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FOREWORD

The theoretical development of the determination of the steady-state
cable corfigurations, the treatment of the vortex shedding loading, and
the work presented in Appendix B are due entirely to Dr. S. Fersht.
Programs were developed by both Mr. H. L. Butler and Mrs, Mariann
Moore. The program manager was Dr. A. M. Soldate. Valuable

guidance was given to the program by Dr. C. Dudley Fitz,

This program was accomplished under the sponsorship of the Advanced
Research Projects Agency (ARPA) and was a portion of ARPA's effort
to investigate several problems related to the design characteristics

and operationai features of a high altitude tethered balloon system.




SYNOPSIS

A computer study has been made of nonsteady aerodynamic loadings on
a long, cylindrical cable of the continuous glass fiber-resin type used as
a tether for a balloon at altitudes of approximately 100, 000 feet. No ime-
portant interactions between torsional, longitudinal, and lateral modes
were found. Furthermore, the effects of lateral loadings from gusts or
vortex sheddings were found to be unimportant. Computer programs
are presented that enable computations to be made of cable motions

resulting from localized gust loadings and from vortex shedding

phenomena.

Ceriain laboratory and field tests are recommended for further studies

of the effectiveness of the continuous glass fiber-resin cable as a bal-

loon tether.
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I. INTRODUCTION

Preliminary system analyses have indicated the technical possibility of
establishing and maintaining tethered balloon systems at altitudes in
the order of 100,000 feet,

The practical feasibility of such systems is
critically dependent, however, upon the characteristics and properties
of the tether cable.
aerodynamic drag.

Cable width must be kept small toc minimize the

At the same time, the cable cross section must be
sufficient to carry the weight of the portion of the cable below or to

withstand the accumulated drag on the cable above.

A simple calculation
shows that constant diameter cables constructed of ordinary steel are

not capable of supporting their own weight over the height of interest.

Thus, strength, weight, and drag properties are intermeshed, and
trade-oftfs between these properties must be made.

If cable weight were the only problem, a possible solution could be
obtained by tapering or stepping down the cable diameter at lower

altitudes to decrease the weight to be supported, Drag force must

1
also be considered however, and these forces can only be balanced by
a restraining horizontal force at the ground terminal end of the cable.

Since the drag forces are cumulative (increasing toward the bottom), a
tapered cable must increase its diameter at the lower end.

The
to operate.

resulting hourglass shape would be correct for only one wiad profile.
The hourglass shape is also difficult and expensive to fabricate and

Similar results arc encountered in attempting to use balloons or kite
devices at intermediate altitudes to help support the cable weight,
Although such devices reduce the load requirements on the upper cable,
cable size.

the drag forces are increased considerably, requiring an increase in

Furthermore, the varying lift provided by aerodynamic

cable subsystem,

&
devices will create rapidly changing geometric conditions, possible
instabilities, and certainly will increase the complexity of the winch-
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Another approach for solving the cable problem lies in the improvement
of the cable materials. In searching for a suitable material, a high
strength/weight characteristic is one of the first properties to consider.
Fiberglass with a strength to weight ratio many times that of steel is a
strong candidate for the high altitude balloon cable. Owens Corning has
developed a combination of glasses w~hich, drawn in individual filaments,
displays a strength in the order of 106 psi. The Owens Corning
scientists have also demonstrated their ability to produce long multi-
strand fiberglass cables. Under ARPA/NOTS funding in the fall of
1964, Owens Corning drew a cable consisting of 30, 000 individual fibres
with an overall diameter in the order of 0.1 inch and a total length in
excess of 80,000 feet. The group of fibers, bonded together with epoxy,
has a strength over the total area including the voids in the order of
0.25 x 106 psi. Strength to weight ratio of this glass cable exceeds that
of ordinary steel cables by a factor of twenty. Furthermore, cost is
estimated as only 10 cents per foot. This constant diameter cable
should easily carry the required weight of the cable at the top end and

resist the static drag load at the ground terminal point.

Fiberglass has, however, a serious disadvantage in its weakness to
compressive and shear loadings. This weakness was clearly demon-
strated in a test flight accomplished in December 1964. In this test a
sudden failure of the cable occurred while the cable was paying out with
a rapidly rising balloon. Location and cause of the initial failure were
not readily apparent. It was interesting to note, however, thai ihe
sudden release of tension apparently allowed a compressive wave to be
generated which, as it propagated along the cable, caused the cable to
puff out the individual filaments at many locations. The cable broke

intc many sections and fell as shards.
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This esperience illustrates the basic need for an analysis of the dynamic
characteristics of the cable and determination of the possible occur-
rence and magnitude of compressive conditions in a balloon tethering
cable. From this analysis, it will be possible to gain a better under-

standing of the required cable material properties and dynamic charac-

teristics.

A complete analysis of the cable conditions can be accomplished by the

following steps.

a) An analysis of cable statics and dynamic characteristics at
the fully deployved condition (balloon at its float position)
when the balloon and cabie are subjected to an arbitrary

wind profile.

bj An analysis of the balloon, cable, and cable control during

launch and ascent for various wind conditions.

o) An analysis of the cabie and cable control during recovery

operations.

The study accomplished under the current program addressed the first

of these steps.

As a result of this study, it was determined that, at a fully deployed
state, the cable can be expected to be comparatively stable and that
the naturally induced vibrations are not expected to seriously affect a

cable constructed of fiberglass.

Field tests also have been suggested which will enable substantiation of

the conclusions drawn from the theoretical investigations.
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2. METHOD OF ATTACK

The general attack used on the problem of cable dyramics is to consider
perturbed motions from the equilibrium (steady state) shape of the
tether cable, the equilibrium state being determined by the balloon lift,
balloon drag, balloon altitude and by the drag along the cable as deter-

mined by the wind velocity profile.

The dynamic equations employed are similar to those usec bv NESCO
for an extensive and detailed numerical analysis of the riser and drill
string system of Project Mohole (Ref. 1). Accordingly, NESCO's
previous experiencs in appropriate numerical analysis techniques is

directly applicable.

The determination of the steady state profile will be discussed first.

TR




3. STEADY-STATE CABLE PROFILE

Practical considerations diciated the treatment of cable dynamics 1n
two-dimensional space coordinates rather than development of a three-
dimensiona! steady-state program. (The treatment of the stendy-state

profile can, however, be easily generalized to three dimensions.)

Geometrical parameters and coordinates are defined by Fig, 1. It may
be noted (in this figure) that altitude is taken as the x-coordinate, and
the lateral displacement is indicated by the y-coordinate; ds represents
an element of the original length, and dS represents an element of the

final length of the system such that

mods = mdS (1)
where
m_ s initial mass per unit length (kg/m)
and
My
m = is mass per unit length (in stretched condition)
with
C =1+ T {cable stretch factor)
EA
T = tension at element
E = Young's modulus
A = cross sectional area of cable

AN ET G ey

e

&




e

I e 1)
S:= (l+—E'T)dr

P=sin 8 = dx 7dS
Q=cos B = dysds

ds OR dS

V(X)

S 3¢

s=0 T — ——
GROUND LEVEL -
-y
0
Figure |
Definition of Axes
PA-3-10230

o




Furthermore, the angle between the element axis and the vertical is

designated as © where

P = sinf = s (2a)
Q - - &y :
= cosf = =% (2b)

Assuming a horizontal wind in the (x, y)-plane, the wind loading

norrnal to the element axis is designated as P, and
p, = p_Q (3a)

p, = -p_P (3b)

dx
&£ =r.cC (4a)
dv
= = Qc (4b)
dP C
B N
1Q P-C
;T =0T p,P - P, t mg Q (4d)
L J
[ ]
! = @ p. +t mg) P + p Q (4e)
ds L y

~1
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Assuming a horizontal wind of velocity v in the (x, y)=-plane, the

normal wind loading can be expressed as

P == ﬁgi‘l Cp(R) P°Dv M - (5)

n

where the Reynolds Number for the cable is taken as

R - !P-pl (6)
v
= a
P P,Q (7a)
= P b
N - (7b)
The following are input parameters:
D = diameter of cable, meters
EA = force, kgf - kilogram weight
m_ = initial mass/unit length of cable, kg/m
2
g - acceleration of gravity at sea level, 9.81 m/sec - used
as a conversion factor to express all forces in kgf
. 3
0 mass density of air kg/m
. L ; . 2
v kinematic viscosity of air, m /sec
A Boundary conditions are obtained from the followiny - + i cuiions:
a) For estimation purposes the balloon maey e cuasidered an
i a sphere filled with helium.  Assuming (cual pressurz
e~
inside and outside the balloon, the static L1 =
L = 7/6 B2 p(x,) 25/29 (¥
s =G ’h p(xl. 2 -gx/g o)

(;1\ is the value of the gravitational con~taint o0« -

8




b)

If the dead load, which includes the balloon's membrane

L

i‘pf’}t&%,? M f

«

and instrumentation, is W, the net static lift is

V, = L - W - (9)

where W is an input parameter in Kgf; Db is an input

o

c)

d)

parameter {diameter of balloon} in meters and { is the

initial length of the cable in meters.

The wind load on the balloon is

plx,)
H, = 7n/8 4
L g

2
D, T (R,) vix,) - |v(xL)|

(10)

in whicn the Reynolds Number for the balloon is designated

vix,)
1
) Pb

vix

4

where Yx) is the kinematic viscosity as a function

of altitude,

Boundary conditions are:

) at s = /:
\Y
B 2 2 _ £
T& = H! + V£, Plt _—T;’
2) at s =0 x=0,y=Y
9

'y

An initial guess for x and y is made, then

(12)
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The following data are required as input to the main steady-state

program.

a)

b)

A table of wind velocity as a functicn of altitude; the tabu-
lar velocities being denoted V(x). The profile can be of
arbitrary shape. The particular profile employed in the
present study is shown in Fig. 2. The interpolated values

of wind velocity are denoted v(x).

Subprograms to compute the quantities p(x)--atmospheric
density, ¥{x)--kinematic viscosity of atmosphere,
CD(R)--drag coefficient of cable (R is the Reynolds
number), C—D(R")--drag coefficient of balloon. Atmospheric
properties are essentiaily those of the ARDC Standard
Atmosphere (Ref. 2), the drag coefficients for a cylinder
and a sphere are derived from the literature (Ref. 3). The
expressions for these quantities used in the subpregrams

are:

1) Density p(x) in kg/r‘n3

p(x) = 1ol 1/4) - (x/16000)

. . . . . 2 -1
2) Kinematic viscosity ¥{x) in m“sec
Ux) is defined over three ranges of x

10-4. 823 + (x/26800)

-

x < 10000 meters v

< < 17000 meters v = 10->-035t (x/17100)

w > (L7000 sieters 1 = |0-5.2421+(x/14250)

3) Reynolds Number R(x) for the cable
Vo(x) D P(s)

T Ux)

R(x)

10
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Figure 2

Two-dimensional wind profile used for steady-state

profile determination
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1)

5)

+
-

Drag coefficient of cable CD(R)
CD(R) is defined over five ranges of Reynolds

number R.

R < 2.23 Cp = 10.8 g 02
R s 8.0 Cp = 9.15 R 526
R < 1000.0 Cp = 4.95 R-- 232
R < 10000.0 s = Lo
R > 10000.0 G =15

Figure 3 shows the range of drag coefficients for the
cable corresponding to the wind profile of Fig, 2.
For a cable diameter of approximately 0.01 feet, the
Reynolds Numbers are below (by two orders of mag-
natude) those for the transition region (R < 3 x 105).
On the other hand, the diameters of balloons are of
such 2 magnitude that transition will be encountered
at certain altitudes, For a 5-foot diameter sphere,

the transition region is encountered at about
50, 000 feet.
Drag coefficient of balloon q)(R’)

E[_)(Rf) ic defined over six ranges of Reynolds
Number R,.

