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IMPULSIVE LOADING OF A SIMPLY SUPPORTED CIRCULAR PLATE

by

Norman Jones*

Abstract

It is clear from a survey of literature on the dynamic deformation of

rigid-plastic plates that most work has been focused on plates in which

either membrane forces or bending moments alone are considered important,

while the combined effect of membrane forces and bending moments on the be-

havior of plates under static loads is fairly well established. This arti-

cle, therefore, is concerned with the behavior of circular plates loaded dy-

namically and with deflections in the range where both bending moments and

membrane forces are important.

A general theoretical procedure is developed from the equations for

large deflections of plates and a simplified yield condition due to Hodge.

It can be shown that these general equations may be reduced to give the pre-

dictions of Onat and Haythornthwaite for static loading and to those of Wang

for the dynamic case with bending moments only if the rigid, perfectly plas-

tic material from which the plate is made yields according to Tresca and any

strain rate effects are disregarded.

The results obtained when solving the governing equations for the par-

ticular case of a simply supported circular plate loaded with a uniform im-

pulsive velocity are found to compare favorably with the corresponding ex-

perimental values recorded by Florence. Although this study is of general

interest, it is thought in particular that it should assist in the interpre-

tation of the dynamic biaxial stress-strain characteristics of materials re-

corded on diaphragms fitted in impact tubes.

Assistant Professor of Engineering (Research), Brown University



Notation

As, Bs, Cs defined by equations (52), (53) and (55)

Es , Fs arbitrary constants of integration

Gs, Hs defined by equations (45) and (46)

H plate thickness

I impulse per unit area of plate

Jn) Bessel function of order n

Ks defined by equation (54)

M a H2 /4o o

Mr, M radial and circumferential bending moments per
unit length

N aHo 0

Nr, N radial and circumferential membrane forces per
unit length

Q transverse shear force per unit length of plate

R outside radius of plate

R , R principal radii of curvature

V initial velocity of plate

Y ( ) Neumann's Bessel function of the second kind of
zero order

k uniform distributed pressure per unit area of
undeformed plate

mr m6  dimensionless bending moments Mr /Mo, Ms/M°

n , n8  dimensionless membrane forces Nr IN, N IN°

p -k sino



Notation (continued)

q -k coso

r radial coordinate of plate

t time

tI VV R2

12M
0

t duration of first stage of deformation

ts duration of entire deformation corresponding
to the greatest value from equation (48)

u displacement in direction r of undeformed
plate

w transverse deflection perpendicular to unde-
formed plate

wf final deformation

x r/R

y a sr/R

a 1 + C
r r

as s roots of equation J (a) = 0

a 6 u + r

a UVo0V2 R/M°

Ys x s(No0/j)i1/2

C H/R

Cr, C 0 radial and circumferential strains

e circumferential coordinate lying in plate

X s as/R

mass per unit area of plate



Notation (continued)

p radius of hinge

a 0yield stress in simple tension

slope of the mid-plane of a plate measured in a
plane which passes through r = 0 and is per-
pendicular to the plate surface

A V t/R
0

C)'
T(



Introduction

During the second world war Taylor (1), Hudson (2), Richardson and Kirk-

wood (3) and others (4) were the first to conduct experimental and theoretical

studies into the influence of dynamic loads on the behavior of thin disks or

circular plates. Further work on membranes has been reported by Frederick (5),

who proposed a mechanism of behavior somewhat similar to that of Hudson (2),

and Griffith and Vanzant (6), who recorded dynamic load-carrying capacities

significantly greater than the corresponding static values. It is also evident

from their results that, at high loading rates, elements of such plates tend to

move in a transverse sense which ensues in smaller circumferential strains than

those expected from static tests.

Hopkins and Prager (7) contributed some general information on the dynamic

behavior of plates and studied the particular problem of a simply supported

circular plate subjected to a uniformly distributed load which is brought on

suddenly, and, after being kept constant during a certain interval of time, is

removed suddenly. The plate is made of a rigid, perfectly plastic material,

which is assumed to obey the Tresca yield condition and associated flow rule.

