SPECIFIC HEAT RATIOS AND ISENTROPIC EXPONENTS FOR CONSTANT-VOLUME COMBUSTION OF STOICHIOMETRIC MIXTURES OF HYDROGEN-OXYGEN DILUTED WITH HELIUM HYDROGEN

ANDRÉ BENOIT
UNIVERSITY OF TORONTO
TORONTO, CANADA

Contract No. AF 33(615)-2766
Project No. 7065

Distribution of this document is unlimited

OFFICE OF AEROSPACE RESEARCH
United States Air Force
SPECIFIC HEAT RATIOS AND ISENTROPIC EXPONENTS FOR CONSTANT-VOLUME COMBUSTION OF STOICHIOMETRIC MIXTURES OF HYDROGEN-OXYGEN DILUTED WITH HELIUM HYDROGEN

ANDRÉ BENOIT

INSTITUTE FOR AEROSPACE STUDIES
UNIVERSITY OF TORONTO
TORONTO, CANADA

JANUARY 1967

Contract No. AF 33(615)-2766
Project No. 7065

Distribution of this document is unlimited

AEROSPACE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO
FOREWORD

This interim technical report was prepared by Andre Benoit, University of Toronto, Canada on Contract AF33(615)-2766 for the Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force. The research reported herein was accomplished on Task 7065-0015, "Fluid Dynamics Facilities Research" of Project 7065, "Aerospace Simulation Techniques Research" under the technical cognizance of Mr. John Goresh of the Fluid Dynamics Facilities Research Laboratory of ARL.

The author wishes to express his thanks to Dr. G. N. Patterson for the opportunity to complete this work.

He is also grateful to Dr. I. I. Glass who suggested the study reported herein, and to Professor J. Meinguet for the opportunity to perform the numerical calculations at the "Centre de Calcul Numerique" of the University of Louvain.
This note is complementary to UTIAS Technical Note No. 85, "Thermodynamic and Composition Data for Constant-Volume Combustion of Stoichiometric Mixtures of Hydrogen-Oxygen Diluted with Helium or Hydrogen", by A. Benoit. It includes the calculation of the equilibrium specific heats, the equilibrium specific heat ratios, the isentropic exponents, and the corresponding values of the speeds of sound. For convenience, the final-to-initial temperature ratio and the final-to-initial pressure ratio have also been included in the present tables. The results are presented for helium and hydrogen dilution respectively.
TABLE OF CONTENTS

1. INTRODUCTION
2. BASIC EQUATIONS
3. METHOD OF SOLUTION
4. RESULTS
5. CONCLUSIONS
6. REFERENCES

TABLES
FIGURES
<table>
<thead>
<tr>
<th>TABLE</th>
<th>SPECIFIC HEAT RATIOS, ISENTROPIC EXPONENTS AND SOUND SPEEDS FOR CONSTANT VOLUME COMBUSTION OF STOICHIOMETRIC OXYGEN-HYDROGEN MIXTURES WITH HELIUM DILUTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPECIFIC HEAT RATIOS, ISENTROPIC EXPONENTS AND SOUND SPEEDS FOR CONSTANT VOLUME COMBUSTION OF STOICHIOMETRIC OXYGEN-HYDROGEN MIXTURES WITH HYDROGEN DILUTION</td>
<td>14</td>
</tr>
<tr>
<td>FIGURE</td>
<td>Description</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1.</td>
<td>Molar specific heats versus dilution for helium dilution.</td>
<td>16</td>
</tr>
<tr>
<td>2.</td>
<td>Molar specific heats versus dilution for hydrogen dilution.</td>
<td>17</td>
</tr>
<tr>
<td>3.</td>
<td>Specific heat ratios and isentropic exponent versus dilution for helium dilution.</td>
<td>18</td>
</tr>
<tr>
<td>4.</td>
<td>Specific heat ratios and isentropic exponent versus dilution for hydrogen dilution.</td>
<td>19</td>
</tr>
<tr>
<td>5.</td>
<td>Speed of sound versus dilution for helium dilution.</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>Speed of sound versus dilution for hydrogen dilution.</td>
<td>21</td>
</tr>
</tbody>
</table>
NOTATION

\(a \)
equilibrium speed of sound (m sec\(^{-1}\))

\(a_1 \)
frozen speed of sound (m sec\(^{-1}\))

\(a^* \)
fictitious speed of sound (m sec\(^{-1}\)) defined by (53) (*)

\(a_{ik} \)
coefficients appearing in the linearized system ((15) to (17)) and given by relations ((18) to (29)).

\(b_{ik} \)
coefficients appearing in the linearized system ((30) to (31)) and given by relations ((32) to (37)).