R, < 1.0 Eri= s aR A0
R, s 10.0 EE - 27.4 R-804
R, < 100.0 T, = 16.OR7T
R, < 1130.0 q= .85 B =+
R, < 10000.0 c_[‘)' = 0.4

Ry > 10000.0 c'*; 0. 44
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Figure 3
Drag coefficient as a function of altitude for cylindrical cables

and small spheres corresponding to the wind profile of Fig, 2
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The method of solution is based on an iterative procedure employing a
fourth ocrder Runge-Kutta technique to integrate the systzm Eqs. 4a
through de along the length of the cable. Assuming initial values for the
altitude x and the lateral displacement y at s = {4, the tension T
and the dependent variables P and Q may be determined, thereby,
giving a complete set of initial conditions at the upper end of the cable,
Values for the altitude at the lower end of cable are obtained for various
values of x at the upper end by the numerical integration scheme. The
objective of this procedure is to choose the values of x at the upper
end in such a manner as to torce the sequence of values of x at the

lower end x_ to converge to zero (ground level).
o

1

The values x} and yi are input parameters and the result of the first

integration is xl (aswellasy , T , P, and Q ). Succeeding values
- o o' "o’ "o o

of x' are determined by

2
xi
i+1 _ i D
0 =%, =|7; (13)
fori=1, 2, .. .. :

The iterative procedure is carried out until the condition

X +l' < € (14)

is met, where €is an input tolerance.

b




The equations of equilibrium given in the final coordinate

system are

dx
ds

40
ds

dT
dsS

T

[(px + mg) Q - pyP
[p P - G) + mg) Q
LY * J

+ mgl)P + Q
(Px g) Py

where m is taken as mo and

x v, T, P, Qat S = S! are taken from the solution of the above

iterative procedure.

J

(15a)

(15b)

{15¢)

(15d)

(15¢)

(16)

With the use of the wind velocity profile shown in Fig. 2, a determina-

tion of the steady-state cable profile was made.

were the following.

Diameter

EA (Product of Youngs Modulus

X cross sectional area)

0.0025 meters

3.451 x lO4 kgt

The cable properties

o p—

g

=

Wi g é-?
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E 107 ps.1=1:

m_ 8.0 x 10°% Kg/m

Unstretched length of cable 36,000 meters

The balloon properties were taken as
Diameter 40 meters
Dead load 50 Kgf

(The properties of the balloon are not regarded as essential to the

problem, but must be sucl: that the system is stable.)

The results of the numerical example are the following: After five

iterations the program was terminated giving the results

s . 7 T p Q
m m m kgf
4 4 4 _
3.6 %10 2.75 x 10 2.0 x 10 957.1  0.973  -0.230
0.0 13.5 4.12x 10 746.6  0.427  -0.904
5. . 3687 x 104

!

The final configuration was then determined and is plotted in Fig. 4.
Agreement with the boundary conditions for x and y at the ground

level was within 80 meters.

A flow chare, listing and other details of the program, is given in
Appendix A, The output of this program is used as input to the

dynamics program,

*Private conv csation with Mr., Sheldon D. Elliot, Jr., gives a value
6 . ' .
of 7 x 10" psi per E for the glass fiber-resin cable., (Corresponds to

a specific gravity of 1,0,)
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4. CABLE DYNAMICS

Fhe primary purpose of the study of cabie dynamics is to consider
possible situations that could lead to the existence of momentary
siresses far in excess of those produced in the static or steady staie
loading condition. One possible situation is the presence of clear air
turbulence in a certain altitude zone. Another situation is excitation
by vortex shedding. A zcneral question concerns possible interactions
between various modes of cable vibration leading to stress amplifica-
tions. The possibility of the existence of important vibrational inter-

actions will be discussed first.

With the coordinate system of Fig. | generalized to three dimensions
by a z coordinate pointing up from the plane of the figure, and the
assumption that cable is reasonably vertical, it can be shown that the
c¢oupling between torsional and lateral vibration modes is expressed

by the following equations (Appendix B).

|2 (12 éy__a_(iﬁéx) 2 2 (,30 2a)
z“[*x(lax)+8x"xla.\'5x +5}{5}(15)(5}{ +mx

2
3"h

kb (17)
al

AN
2 2
B af. 3% 5
= -m—}- & A—(I'i'{'—ge (18)
a2 N N a

: 2 >
b 2 ' 3y 3"

Coemee— - — ] = 2 19
oy m =2 .\( = 2) (19)




Where G is the shear modulus; 21 is the polar moment of inertia; J is
the rotational inertial of the cable; 8 is the angle of twist (torsion);
m_ isa distributed torsional moment per unit length of cable
(nonexistent in the present problem), and py and p, are distributed
loads in the y and z directions, respectively, per unit length., I.ateral

motions are coupled to torsional motions through terms of the type

212621} 1 £ 1.

3x \9x Ix

The importance of the coupling can be considered by rewriting the

2hs of Eq. 17 as

2 2 2 2
2Gl1 —P,B 1+ ﬁ}. + 2 +1Q9L§_X+éﬁ?ﬁa_z; +m
2 Ax Ax A% Ax A Ax | 2 X
Ax A x "
= ths Eq. 17. (20)

The quantities azy/ 'oxz, a"‘z/ axz are essentially proportional to the
inversc radii of curvature in the yx- and zx-planes. From an inspec-
tion of Fig. 4, the minimum radius of curvature might be expected to
be on the order of 1 x 104 feet. With the assumption of a maximum

shearing strength of 200, 000 psi. the maximum value of the quantity

(A8/3x) is given by

7
~ 12 ft”

Lll
:D
3
)
E

(21)

Q@
o

(assuming G.. 4 x 106 psi)

The torsional wave velocity in the cable is (ZGI/J)1/2 ~ | x 103 ft—sec-l
If a purely cinusoidal torsional wave is considered, the ratio

(~8/ 3x)/(7a28/"vx2) =(A/27), A being the wave length,

Lo

Tt AR R
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For

o7
D

— 2
AT 0 T 3% dy 3y
Al ool Sy
o_Q Ax
axz

to be i the order of unity, therefore, the period of excitaliosn must be
about 100 seconds. For such an excitation period, however, the situ-
ation is becoming essentially that of static loading. Unless Jateral
excitations can decrease the radius of curvature greatly from

the static values, there would seem to be no effect of this type of

excitation upon torsional vibrations.

The effect of torsional vibrationg on lateral vibrations is considere”
by inspection of the magnitude of the term 2GI (36/3x) which cc urn
in Eqs. 18 and 19, This term is a torsional reaction moment and, with
the assumed cable properties, is on the order of 3 foot-pounds at maxi-
mum shear stress., When the cableloading N 1is considered to be on
the order of 1000 pounds, it is intuitively obvious that the torsional

excitations can have no effect on lateral displacements.

The discussion given on torsional-lateral dynamic couplings should
not be interpreted to mean that cable twist is not a possible problem
caused by rotation of the balloon. We assume, however, that the
attachment of the balloon to the cable is such that no transmission of
torque is possible from balloon to cable (or from cable to balloon).
The analysis of Appendix B (leading to Eq. B-20) shows. in addition,
that out-of-plane, steady-state cable configurations, 1i.e., static
threce-dimensional cable configurations will not contribute to torsion

if no ¢nd torque exists at the point of cable attachment,

Coupling between lateral and longitudinal vibration modes will be

considered next With neglect of torsion, the coupled dyramic

20




equations for two-dimensional cable configurations are (using the
coordinate system of Fig. 1j

2
d [ ax\ 3%
-a-S—(T-a—S-/ + px(t) -mg = m atz (22)
WA 52
a‘s‘(’rsé) e G mgj" » (23)

where S = S(t) is the deformed arc length at time t .

The defiormed
arc length S(t) is related to the arc length S of the steady-state
o
deformed cable by the differential expression

ds = dSo+ 35 dSO = dSo I+ =m—
(o] \ [o]

(24)
where N

is the tangential component of the displacement vector {vector

representing displacement of a given point of the steady-state shape to

its new position at time t by the influence of the dynamic forces).
Now

LT
= - 5 (25)
(, 4 et
If AT & Z% 105 Thy E = 10"

»si, and cable diameter = 0.01 ft,
(3m/3S,) = 0.018.

Therefore, even for a very large increase in cable
tension. the approximation 35 ~ dS, is valid.

s
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Eqgs. 22 and 23 by the assump-

The treatment of the dynamic equations,
state configuration proceeds

ticn of small departures from the steady-

as follows,
Let
X = x_+tu
o c
(26)
where Uer V. are the coordinates of the displacement vector from

the steady-state configuration in the Cartesian system of Fig. 1

Also let
. ~
T(t) = T+ TYt)
P (t) = p)o( + P;(t) ? (27)
= ® + t
py(t) py(t) py(t) )

With the use of the steady-state conditions (which are equivalent

to Eas. 4),
dx 2
3 ) _ 3" x
\ 35S (To 35 >+ Py-mg = m—~ (28a)
o dt
dy 2
| A (T Ko)”’ - i) (28b)
o 0 ot
H
¥ «ﬁ»x‘t
i
22

»z
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and the approximation ESO ~ 3S, Eqgs. 22 and 23 are transformed to

Tt 3%, B Bu_ , ot auc+ .
as as as aS \3s 35 35 T Px
0] (o] (o] 0

= m—C (29)

o2 iy_o),,zr_tiy_o”il LT e
oS AS 3S aS oS \3S oS aS py
o (o] o] o o o o o

= s (30) .

With the assumption that the terms Tt 3/ BSO(BxO/aSO), etc., are
negligible with respect to T 3/3S5 (3u/3Sy), etc., Egs. 29 and 30

become
. 2
aTt ax I T —wc §pt = a—uc (31} 4
35 as TS 35 Py = M™% '
o o o o ot
2
.t dy av Av
o1 o) o ( c ) t c
+ T=—1}]tp = m— (32)
BSO aso aso BSO y at2

Now, if the Cartesian components of the displacement vector are
rotated in such a way that the components are tangential and normal,

respectively, to the steady state shape,

u,= MNcos 6- Esin B (33a)
e E £cos B+ Msin B (33b)
‘here /
whnere dxo (ly() ;%
cos B8 = i sin 6= . (33c¢) t.'
o o
23
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Therefore,

. |
-’lcos 0 + cos 9—6- (Tﬂ) - sin 6—2- (,1_:?5_) +pt

3S 3S 38 3S x
o o o o o
2 2
F
= m/cos 9-8—72- - sin 6—2-8 2 (34a)
\ atz t

2. 2
= mjcos d-a—-z-i + sin 9—; (34b)
et ot
with the assumption that the terms 3/ BSO(dxoldSO), etc., are
negligible.
Multiplying Eq. 34a by -sin 6 and Eq. 34b by cos A and adding
the two equations,
- 2
3 A® t . t B 3~ &
= (TB_S-) - p, sin 6+ py cos 8§ = m 5 {35)
o o ot
Multiplying Eq. 34a by cos 8 and Eq. 34b by sin 6 and adding
thie two equations,
A t 2
3 L A t A
:_T-‘A—b-c-sgn-) p;_ cos 8 + py sin 8 = mJ2 (36)
0 [§) 8] At

Equation 35 is the dynamical equation for lateral vibrations; Eq. 36 is
the dynamical equation for longitudinal vibrations. Coupling between

the two equations ocenrs through terms depending upon Tt
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Stresses in the cable arise from the force T(t). Accordingly, con-
sideration is given to ways in which the dynamic component T' could
become appreciable. An obvious situation exists when the balloon
itself undergoes an erratic movement caused by turbulence--such
moments might result in a dramatic increase in cable tension through a
longitudinal signal; however, once the balloon is at altitude in the
neighborhood of 100, 000 feet, the forces exerted on it should be uniform
or slowly varying. A more interesting question is concerned with the
effect of turbulence on the cable itself. The incidence of a gust on a
portion of the cable wouvld cause¢ increased drag and a resultant lateral
deflection. If the lateral deflection is large enough, the cable would
undergo a local stretching which would then be distributed along the
length of the cable by propagation of longitudinal and lateral modes.