Any membrane forces which may arise during deformation are disregarded. Making

the same assumptions and using a similar but more complicated mechanism of be-

havior, Florence (8) solved the problem of a circular plate clamped around its

outer edge and loaded with a central rectangular pulse. Wang and Hopkins (9)

studied the behavior of a circular plate with a transverse velocity imparted

instantaneously to the entire plate except at the built-in outer edge, where

the velocity is zero. Wang (10) found that this analysis simplifies consider-

ably when the plate is simply supported around its outer edge. Florence (11)

subjected some simply supported circular plates to uniformly distributed
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impulses and found, particularly for large impulses, that the theoretical

analysis in (10) overestimated considerably the final deformed shapes. This

discrepancy, however, arises mainly because the nature of the assumptions in-

volved in the development of the analysis in (10) limits application of the

results to plates with small final deformations.

Perzyna (12) examined the influence of pulses of arbitrary shape by de-

veloping further the theory of Hopkins and Prager (7) to show that, for a

given impulse, the character of the pressure-time function has little influ-

ence on the final shape of the plate. In passing, however, it is worth not-

ing that Sankaranarayanan (13) showed that the pulse shape influenced con-

siderably the final deformation of plastic spherical caps subjected to impact

pressure loads, while Symonds (14) found somewhat less sensitivity to the

pulse shape in beams.

Hopkins (15) developed a more general theory for plates loaded trans-

versely with non-symmetrical loads, but disregarded any membrane forces and

solved no particular problems.

Shapiro (16), who was the first to examine the dynamic behavior of an-

nular plates, studied the problem of a circular plate supported rigidly

around an inner radius and loaded with a circular ring of impulsive velocity

around its outer edge. Recently, Florence (17) reviewed this problem in

order to assess the relative contributions of membrane forces and bending

moments to the formation of the final deformed shape. It was found that a

solution which considered interaction between the circumferential membrane

force and circumferential bending moment was closer to the experimental

values than the solutions for bending moment only and membrane force only,

both of which overestimated considerably the final deformations. Witmer,

Balmer, Leech and Pian (18) developed a numerical method and a computer

program, the predictions of which compare favorably with experimental
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values recorded for the large dynamic deformations of beams, rings, plates

and shells.

Boyd (19) reconsidered the problem of dynamic deformation of a circular

membrane and solved the governing equations numerically for a general form of

symmetrical pressure loading which permits variations across the plate and

with time. Although any contributions arising from bending moments were neg-

lected, this method predicted results similar to the corresponding values

computed in Ref. (18). Boyd (19) and Frederick (5) investigated the deforma-

tions of membranes made from a strain-hardening material and discovered that

a simplified rigid, perfectly plastic analysis provides a remarkably accurate

approximation to the true behavior. Munday and Newitt (20) examined carefully

the dynamic behavior of clamped copper membranes, and presented some photographs

taken from a high-speed cine film recorded during the passage of a hinge which

formed around the outer edge of a plate at the first instant of impact and

travelled inwards towards the center where it remained until the plate came to

rest. For an impulsive loading which imparts to the plate a velocity increas-

ing from zero at the first instant of impact to a maximum value at the center

some time later, Munday and Newitt observed that the final deformed shapes are

almost identical for all plates irrespective of thickness, diameter and load.

Johnson, Poynton, Singh and Travis (21) performed some underwater explosive

stretch-forming experiments on clamped circular blanks, and measured the thick-

ness strains across the plates and final deformed shapes for various charge

strengths.

It is of passing interest to note that the method of Martin and Symonds

(22) can be used to predict the maximum deflections and time bounds for rigid-

plastic plates loaded impulsively. Although the time bounds compare rather
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well with those predicted in (9, 10), the deflections are overestimated by

one third for the simply supported case and somewhat less for the plate with

clamped edges. It is worth emphasizing, however, that these results are ob-

tained from a few lines of arithmetic whereas the solution in (9) in particu-

lar is time consuming.

Cooper and Shifrin (23) and Haythorthwaite and Onat (24) measured the

static load-carrying capacity of initially flat circular plates, and observed

that the bending only solution of Hopkins and Prager (25) underestimates con-

siderably the load which could be supported if deflections of the order of the

plate thickness or larger are permitted. In order to explain the strengthen-

ing effect under static loads, Onat and Haythornthwaite (26) considered both

bending moments and membrane forces in an analysis which reduces to the bend-

ing only theory of Ref. (25) at very small deflections and to the behavior as

a membrane at large deflections. Symonds and Mentel (27) have shown that a

simple analysis of plastic beams constrained axially and loaded with a trans-

verse pressure impulse becomes unrealistic if deflections of the order of the

beam thickness are permitted and the influence of axial forces is disregarded.