\(B_K \)
functions of \(p \) and \(T \) defined by (9) and (10)

\(C_P \)
molar equilibrium specific heat at constant pressure (cal mole\(^{-1}\) \(0^\circ\)K\(^{-1}\)) defined by (42)

\(C_{P1} \)
molar frozen specific heat at constant pressure (cal mole\(^{-1}\) \(0^\circ\)K\(^{-1}\)) defined by (40)

\(C_{V1} \)
molar frozen specific heat at constant volume (cal mole\(^{-1}\) \(0^\circ\)K\(^{-1}\))

\(d \)
function of \(p \) and \(T \) defined by (39)

\(e \)
function of \(p \) and \(T \) defined by (36)

\(H \)
molar enthalpy (cal mole\(^{-1}\)) including sensible enthalpy and chemical energy at \(0^\circ\)K for gas state

\(K \)
equilibrium constant based on partial pressures for reaction of formation from elements in gas state. The subscripts, 1, 2, 3 and 4 refer respectively to the formation of \(H_2O \), \(OH \), \(H_2 \) and \(O_2 \)

\(m \)
number of moles of diluting hydrogen per mole of oxygen in reactants

(*) (53) refers to equation (53) etc.
number of moles of helium per mole of oxygen in reactants

number of moles of species "j" in reaction products per mole of oxygen in reactants

total number of moles of reactants per mole of oxygen in reactants \((n_1 = m + n + 3) \)

total number of moles of products per mole of oxygen in reactants \((n_f = \frac{m}{n_1} n_j) \)

pressure of reactants (atm)

pressure of products of reaction (atm)

universal gas constant \((1.98718 \text{ cal mole}^{-1} \text{ } ^0\text{K}^{-1}) \)

universal gas constant \((8.314. \text{ m}^2 \text{ sec}^{-2} \text{ } ^0\text{K}^{-1} \text{ gr}) \)

absolute temperature \((^0\text{K}) \)

molar internal energy of reaction products (cal mole\(^{-1}\))

molar internal energy of reactants (cal mole\(^{-1}\))

isentropic exponent defined by (44)

frozen specific heat ratio defined by (49)

equilibrium specific heat ratio defined by (47)

molecular weight of products of reaction (gr. mole\(^{-1}\))

molecular weight of reactants (gr. mole\(^{-1}\))

molar fraction of species "j" in products of reaction

Subscripts

\(i \) refers to the reactants
j refers to species "j" according to the correspondence

1 for H$_2$O
2 for OH
3 for H$_2$
4 for O$_2$
5 for I$_2$
6 for O
7 for He

p at constant pressure

ϕ at constant entropy

v at constant volume
BLANK PAGE
1. **INTRODUCTION**

In order to complete the work on constant-volume combustion reported in Ref. 1, it was felt that the equilibrium quantities such as the specific heat, specific heat ratio, isentropic exponent and the equilibrium speed of sound should be computed and incorporated in the results. The same source of thermodynamic data was used (Ref. 2), but all the thermodynamic functions including the equilibrium constants were introduced in the program in the form of best-fitted analytical functions.

Instead of using the method of solution described previously (Ref. 1), the final thermodynamic conditions were obtained through an iteration procedure based on the linearization of the equations (Newton-Raphson iteration). This, at the same time, provided a verification of the results.

2. **BASIC EQUATIONS**

The general assumptions under which the calculations are performed have been described in Ref. 1.

The initial mixture

\[(2\text{H}_2 + \text{O}_2) + m \text{H}_2 + n \text{He}\]

at temperature \(T_1\) and the pressure \(p_1\), is transformed to give

\[n_1 \text{H}_2\text{O} + n_2 \text{OH} + n_3\text{H}_2 + n_4 \text{O}_2 + n_5 \text{H} + n_6 \text{O} + n_7 \text{He}\]

at temperature \(T\) and pressure \(p\). The symbols \(\text{H}_2\text{O}, \text{OH}, \text{etc.}\) represent one mole of \(\text{H}_2\text{O},\) one mole of \(\text{OH},\) etc. The equilibrium equations combined with the equations of conservation of mass of each chemical element yield the following equations:

\[
B_1 \mathbf{\Psi}_5^2 \mathbf{\Psi}_6 + B_2 \mathbf{\Psi}_5 \mathbf{\Psi}_6 + B_3 \mathbf{\Psi}_5^2 + B_4 \mathbf{\Psi}_5^2 \mathbf{\Psi}_6 + \mathbf{\Psi}_5 + \mathbf{\Psi}_6 + n \frac{n_f}{n_f} - 1 = 0 \tag{1}
\]

\[
2B_1 \mathbf{\Psi}_5^2 \mathbf{\Psi}_6 + B_2 \mathbf{\Psi}_5 \mathbf{\Psi}_6 + 2B_3 \mathbf{\Psi}_5^2 + \mathbf{\Psi}_5 - \frac{2(2 + m)}{n_f} = 0 \tag{2}
\]

\[
E_1 \mathbf{\Psi}_5^2 \mathbf{\Psi}_6 + B_2 \mathbf{\Psi}_5 \mathbf{\Psi}_6 + 2B_4 \mathbf{\Psi}_5^2 + \mathbf{\Psi}_6 - \frac{2}{n_f} = 0 \tag{3}
\]

and

\[
\mathbf{\Psi}_1 = K_1 \mathbf{\Psi}_5^2 \mathbf{\Psi}_6 \mathbf{p}^2 \tag{4}
\]

\[
\mathbf{\Psi}_2 = K_2 \mathbf{\Psi}_5 \mathbf{\Psi}_6 \mathbf{p} \tag{5}
\]

\[
\mathbf{\Psi}_3 = K_3 \mathbf{\Psi}_5^2 \mathbf{p} \tag{6}
\]

\[
\mathbf{\Psi}_4 = K_4 \mathbf{\Psi}_6^2 \mathbf{p} \tag{7}
\]
from which the composition can be determined when the temperature and pressure are known. In these relations, the \(\psi \)'s represent the molar concentrations, the K's are the equilibrium constants based on partial pressures and the subscripts of the K's refer to the following compounds: 1 to \(\text{H}_2\text{O} \), 2 to \(\text{OH} \), 3 to \(\text{H}_2 \) and 4 to \(\text{O}_2 \).