On the other hand, small lateral deflections would not result in any
appreciable increase in cable tension. (In the same way that the vibra-
tions of a stretched string do not cause an appreciable increase in

string tension.)

A turbulent gust was modelled in the following way. The maximum
amplitude of the gust is taken as 100 ft/sec, varying sinusoidally in
time with a period of 3 seconds. The velocity distribution in space

1s taken as a gaussian exponential form, the width of which at 10 per-
cent of the maximum value {at a given time) is 100 feet. The gust is

positioned at 15,500 meters (51, 000 feet).
‘The drag force is assumed to be normal to the cable. Therefore,

—pt sin 6 (36a)

T
1l

[)t cos 8 , (36b)

k=
1

.
where p is the normally exerted drag force.
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The drag force 1s given by the expression

dx 4
t _ 1 o{x) ( o) oot a;')
P =7 ¢ CD.dSO 2 (‘o“’ T

Where v, ® vo(x) is the steady state wind profile; vl = A singt - f(x);
A =100 ft/sec, w = 27/3; p(x) is the standard atmosphere density;
CD is the drag coefficient calculated as a function of altitude and rela-

tive air velocity, and D is the diameter.

The dynamic equation for the lateral deflection of the cabie is, therefore,
5 3F t d 4
a—s(T%)ﬂ’ = megs e

With the assumption that T(t) = TO , the dynamics program presented
in Appendix C, was applied to obtain the lateral deflection ¥ as a
function of time, starting the application of the gust velocity A sin¢t
at time t = 0. The deflections at the excitation midpoint (!5, C00 mecers
altitude) for approximately 3 cycles are shown in Fig., 5. Because the
dynamics program requires the solution of a matrix with dimensions
equal to the number of mass points chosen along the length of the cable
and because the spacing of the mass points was taken as 6 meters in
order to assure accuracy, it was found that the computer employed,
the CDC 3600, was not large enough to consider the moction of all points
on the cable. [his difficulty was overcome by the use of the artificial

end conditions that the lateral deflections from the static configuration
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were exactly zero at distances wzll remo'ed from the point nof excita-
tion. The points of the curve given in Fig. 5 were obtained with two

sets of end conditions,

a) at x = 15,000 + 2,500 meters
= = 0

b) at x = 15,000 + 5,000 meters
= = 0

Both sets of end conditions gave identical results, indicating that the
moticon caused by a lecaiized gust at 15, 000 meters was damped out at
both sets of end points. The lateral wave velocity at the 15, 000-meter
altitude point was approximately 1000 m/sec; with .ne relationship
between arc length and altitude given by the static configuration of

Fig. 4, it is found that a 9-second interval is sufficient so that reflected
waves from the end points at 15,000 + 2,500 meters altitude have

reached the midpoint.

In order to demonstrate the results of the dynamics program more
dramatically, the forin of the lateral wave for various points in time
is shown in Fig. 6 with the end conditions £ =0 at x = 15,000

+ 2,500 meters.

Because gusts are statistical and do not recur with any fixed period,
the usc of the sinusoidal excitation term is somewhat artificial., The
dynamics program is, however, perfectly adapted to the use of a
transicnt excitation. In the example chosen here the first 3
scconds or, indeed, the fir it 1.5 seconds of behavior could be taken

| as representative of a gust. It is believed that the gust amplitude and

period are conscrvative,
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Lateral displacement along cable for three times after

initial gust excitotion
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The displacements shown in Fig. 5 are of the order of 1 meter at
best, With steady state radii of curvature of the order of 104 meters,
a l-meter displacement will not significantly change the cable tension.
For_example, assume that the cable length increases by (104 it 1) -
10? /!04 = 10-4, as a fraction of the original (steady state) arc length
at a point of l-meter cable displacement. With the cable properties
employed, the cable tension (load) would increase by 10-4 x 3,451 x

104 ~ 3 Kgf, whereas the steady-state tension is approximately 800 Kgf.

it is concluded, thereiore, that the effects of gust loading on a tether cable

already heavily loaded does not seriously affect cable tension.

50




5. CABLE LOADING FROM VORTEX SHEDDING

In the project quarterly report (Ref, 4), the statement was made that
vortex shedding loads were not considered to be important. A further
analysis of the problem was made and is presented in Appendix D.
Previous conclusions that vortex shedding loads are not important were

verified.
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6. CONCLUSIONS CONCERNING POSSIBLE CABLE
LCADING PROBLEMS

With the use of a typical, steady-state wind velocity profile (in two
dimensions), it has not been found that interactions between tcrsional,
longitudinal and lateral, vibrations caused by unsteady wind loading
conditions are important, Indeed, unsteady wind conditions along the
cable have not been found to rause important dynamic loadings by exci-
tation of any one particular mode. It would appear that balloon motions
are much more important than are direct cable loadings in causing
cable stress changes. It has been shown that the cable is weak in tor-
sion, and certainly no coupling should e allowed to exist between the
cable and the balloon that would permit a crotating balloon to exert

torque on the cable.

[t is entirely possibie that balloon motions and the weakness of the
cable material in compression might give rise to destructive effects

in the 10ongitudinal mode. This may occur when a downward motion of
the balloon is suddenly induced during ascent, when the length of tether
is short. The cable, normally under heavy tension loading, is momen-
tarily relieved at its upper end and an unloading (compressive) signal
is propagated al.ng the cable length. This compressive signal should
travel with essentially undiminished amplitude until reflection occurs
at some point of cable attachment, e.g., at its mooring point. Now
reflection of a compressive stress from a rigid attachment leads to a
doubling of compressive stress and, hence, to the existence of a net
compressive stress in the cable. Such a compressive stress {equal in
magnitude to the original tension stress) might well be very damaging.
On the other hand, the effective point of cable attachment may not be
rigid; for example, termination at a partially wound drum, and the
reflection of the compressive signal might be greatly lessened in

severity,




7. RECOMMENDED ILABORATORY AND FIELD TESTINC OF CABLE
DYNAMIC EFFECTS

The following tests are recommended,

a)

Laboratory tests on the effects of the sudden reduction of
tension loading cf the glass fiber-resin cable near auchor
points of differing types. Anchoring configurations that

should be studied include

1) a solid, vise clamp
2) a partially wound drum
3) a mass of appreciable inertia solidly clamped to

the cable between the anchor and the free end

High altitude balloon field tests should be conducted with
special emphasis on cable motions. Measurements of
cable motions could be made by suitably mounted acceler-
ometers at intervals along the cable with data telemetered

by radio transmitters.

Although the load of the transmitters should be impercep-
tible on the cable, this load canr be reduced by supporting
the transmitters on small balloons. In this case, drag .

from the balloons would also be imposed on the cable,

The additional balloons would also allow measurements of
wind speed, wind direction, and atmospheric conditions at
desired intervals, Thus, motions of the cable in known

wind fields could be correlated.

The overall configuration of the cable could be made visi-

ble by attaching markers such as flags at regular intervals

33




along the cable as it is payed out during ascension. The
string couid be photographed from a distance or visual
observations could be made by telescopes mounted for

triangulation.
Cable tension at the balloon and at the ground as well as the

cable angle at these two positions would, of course, be

important
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8., SUMMARY AND CONCLUSIONS

A computer study has been made of nonsteady aerodynamic loadings on
a long cable of the continuous glass fiber-resin type used as a tether for
a balloon at altitudes of approximately 100,000 feet. No important
interactions between torsional, longitudinal, and lateral modes were
found, Furthermore, the effects of lateral loadings from gusts or
vortex sheddings were found to bc unimportant. Computer programs
are presented that enable computations to be made of cable motions
resulting from localized gust loadings and from vortex shedding
phenomena. Theoretical results obtained to date indicate that the high
strength-to-weight ratios obtainable with the continuous glass fiber-

resin cables will lead to an effective tether for high altitude balloons.

The present dynamic study has been concerned with cable behavior in
the fully extended configuration. It is believed that benefits can be
obtained by extending the study of system dynamics to include the motion
of the balloon and cable during launch, the period in which the balloon
rises to its maximum altitude, and recovery operations. Such a study
should also delineate the effects of a streamlined cross sectional cable
shape and other techniques for reducing aerodynamic drag. Such a
reduction in drag might have an effect on steady-state configurations
and balloon behavior during the rise period. A study of this type might
also better define the way in which the cable should be payed out during
the rise period (for a given wind profile) and would thus enable wind

performance to be specified more effectively,
Certain laboratory and field tests are recommended for further studies

of the effectiveness of the continuous glass fiber-resin cable as a

balloon tether.

e b .

o

FOE

x




PR

‘f“kg

P

AR

B

0

REFERENCES

NESCO Staff, "Structural Dynamic Analysis of the Riser
and Drill String for Project Mohole, ' Parts I and 1I, National
Engineering Science Co. Report No. S-234, January 1966

Handbook of Geophysics, U.S. Air Force, Air Research and
Development Command, Revised Ed., MacMiilian, Co.,
New York, 1960

H. Schlichting, Boundary Layer Theory, McGraw-Hill,
New York, 1960, p. 16

NESCO Staff, '"Dynamic Analysis of the Cabie Portion of a
Altitude Tethered Balloon System, ' Contract N0O0O14-66-
C0187, Quarterly Report, July 1966

Phillips, O. M., "The Intensity of Aeolian Tones," Journ. of
Fluid Mechanics, Voi, 1, 1956, pp. 607 - 624

Weaver, Jr., William, "Wind-Induced Vibrations in Antenna
Members, ™ Journ. of Eng. Mech. Div., Proc. ASCE, Vol. 87,
1961, pp. 141 ff

.13}




APPENDIX A

STEADY-STATE CABLE PROFILE PROGRAM




B

Neotation
D diameter ot cable (meters)
Z\

EA  force (Kgf")

AMO mg = initial mass/unit length (Kg/m)
W weight of balloon (Kgf)
G gravity at sea level (m/secz)

DIST 4 = length of cable (meters)

XL xy = initial altitude (meters)

YL y; = initial displacement (meters)

EP € = toleraace defining the co1 vergence of the
sequence of altitudes computed at the lower end of
the cable (meters)

DS! LS = arc length step size {(meters)

PN number of intervals desired in final integration
PNP  printing interval (i.e., print every PNP step)
DSB  diameter of balloon (meters)

PITER maximum number of iterations performed to
obtain convergence
OPTION a flag such that:
I = spacial history of cable is printed after
cach iteration
0 = omits this printout
AP a flag such that

I = cable information is written on tape for use
in dynamics program

0 - omits writing information on tape

Gyt

g
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Required Subroutines

RUNGS

DERIVE
EROR
RHOX

NU

CDR

CDBAR

INTER

Required Data

4th order R-K integration routine for lst
order system

evaluates lst derivatives

gives error code and aborts program
computes mass densily versus altitude
computes kinematic viscosity versus altitude

computes drag coefficient versus Reynolds number

for cable

computes drag coefficient versus Reynolds number

for balloon

uses linear interpolation to obtain wind velocity

versus altitude from a given table

FORTRAN Math
Quantity Symbol Units Test Case
D D m 0.0025
EA EA Kg f 3,451 x 10%
AMO ™ Kg/m 8.0 x 104
W W Kef 50. 0
G g o o 9,81
DIST 1 m 36000. 0
XL xb m 28000, 0
D Y4 o 20000, 0

30
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Required Data (contirued)

FORTRAN Math
Quantity Symbol Units Test Case
DL Not used-leave
field blank
EP € m 10.0
DSI AS m 6.0
PN PN 6000.0
PNP 10.0
PSB Db m 40.0
PITER 6.0
OPTION 1.0
TAP 1.0

Tabie of x vs. v (x)




Flow Chart for the Numerical Algorithm
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rROGA AN BALLOON

LoMPUTES STATIC Di+LeCTION = UNITS IN M-KL=-SEC

JlMENSTON SS(IOUG)'XSKIVOO)vYSKloﬁb)vpﬁ(1000)0&5(1000)oY(D)nYPl5)'
AncAo(?;'V(IUODoxvllvO)'TSS(iUUOD)vlS(lUUO)oXbSi10003)0955(10005)
Lo MUN NoNSaERTovexVeDsAMO st AsColSD

COMMUN 71/ XS5 9559XSeYS

ReAD (6Q0403) (FemD1)e]=109)

FORMAT(9A8)

IF {HEAD(1)) 4+5:4

CALL EXIT

READ (60s1) D'EAoANOoW'QoDI;ToXLvYL'DLvtPoDSl'PNoPNPoDSu'PlTER
12OPTION,TAP

FORMAT (5E1446)

HNPzPNP

REAL (50,2) No(XVII)eViI)el=19N)

FORMAT (11571(621246))

ARITE (6 +3) (neAD(1)e1=109)

ARITE (6 +9) DetAeAMDsnsGoDISToXLoYLoDLs EPsDSIPNsDSB

FORMAT./6H D = o]1E1Se5+7H EA = +1E15e597TH MO = 21E15e596H W =
11215e%96H G = 91cl1%e5//78H DIST = 41E15e5:7H XL = 2161550710 YL
22 91E1%e517TH DL = +1E15e5 7/76H EP = +1E1Se508H DS
3] = sdcinevelrn Pih = o1clDe59bit DSB = slelded)

LOGIC: ]

UPR=015T/7100.