The authors describe the transition of clamped and simply supported beams from

an initial simple behavior to a final stage in which deformations are governed

primarily by catenary effects.

It is clear from the foregoing survey of literature that most effort has

been concentrated on the dynamic deformation of plates in which either mem-

brane forces (1-5, 19) or bending moments (7-10, 12, 15, 16) alone are be-

lieved to be important. Moreover, with the exception of the computing work

in (18) and the analysis by Florence (17) for an annular plate, no investiga-

tions have been conducted into the interaction effects between membrane forces
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and bending moments, while for static loading the behavior during all stages

is fairly well understood (26).

The object of this present article, therefore, is an attempt to link the

two distinct stages of plastic strain and describe the behavior of plates dy-

namically loaded with deflections in the range where both bending moments and

membrane forces are important. Subsequently, it is found that the theoretical .

analysis presented herein predicts with reasonable accuracy the final deforma-

tions recorded by Florence (11) on a simply supported circular plate subjected

to a uniform impulse.

Equilibrium Equations

Introducing the inertia terms into the equilibrium equations developed

by Reissner (28) for the finite deflection of a circular plate loaded stati-

cally gives

(a eN)' - aI'Ne - a a Q/R + areaOp-- 'Wa a 6 0 (1)rrO r rep - wwe08

(a0Q), + ara [Nr/R + N0 /R 8 ] + ara6q + paoatei - a e8 w' = 0 (2)

(a 0M)' -I a 'Me - arae Q = 0 (3)

provided the rotary inertia effect is disregarded, and

ar 1+r

a = r + u = r(l + Ce)

1/R = *7 + cr) I

r r
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/Re = siný/r ,

(C) a -( ) , t = timeat

The positive directions of the various quantities are indicated in Fig. 1.

Since we are interested in the interaction between membrane forces and

bending moments, then we may follow Reissner (28) and limit equations (1) -

(3) to plates having small strains and deflections which are not too large.

Thus, using

aa= r, 1/Rr ='1/R6 = siný/r, and a8  cost

equations (1) - (3) become

(rN r)' - cosON8 - ro'Q + rp - vrww' - ur cosOu = 0 (4)

(rQ)' + rN 0' + sinON 0 + rq + pr cosow - uriw' = 0 (5)

(rM)' - cosoMe - rQ = 0 (6)

If it is further assumed that cost = 1 and sine = -w', and recognized

that ro'Q and rN r' are small in comparison with the remaining terms, then

equations (4) - (6) can be rewritten in the form

rnr' + nr - n 8 = -rkw'/No + vrww'/N + ijrU/N (7)

rm + 2m ' - me' - 4n w'/H = rk/Mo - PrWi/M + priiw'/M (8)

where

n r'e = N r ,e/No
rr = o'

r 'e = O or'e



-7-

and the second order terms 4'w' are disregarded. In view of the observa-

tions of Griffith and Vanzant (6) that the material of a circular plate tends

to move in a transverse sense at high rates of dynamic loading, then we as-

sume hereafter that

i 0 (9)

Yield Condition

It is necessary to employ a four-dimensional yield surface between the

generalized stresses nr, n., mr and m. , in order to solve the equilibrium

equations (7) and (8) for a plate made from a rigid-plastic material. Onat

and Prager (29) have derived equations for the load-carrying capacity of

shells of revolution made from a rigid, perfectly plastic material which

obeys Tresca's yield condition and the associated flow rule. However, these

relations are very difficult to handle for other than simple problems. Hodge

(30), therefore, proposed a two-moment limited interaction surface which

maintains all interaction between force and force and moment and moment, but

neglects all interactions between force and moment. If it is assumed that

yielding is controlled by the Tresca criteria, the result is a linear surface

in four-dimensional space; and the equations of the twelve planes are indica-

ted in Fig. 2.

The yield condition proposed by Hodge (30) was used to solve the equilib-

rium equations (7) and (8) for a simply supported plate loaded with a static

pressure distributed uniformly over a central circular area. This method pre-

dicted a variation of load carrying capacity very similar to that forecasted

by Onat and Haythorthwaite (26) for deflections greater than H/2.
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Mechanism of Deformation

The notion of a travelling hinge has been used successfully for estab-

lishing the dynamic behavior of beams and cantilevers (27, 31, etc.).