The B's are written for:

\[
B_1 = K_1 \rho_2 \\
B_j = K_j \rho \quad (j = 2, 3, 4)
\]

The two complementary equations required to determine the final pressure and temperature express the conservation of density and energy, i.e.,

\[
\rho = \rho_i \\
or \quad \frac{p}{p_i} = \frac{T_{nf}}{T_i n_i}
\]

and

\[
n_f U = n_i U_i \\
or \quad n_f (H - RT) = n_i (H_i - RT_i)
\]

3. METHOD OF SOLUTION

Equations (1) to (3) are linearized to provide a system from which \(\psi_5, \psi_6 \) and \(n_f \) are determined for any set of values, \(p, T \),

\[
a_{11} \psi_5 + a_{12} \psi_6 + a_{13} \delta \left(\frac{1}{n_f} \right) = a_{10}
\]

\[
a_{21} \psi_5 + a_{22} \psi_6 + a_{23} \delta \left(\frac{1}{n_f} \right) = a_{20}
\]

\[
a_{31} \psi_5 + a_{32} \psi_6 + a_{33} \delta \left(\frac{1}{n_f} \right) = a_{30}
\]

The coefficients \(a_{ij} \) are readily obtained

\[
a_{11} = 2B_1 \psi_5 + B_2 \psi_6 + 2B_3 \psi_5 + 1
\]
\[a_{12} = B_1 \psi_5^2 + B_2 \psi_5 + 2B_4 \psi_6 + 1 \]
\[a_{13} = n \]
\[a_{10} = -(B_1 \psi_5^2 \psi_6 + B_2 \psi_5 \psi_6 + B_3 \psi_5^2 + B_4 \psi_6^2 + \psi_5 \psi_6 + \frac{n}{n_f} - 1) \]
\[a_{21} = 4B_1 \psi_5 \psi_6 + B_2 \psi_6 + 4B_3 \psi_5 + 1 \]
\[a_{22} = 2B_1 \psi_5^2 + B_2 \psi_5 \]
\[a_{23} = -2(2 + m) \]
\[a_{20} = -(2B_1 \psi_5^2 \psi_6 + B_2 \psi_5 \psi_6 + 2B_3 \psi_5^2 + \psi_5 \psi_6 - \frac{2(2 + m)}{n_f}) \]
\[a_{31} = 2B_1 \psi_5 \psi_6 + B_2 \psi_6 \]
\[a_{32} = B_1 \psi_5^2 + B_2 \psi_5 + 4B_4 \psi_6 + 1 \]
\[a_{33} = -2 \]
\[a_{30} = -(B_1 \psi_5^2 \psi_6 + B_2 \psi_5 \psi_6 + 2B_4 \psi_6^2 + \psi_6 - \frac{2}{n_f}) \]

The linearized forms of equations (8) and (10) will provide the means of computing the temperature and the pressure

\[b_{11} \delta p + b_{12} \delta T = b_{10} \]
\[b_{21} \delta p + b_{22} \delta T = b_{20} \]

with

\[b_{11} = \frac{-1}{p_i} - \frac{T}{T_i n_i} \left(\frac{\psi_{n_f}}{\delta p} \right) T \]
\[b_{12} = \frac{-1}{T_i n_i} \left(n_f + T \left(\frac{\psi_{n_f}}{\delta T} \right) \right) \]
\[b_{10} = \frac{p}{p_i} - \frac{T n_i}{T_i n_i} \]
\[b_{21} = n_f e + (H - RT) \left(\frac{\partial n_f}{\partial T} \right)_p \] \hspace{1cm} (35) \\
\[b_{22} = n_f (C_{p_1} + d - R) + (H - RT) \left(\frac{\partial n_f}{\partial T} \right)_p \] \hspace{1cm} (36) \\
\[b_{20} = n_f (H - RT) - n_i (H_i - RT_i) \] \hspace{1cm} (37) \\

where \[
\begin{align*}
 e &= \sum_{j=1}^{7} \left(\frac{\partial y_j}{\partial p} \right)_T \cdot H_j (T) \\
 d &= \sum_{j=1}^{7} \left(\frac{\partial y_j}{\partial T} \right)_p \cdot H_j (T)
\end{align*}
\] \hspace{1cm} (38) \\
\] \hspace{1cm} (39) \\

and \(C_{p_1} \) is the molar frozen specific heat, i.e.