UL=DL

LL=0

ITtRAT=1

JT=PJTER

NINP TNAP
GO TQ (1191341419 L0GIC
LUGIC=LuglC+]
CALL R-UX (XLWRHC)
CALL MU (XL eGNU)
NE=1
CALL INTER (XLeVeXVaSVL)
KL=AB3{SVL*DSs/GNUY
il COBaK (R eCDB)
Lot 13T EobRHUROS LR 3-W
e 3.0 9C31 % Uk U tUSOREZRSVL*¥ALSISVL)/G
T Tl **24(V %%2)
RERRT A I W
Wil /T
Yil)=XL
S12Y=YL
Ti3y=TL
Yta)apPL
vivlEdi
b,
il
> OISt
7 g2 SH
o=y
Uil CNGS LS D3SehaYeYPSID)
TLS =Y L3)
oL TLPR
J-1
YA -
YobUY - Y ()
Yolldl= Y(2)
faldy=s Y{(3)
Patdys Y(4)
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91
35

92

94

o (2

o

1v

L3t Y5}

CALL RUNGS

i=.¢]
ISStly=vq

3

1S10Se2eYsYPHID)

IF (OPTION) 91492491
1F 1D157-5-0PRS)  92+95095

1)
2)
3
4)

DPRS=DPRS4DPR
J=Je}

S51J)1=%
XStJd)1= v
YStJy= vi
TStJr= vi
PSiuy= Y
aStJ)= Yt

5)

IF ts-.CCcCD)

10746

(SSUTTNeXSEIT)eYSUIT)oTSEITI0PSUTITNwSUTIT)»il=10Jd)

If (UPTICN) 949506294
SEENED!

SStJs) = S
X51J49) - YD)
YStJJ) = vi2)
IstJ2) = Yi3)
PStLJJ) = Yi4)
PRISANS B X -2
Rl TY (6 e 18)
GO TC 30
LOuilLOGICe]
Yl=Ac3(Yil))

ITERAT=1TeRAT+]
IF ey (i) )=EP) 20020486

I[F (178RAT=-JT)

XL=x{-Y(1)/2.

¢co 10 8

26937487

IF (A:StY(1))=Y1) 15916016

YizAeSUY(
G 10 24

1

ALSAL*11/60

NIEINRED Y

WS TU 8,540 HKL
e ML nRuR(])
sl Wl Te {6 seb)
Pod AT [ 1artl I VERGLNCE)

savife (e

vlod

DISTaXLaYLaTLPL sl oSelYiJ)eJz105)

FORMAT (/779K e1HS» 16X e 1HX 9 18X s IHY s 18X s LHT 918Xy 1HP » 18X s 1HQ//

1(5E1%67))

UM le+ (TSSU1I+TSSUINN/Z (2. #EA)

It = 1-1

-

DO 4y J=2011

SUMTIU R 1e 4 TSSISI/EA)
St = SUM # DS
aITE 16 9651 SUM

teadAT (/77 16K TOTAL LENGTH = »1E1846)
YL o= YL =Y (2)

S = suM
v

Y(4)3PL

=SUM/PN
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60

62

61
64

163

BUUY FORMATUIH1917925H POINTS AT A INCREMENT OF+»E15484912H STARTING ATy

Y(5)=qL

SS([) =S
XS(1) =xL
YS(I) =YL
S11) =TL
PS(1) =PL
G5(1) =GL
ENT=1,
ID=¢

XSStly=sY( 1)
TSs8l)=Y(3)
PSSI1Y=Y(4)
CALL RUNGS (SsD5952Y»YPs1D)
CALL RUNGS (59D5s5sY»YP»1D)

REIRS!

XSSt1i=Y(1)
T55011=Y(3)
PSS(1)=Y(4)

IF (1 ~NNNP) 61,62+62
HNAP =NNNP+NNP

J=J+1

55(J1=8

XS56J1= 7(1)

YSiJ)= Y(2)

TS(J)= Y(3)

F30J1= Y(4)

wS0J)= Y(5)

IF (S=-+0001) 64464460
JJ o= g+l

5SiJJ)
XS0
YS(JJ)
TS(JJ)
PStJJ)
QsStJd)

S

Yil)
Yi2)
Y(3)
Y(&4)
Y(5)

WRITE (6 +168) (SSILYIsXSILY»YSIL) o TSIL)PSILYsyuwdS(L)sL=1y4J)

IF {(TAPY 163,10001163
WRITE {6,8000)1.DS1sDIST

1£15.8) .

WRITE (2) (XSSILIWL=1s1)
WRITE (2) (TS5S(LYsL=141)
wiRITE (2) (PSSILYIWL=1s])

60 T0 1000

LD

SUBRCUTINE RHOXI(XsRHQ)

MASS DENSITY VS ALTITUDE
RHO=425-%X/16000,

RHO =10, #%RHO

RETURN

END ,

5UBROUTINE KU {X5GNU) A
KINEMATIC VISCOSITY VS ALTITUDE
IF (X-1000Ce) 1912
GNU=~06e45823¢X/26800s

GO 1O 5

i (X-17T7004¢) 393,4
UNUSX/1T1C0e-%e039

G0 TO %

4 GHUSXZ14250e-5¢2421

GNU:IO-"GNU

b
-

&

o

iny




PRER

RETURN

END

SUSROUTINE INTER (XLoeVeXVsSVL) .
e GIVEN TrE ALTITUDE, THIS ROUTINE INTERPGLATES LIKEARLY TO
C UBTAIN Tht wiRD veLuClTY FRULM INPUT TAbLE

OIAENSION  VHICOU) exVL10WVL)
CI“MON NsNS
NHNN-NS+]
IF {XL=XVINN)) 59596
6 nS=2
5 D0 1 I=NSsN
JasN=1+¢1
IF UXL=-XVIiJd)) 14344
3 S5vL=viJ)
GO 10 2
4 OSVLEAVIJ+ 1=V P HIXL=XVII+1) I/ UXVII+13 =XV (J) ) +V(J+])
GO 10 2
CONTINUE
2 NS3J+)
Kt TURN

END
SURROUTINE CDBAR (RLsCDO)

URAG COLFFICIENT VS REYNOLDS NUMBER FOR BALLOON
IF (RL=1.C) 141,42

1 Co3=27.4*RL#*#%(,96])
GC T0 10

2 IF {RL~10e) 34394

3 (Uo=CT el *RLAR(-,504)
eJ TO 10

& 1F (RL-100+) 54546

5 CUU=16.0%RLE**(-,572)
GO T0O 10

6 IF (RL=113041 74748

T COB=2T7425%RL*¥%(-44)
GO0 170 10

8 IF (RL=Y0UOC) 949,511

9 (DB=.4
GO 10 10

11 (DY=e44

1v RETURN
END
SUSBROUTINE  RUNGS (XcH!NcYcYPRIMEcINDEX)
X INOCEPENDENT VARIABLE
H INCREMENT DELTA Xy MAY &E CHANGED IN vALUE
N NUMBER OF cQUATIONS
Y DEPENDENT VARIA®G!' & BLOCK ONE DIMENSIUNAL ARRAY
YPRIME DERIVATIVE olLOCK UNt DIMENSIONAL ARRAY
THE PROGRAMMER MUST SUPPLY INITIAL VALUES OF Y(1) TO Y(N)
INDEX 1& A VARIABLE WHICH SHOULD BE SET TO ZERO BEFORE EACH
INITIAL ENTRY TO THc¢ SUBROUTINEs [4Ess TO SOLVE A DIFFERENT
seT OF EQUATIOANS CR TO START WITH NEW INITIAL CUNDITIUNS
THe PROGRAMMER MUST WRITE A SUBRCUTINE CALLED LeRIve wHICH (oM~
PUTES The DERIVATIVES AND STORES THEM
Tre ARCUMENT LIST IS SUBROQUT [Nt DERIVE(XeNsYsYPRIME )
DIMENSION Y(S)vYPRIML(5)'nQ!S)cl(5)|W1(5)!w2(5)!w3‘5)
IF CINDEX) 5,591

—

o

(AN o WAl I IaN

[N S i it

¥

1 D0 2 I=1,N
wllhy=HeypRIME(])

2 20D =Y 0+ (Wl )*e5)
AEX N/ 2,

CALL DERIVE(AsN+Z 9 YPRIME)
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o

00 3 1=1sN

w2i1)=h*YPRIME(])

Z(1)=y(l)+e5%W2(1)

AzX+H/ 20

SaLl DERIVE(AsNsZ s YPRIME)

oc 4 171N

4311 )=H*YPRINME(])

U =Y UTY+W3 ()

A=X+H

CALL DERIVE (AsNsZs+YPRIME)

00 7 121,N

Nol1)=H®YPRIME (1}

YUID2Y U1 )4 ({02 (W2(I)+W3LT1))I+WilI)4wa(]1))/60)

X=X+H ’

CALL DERIVE (XsNsYYPRIME)

GO TO 6

CALL DERIVE (XsNsYsYPRIME)

INDEX=1

RETURN

END

SUBROUTINE DERIVE (XsNNsY»YP)

DIMENSION VI100)oXVI1I00)sY(5)sYP(5)

CO4MUN NoNSIENT oV aXVeDrAMOEAGDSB
=Y (1)

CALL RHOX (ZyRHO)

CALL. NU (Z1GNU)

CALL INTER (ZsVeXVeSVL)

R=ABS(SVL*D*Y(4)/GNU)

CALL CDR (ReCD)

PN = o5#RHOCDRY (4 ) ##22D*SVLRAESISVL) /G

PX = PN#*Y(5)

PY = ~PN#Y(4&4)

IF (ENT) 19241

DEM= le+ Y(3)/EA

AM=zAMO/DEM

POM=PX +AMRG

YP{1)=Y(4)*DEM

YP(2)= Y(5)*DEM

YP(3)= (PUMRY(Q)+PYRY (5))*DEM

YO () =YPL2)%(POMRY(S5) —PY* Y(4))/Y(3)

YP(5)= YP(1)#(PYRY(4)-POMRY(5))/Y(3)

RETURN

PGM= PX +AMC*G

YP (1) = Y(&)

YPL2) = YI5)

YP(3) = POMREY([&4)+PYRY (D)

YP(4) = (PCHRY(5)-PY*Y(4))I*Y(5)/7 Y(3)
YP(5) = (PYRY(&)-POMN*Y (D) )*Y(4)/Y(3)
RETURN

END

SUEROUTINE CDR(RyCD)
DRAG COEFFICIENT VS REYNOLDS NUMBER FOR CABLE
IF (R=~2423) 1sly.
CD=10,6*R**(~0T42)
w0 10 10

IF (R-8.0) 3394
CO=G415#R*#(~4526)
L0 T0 10

IF (R=1CC0.0) 54546
CO=4eF5u%%(-4232)
GO 10 10
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IF (R=-10000e¢) 7,748
CD=100

00 10 10

CD=ie15

RETURN

N

SUSROUTINE EROR (1)

I=1

WRITE (6101t |

FORMAT (134 ERRUR CUDC =+115)
CALL EXIT

RETURN

END
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APPENDIX B

SIGNIFICANCE OF TORSION
by Dr. S. Fersht
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Consider a three-dimensional right handed Cartesian system of co-
ordinaies (x.vy, z), fixed at the top of the riser with x (vertical) directed
downwards. In each horizontal section of the riser we have three forces

and three moments in the direction of the axis (Fig. B-1),

Considering an element of the riser there are, in addition to the internal
forces and moments, external loads and inertia forces in the y, =
directions. Finally, a distributed external moment m_ will be consid-
ered. Coupling of motion in the "x'' direction with "y", ''z' motion is a
separate problem which is not considered here, so there is no equation

for "'x' motion.

