ,. '% 1,

I(Xd+l, Y) - (Xd+IlX) > M(X, Y), or if

(6) i l (Xd+ I ) > DX ' t. I J1 A, X

where DX /(X,Y) - Q Y - 0 2 Y - X

L" LY "° 1
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Thus, the accept/reject decision for the proposed plan Xd+l can be

formulated:

if (6) holds for division 1, plan Xd+l the plan is acceptable;

if not, reject. The next plan offered by division 1 will be
denoted as d+2 if the current plan is accepted; it will be
denoted as d+l if the current plan is rejected.

The decision criterion for Y is analogous: accept Y e+ if )2(Ye+1) > Dy

where Dy (X ,Y) - P X - 0 - C2Y.

Rejection of both plans via equation (6) and its counterpart will terminate

the algorithm.

With one exception the most recent demand and supply curves upon termi-

nation will lead each div'sion independently to a joint profit optimum. The

one exception is in the case of goods sold in. a perfect market. Under such

a condition the producing division will react to a pure price greater than

zero by producing as much as is possible of that good, subject to the

opportua1ity costs of the scarce resources under its control; i.e., the

response will always be a boundary point. At the optimum the basic economic

fact that marginal cost equals marginal revenue prevails. While marginal

revenue is the market price plus the marginal value of the externalities,

marginal cost is the opportunity costs of the scarce corporate resources,

the _Xs, plus the opportunity costs of producing other products demanded.

If the final solution is an interior point, the algorithm will lead to a

case where price, which is marginal revenue for the perfect competitor,

equal marginal cost, so that the net profitability is zero. Here, then,

the division must be ordered by corporate headquarters to produce the

optimal amount of the product. While this may appear to be an appreciable

/
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drawback, it can be reduced by observing that with a net profit of zero, the

division is indifferent with respect to the amount produced; by directing

them to produce as much as is possible, given the amount of scarce corporate

resources they can use, for the case of the perfectly competitive good an

optimum will be obtained. When the good in question is a transferred good,

treated as though itc market was perfect, a directive to produce as much

as car. be sold to the consuming division will yield the same net effect.

These ideas are illustrated in the example which is found in the next section.

It should be noted that a different, informational scheme than the

one described above can be used t;ith the algorithm to achieve an optimum.

While it was most easy to have corporate headquarters known P, Q, 0, C and R,

with the divisions knowing the f 5, 84 s, gi s and t. s, it may be more

feasible to conceive of the divisions having knowledge of P, Q, 0 1 and 0,

r ther than corporate headquarters. In such a case division 1 would be

required, at each iteration, to send not only its most recent Xi, but also

all the terms necessary for the first line of equation (1) and the first

summation of equation (2); division 2 must reply with its most recent Y

and the necessary terms for the second line of equation (1) and the second

summation of equation (2). Corporate headquarters would then be in a position

to solve its problem, since it is assumed to have knowledge of 03. Once this

A
problem is solved for the currently best u's and v's (and hence, X and )

and the shadow prices, )1, are obtained, the informational flows to the divi-

sions could simply be the vector of shadow prices and the tax or bounty vectors,

203Y for division I and 203X for division 2. This scheme reallocates the

source of information, but does not change the solution method of the

algorithm.-
l /

',

• -1
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IV. A NUMERICAL EXAMPLE

Consider the following problem:

Max 7((X,Y) = Ox! + (4 - x2)x2 + (3 - 0.5yl)y I + (0.5x 2 + 3 -2Y2)y 2

s.t. X + 2x + Y, + 2Y2:51 0

1 2 A

- 1 +2y, < 0

xI1 + X 2  < 10

X 1 < 6

x 2  < 6

Yl + Y2 -5 5

yl < 4

y2. 4

This is a simple decomposable quadratic programming problem. The first

constraint requires that 10 units of scarce corporate resource be allocated

between four outputs, two produced by the first division and two produced

by the second division. The first constraiitt relates to a good which can

be produced by the first division and can be sold only to the second

division. It arose from the following consideration: two units of x I1 are

required to produce one unit of y l; if we consrain supply to be equal to,

or greater than, demand, the original constraint reads x I ? 2y I , and simple

algebraic manipulation yields the constraint above. Constraints three

through five limit the production of x I1 and x 2 to a convex set bounded

by a production possibility curve which is piece-wise linear. Constraints

six through eight do the same for the second division. The good x I1 is a

\ • ,-:,. / : ."6

,." ! " ,
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transfer good, having an external market price of zero; goods x2, yI'