\[C_{p_1} = \sum_{j=1}^{7} y_j c_{pj} \] \hspace{1cm} (40) \\

When the composition, the temperature and pressure have been determined, the following quantities are computed:

a) the molecular weight

\[\mu = \sum_{j=1}^{7} y_j \mu_j \] \hspace{1cm} (41) \\

b) the molar equilibrium specific heat

\[C_p = \mu \left(\frac{\partial h}{\partial T} \right)_p \] \hspace{1cm} (42) \\
\[= C_{p_1} + d - \frac{H}{T} \left(\frac{\partial \ln \mu}{\partial \ln T} \right)_p \] \hspace{1cm} (43) \\

c) the isentropic exponent

\[\gamma = \left(\frac{\partial p}{\partial \mu} \right)_\mu \mu R_s T \] \hspace{1cm} (44) \\
\[= \left(\frac{\partial \ln P}{\partial \ln \mu} \right)_\mu \mu R_s T \] \hspace{1cm} (45) \\
\[= \left(1 + \frac{\partial \ln P}{\partial \ln \mu} \right) \frac{R}{C_p} \left(1 - \left(\frac{\partial \ln \mu}{\partial \ln T} \right)_p \right)^2 \] \hspace{1cm} (46)
d) the equilibrium specific heat ratio

$$\gamma^* = \frac{C_p}{C_v}$$ \hspace{1cm} (47)

$$= \gamma (1 + \frac{\partial \ln \gamma}{\partial \ln \rho})_T$$ \hspace{1cm} (48)

e) the frozen specific heat ratio

$$\gamma_1 = \frac{C_p}{C_v}$$ \hspace{1cm} (49)

$$= \frac{C_p}{C_v}$$ \hspace{1cm} (50)

f) the frozen speed of sound (a), the equilibrium speed of sound (a) and a fictitious speed of sound computed using the equilibrium specific heat ratio instead of the isentropic exponent.

$$a_1 = R_o^{1/2} \left(\frac{\gamma_1 T}{\mu} \right)^{1/2}$$ \hspace{1cm} (51)

$$a = R_o^{1/2} \left(\frac{\gamma T}{\mu} \right)^{1/2}$$ \hspace{1cm} (52)

$$a^* = R_o^{1/2} \left(\frac{\gamma^* T}{\mu} \right)^{1/2}$$ \hspace{1cm} (53)

where R_o is the universal gas constant for which the value 8314 m2sec$^{-2}$ K$^{-1}$gr. has been used.

4. RESULTS

Computations have been performed for the initial conditions

$$T_1 = 298.15 \text{ K}$$

$$p_1 = 1. ; 5. ; 10. ; 30. ; 50. ; 100. ; 300. ; 500. \text{ atm.}$$

and the dilutions

1) m=0 and n varying from 0 to 12 in steps of 0.5
2) n=0 and m varying from 0 to 7.5 in steps of 0.5
The results are given Tables 1. and 2. and some are presented graphically in Figures 1. to 6. Incidentally, the intermediate results, p, T, n_f/n_i, C\textsubscript{p}, H\textsubscript{2}O, OH, ..., constitutes a verification of the data tabulated in Ref. 1 (*). A comparison is illustrated for the case T\textsubscript{i} = 298, 15 °K, p\textsubscript{i} = 1 atm., m = n = 0. The agreement is excellent.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>This report</th>
<th>UTIAS T. N. NO. 85</th>
</tr>
</thead>
<tbody>
<tr>
<td>p/p\textsubscript{i}</td>
<td>9.611</td>
<td>9.611</td>
</tr>
<tr>
<td>T/T\textsubscript{i}</td>
<td>11.750</td>
<td>11.750</td>
</tr>
<tr>
<td>n_f/n_i</td>
<td>0.818</td>
<td>0.818</td>
</tr>
<tr>
<td>\mu</td>
<td>14.684</td>
<td>14.684</td>
</tr>
<tr>
<td>\gamma\textsubscript{1}</td>
<td>1.214</td>
<td>1.214</td>
</tr>
<tr>
<td>C\textsubscript{p}</td>
<td>11.282</td>
<td>11.282</td>
</tr>
<tr>
<td>\gamma\textsubscript{H\textsubscript{2}O}</td>
<td>0.5560</td>
<td>0.5560</td>
</tr>
<tr>
<td>\gamma\textsubscript{OH}</td>
<td>0.1268</td>
<td>0.1268</td>
</tr>
<tr>
<td>\gamma\textsubscript{H\textsubscript{2}}</td>
<td>0.1577</td>
<td>0.1577</td>
</tr>
<tr>
<td>\gamma\textsubscript{O\textsubscript{2}}</td>
<td>0.0486</td>
<td>0.0486</td>
</tr>
<tr>
<td>\gamma\textsubscript{H}</td>
<td>0.0758</td>
<td>0.0758</td>
</tr>
<tr>
<td>\gamma\textsubscript{O}</td>
<td>0.0351</td>
<td>0.0351</td>
</tr>
</tbody>
</table>

The effect of temperature on the composition (characterized by the partial derivatives of the molar fractions with respect to temperature) leads to values of the equilibrium specific heat (C\textsubscript{p}) appreciably higher than the values obtained neglecting the variations of the composition (C\textsubscript{p1}). The difference between C\textsubscript{p} and C\textsubscript{p1}

$$C_p - C_{p1} = \sum_{j=1}^{7} \left(\frac{\partial \ln \gamma_j}{\partial T} \right)_p \ln \frac{T}{T_j} - \frac{1}{T} \left(\frac{\partial \ln \mu_j}{\partial \ln T} \right)_p$$

(*) Note - In Ref. 1., The value used for R\textsubscript{0} was slightly larger than the accepted value, consequently all the values of a\textsubscript{f} and a\textsubscript{i} should be multiplied by the factor 0.9902 to obtain the correct values.
increases with decreasing initial pressure and decreases with increasing
dilution. The initial pressure has a much stronger influence on C_p than on C_{P1}.
For $m = n = 0$, C_p is approximately five times as large as C_{P1} for $p_i = 1$ atm,
and about three times for $p_i = 100$ atm., while the variation of C_{P1} remains
of the order of 12% (see Fig. 1 and 2).