Deflections due to shear, and rotational inertia about axes normal to

the detlected shape of the riser, are factors which need be considered
only when there is reasor to expect deformations in modes whose wave
lengths are in the neighborhood of the diameter of the riser. For the
riser, major exciting forces with periods lower than 0,003

scconds would be required before the inclusion of the shear and rotary
inertia would be warranted, and those complicating factors are therefore

neglected.

I'ne remaining equations of motion for the elemental Fig. B-1 are
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. from Eqs. B-2, B-3, and B-4,

e

¥V

3

X X

2

BN X ~M . ~M 2
X |y Yy, 22 z -2 ¢]
X B X X  Ax N tZ

We now find the stress strain relations for the beam.

B M [
X, __\_ b e = Z = ] |: 3 (:)—/ ¢ | —
X & A X ~x/

2
)
> (B-5)

At

/Ry /g © . .
Since =/ °° l K-:—‘z:/ << 1, the last equation can be written

(B-5")

In order to

uncerstand the geometry of deforrnation of such a beam, and derive

the stress strain relations, we have to use some of the concepts of a

space curve.

that the cross section of the riser has circular symmetry.

In our case the problem is mcn simplified by the fact

This

permits each point along the axis of the riser in the deformed shape to

be described by a radius vector

(B-6)

where 1. j and k, are unit vectors along the axes of the coordinate system,

Assuminy that

T

= ds ~ dx

the unit vector tangent to the deformed riser is

—

= .(li -~ bl -\—)— _] + TEK
ds 25 s X
52
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I'he plane in which the riser lies at each ponint is tl.e osculating plane.
This plane is determined by two vectors; the vector t and, a unit vector

n which is normal to the riser. It is known from differential geometry

that
- - 2 2
= A - r o A —_—
—'-—ES ~ :_E = l n = i..t\; j o+ _z k (B-S)
X p Ax‘. 2

where p is the curvature of the deformed riser, measured in the
oscillating plane. The unit vector normai to t and n, i.e., the unit

vector narmal to the osculating plane is,

By AZZ N N :?'Z N
b =txn = S SSRGS R, (R-9)
25 15 B p(ax_z Sy & o i
Ax A Ax Ax
Elastic relationships for bending and torsion are
M \ z

U 25 . D (B-10)

] El ’ Ry 2GI
By ordinary sign con: ‘ons, the bending moment vector for a cross
section with an outer normal t, is in the direction of b, while the

torsion moment vector is in the direction of t. Using Eqs. B-7, B-8,

B-9 and B-10, one can write

2 2 L 2
- By o g2z 22y pizc, e XY o(son
M}) b = b = EIKAX A_Z - ;—2}] - EI-\—ZJ+LI\_Z kU )
X ~X X
19 = 2 G2 F = T ¢ TXF T2 F (B-12)
X X . |

The sum of the components of these two vectors along the axes are,

) ) 2

Ay & p ATe N
=i ¥ s A _).

tilgy = LB B8 &5 = ol )
N X




Ay

*%}%

_ By ¥s
M, = TxZ - El ~ (B-13)
2
p A
M = T<2 +EI-XL
z A N 2
X

Using Eqs. B-1, B-3, B-4, B-5, B-10 and B-13, one obtains

- 2
A /AN Ay D /, 30 ﬂ) Az A ( N 2z\ _ xc9
26 U P U o P s Ui st ™ T (B-14)
2 2 2 2 2
3 A y A A A > by
2<EI z)* 2 2<CISQAZ)'T<N%Y')'}° :'m'2+a_<J¥A6)
- 3y = X X X X y At X XAtZ
(B-15)
2 2 2 2 2
~ Ay A A Ay R
2<EIA Z>_2 A (Glig—y)-\ <N>_Z>-p = -ma_z._ié_)\_g>
. >x2 AXZ X AX b 2x z 3t Ax X ¢
(B-16)

The last term on the right side of Eqs. B-15 and B-16 is small compared
to the other terms, and may be neglected.

We now have differential equations for the three unknow: functions,
y(x,t), z(x,t) and B{x,t). For the static case this system of equations

can be reduced to the form

\ A1, dy 4 (dyy | de (g de) _
- x| @ gx N AN B an L gl e SO (B-17)
% ¢ 12\ @ /o d d |
(¢ C Y‘ _E a0 El -
2 (EI ¥ ' 2 (de,’ dx (N ax/ Py (B-18)
dx dx dx
2 2 2
d ( dz- 4d ('F dy, _ d_ gi_z) _
2 2 2/ 2 dx dx <N ax/ - Pg (B-19)
dx dx dx
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These equations of stati:s may be used to gain quantitative knowledge
about coupling between bending and torsion. Let us begin with the

effect of out of plane bending on torsion. Assuming that m_ = 0, one
can see that the last two terms in Eq. B-17 represents the bending effect

on the torsion. Equation B-17 can be readily transformed into the form,

2 2 2 2
T (L) + (&= ] T4+ {d (E)J - :
dx [l + dx * x) * 2 dx[l * \dx i dx 0 tB= L7&)
2 2
\
Dividing Eq. B-17a by T [l + (%} + (g—:} J, one obtains

14t 1 L0+ +(@]-0  am
T dx 2 dx dx dx) -

1
2 2
26
L+ (dx) ¥ X
Integrating this equation gives

T =i [1 " (\%)2 " (%E)ZJ- e (B-20)

Thus, for the small angle theory assumed throughout and verified by
calculations, the torsion in the beam does not vary with 'x'' unless
there are external moments, m_, applied continuously or discretely
along the length of the riser. Out of plane bending does not create

torsion loads or stresses.
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APPENDIX C

CABLE DYNAMIC PROGRAM--EFFECTS OF LATERAL GUST LOADING
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b
——

Equation of Motion

= 2 plx_)
9 a%\ 9" g m 2
E(Tmag) =M 7 Tz PpBmPm
-[(v +vt-a§)v +vt-a€-v v ]
o t 0 t 0 o
m m m!
where

2. 3<xm = xmid)z
- Az
1/4 G‘Al - Xp2)

bcund the forcing function vt, otherwise vt =0, and

vt = (Asina@ exp

Xpp and X,

X hid is the cable segment midpoint.

Difference Analogue

1

g g = 15 - 28
W[Tm('mu,ml+2’m+l,n+gm+l,n-l “m, nt! Zsm’“

(a1l

- _ £
m,n-l) Tm-l(gm,n+l +?'gm,n+ gm,n-l “m-1,n+l

- 2{'m-l,n h ;m-l,n-l)]
me 2 t
= = - 2% c - B
) A ) (bm,n+l 2'm,n * bm.n-l) p(xm)DCD(Rm)pm Vg V¥
t m
L 5m,n+l - gm,n-l v + \'t _ sm,n - gm,n-l
24t o At 3
m
S T
o o l
m m

= 0, where m=1, 2, ..., M
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Initial Conditions

LA H]
1]
o

m, 0

where m=1,2,...,M

Method of Solution

- [ E =1
W A 1), 5kl Do, mil * O, mtd fikl il © Dppe 19X
m=2,...,M-1, then
A 2 --—Z-—Atz T
m-1 4AS m,_ m-1
2
2 Atp(x_ )DC_(R_)P
B, - 1+—At2 (T_+T__ )+ m—__D . m m
m 4AS m_ I gm,
z _ e ]
Ay +vt_<>m,n >m,n-l>|
o ot
m .
E = --—2——-“2 T
m-1 44AS m_ s
= = _E _ z £ _92¢8 - |& _
Dm-l me,n "m,n-1 Cm-l(2>m+l,n+ m+1l,n-1 me,n STy l)
- = s -3
i Am-l me,n * “m,n-1 "~ 2gm-l,n >m-l,n-l)

2 s c
) Atp(x_)DC (R )P - <>m’n - >m,n-1> _
4gm o at °m,n-1
o m
At’p(x_)DC(R_ )P t t
m D"'m' " m |v v - v t+v v + v
E 2 °m| °m °m °m

gm, '
T-m n_ gm n-1
* At
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The coefficients A , B , C and D define a set of M-2 linear
m m m m

equations for the unknowns Em n* (m =2..., M -1). These coefficients
<Il,
are expressed in terms of the previous displacements §m n-1°
,n -
which are assumed to be known. The matrix of the linear

E“m, n-2
system for the §m n takes the fcrm of a three term M-2 by M-2

H]
band diagonal matrix. This matrix is triangularized by use of gaussian
elimination techniques and is readily inverted, thus yielding the solu-

H]
point-by-point in time, beginning with the initial conditions for €

tion for the E . The solution for the El is thus carried out
m,n ,n

’
2

1. e., Em = 0. In other words at each time nAt, the coraplete set
:‘m . (m =2,.., M -1) is obtained and then together with previous
H}

z etc., is used to solve for the complete set £
m,n -1

m, n +1°

If the following computations are made initially,

Cl

G =) el
1 B1
D

1

D [ ..
1 Bl

The generating sequences may be given for m = 1,2,...,M-3 as

Brigll = Boam 28 L0C =
c - cm+l
mtl Bm+1
D - Dl 2l D
mtl B

m+1

*(The subscript m labels the space net; the subscript n labels the

time net.)
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Following the computation of the above sequences, the solution for

Z(m,t) may be written for m =M - 2, M-3,...,2 as

un

M-1,n+l - PM-1

: bl -
°m,n+l Dm-l Cm-l€m+l,n+l

Required Data

a) Input constants . m_, g D

b) Static results. x(S), T(S), P(S) at intervals AS, cable segment

endpoints xl(S) and xZ(S)(x1 > xz) and endpoints of forcing

function range xAl(S) and xAZ(S) (xAl > xA?.)*

c) Suppsrting susprograms to compute, vy P, CD, and v

“Note: For the remainder of the discussion X will be used in place

of x for the altitude coordinate,

t0

. e e L T VLY . 2

L.