Furthermore, Munday and Newitt (20) observed that at the first instant of

impact a hinge develops at the supports of a circular plate and travels in-

ward towards the center,where it remains until the plates come-to rest. It

seems reasonable, therefore, to employ herein the similar mechanism of be-

havior proposed by Wang (10) for a simply supported circular plate loaded

impulsively.

Thus at t s 0 , the plate travels with an initial uniform velocity v
0

and a hinge is assumed to form at the support radius r = R at the instant

t = 0 . Some time later (t), the hinge will reach a radius p(t) , where

0 < p(t) < R , and divide the plate into two distinct zones as indicated in

Fig. 3 where

V=v , for 0 r p(t) (10)

and

w = V (R - r)/(R - p) , for P(t) s r s R (11)

It is assumed that the kinetic energy of the plate for the moment when

the travelling hinge reaches radius p = 0 is dissipated during a second stage

of deformation in which the hinge remains stationary at r = 0

Expression for Slope (w')

If p(t) s r s R , then using (10) and (11) the transverse deflection of

the plate at time t is
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t aw

w = V t(r) + J - dt (12)

where V is the initial uniform velocity of the plate at t = 0 ; t(r) iso

the time taken for a travelling hinge to reach radius r , provided p(t) .

r $ R , while t is the time at which the hinge reaches radius p

Letting

-__ = R T

where R is a function of r alone, and T is a function of t alone per-

mits (12) to be rewritten

w = V t(r) + T dt
0 't(r)

whence,

ar = a {t(r)} + a (R) J T dt + RafJ T dt (13)

t(r) t(r)

Analysis of a Simply Supported Circular Plate Loaded Impulsively

(i) First Stage of Deformation

It can be shown that the yield conditions,

mr 6 nr = n. = 1 , for 0 s r s p (14)

and

mi= -1 , 0. m . -I , n = 1 , 0 < n 1 , for p s r . R (15)
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indicated in Fig. 2, are consistent with equations (10) and (11). Equations

(10) and (14) satisfy exactly equations (7), (8), (9) and (13), while (7),

(8), (9) and (15) give

S(r 2 m ')- 9w p r 2  a2 w kr 2  (16)

rr M 0 rt 2  M0

provided

p(t) s r s R , and (w') 2 << 1

If aw/ar = 0 and k = 0 , then for the first stage of deformation it can

be shown that equations (11) and (16) yield the following time function,

t1[ _ + (2_R (17)1 R Rl~ R

which is identical to that obtained by Wang (10) who neglected the effect of

membrane forces.

Since one would expect the influence of the bending moments to dominate

over the action of the membrane forces during the first stage, then the form

of the time function for aw/ar • 0 will be taken as

t p[ _(p)2+ ( p3 (18)

where f is a constant to be determined later. Differentiating equation (18)

with respect to time gives

1/(R - p) = -4i(3p + R)/R 3  (19)

which allows (13) to be rewritten in the form

aw _Vt 2 3r2S + Rp - -2 - Rr) for p(t) < r < R (20)
Dr R3 2
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Substituting equations (11) and (20) into (16) yields

4V t 1jV2(R -r)
"0o 3 3 .3 _Rr2 ) -P 02(

a- (r 2 m (-3 p2 r + Rpr - M (R - p)2  (21)
Tr r R3H 2M (R p)2

0

which when integrated with the condition that m = -1 at r p gives

4V t 3 R r 3  Rr2  3p4 Rp3 3R2m (r p2r + z- pr - 6 + -8r + 26r-•2

r R3H '

(22)
0PV R2 r 3 +Rp 3  p4  Rp 2  p 3 )

M (R-p) 2  6 12 3r - 4r - 2 1
0

Since m = 0 at r = R , equation (22) yields

7Vt I V R2

o - + 1 = 0 at p = 0 (23)6H 12M -E
0

the solution of which can be written as

V R 3H 1 2HVo21/2 18HM 1/2

V --- +--( • ) (1 + U +) (24)
0 7Ro2 7M0  7pV 2 R2

or,
1l/2

A -2-C + (1c) (1 + 9C-+-) (25)

where,

c = H/R (26)

8 = pV 2 R/M (27)

and

A = V0 t/R (28)
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V t is the deflection of the center of the plate at the conclusion of0

the first stage (p = 0).