The difference between the isentropic exponent (γ) and the
equilibrium specific ratio (γ^*) is as large as 10% for a stoichiometric mix-
ture of hydrogen-oxygen and an initial pressure of one atmosphere. This
difference decreases rapidly with increasing dilution. Although the
difference between C_p and C_{P1} is found to be a maximum for the stoichio-
metric mixture, the values of the specific heat ratios γ^* and γ are
rather close in the neighborhood of $m = n = 0$. In fact the difference $|\gamma^* - \gamma|$
reaches a maximum for a value of the dilution index depending on the type of
diluting gas and on the initial pressure. For instance, for hydrogen dilution
and $p_i = 100$ atm., this maximum is close to $m = 2$. The isentropic exponent
and the specific heat ratios are presented graphically in Fig. 3 and 4 for
helium and hydrogen dilutions respectively.

The various expressions for the speed of sound are represented
in Fig. 5 for helium dilution and in Fig. 6 for hydrogen dilution. According
to the definitions (51), (52) and (53), what has been said for the χ's can be
repeated for the sound speeds, (see Fig. 5 and 6).

5. CONCLUSIONS

The equilibrium specific heat ratio and the isentropic exponent
have been computed for reaching gas mixtures composed of stoichiometric
hydrogen-oxygen diluted with helium or hydrogen. The values of these
quantities have been compared with the frozen specific heat ratio for initial
pressures ranging from 1 to 500 atm. and diluting index ranging from
1 to 7.5 in the case of hydrogen dilution, and from 1 to 12 in the case of
helium dilution. In each calculation the initial temperature was chosen equal
to 298.15°K, but the computer program does not include any such restriction.

Differences of the order of ten percent, were found between
the isentropic exponent and the equilibrium specific heat ratio for initial
pressure as high as one atmosphere. In both cases of helium and hydrogen
dilutions, this difference was a maximum for the stoichiometric hydrogen-
oxygen mixture.

The difference between the equilibrium and frozen specific
heat ratios, was a maximum for a dilution depending on the diluting gas and
the initial pressure.
In the case of helium dilution, and $p_i = 1\text{ atm}$, this difference reaches about 15% for a dilution index n of the order of 5.5 (approximately 65% of helium per volume in the initial mixture). The different values of the speed of sound evaluated using the isentropic exponent, the equilibrium and frozen specific heat ratios have also been computed and compared.
REFERENCES

LIST OF TABLES

1. Helium dilution, \(m = 0 \)

 \[
 T_i = 298.15^\circ\text{K}
 \]

 \[
 p_i = 1. ; 5. ; 10. ; 30. ; 50. ; 100. \text{ atm.}
 \]

 \[n = 0 \text{ to } 12 \text{ in steps of } 0.5\]

2. Hydrogen dilution, \(n = 0 \)

 \[
 T_i = 298.15^\circ\text{K}
 \]

 \[
 p_i = 1. ; 5. ; 10. ; 30. ; 50. ; 100. \text{ atm.}
 \]

 \[m = 0 \text{ to } 7.5 \text{ in steps of } 0.5\]

SYMBOLS USED IN TABLES 1 AND 2

Tables 1 and 2 are the direct outputs of the computer. The following symbols have been used:

- \(P_I \) : \(p_i \) (atm)
- \(T_I \) : \(T_i \) (\(^\circ\text{K} \))
- \(N \) : \(n \)
- \(M \) : \(m \)
- \(C_P^I \) : \(C_{P_1} \) (cal mole\(^{-1}\))
- \(C_P \) : \(C_p \) (cal mole\(^{-1}\))
- \(\Gamma_1 \) : \(\gamma_1 \)
- \(\Gamma^* \) : \(\gamma^* \)
- \(\Gamma \) : \(\gamma \)
- \(A_1 \) : \(a_1 \) (m sec\(^{-1}\))
- \(A^* \) : \(a^* \) (m sec\(^{-1}\))
<table>
<thead>
<tr>
<th>N</th>
<th>P/I</th>
<th>P/T/I</th>
<th>CP</th>
<th>CP</th>
<th>GAM1</th>
<th>GAM1</th>
<th>GAM1</th>
<th>GAM1</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1

TABLE 2

TABLE 3
<table>
<thead>
<tr>
<th>Table 1</th>
<th>Page 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column 1</td>
<td>Column 2</td>
</tr>
<tr>
<td>Value 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>Value 4</td>
<td>Value 5</td>
</tr>
<tr>
<td>Value 7</td>
<td>Value 8</td>
</tr>
<tr>
<td>Value 10</td>
<td>Value 11</td>
</tr>
</tbody>
</table>