T T SESSER
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Card Input to Program Balloon

Columns 10 20 3C 40 50 60 70
Card | NDA NMO NYR
Card 2 NTAB | NXPRT | NVEL
Card 3 IDEBM | IDEBB IDEBA | IDEBG | IDEBS
Card 4 X1 X2 EPS TTEST | DTPRT | DTMPRT | DT
Card 5 DS G D EMO XBALL | SBALL OMEGA
Card 6 A XAl XA2 XMID 4;
Columns 12 24 36 48 60
Card Group 7 XV(1) V(1) XV(2) V(2) XV(3) V(3)
XV(NVEL|V(NVEL)

Tape Input to Program Balloon

Logical tape 2 contains 3 binary records.

a) Record 1. X{(1),...,X(NTAB)
b) Record 2. T(l),..

c) Record 3. P(1),..., P(NTAB

Nomenclature

NDA, NMO, NYR date

NTAB

NXPRT

results (i.e.,

., T(NTAB)

61

number of data points tabulated by static program

increment in X to use in printing the cable section

print every NXPRT x)

——
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NVEL

iDEB

X1

X2

EPS

TTEST

DTPRT

DTMPRT

DT

DS

EMO

XBALL

SBALL

OMEGA

XAl

XA2

XMID

number of entries in wind velocity tables

card--leave blank--used for debugging

X wvalue at upper end of cable segment, meters

X value at lower end of cable segment X1 > X2, meters
€ = tolerance for deflection at ends of cable segment

time to test the program and halt at the first min and
max after t = TTEST

increment in t to use in printing the cable section

°

results

increment in t to use in printing the time history of

the cable section midpoint

At = incremer. in t to use in evaluating the differential

equations

AS = increment in S at which the static date was

recorded, meters
gravity at sea level, meters/sec
diameter of cable, meters

m0 = initial mass per unit length of cable,
Kg/meters

x-coordinate of balloon, meters

length of cable, meters

w = angular frequency of forcing function, radians
amplitude of forcing function vt, meters/sec
upper limit of forcing functinon vt, meters

lower limit of forcing function vt, meters

cable section midpoint, meters
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XV altitude in wind velocity table, meters

V velocity in wind velocity table, meters/sec

Flow Sheet (follocwing pages)
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PROGRAM BALLOON

Read data cards

If date card biank CALL EXIT
Read static data tape 2
tables X, T, P(X = XBALL,..,0)
Store the section between X1 and X2 ¢ X, T, P
tables. Determine the no. of pts.
involved N
L Compute constants ]
[ Print input parameterlJ
Xi{m, 2) = XI{m,3)=0.0
form=1,,,., N
t = -At tXI = Atprt  tmid = Atmprt
XIMID - 0.0 OLDMID = 0,0
MIDTOT = I MINIT =0 IEND =0
CALL BOUND
sets XI{1,3) = Xi{N,3) = 0,0
t=t+ At
@—-—- t \
vp‘” = A sin Wt
XH{m, 1} = Xi{m, 2)
XH{m,2) = XI{m, 3)
for mn=1,...,N
CALL ABCD
computes coethicrents A, B, C, D for points
I..... Ne2 when XAl ¢ ‘(ms XAZ *hen
2
. Jdaowx - x r’/n..:s(xm y XAzl:‘
ll v 3 m mid J
part
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GENFRATE

Gonerate solation © atrix elements e

!

CALL =01.vH

Solve for X2, 3), ..., XHN-1, 3

¥

L\t\wn. = XI(NAID, \1]

[XHZ, 2} ¢ XHn-1,3)f=- G

MINIT

ERROR: Cable ends are not
close enough to original cadl, -
write XI table for t

“imimuin search

and st

ME

! Maximum search
b A8 T e resulte If max 12 found write resilts
) ant et MPT = -

I |

Determuue initial siope

I + slope MPT =
- <iope MPI =

MINIT = |

L

I'rint X1 tible tor t
eXI - tX] + Stprt

|_m. IMID - ANSMID |

»

- Hunt tor final max and min

Or vice versa

IEND = -]
METM = MPY

A

-
S EE—— TR m Aty

~— i

—
o
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MIDTOT MIDTOT - |

I P i L

Store midpoint to print
tmid - tnid + Atmpre

XIMID {MIDTOT) - ANSMID

IEND -}
MSTINY = A1)

Pront tene history of Adpt

4B END OF ¢ ASE ses
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PROGRAM BALLCCN

DYNAMIC ANALYSIS UF A 2=-D TETHERcD oALLOON SYSTeM SNILL-Tis
DIMENSION  SPACE(10000)oXI(200093)9TTALB(2000)+PTAB(2000)
lyXxTAB(2500)

DIMENSION XV(IO0)sVI10C)sAIMID(10CO)»STUFP(1000U)+STUFT(10000)
COMMON SPACEWXI o TTADBIPTAS IDEBMy IDEBBY IDEBA, IDEBGY IDEBS
1+ XTAR

COMMON /17 STUFPsSTUFT

N POINTS DESCRIBE INPUT CAbLE SECTION oETWEEN X1 AND Xx2

WHERE X1 MORE THAN X2 :

CABLE ANALYZED FROM X1 TO Xx2 AT tACH DT

THE CABLE IS SBALL LONG AND HAS NTAB INPUT INFORMATION POINTS
AT EVERY DS POINT AND IS RECORDED ON TAP:Z UNIT 2

NVEL IS NOe OF PTSe IN VELOCITY TABLE OF ALTITUDE XV VS VELOCITY Vv
IDEB INDICES PRINT INTERMEDIATE CUTPUY [F NOT EGUAL TO 2ERC
DISPLACEMENT [S PRINTEV AT EVERY NXPRT X VALUE IN TIMEt INCREMENTS
OF DTPRT

DISPLACENCNTS AT THL MID POINT OF THE CAclLE wILL Bt PRINTED AT
TIME INCRomENT DTMPRT

WHEN T=TI1EST THE PROGRAM IS STOPPED AT Tet FIRST MAX AND MIN
AFTZR TVTEST

1ST DISPLACEMENT AFTER Si AND LAST BEFORE S2 MUST BE WITHIN EPS
V TO THE T = A +SIN(OMEGAST) '« EXPONENYIAL FUNCYION OF X
SPACE(1-20G0)=Ay (2001-4G00)=8, (4001-6C0G)=Cs (6001-8000)=D
SPACE(B8CCL1-1C000) = DeRHUIXM) e (DIRMIP(XIM)Z(2G)

READ (5+6000) NDASNMOINYR

IF (NDA) 9599942

RCAD (5+80001} NTALINXPRToNVEL

READ (5+8000)IDcB8MyIOESDBs IDESAWIDEBG,IDEES

FORMAT(7110)

READ (5+8C0L1)X1oX2+EPSyTTESTsDTPRTWOTMPRT DT 905 GeDetMOsXpALLY
1SBALL +OMECA ;
FORMAT (T7Fl0e8:

READ (598001) ApxAleXA2 +XMID

FORMAT(6EL1246)

READ (5+8002) (XVII)eVII)eI=1eNVEL)

INPUT XoToP

REWIND 2 .

WRITE (6+5050)NTAB

FORMAT (/7+53XsTH NTAB =41697/)

READ (2)(SPACE(1)+1=1sNTAB)

READ (2)(STUFT(I)+1=14NTAB)

READ (2)(STUFP(I1)sl=1eNTAB)

DO 30 I=1eNTA3

INDEX= 1

IF (X1-SPACE(]))30,40,4(
CONTINUE

00 50 I=[NDEXWNTAB

NxAl=1

IF (XA1-SPACEL(L}) 50+60+60
CONT INTIE

DO 62 I=NXAlsNTAB

NMID=]

IF (XMID-SPALE(1)) 62465465
CONTINUE

DO 70 I=NMID,NTA3

NXAZ2=]

If (XA2-SPACE(I)) 70960980
CONTINUE

DI 90 I=NXA2,NTAB

LAST=]
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IF .2 -<PACE(I)) 90495495
9v CONTINUE
95 N=LAST-INDEX+]
NXE1=HNXAa]1-INDEX+]
NXA~2=NXL2-INDEX+]
NMID=NMID-INDEX+]
WRITE (6570C0) NTABsNyINDEXsLASTINXALsNXA2,XTAD(1)sTTAD(1)ePTAD(]1)
1e XTABIN)oTTABIN)oFTABIN)
Teuv FCRMATI(6110+/96E20.8)
WRITE(6+900C INDASNMONYR
9UOU FURMAT(1H1+30Xs65ADYNAMIC ANALYSIS OF A TETHERED EALL-SN344-712,
15X 125 1H/791291H/9120/7)
K=1
DO 100 I=INDEXsLAST
XTAB(¥)=SPACE(])
10V K=K+]
WRITE (6+90C1IN»X1eX29XBALL
9U0. FORMAT(5Xs17H CABLE CEFINED BYs154154 POINTS FROM X=9sE1548%
1 6H TO X=9E15e8-20H WHERE X AT CALLOON=4E1548)
K=l
00 110 I=INDEXsLAST
TTAB(K)I=STUFT(])
110 K=K+1
vRITE (64+3002) DTSTTLSTsDTPRTsDTMPRTLEPS
uC2 FORMAT (194 TIME INCREMENT DT=9E1265+4Xs13HTIME TO TEST=sE12e504X,
115HDT TC PRINT XI=9E12e594X924HDT TO PRINT X1 AT MICPT=4€12e59/443
2Xs17H TOLERANCE ON XI=s £E15.84/)

K=1
DO 120 [=INDEXsLAST 0
PTAZ(K)=STUFP{])

120 K=K+]

WRITE {(649003) GoeDyEMOsDSeLSBALLIOMEGA
Ju03 FORMATI(9X 9211 Gel8Xe2H Do 18X es2HMOy 18X 2HDS913X912HS OF BALLOONs11X»
15HOMEGAY /9E17e8+582048)
SET UP CONSTANTS
Cl="T*DT/EMO
C2=1. 2¥C1/(DS*DS)
C2=Uen#lTI/EMD
OXX= JH+(XA1-XA2)
ALPH 2243025851/ (DXX%DXX )
J=83001
NS=1
DO 150 I=1,N
X=XTAB(])
CALL RHOX(X»RHO)
CALL NU (X+GNU)
CALL INTLRUNVELWNS»XsVeXVeVEL)
R=ABS(VEL*D#PTAZ(1)/GNU)
CALL CDRI{RCD)
SPACZ(J)=Ce5¥RHOXDXCCH*PTAB(II)*PTAB(1)/6
PTAB(I)=viL
150 J=J+]
VELCCITY '~uw STORED IN PTAB
WRITE (204 )AsXAL1»XA2
GUOL FOURMAT( 7%e4a]H V TO THE T=A«SIN{CMEGA«T) et (X) WHERE A =4c15e89172H
135 TwrEN X =9E15e898H AND X =4£15.8)
COUNT=TNDIN+NMID -2
SMID=SBAL! -DS*COUNT
TMINPT=TIan(NMID)
PRINT INPUT
TECTLEEM) 10920410
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A

=
z
3
=

Wiy G

v WRiTk (6,900%)

9005
9C0s
2V

C

20V

3yv

301

25V

340

SUlv

35v

3gv

3Yv

4Qu

4lv

WRITE (6590080 (XVII)eVv(]),y1=1eNVEL)
FORMAT (26X 928HIVELOCITY TABLE ALTITUDE +12Xe8HVELOCITY /)
FOIMAT(37X»2E2043)

CONT INUE

INITIALIZE

T==~07

TA1=DTPRY

T41D=DTMPRY

TSTUP=20%TTEST

INITIAL CONDITIONS

DO 2v0 I=z1sN

x!(l!2)=0.o

XI(143)=0e0

XIMIDI(11)20.0

MIDTOT=1

MINIT=0

THERE HAVE oEEN MIDTOT MIDPTS STORED. MINIT=0 MEANS INITIAL TIME
OLDMID=0,0

IEND=0

VALS1=0.0

VALS22060

CALL BOUNDINsVALS1VALS2)

SET BOUNDAKY CUNDITIONS—-X1=0+AT ENDS OF CABLE SEGMENT
RESET LOOP

T=T+DT

IF (T-TSTCP) 301,800+800

SVT=A #SIN(OMEGA®T)

DO 250 I=1sN

XItIsli=XI(192)

XI(1+2)=X1(1+3)

COMPUTE CUEFFICIENTS AsbsCoeD OF X1 AT N+1 SUCH THAT
AlM=-1) XI{M=1) + B(M=1) XI(M) + C(CiM=-1) X1(M+1) = D(M=-1)
CALL ABCDIN»C19C29C39SVTINXALINXA29OTsALFHAXMID) :
GENERATE ELEMENTS IN THE SOLUTION MATRIX