and Y2 are sold in imperfect markets, and the intercepts of the demand

curves for these products have been adjusted to take into account the

cost per unit of variable inputs purchased in perfect markets (such as

labor and raw materials); in addition, good y2 benefits from the sale

of x2, a complementary good which shifts the demand curve for Y2 to the

right. Note that the producer of x will always face a flat demand curve

(since all adjustments change only the level of a curve without an inter-

cept term); thus, the potential monopolistic/monopsonistic condition

between division one and division two with respect to the good x1 is

forced out of existence.

According to the notation used in the previous section of this paper,

the components of the objective function are

0 0 0 01
P F4  , Q 1 , and0= -1 0 0.25

0 0.25 0 -2

Partitioning 0 along the dimensions of X and Y, we have

1= _0 and 02 0 .

for the intradivisional interactions in the profit function for goods

X and Y, respectively, and

03 = [ 0.25]

for the interdivisional interactions in the profit function for goods X

and Y. The matrix of technological requirements of scarce corporate

resources associated with the activity levels of X and Y is

47
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= 0 2 0

and partitioning it along the dimensions of X and Y we aave

1~ [ 0 C2 and C= [1 2]
In this example the divisional constraints are linear, so we can write

them in matrix notation. Let A e the technological requirements matrix

for the first division's scarce resources, S, in producing X, and we have

A- [ ] and S 10

in similar fashion for the second division's constraint set we have

B [ and T [ .

We must first show that Z'0Z is negative, semi-definite; i.e., that

Z' Z O for every Z, and there exists some Z 0 0 for which Z'Z = 0,

where Z - (xl, x 2 , yI* Y2) in this example. For every Z it is true that

2 2 2 2 2

1 2 1  + (y 2 ) >0 .

Completing the square and dividing both sides of the inequality by (-4)

yields
2 2 2 2-Ox I -x 2 -0.5y I  y .xY 0

which is Z'0Z for the above problem. Furthermore, for Z = (k, 0, 0, 0),

k 0 0, the above expression equals zero.

Solving the problem directly leads to the following answer:

[X~ ~ y 343 E ] [16726] and 9.3299.LXj l"7442 2 .7468J n

Now let us proce-d to solve the problem according to the algorithm. The

null solutions are assumed to exist at no profit by corporate headquarters.
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Headquarters proceeds to inform division one of the demand curves under

the null solution: 0 for good x, and (4 - x2) for good x2. Similarly,

they inform the second division of the demand cuArves for goods yl and Y2'

which are also the original market curves under the Pull solution: (3 - 0.5y I)

for good yl and (3 - 2y2) for good Y2' since under the null plan the inter-

action term disappears. Production plans, vectors X and Y, are requested

from each division.

First Iteration

(a) Division #1 Problem:

max Ox(X) 0 I + (4 - x2)x

s.t. xI  + x? < 10

x I  .< 6

X 2  < 6

XlX 2  > 0

solution: X ff.,77(X) = 4.0

(b) Division #2 Problem:

max 'W2(Y) = (3- 0.5y 1)yI + (3 - 2y2)y2

s.t. Yi + y 2 <5.5

Yi :<4.0

Y2 < 4.0

ylVy 2  > 0

3.00solution: Y= = 5.675

(c) Corporate Headquarters' Operations:

Upon receipt of X, and Y from the two divisions, accept/reject
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decisions must first be made. Should X1 be accepted as a plan

which will contribute to the over-all profitability of the firm?