Table 1 - Page 5
<table>
<thead>
<tr>
<th>N</th>
<th>D/P</th>
<th>T/T</th>
<th>CP1</th>
<th>CP</th>
<th>GAM1</th>
<th>GAM2</th>
<th>A</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.125</td>
<td>1.143</td>
<td>1.171</td>
<td>1.204</td>
<td>1.239</td>
<td>1.274</td>
<td>1.309</td>
<td>1.344</td>
</tr>
<tr>
<td>1.1</td>
<td>1.148</td>
<td>1.164</td>
<td>1.180</td>
<td>1.205</td>
<td>1.230</td>
<td>1.255</td>
<td>1.280</td>
<td>1.305</td>
</tr>
<tr>
<td>1.2</td>
<td>1.172</td>
<td>1.188</td>
<td>1.203</td>
<td>1.228</td>
<td>1.253</td>
<td>1.278</td>
<td>1.303</td>
<td>1.328</td>
</tr>
<tr>
<td>1.3</td>
<td>1.196</td>
<td>1.211</td>
<td>1.227</td>
<td>1.252</td>
<td>1.277</td>
<td>1.302</td>
<td>1.327</td>
<td>1.352</td>
</tr>
<tr>
<td>1.4</td>
<td>1.219</td>
<td>1.234</td>
<td>1.250</td>
<td>1.275</td>
<td>1.300</td>
<td>1.325</td>
<td>1.350</td>
<td>1.375</td>
</tr>
<tr>
<td>1.5</td>
<td>1.243</td>
<td>1.258</td>
<td>1.274</td>
<td>1.299</td>
<td>1.324</td>
<td>1.349</td>
<td>1.374</td>
<td>1.400</td>
</tr>
<tr>
<td>1.6</td>
<td>1.266</td>
<td>1.281</td>
<td>1.297</td>
<td>1.322</td>
<td>1.347</td>
<td>1.372</td>
<td>1.397</td>
<td>1.422</td>
</tr>
<tr>
<td>1.7</td>
<td>1.290</td>
<td>1.305</td>
<td>1.321</td>
<td>1.346</td>
<td>1.371</td>
<td>1.396</td>
<td>1.421</td>
<td>1.446</td>
</tr>
<tr>
<td>1.8</td>
<td>1.314</td>
<td>1.329</td>
<td>1.345</td>
<td>1.370</td>
<td>1.395</td>
<td>1.420</td>
<td>1.445</td>
<td>1.470</td>
</tr>
<tr>
<td>1.9</td>
<td>1.338</td>
<td>1.353</td>
<td>1.369</td>
<td>1.394</td>
<td>1.419</td>
<td>1.444</td>
<td>1.469</td>
<td>1.494</td>
</tr>
<tr>
<td>2.0</td>
<td>1.362</td>
<td>1.377</td>
<td>1.393</td>
<td>1.418</td>
<td>1.443</td>
<td>1.468</td>
<td>1.493</td>
<td>1.518</td>
</tr>
</tbody>
</table>

TABLE 1 - PAGE 7

<table>
<thead>
<tr>
<th>N</th>
<th>D/P</th>
<th>T/T</th>
<th>CP1</th>
<th>CP</th>
<th>GAM1</th>
<th>GAM2</th>
<th>A</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.125</td>
<td>1.143</td>
<td>1.171</td>
<td>1.204</td>
<td>1.239</td>
<td>1.274</td>
<td>1.309</td>
<td>1.344</td>
</tr>
<tr>
<td>0.5</td>
<td>1.148</td>
<td>1.164</td>
<td>1.180</td>
<td>1.205</td>
<td>1.230</td>
<td>1.255</td>
<td>1.280</td>
<td>1.305</td>
</tr>
<tr>
<td>1.0</td>
<td>1.172</td>
<td>1.188</td>
<td>1.203</td>
<td>1.228</td>
<td>1.253</td>
<td>1.278</td>
<td>1.303</td>
<td>1.328</td>
</tr>
<tr>
<td>1.5</td>
<td>1.219</td>
<td>1.234</td>
<td>1.250</td>
<td>1.275</td>
<td>1.300</td>
<td>1.325</td>
<td>1.350</td>
<td>1.375</td>
</tr>
<tr>
<td>2.0</td>
<td>1.266</td>
<td>1.281</td>
<td>1.297</td>
<td>1.322</td>
<td>1.347</td>
<td>1.372</td>
<td>1.397</td>
<td>1.422</td>
</tr>
<tr>
<td>2.5</td>
<td>1.314</td>
<td>1.329</td>
<td>1.345</td>
<td>1.370</td>
<td>1.395</td>
<td>1.420</td>
<td>1.445</td>
<td>1.470</td>
</tr>
<tr>
<td>3.0</td>
<td>1.362</td>
<td>1.377</td>
<td>1.393</td>
<td>1.418</td>
<td>1.443</td>
<td>1.468</td>
<td>1.493</td>
<td>1.518</td>
</tr>
</tbody>
</table>

TABLE 1 - PAGE 8
| Table 1 - Page 1 |

<table>
<thead>
<tr>
<th>M</th>
<th>0.99</th>
<th>0.98</th>
<th>0.97</th>
<th>0.96</th>
<th>0.95</th>
<th>0.94</th>
<th>0.93</th>
<th>0.92</th>
<th>0.91</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>0.97</td>
<td>0.96</td>
<td>0.95</td>
<td>0.94</td>
<td>0.93</td>
<td>0.92</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>1.99</td>
<td>1.98</td>
<td>1.97</td>
<td>1.96</td>
<td>1.95</td>
<td>1.94</td>
<td>1.93</td>
<td>1.92</td>
</tr>
<tr>
<td>5.0</td>
<td>4.97</td>
<td>4.96</td>
<td>4.95</td>
<td>4.94</td>
<td>4.93</td>
<td>4.92</td>
<td>4.91</td>
<td>4.90</td>
<td>4.89</td>
</tr>
</tbody>
</table>