CALL GENERAT (N)

SOLVE THE TRIANGULAR SOLUTION MATRIX

CALL SOLVE(N)

ANSMIO=X1(NMID»3)

CHECK THAT DISPLACEMENT 1S SMALL NEAR THE ENDS

NM=N-1

IF ((ASS(IXI(2e¢3))+ABSIXI(NM3)))-EPS) 35093509340

WRITE (699010) ToeXI1(2+3)9XI(NMy3)4EPS

FORMAT{HH1AT T=sE13e6918H XI AT THE 2ND PT=9E1346922H AND X1 AT TH

1€ N-1 PT=y El1l3¢6921H WHERE THE TOLERANCE=+E13e6)

ARITE (699022) T

WRITE (6490237 (XTAB(I)eTTADEI) o XI(193)91=1eNsNXPRYT)
GO 101 )

CONTINUE

FIND MAXsMIN OF TIME HISTORY OF CABLE MIDPOINT
IF (MINIT) 410938045410

MINIT=1

IF (ANSMIU-OLOMID) 40043904390

POSITIVE SLOPE FiIND MAX

MPT=1

w0 10 500

MEGATIVE SLOPE FIND MIN

MPT=-1

GO 10 500

IF(MPT) 4204650450

MINIMUM sEARCH
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Wiv oF TANSMIC~-ULDMINY 50094409440

M1IN)MUM

byu APT=]

WRITE (6990201 ANSMID»T»SMIDsXMID

9,21 FORMAT(/427H MAXIMUM DEFLECTION AT MIOPOINT--=XI=9E15.894Xs

19T IME=9E19eB894X92HSZEL1Se894X92nX=9E1be89/)
GO 10 500
MAXIMUM SEARCH

450 IF(ANSMID-OLOMID) 4609460950C

MAX IMUM

460 MP1=-]

WRITE (6+5021)ANSMIDy» ToSMIT»XMID

Q220 FORMAT(/+37H MINIMUM DEFLECTION AT MIDPOINT--=X1=9E1548y4Xy

5Cu
51v
50V
510
22
123
7Cu

71V
T2v

750
T16v

179
guw

)

15HTIME=9E156894X92HS=E156894X902HX=9E 1589/}
OLDMIN=ANSEMID

JIF(T=-TMID) 6009510+510

TMID=TMID+OTMPRT

MIVTOT=MIDTOT+]

XIMIDI(MIDTOUT }=ANSMID

IF (ABSIT-TXI)~0+01) 61C»61Us»700

TXI=TXI+DTPRT

WRITE (6+9022) T )
FORMAT(//911X96H TIME=E156897X92H X918X92Hh TolEXyg2HXI]}
WRITE (695023) (XTABII}oTTADII) o XI(193)91=1sNsNXPRT)
FOURMAT(27X+3E20.81}

IF (YEND) 77097109750

IF(T=-TTEST) 300¢720+720

MSUM=MPT

1END=1

GO TO 3Co0

IF(MPT+MSUM) 30076049300

1END==1

WRITE (6,9022) T

ARITE 659023 IXTASBII)oTTAD(I o XI (193 sl=1aNsNXPRT]}
MSUM M2T .

PEO(MPT+MSUM) 30098009300

WRITE (6,9022) T

WURITE (649023 (XTAB(L)oTTADII) o X1(193)9)=1sNoNXPRT)
WRITE (693025) SMIDeXMIDyTMIDPT

FORMAT(1H1913Xs39nTIME ISTCRY OF CABLE MICPOINT Whekt S=92lDeny
13XeZraAX=Sob ioelo3X92HT =9 10eb9/949Xe2HT s18Xe2H))07)
TIME=0e0

V0 SC0 [=1,MIDTOT

WRITE (629026) TIMELXIMIO(I])

FORMAT(37X92E20.8)

TIME=TIME +DTMPRT

WRITE (6+5030)

FORMAT(//7+49X922H #%%n®END OF CASE**xn¥)

GO 170 1

CALL EXIT

END

SUBRCUTINE ABCDINs C14C29C39SVTINXALyNXAZ9DT9ALPHAWXMID)
DIMENSION SPACE{100001sX 102000431, TTAB120C0)sPTAB(2000)
1sXTAB(2LCV)

COMMON SPACEsXT»TTABIPTABs IUEEMY ICELBB ILERA Y ILEEGY IULDBS
1yXTAB

CUMPUTES N-2 COLFICIENTS AsosCoANU D DEEINING XI AT N+l
OIVLN XI AT N AND AT N-1 ’

SPACE(Y-2000)=Ay (2001-400C}=By (400C1-6000)1=Cy (6001-800U)=D
AECMa10=XT (MaN=1) s XTI (Ms2)=XT(M4N)

WM =N=- 1
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B LS

%

C
4y
5u
C
6V
v
luv
C
C
C

luy

U 100 M=2,KM
MM=M-]
MP=M+]
SLOP=5PACL (6 QCO+M)
ADJUST FORCIKG FUNCTION
VEL=PTAB(M)
VV=VEL®ARS(VEL)
IF (M=NxAl) 60950940
IF({ M=nXxa2) 50950960
DXX=XTAp (M)-XMID
POWER=~ALPRA®DXX#*DXX
SVI=A,SINIUMEGAST)
VI=SvT#cxP{POWER)
CON=VEL+VT
GO 10 70
CON=VEL
CONAXS=ABS(CON=(X1(Ms2)-X1(My1))/0T)
CONSi1=C3«SLCP*CONABS
A=z-TTAp(MM)#(2
v=]aU+{TTABIM)+TTAL(MM) ) #C2+CUNST
C=-TTAS(M)®#C2
S=XT(Msl)42e#XI(Ms2)-CH(2.,0%X](MP»2)+X]1{MP41)~2.0%X]11(Ms2) s
1-X1(Me 1)) +AR{208XT(My2)4X](M91)=2408X1(MMs2)-X1(MMs1))
2 +CONST#XI(My1l) ~CL1#SLOP*(VVY~-CON®CONABS)
SPACE(MM)=A
SPACE (MM4+20C0) =8
SPACE (MM+4000)=C
SPACE (MM+6000) =D
RETURN
cND
SUbROUTINE GENERAT (N)
DIMENSION SPACE(10000)+XI1(200053)s1TAB(2000)9PTAB(2000)
1+XTAB(2000) *
COMMON SPACE X1 o TTASPTAc IDEBMy IDEEBY IDEDA» I1DEBGIDEBS
1+ XTAB ’
LENERATE cleMeNTS IN THE SCLUTION MATRIX
SPACE(]1-200C)=Ay (2001-4000)=8y (4001-6000)=Cs (6001-6000)=D
GENZRATES CU1)-C(N-1)sDi1)-DIN-1) N
SPACE(4.C)1)=SPACE (4001)/SPACE(2001)
SPACE(6.01)=SPACE(5C01)/SPACE(200])
NM=N-3
DO 100 M=1,NM
MP=M+]
M423C00=MP+2020
MadeuzMP+4000
Me00u=MP+6000
SPACEIM2(Cv0)=SPACEIM2000)-SPACE(MP) #*SPACE(M+4000)
SPACE(M4CL0) =SPACEIMGQOU) /SPACEIM2C00)
SPACE(VECTO) = (SPACE(MBU0U0)~SPACE (MP)*SPACE (M+6000))/SPACE(M2000}
RETURN
tND
SUBKULTINE SOLVE (N)
JIALNSIUN  SPACE(1C000) X1 (200093} TTABI2G00)»PTABI2000)
1exTARL20CO)
COMMUN CPACESXT2TTABIPTALIDEBMyIDEDS Yy IDEHA9IDEBGIDLBS
1+ XTAB
SOLVE ToE TRIANGULAR SULULTION MATRIX
SPACL =200 )=Ay (2001-4000)138y (4001-6C00}=Cy» (6001-8060)=D
- N=2 '
NOEX=NM+46000
X1UN=~ 143)=5PACE(INLLX)
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DC 100 1=2sNM

JzNM ~-1+1
XI(J+193)=SPACE(J+6000)-SPACE(J+400C0)#X1(J+293)
RETURN

END

SUSROUTINE BOUND (NsVALS1»VALS2)

DIMENSION SPACE(100060)9X1(<00093)sTTAB(2000)sPTAB(2000)}
19XTAB(2000) ¥
COMMON SPACE»XI»TTABsPTAB,IDELMs ICEDB IDEBA» IDEBGYIDEHS
1sXTAB

SET BOUNDARY CONDITIONS--X1=0sDX1/DT=0 AT ENDS OF CABLE SEGMENT
X1(193)=VALS]

XI(Nv3)=VALS2

RETURN

END ‘

SUBROUTINE NU (X:GNU)

KINEMATIC VISCOSIiTY VS ALTITUDE

I.. (X=10000.) 19192

GNU==4,823+X/26800,

GO0 10 5

IF (X=17700¢) 39394

GNU=X/17100+-5+035

GO TC 5

GNU=X7/14250¢~542421

GNU=10, %##GNU

RETURN

END

SUSROUTINE INTER iNsNSeXLsVsXVeSVL)

GIVEN THE ALTITUDLs THIS ROUTINE INTERPOLATES LINEARLY TO
OBTAIN THE wIND VELOCITY FROM INPUT TABLE
DIMENSION V(100)sXV(100)

NN=N-NS+1]

IF (XL=XVI(NN}) 595496

NS=1

DO 1 i=NSeN

J=N-1+1

IF (XL=XV(J)) 15394

SvL=v(J)

GO 10-2
SVL=(VIJ+1)=VIJII IR IXL=XVIJ+1) )/ (XVIJ+1)=XV(J))+V(J+]1)
GO 10 2

CONTINUE

NS=J+1

RETURN

END

SUbROUTINE COR(R»CD)

DRAG COEFFICIENT VS REYNOLDS NUMBER FOR CABLE
IF (R=2423) 19142

CD=10,8#R%%(~4742)

GO 10 10

IF (R~84+0) 33354

C(D=9s15%R*%(~4526)

GO 10 10

IF (R-1000+0) 59596

CD=4,95%R**(~,232)

60 10 10

IF (R~10000s) 79798

CD=1.0

GO 10 10

CD=1,15

RETUR
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END

SUBROUTINE RHOX{XsRHO)
MASS DENSITY vS ALTITUDE
RHO=4¢25-X716000.
RAOC=10e*2RA0

RETURN

END
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Introductien

Considering the cable subjected to a stcady wind flow, any high frequency
dynamic effect on the cable will cause it to vibrate about its static con-
figuration. In other words, the dvnamic response of the cable to high
frequency excitations can be considered as a perturbation on a static
initial coniiguration which is related to a steady wind. Further simpli-
fication of the problem can be done by considering the high tension in

the cable and its low weight per unit length. The propagatic.. velocity

of the transverse wave in the cable is

c = /L (D-1)

In addition the frequency of shedding vortex pairs is

S.(R)V P
£ = T(D) 0 (D-2)

where ST is the well known Strouhal number. In the present case fv
is of the order of 1000 e¢ps., The waveiength which one should be con-

cerned with is

2L =

<"lo

which, for the present purposes, is of the order of 2 meters. ~ cunce
the most effective mode of the cable will be the one which is of wave-

length 2L.

In order to estimate the response of the cable to vortex sheddings, one
can solve the equation of motion for the cable considering a portion which
has the length L, This portion can be assumed to be supported at its

cndpoints,




The perturbed dynamic equation of motion for the cable is

2 2
W W, 1 ) AWV W
T——-=m—+—pCD\/VP+—>-—
i w: z P~p o dt at
1 2.2 .
- 5 pCyV _P"Dsin2nf t (D-3)

where C. is the lift coefficient (Refs. 5 and 6) and V_P is the ncrmal

component of the wind velocity vector with respect to the cabie.