It can be shown that the deflected form of the plate at t = t is

Vo{[l _ 1_() _ 1 (r3] (29)
0 2 R R

(ii) Second Stage of Deformation

Nowone would expect the membrane forces to dominate over the bending

moments during the second stage of deformation throughout which the hinge

remains stationary at r 0 . Thus assuming M = Me = Q = 0 and consider-

ing the case when k = 0 , equations (1), (2) and (9) become

(r n) - cos~n, = prWw'/N (30)

0

and

r'nr + sin~n, = -prcosýw/N . (31)

Utilizing the same yield condition as used previously for p s r .< R

(15) permits equations (30) and (31) to be rewritten as one equation,

W11 + w'/r = w/N (32)

since,

(rn )'= rn r' + cosonr

coso = 1 , sino = -w' , and (w') 2 <<

The general solution of (32) may be written in the following fortm after

Bowman (32)
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FNw {A Jo(X r) + B Yo(r)} {C cos( _ x t) + D sin ( x
(33)

for { ; t $ ts

or

w = {E cos ( Xst) + F sin st)}J (X r) (34)

in order to maintain finite deflections at r 0 .

The deflection w must be zero at the simply supported edge for all

values of t . This restriction on (34) yields the relation,

a

s R =- 1, 2 =(35)

where as are the roots of the equation Jo0 (a ) 0 . Thus,

w = {Es cos(yst) + Fs sin(yst)) Jo(Asr) (36)
s=l

where

NYs F o (37)

The deflection w and velocity w given by (36) and its derivative

must match the values acquired by the plate at the end of the first stage

given by (29) and (11) with p = 0 and t t

Hence,

Vt l X2  X3  G
Vo0 t[l x22 2{Es cos(Ys ) + Fs sin(y s)} J (as x) (38)

s=a

and
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Vo(l - x) {-ysEs sin(ysy) + ysFs cos(yst)} Jo(as X) (39)
s=l

where,

x = r/R . (40)

Multiplying both sides of (38) and (39) by x Jo (a x) dx and inte-

grating over the limits x 1 and x = 0 , it can be shown with the aid

of Lommel's integrals (Ref. 32), that

2 xv1 (l-x- x3)J(ax)dx (41)
S J 2 (a) J 0 2 2 o(s

and

H s 2  x) (1 - x) Jo(asx)dx (42)J 2( a~ S o

where

G = Es cos(y s) + F sin(y s) (43)

and

Hs = -Y sE sin(Yst) + y sF cos(Y s) (44)

If y = a x , equations (41) and (42) become
v

Gs = Jl 2 (a ) a {13 1J(a s92 jos Jo(Y)dy} (45)

1 s s s 0

and

2V a

Hs J12 0 ts) s3 jo0 (y)dy (46)

j 1 2( aS a S3 0
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where values of the Bessel functions are tabulated in references (33) and

(34). Schmidt (35) tabulates the integral

J0s Jo(y)dy for 10 < y < 50.

The plate will come to rest when w 0 . Hence,

[ {-ysE sin(ysts) + ysFs cos(ysts)} Jo(Asr) 0 (47)
s=l

or

tan(Ysts) FS/Es (48)

Thus the final deformed shape wf at t = t is

wf JE2 + F 2  Jo(Xsr) (49)
s=l

or

wf = G + (Hs/Y ) 2 J (Xsr) (50)
f s s 0 8

s=l

which may be expressed in the form

wf R A (ABs)2 + Sc2 jo(Xsr) (51) /
f s=l 0S

where

A = l/{J1
2 (a)c1• , (52)

B = 13 Jl(as) - 9 K/a 2 , (53)
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K = Jo(y)dy (54)

and

Cs = Ks/as . (55)

Conclusions
Ji

A general theoretical procedure which retains both membrane forces and

bending moments, but neglects strain rate effects, is developed herein in

order to describe the behavior of rigid, perfectly plastic circular plates

loaded with axisymmetrical dynamic loads. It can be shown that this analy-

sis may be reduced to the predictions of Onat and Haythorthwaite (26) for

static loading of simply supported plates and to those of Wang (10) for the

dynamic case with bending moments only.

It is evident from Fig. 4 that the maximum deflection at r = 0 predic-

ted by the first five terms of equation (51) compares favorably over a wide

range of uniformly distributed impulses with the experimental values ob-

served by Florence (11) on simply supported circular aluminium plates having

R/H = 16 . Theoretical predictions of the maximum plate deflections are

presented in dimensionless form in Fig. 5 for various plate parameters and

magnitudes of impulse.

It is thought that the method developed could be used to describe the

behavior of plates having other support conditions and various dynamic loads.
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