| Table 2 - Page 2 |

<table>
<thead>
<tr>
<th>M</th>
<th>0.99</th>
<th>0.98</th>
<th>0.97</th>
<th>0.96</th>
<th>0.95</th>
<th>0.94</th>
<th>0.93</th>
<th>0.92</th>
<th>0.91</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>0.97</td>
<td>0.96</td>
<td>0.95</td>
<td>0.94</td>
<td>0.93</td>
<td>0.92</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>1.99</td>
<td>1.98</td>
<td>1.97</td>
<td>1.96</td>
<td>1.95</td>
<td>1.94</td>
<td>1.93</td>
<td>1.92</td>
</tr>
<tr>
<td>5.0</td>
<td>4.97</td>
<td>4.96</td>
<td>4.95</td>
<td>4.94</td>
<td>4.93</td>
<td>4.92</td>
<td>4.91</td>
<td>4.90</td>
<td>4.89</td>
</tr>
</tbody>
</table>
Table 2 - Page 3

Table 2

<table>
<thead>
<tr>
<th>W</th>
<th>P/PI</th>
<th>T/TI</th>
<th>CPI</th>
<th>CP</th>
<th>GAM1</th>
<th>GAM2</th>
<th>GAM3</th>
<th>GAM4</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>10.628</td>
<td>14.192</td>
<td>12.465</td>
<td>14.657</td>
<td>1.192</td>
<td>1.702</td>
<td>1.104</td>
<td>1.768</td>
<td>1.247</td>
<td>1.663</td>
<td>1.803</td>
</tr>
<tr>
<td>0.5</td>
<td>12.858</td>
<td>14.019</td>
<td>12.107</td>
<td>15.963</td>
<td>1.195</td>
<td>1.194</td>
<td>1.147</td>
<td>1.742</td>
<td>1.708</td>
<td>1.708</td>
<td>1.708</td>
</tr>
<tr>
<td>1.0</td>
<td>10.644</td>
<td>13.408</td>
<td>11.976</td>
<td>24.218</td>
<td>1.200</td>
<td>1.135</td>
<td>1.726</td>
<td>1.871</td>
<td>1.913</td>
<td>1.700</td>
<td>1.700</td>
</tr>
<tr>
<td>1.5</td>
<td>10.588</td>
<td>12.486</td>
<td>11.624</td>
<td>17.719</td>
<td>1.200</td>
<td>1.301</td>
<td>1.766</td>
<td>1.870</td>
<td>1.702</td>
<td>1.702</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>3.454</td>
<td>10.547</td>
<td>11.340</td>
<td>17.811</td>
<td>1.213</td>
<td>1.389</td>
<td>1.777</td>
<td>1.917</td>
<td>1.907</td>
<td>1.907</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>5.968</td>
<td>11.632</td>
<td>11.044</td>
<td>14.827</td>
<td>1.219</td>
<td>1.391</td>
<td>1.819</td>
<td>1.975</td>
<td>1.956</td>
<td>1.956</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>4.080</td>
<td>11.065</td>
<td>10.881</td>
<td>17.476</td>
<td>1.215</td>
<td>1.250</td>
<td>2.005</td>
<td>1.989</td>
<td>1.984</td>
<td>1.984</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>4.650</td>
<td>10.496</td>
<td>10.716</td>
<td>12.429</td>
<td>1.214</td>
<td>1.250</td>
<td>2.005</td>
<td>1.989</td>
<td>1.984</td>
<td>1.984</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>4.676</td>
<td>10.029</td>
<td>10.453</td>
<td>11.661</td>
<td>1.238</td>
<td>1.229</td>
<td>2.047</td>
<td>2.037</td>
<td>2.035</td>
<td>2.035</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>4.777</td>
<td>9.707</td>
<td>9.418</td>
<td>11.976</td>
<td>1.267</td>
<td>1.229</td>
<td>2.047</td>
<td>2.037</td>
<td>2.035</td>
<td>2.035</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>4.810</td>
<td>9.166</td>
<td>9.078</td>
<td>10.613</td>
<td>1.259</td>
<td>1.238</td>
<td>2.075</td>
<td>2.068</td>
<td>2.068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>4.789</td>
<td>8.789</td>
<td>8.463</td>
<td>10.767</td>
<td>1.246</td>
<td>1.246</td>
<td>2.095</td>
<td>2.079</td>
<td>2.078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>3.888</td>
<td>7.369</td>
<td>7.152</td>
<td>9.635</td>
<td>1.276</td>
<td>1.276</td>
<td>2.095</td>
<td>2.079</td>
<td>2.078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>3.264</td>
<td>6.656</td>
<td>6.271</td>
<td>9.814</td>
<td>1.277</td>
<td>1.277</td>
<td>2.095</td>
<td>2.079</td>
<td>2.078</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>W</th>
<th>P/PI</th>
<th>T/TI</th>
<th>CPI</th>
<th>CP</th>
<th>GAM1</th>
<th>GAM2</th>
<th>GAM3</th>
<th>GAM4</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>11.100</td>
<td>14.664</td>
<td>12.567</td>
<td>12.669</td>
<td>1.198</td>
<td>1.199</td>
<td>1.146</td>
<td>1.664</td>
<td>1.717</td>
<td>1.725</td>
<td>1.725</td>
</tr>
<tr>
<td>0.5</td>
<td>11.053</td>
<td>14.422</td>
<td>12.386</td>
<td>27.613</td>
<td>1.191</td>
<td>1.197</td>
<td>1.150</td>
<td>1.761</td>
<td>1.796</td>
<td>1.805</td>
<td>1.805</td>
</tr>
<tr>
<td>1.0</td>
<td>10.605</td>
<td>13.827</td>
<td>12.070</td>
<td>21.855</td>
<td>1.197</td>
<td>1.183</td>
<td>1.160</td>
<td>1.786</td>
<td>1.826</td>
<td>1.878</td>
<td>1.878</td>
</tr>
<tr>
<td>1.5</td>
<td>10.964</td>
<td>13.171</td>
<td>11.727</td>
<td>16.074</td>
<td>1.194</td>
<td>1.171</td>
<td>1.171</td>
<td>1.797</td>
<td>1.820</td>
<td>1.870</td>
<td>1.870</td>
</tr>
<tr>
<td>2.0</td>
<td>11.097</td>
<td>12.417</td>
<td>11.409</td>
<td>18.476</td>
<td>1.191</td>
<td>1.147</td>
<td>1.184</td>
<td>1.944</td>
<td>1.924</td>
<td>1.924</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>9.711</td>
<td>11.741</td>
<td>11.106</td>
<td>10.965</td>
<td>1.218</td>
<td>1.200</td>
<td>1.194</td>
<td>1.941</td>
<td>1.966</td>
<td>1.961</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>8.982</td>
<td>10.537</td>
<td>10.587</td>
<td>11.961</td>
<td>1.237</td>
<td>1.215</td>
<td>1.204</td>
<td>2.022</td>
<td>2.020</td>
<td>2.020</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>8.318</td>
<td>9.606</td>
<td>10.170</td>
<td>10.874</td>
<td>1.234</td>
<td>1.224</td>
<td>1.223</td>
<td>2.066</td>
<td>2.059</td>
<td>2.054</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>8.044</td>
<td>9.182</td>
<td>9.978</td>
<td>10.944</td>
<td>1.228</td>
<td>1.224</td>
<td>1.224</td>
<td>2.074</td>
<td>2.072</td>
<td>2.071</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>7.768</td>
<td>8.797</td>
<td>9.419</td>
<td>10.140</td>
<td>1.224</td>
<td>1.224</td>
<td>1.224</td>
<td>2.084</td>
<td>2.082</td>
<td>2.081</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>7.511</td>
<td>8.446</td>
<td>9.665</td>
<td>9.880</td>
<td>1.229</td>
<td>1.229</td>
<td>1.229</td>
<td>2.097</td>
<td>2.090</td>
<td>2.089</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>7.068</td>
<td>7.929</td>
<td>9.093</td>
<td>9.506</td>
<td>1.238</td>
<td>1.238</td>
<td>1.238</td>
<td>2.102</td>
<td>2.100</td>
<td>2.100</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>6.888</td>
<td>7.687</td>
<td>8.872</td>
<td>9.352</td>
<td>1.243</td>
<td>1.243</td>
<td>1.243</td>
<td>2.104</td>
<td>2.103</td>
<td>2.102</td>
<td></td>
</tr>
</tbody>
</table>
Initial conditions