Employing equation (6) yields

Xl: Is 01(X 1 ) > Dx ?

Is 4.0 > 0 ? Yes --- accept.

Should Y be considered?

YI: Is 71(YI) > D ?

Is 5.625 > 0 ? Yes --- accept.

Employing equations (1) through (4) yields the corporate problem:

max 1ff(U,V) = Ou + CjO 4] + [0 2] 0 ] ~ U u

o + f3 . + (3 0.75] 0  51 v v1

+ 2u I (0 2] D 0.25] r[

s.t. [ [] ul + [ [ 2 [[07 {v 1
U + u -1

V 1 + v I

o 1ulv =U,Ul,V,VI > 0

solution: U = [0] , V = , ", (UV) = 4.0,

= 019 and 2 2
1 ' 2 .

Thus, at the end of the first iteration, since none of the transfer-

red good is produced, the optimal production plan is to produce twu units

of good x 2* At this level of production not all ten units of the scarce

corporate resource are utilized, so the current opportunity cost of an

additional unit is zero. On the other hand, the marginal value of an
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additional unit of xI is 2.-
2  Noting that the current optimal values

of X and Y are

X [ and Y. [0]

new demand curves are calculated by corporate headquarters according to

equation (5):

X: P +0X- C . + 2 Y

1 03

[04] + rg .&[0 1~ 011[r + 2 [O 0.50J [4r 2]

Y: Q+02Y- C 2 ;k +2 x[3 050 1 [o1 2] I ,0o 05][° -y
22 2 0.3

Corporate headquarters informs each division of these curves and requests

a production plan from each.

Second Iteration

(a) Division #1 Problem:

max (X) 2xI + (4 - )x

s.t. x1 + +x 2 < 10

xI  < 6

x2 -< 6

x1,x2 > 0

solution: X. = [ 'r () 16

(b) DivisiLn #2 Problem:

max i/2(Y) (-I - 0.5yl)y I + (4 -2

Y21---
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s.t.Yl + Y2  <5.5

Yl <4.0

Y2 -S<4.0

YIY2 >0

solution: Y 2 m[0] 1 -f~2  2

(c) Corporate Headquarters' Operations:

Upon receipt of X2 and Y2 9 the accept/reject decisions are made:

x Is 7.(X > Dx ?

Is 16 -- 4 ? Yes --- accept.

Y2: Is P2(Y > D ?

Is 2 0 ? Yes --- accept.

Accepting both proposals and employing equations (1) through (6)

yields the new corporate problem:

max 0(U,V) = Ou0 + 8u1 - 4u12 - 8uIu 2 - 4u22

+ Ov + 11.25v - 5.625v1 - 3vlv 2 + 3v
22

2
- 2v2 + 0.75ulv I + 1lV2 + 0.75u2v1 + u2v2

s.t. Ou + 4u I + IOu2 + Ov + 4.5vI + 2v2 <10

Ou + 0u - 6u2 + Ov + 6vI - Ov 2  <0

u ° + UI  u 2  -l

v + V + v 2 1

UoUlU 2,vVlV2  > 0

L0.127877: .113811]
solution: U = 0.314578 , V 55754

10.557545]0 .328645
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.442455j]' 7 U,V) = 9.3299

At the end of the second iteration, profits for the corporation

are at a level of 9.3299 under a new weighted average of the production

plans from divisions #1 and #2. Under this newest plan, the marginal

value of the scarce corporate resource and an additional unit of x are

both 0.442455. The currently optimal X and Y are

x and 672
r3.3453] " [1,6726]

X 1.7442J an0Y.7468J

Using the newest values of >,, Y and Y in equation (5), a new set uf

demand curves are derived:

[x 4 I + 0o 1o[j -0 05 162
0 0.[2] + ol~xl 2 1 r4424550[162Lo:i LxJL2 01 4424551 + 2 O 025 0.7468]

or

.488492- x 2

2]1+F-21] [y 1 Li 0 o0F35 3
Y: 5L0  +J2 j0 0. 1:4J

or

1.672635 - 0.5y1

2.989213 - 2y2j
Corporate headquarters informs each division of their respective demand

curves and requests production plans in response to them.