\[T_1 = 298.15 \, ^\circ\text{K} \]

\[(2H_2 + O_2) + m \, H_2 \]

FIG. 2
SPECIFIC HEAT VERSUS DILUTION (HYDROGEN DILUTION)
Initial conditions

\[T_1 = 298.15 \, ^\circ\text{K} \]

\[
(2 \, \text{H}_2 + \text{O}_2) \rightarrow \text{n He}
\]
Initial conditions

\[T_i = 298.15 \text{ K} \]

\[(2H_2 + O_2) + m H_2 \]

FIG. 4 SPECIFIC HEAT RATIOS AND ISENTROPIC EXPONENT (HYDROGEN DILUTION)
FIG. 5 SPEED OF SOUND VERSUS DILUTION (HELIUM DILUTION)

Initial conditions

* $T_i = 298.15 \, ^\circ C$
* $(2H_2 + O_2) + nHe$
Initial conditions

\[T_1 = 298.15 \, ^\circ \text{K} \]

\[\{ 2\text{H}_2 + \text{O}_2 \} + \text{m} \, \text{H}_2 \]
This note is complementary to UTIAS Technical Note No. 85, "Thermodynamic and Composition Data for Constant-Volume Combustion of Stoichiometric Mixtures of Hydrogen-Oxygen Diluted with Helium or Hydrogen", by A. Benoit. It includes the calculation of the equilibrium specific heats, the equilibrium specific heat ratios, the isentropic exponents, and the corresponding values of the speeds of sound. For convenience, the final-to-initial temperature ratio and the final-to-initial pressure ratio have also been included in the present tables. The results are presented for helium and hydrogen dilution respectively.
1. ORIGINATING ACTIVITY: Enter the name and address of the originating activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. 8c & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

1. "Qualified requesters may obtain copies of this report from DDC."
2. "Foreign announcement and dissemination of this report by DDC is not authorized."
3. "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through "
4. "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through "
5. "All distribution of this report is controlled. Qualified DDC users shall request through "

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS). (S). (C). or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.