Third Iteration

(a) Division #1 Problem:

Max M(X) = Ox1 + (3.488492 - x2)x
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s.t. x1  + x 2  < to

xI < 6

x2 <6

xlX 2 > 0

oolution: X [1.74425 X 3.0424

(b) Division #2 Problem:

max 0 2(Y) - (1.672635 - 0.5yl)y 1 + (2.987213 -

s.t. Yl + Y2 
< 5.5

Yl < 4.0

y2 < 4.0

Yl'Y2 > 0

I"672635 2

solution: Y 3 .746803 7f2 (Y) 2.5159

(c) Corporate Headquarters' Operations:

Upon receipt of X3 and Y39 the accept/reject decisions are made:

3 1y 3  -x3: is x ) > v

Is 3.0424 >3.0424 ? No --- reject.

Y3 Is -W:(Y3 > Dy ?

Is 2.5159 >2.5159 ? No --- reject.

Corporate headquarters terminates at this point; the optimum has

been attained.

The solutions X3 and Y3 are optimal with the exception that in X3,

x - 0; i.e., headquarters has derived the optimal demand curves for the
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goods x2, yI' and y2 (or optimal transfer prices for Ithe ten units of

scarce corporate resource and xl, and the optimal bounty per unit for

goods x2 and y2 required to compensate for the externality between these

two goods). Thus they could inform the divisions that the last demand

curves conveyed are to be taken as final and the divisions should pro-

duce accordingly, with the first division producing, in addition, as

much x as the second division demands; it should be willing to do so

since such production involves no loss (selling x1 at a price of 0.442455

to division #2, but requiring one unit of the scarce corporate resource

at price 0.442455 for each x1 produced) and uttilizes excess capacity.

Figures A and B sketch out the convergence process for divisions

#1 and #2, respectively.
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V. SOME GENERAL COMMENTS ON FEASIBILITY.

A few cotments are in order with respect to the feasibility of

application of the algorithm to a real-ttme situation and how it

compares in such a situation to the Danzig-Wolfe linear decomposition

algorithm and Whinston's quadratic decomposition algorithm. These

comments can be divided into two broad categories:

A. Methodology:

1. In a real-time situation the algorithm can be conceptualized

as an on-going process, never terminating. Changes in tech-

nology, market conditions, and resource limitations or

policies, continually change the underlying problem; thus,

divisional plans generated more than a few iterations ago

would not De the same as they would had they been generated

under existing conditions. But this does not constitute an

insurmountable drawback, for once the transfer price is within

the range of the optimal transfer price under existing condi-

tions, near optimal solutions to the existing problem will be

generated by the corporate problem. These can be used as

temporary production plans while another iteration is

performed. The corporate problem can always be updated; the

only fear is that production plans benerated more than a few

iterations prior are no longer feasible. Hence, they should

simply be dropped as variables from the corporate problem,

If the aforementioned changes are not extreme at any point,

the algorithm should still track the optimal transfer prices

(4
S ... ...% . .
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and, therefore, the optimal solution quite well.

2. When the algorithm is first applied, if a "guesstimate" of

the transfer prices is made by corporate headquarters at the

first iteration, the number of iterations required to come

within reasonable bounds of the optimum is reduced if the

guesstimates are anywhere "in the ballpark."

3. In its strictest sense the algorithm requires corporate head-

quarters to consider only one divisional production plan at

a time. There seems, however, to be no loss, and perhaps

even some gain, in reducing the number of iterations required

for convergence, by considering as many new divisional produc-

tion plans as possible (only one per division, of course) when

entering new variables into the corporate problem.

4. This algorithm, unlike Whirston's, does not conflict with a

prafit-center accounting scheme. Each division still makes

profits; although they pay the economically appropriate

prices (opportunity costs) for scarce goods, they still

receive the full benefit of their non-competitive power iLt

the market and the externalities they generate.oL Corporate

he!adquarters also makes a "profit" by selling the scarce

resources to the divisions for not the highest price tnat it

can (since they are in a monopolist position with respect to

the divisions), but rather at a price which will equate their

supply to the diviaional demands. While it is true that the

sum of divisional and headquarter profits does not equal the

profits for the firm as a whole under this scheme, the
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discrepancy is due entirely to the multiple counting of the

externality benefits; e.g., in the example of the previous

section, at the optimum 1I - 3.0424, '2 = 2.5159, and

corporate headquarters sold ten units of scarce resource

at 0.442455 per unit, yielding a profit of 4.4246, and the

sum of these three profits is 9.9829. On the other hand,

I(- 9.3299, so that the difference is 0.6530, which is

previsely the value of the externality, (0.5)x2 
Y2 =

(0.5)(1.74425)(0.746803) = 0.6530, since both divisions are

receiving this amount fo the externality. Hence, aside

from the value of externalities, divisional profits can be

looked upon as the profit contribution of each division to

the profits of the firm as a whole. Thus, separate books

might be kept for internal management accounting; how the

externality is to be viewed for the firm as a whole is

individual preference.

B. Behavioral

1. Both the lin-ar decomposition algorithm and Whinston's

quadratic decomposition algorithm manipulate pure prices

rather than demand and supply curves in the process of arriving

at an optimal solution. Hence, the greatest behavioral

hindrance for both these algorithms lies in the fact that

the best solution to date (or optimal solution, if attained)

might require production inside the boundary defined by the

divisional constraint sets, i. e., an interior point of the

/4
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production possibility set -- a point which cannot be reached

by pure price manipulation alone -- a point which is obviously

"non-optimal" for the local decision-making managers. On the

other hand, under the condition that all inputs and outputs

are bought and sold in imperfect markets, the quadratic

decomposition algorithm discussed here will supply final

demand and supply curves which lead each division indepen-

dently to the appropriate price setting and productior schedule

for joint profit-maximization; the optimal transfer prices

and credits for demand and supply externalities, when given

to the divisional decision-makers, will adjust the original

demand and acpply curves in such a way that the optimal

solution can be attained without corporate headquarters ever

having to order a division to a point interior to its produc-

tion possibility curve. When goods are purchased or sold in

perfect markets (transferred goods are treated as such),

production plans will always be boundary points since the

response to any pure price is a boundary point. In this case,

the amount of these goods to be bought bnd sold must be

specified by the central planners if the optimal solution

point is an interior point.

With this algorithm there is, consequently, no behavioral

"block" in the sense of obvious non-optimal decisions. Given

the final pricing structure, each manager will produce the

optimal output of his own, profit-maximizing, accord; since

_ /I
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he is indifferent about outputs with a net profitability of

zero, he will be willing to produce as much as he can sell to

utilize capacity; the example in the previous section illustrates

this.

2. As noted in point 4 above, at each iteration full benefit of

the current value of any externality is given to each producer

associated with that externality. It is believed that there

exists no alternative method of distributing the externality

values which is rationally more appealing. While such a

method will lead to an accounting problem as described above,

the behavioral gain through profit-center accounting, with

corporate headquarters absorbing the gain or loss due to

multiple counting of externality values, may far exceed the

imperfect accounting mechanism.

3. While it is true that once the optimum X and Y is known, one

can easily find sets (there exists an infinite number of them)

of demand and supply curves that will lead each division to

these points, if one were to use an algorithm like Whinston's

to generate the optimum X and Y, i.e., find them through pure

price manipulation, some behavioral problems might arise when

the optimum is reached, for then a different pricing mechanism

would be introduced.

4. As Whinston [16] has pointed out, care must be taken if

algorithms proceeding along the lines of the one described in

this paper are utilized. There exists a definite opportunity

for "gaming" the system, for divisional decision-makers to

- I,'
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deliberately misspecify their output vectors in hopes of

gaining control of more scarce corporate resources and,

consequently, increasing their own profits at the expense of

over-all profitability. Perhaps some auditing procedure

directed at decision-making could serve to minimize the

possibility of such conduct arising.

5. It should finally be noted that while the profit-center

concept irtroduced above has desirable accounting and behavioral

characteristics, decisions to (dis)invest further in any

division should not be made accordiaig to the profits

attributable to them under the optimal transfer prices, but

rather by incremental cash flow analysis.
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FOOINOTES

1. See, e.g., [1], [2], [3], [6], [7], [12], [13], [14]. Gordon [9] puts
puts some of these references into proper perspective.

2. This statement is not meant to imply that there are no other deficiencies.
The most obvious would seem to be that the interdivisional constraints
must still be linear. The quadratic model, however, introduces no de-
ficiencies absent in the linear model, except, perhaps, computational
difficulties. No comparisons can be made with respect to speed of con-
vergence or sensitivity since computational experience is limited for
both algorithms.

3. See Charnes and Cooper [3, p 291] or any standard economic price theory
text, such as Cohen and Cyert [4,pp. 274-75].

4. Cohen and Cyert [4, p. 190].

5. The algorithm which follows is, in many respects, similar to the one
described by Whinston [16] and Baumol and Fabian [2]. It is described
for the two-division case for simplicity; extension to the n-division
case is not conceptually different.

6. If Z'0Z is negative semi-definite, it may be perturbed as in [3, p. 687]
into negative definite form without influencing the numerical answer.
While 0 is required to be negative definite at least in principle, it
has also been observed that the method generally works, even without
perturbation, when Z'0Z is semi-definite. Consequently, the usual
procedure is to try it without first attempting to perturb the matrix.
See the numerical problem solved in the next section.

7. The relations fi and gi are required to be convex in order to assure

convergence. Note, however, that they need not be linear. Hence, this
algorithm is applicable to problems which are not strictly defined as
quadratic programming problems.

8. A word of explanation i& required with respect to the set of relations
CZ<R. Few of the corporate scarce resources are fixed, i.e., independent
of the values of X and Y. X and Y usually generate and use resources,
e.g., working capital or intermediate products, thus adding to or subtrac-
ting from the stock at the beginning of the period that planning covers.
Thus, some of the elements of C would be negative, others positive.

9. Hadley [10] describes the most widely-used technique for solving quad-
ratic programming problems and has a clear discussion of the dual problem
and its associated dual variables. The IBM Share Library has an efficient
code for this method, RS-QPF4, which has all the necessar, output.

10. See Hass [11] for the proof of this statement and a formal convergence proof.

I
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11. I am indebted to Bart McGuire from the University of California, Berkeley,
for bringing this to my attention. This Interpretation then has much of
the same type of informational flows as linear decomposition, in which
corporate headquarters knows only the net profits of the various proposed
production plans and the amount of scarce resource each plan uses, but
not the product mix of any plan. The product mix is required here due
to the externalities, 03. If this matrix is null, then no mix is zequired.

12. Shadow prices in quadratic programming are valid only at the margin due
to the non-linearities involved. To show that, at the margin, the value
of an additional unit is 2, suppose we had an 6 amount of xI available;
then we could let v - 6/6. The objective function of the corporate
problem can be rewritten as

42 2max r- 0u 1 + 8u I - AUl1 + Ov + 1.25v 1 5.625v1I + 075uvl'

with u1 = l and v + 6/6, ignoring the higher order terms in E ,

Ir- 4 + 26 . We can also convert this to the original problem: with
currently optimal X' -(0 2) and Y' -= (0.56 0.125A ), we can sub-
stitute these values into the objective function. Ignoring the higher
order terms in E , the value of the function is 4 + 26 .

13. Shbik [15] approaches the profit-center problem from a different direc-
tion (game theory), but has vtry similar economic rationale.
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