The last equation, which has been solved numerically by means of finite
differences is discussed in a following section. The scheme that was
used for this purpose was an unconditionaily stable one. The integration
process ran on a computer for two hundred cycles of the forcing function.
Within this process of integration the cable reached a steady state re-
sponse. For L =0.775 meters the maximum deflection of the cable was
0.58 x 10'4 meter, which does not indicate any considerable increase
in the stresses in the cable.* In conclusion, the cable subjected to high
tension converts, by means of the vortex sheddings, wind flow energy

to other kinds of energy; however, there is no indication that the high
frequency vibrations of the cable with small amplitude might cause any

failure,

*The properties of the cable and wind field were chosen from the
steady-state example and are as follows: midpoint of cable portion at
4000 m; T = 773.0 Kgf, P = 0,522, P = 1.0 Kg/m3, V5 = 13.8 m/sec,
m =8 x 10-4 Kg/m, D =2,5x10-3m, Cp =1, C =0.76, S =0.22.
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Numerical Analysis of Problem

4
A
. r’if'ﬁﬁ-{'_

a) Equation of Motion

3

_a.(T l) . 2w
BSI mbSZ - mo 2 2g

+ %’r—‘) CD (Rm)D

> 1/2
Jy2pz (2w > W
Eo Pm +(8t :] ot

is a defiection . to the plane of Fig. 1 The

where W
short cable section length leads to assuming the following

parameters constant: V_, T , P_, P(*,) Cp (Rm) )
CK (Rm) i sT (Rm)
The equation of motion becomes:

2
3°W 2.2 t
- £ C DVIPTV + —P-Zg CpD

2
oW
T~ = m
as’ ° 32 %8
5 1/2
2 2 oW oW
'Efop ¥ (?)] ot
where:

t = &
st‘nfvt
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i
given the frequency fv, the following parameters can be
calculated:
\/’1:‘ ‘a
_ _ Vg .21, i
At = 557 L= 31 tax T (no. cycles)
v v A i
3
b) Difference Analogue :
o w + W - 2W + 2{(W 3
4ASZ m+1,nt1 m-1,n+l m,n+tl m+l,n
- + W + - /
i} Wm-l,n 2Wm,n) m+l,n-1} Wm-l,n-l 2wm,n-l}
m -
i o p A a2t
o (wm,m1 - aw wm’n_l) = ZECKD\OP \'
1/?
2
w = -
m pCDD V2 PZ " (m,n wm,n-l) (wm,n+l wm,n-l>
2g o Atz 2At
The cable segment is analyzed for half of its length 4 and
is defined between points 1 and M where M is at 4/2.
The "ficticious' point M + 1 is used.
3
- o :
c) Initial Conditions 3
W = 0,0 for m = 1,2,...,0hM+ 1 :
m, o
d) Method of Solution
If Am-lwm-l,n+1 * Bm--lwm,n-H i Cm-l,Wm-fl,n-i-l
= D) for rn:Z....,M -w
m-1 ?;’g
3




IR Y ipe s N

then:
_ At“T
LS ey
T 4AS ™ m
o
At pCD 2
B =1 - 2A ) [ e
m-1 m-1 4mog o

1/2
(wm, n wm, n- 1)2

AtZ

+

C E Am-l
= . = 2
Dm-l Am-l [wm+l,n-1 * wm-l.n-l wm.n-l

el 2(Wm+1,n + wm—l,n - Zwm.n)]
2 2 2.t
At pCKDVoP v At pCDD VZPZ

* Zmog * 4mog o

1/2

(w - W )2 W
m, n m, n-1 m,n-1

At2

+ 2W - W
m,n m, n-1

+

The solution of the linear system for Wm is carried out
L

by the matrix inversion procedure described in Appencix C.

78




o
:?
e) Boundary Conditions
wl.n+l = 0.0 |
= + C
AM-y AM- M-1 i
= - W :
DM Dpoy * Cmes [WMH,n-l M-1,n-1
+ Z(WMH,n - wM-l,n):l
f) Soluticn of System of Equations
If the following computations are made initially, -
Cl = C1/BI D1 = D1/Bl
The generating sequences may be given for m = 1, ...,
M -1
Bm+1 } Bm+l B Am+lcrn
C e c;m+l
m+l Bm+l
D - Dm+1 ~ Am+1Dm
m+l B 3
mtl

Following the computations of the above sequences the

solution for W(m,t) may be written for m = M+1, M,

..... y 2

WM, n+1 = DPumay

WM+, nt1 = "Mo1,n+l T Z(WMH,n © WM.1,n)
- WM+l,n-1 WMol na
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= - €
m,ntl Dm-l

where m = M-i, M-Z2, ..

Required Data

Input constants:

D, mO' g VO' T’ Pa P CD’ CK: ST

where CD' CK’ and ST are functions of Reynolds No. R
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G

Input to Program MUSIC

Columns 10 20 30 40 50 60{ 70 !
Card 1 | NDA NMO NYR {
Card 2 | NPOINT | NCYCLE | NXPRT | NTPRT | IDEBUG :’
Card 3 |G X DS T P RHO { Vo
Card 4 | EMO D CD CK ST

Netation
NDA, NMO, Date .
NYR
NPOINT Number of points in the cable section to be analyzed.

The section will be analyzed up to its midpoint
M = (NPOINT/2) + 1

NCYCLE Number of cycles to run program

NXPRT Increment used in printing deflections W at any time
(i.e., printed at every NXPRT point out of M +1
points)

NTPRT Increment used in printing the time history of the mid-
point (i.e., printed at every NTPRT time)

IDEBUG If IDEBUG

1 deflections at every NTPRT time will

be printed
If IDEBUG

It

0 only the time history of the midpoint
will be printed

. 2
G Gravity constant (meters/sec”)
X Altitude ot the cable section (meters)
DS AS = S increment between the points in the cable ,,
section (meters)
T Tension in the cable section ( kilograms-weight)
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o SR M Lt

T

Vo

EMO

P=Ax/AS = coso = determines slope of the cable

section

o = density of atmosplaere (the program divides p by g)
(Kg/mete rs3)

V, = wind velocity on cable (meters/sec)
M_ = mass/urit length of cable (Kg/meter)
Diameter of the cable (meters)

Drag coefficient

Lift coefficient functions of Reynolds number

Strouhal number
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Flow Chart

PROGRAM MUSIC

Head Input

Conpute parameters
. IvusTPI
v D
&
& print
!
.
' 2o{No. ot tycies)
nax !
.
w ;'r‘
Compute (onstants
€)eCoCyCuipy
i w . NPOINT |
1 2
l Wrte input
Initialize
1.LOOP = -1, ' IST |§
Wi Ml 1) s WEL L ML) 0
1.00P  LOOP «|
®__. t 100 At
v~ atet)
Wil Mo, e W(E,  Me1,2)
WL M), )WL, ML Y
Call ARCD g es ALCH G2 C3, 000, Bt
ABOD tinds cortlcienta A R W0
where : 0 1,0, 0] ' -
Call Bonne ¢ oon\?
BOUNE wooe Wi 1) 0
FATS ALY £ ()
L '\
()
R
e B L.

L

W




%
=

O
i

Call GENERATE given M
GENFERATE changes the coefficients
to g:ve the solution matrix

., ;

' Call SOLVE given M, ASZ,A:
SOLVE finds the sol;xtions

[
W(2...M+1, 3) and A V; zndA‘latM
as AL

Write cable deflection for
tand ¢ = ovt(printed in
increments of NXPRT)

. TPR%

Write tme history of cable midpt

2
A'w aw
t, Wia,3), AN AW
as® | At
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PRGGRAM MUSIC
DYNAMIC ANALYSIS OF THE MUSICAL PROBLeM SN344-T716

DIMENSION  w(100s31 AL1GU)»B(100)+C1100)+D(100)
COMMON WyA,s2,CsD
KPOIRT POINTs vtSCRIBE A SMORT StGMENT OF ThHE oALLOON CAbLE
THE SEGMENT 15 ANALYZED FUR M=NPUINT/2+1 POINIS USING A FICTITIOUS
POIN o
THE SLO;T‘-ibMENT ASSUMELS CONSTANT VALUES OF XsToePeKNO»VUICD»CKsST
1 READ (5,8L5L)NDAsNHMOSINYR
guJdv FORMATL 7110)
I¥ (NDA) 99,9992
2 READ (5,80G0) NPOINTsNCYCLE NXPRTINTPRTs IVEBUG
READ (5,8001) GsX9DSy TENsPIRHO 9 VOSEMOsDIAYCDICK ST
cwol FORMAT (7F1C.8)
TMAX OF Tht RUN IS CALCULATED AS NCYCLE o 2P 1 /FReGWUENCY FV
DT OF TrE RuUN 1S CALCULATED AS 1/(20.FV)
THE CABLE SEGMENT LENGTH I> CALCULATED AS SGURTIT/MO)/(2.FV)
UATA 1S PRINTED AT EVERY NXPRT POINT FUR EVERY DTPRT TIME

OTPRT=2P1/(FVeNTPRT)
sRITE 16+5000) NDASNMOSNYR
seav FORMAT (1H1928XsSOHDYNAMIC ANALYSIS OF THe MUSICAL PROUBLEM--SN34M
1716 s4Xoi2elH/912s1H/s129/77)
& O CusPUTE CUNSTANTS
CYILL3=NCYCLE
FVY=ALSIVOsST#P/DIA)
OT=_e32/FV
TP=LKIPRT
OTruT=z642031853/(FV2TP)
CAcLE= (WO%SURTITEN/ZMO) /FV
OiECAz6e7031853%FV
TiAX= £42331853%CYCLES/FV
DT2=DT%lT
DS2=DS*DS
Cl= Ve25#DT2#TEN/ LEMO®DS2)
C2= Qol5%knCRCD*DIARDT/ (EMO%G)
CI=(VOsP) =22
PHIL1= 5.5%RA0*CK*DIA%C3/6 :
CH=PHl 140T2/7EMO :
MW OlhT/s72 +1
KT A |
aRITE (645001) NPOINTsMyCABLE »X sRHO»VOsEMOsD1A» TENSP
7ol FURMATULI9X925H CABLE SEGMENT DEFINED BYs13+24H POINTS AND ANALYZED
1 FOURW1I3926H POINTS UP TO THE MIDPOINTs//923H CABLE DATA LENGTH
2:95154845H X=9E1568915H DENSITY RHO=z,£159s8915H VELOCITY vO=,
2L1%ebe/915X99H MASS MO=9E15e8s 13H DIAMETER D=9E1%edy 12n  TeNSIO
0l T=9015,8y 10H P=DX/05=9kt15e84/)
wHlTE (6+99002) CD9CKyST
JUG2 FULITAT L9 FUNCTIUNS OF KEYNUGLOS NUMBER 19X 3HC =9k 15689 10K93HC =,
LE1v oo 15X03HMS 295 10,80/9406X921 De32X91HK 932X 1HT 9/ /)
WRITE(E9IuC2) THAAXYDTWDTPRT DS 9GrFV i
7903 FUIMATI3X912H MAXIMUM TIMES8X913HTIME INTERVAL»4Xs1THPRINTING INTE 3
IRVALsEXHTHCELTA S 13X 3 7THGRAVITY 911X 91 211FREQUENCY FVa/obt 17484582008
2)
. INITLALIZE
T==0T
TPRINT=OTPRT
Do 100 1=1MP
at192)=040
v wlled)zua0
skl TE 1545015)
sl PO AT (11e60Xs3GHTIME HISTORY OF CABLL SEGMENT MIDPUINT /704?50

[l oW At
AR P TR g o

[aNaNaNalal
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9010
9011
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10+

150 TIME,16XeJHW913X013H2ND DER UW/DSe11Xe5HDW/0T)
LOCP=-]

LIST=]

RESET LooOP

LOOP=LOCP+]

SLGCOP=LOCP

T=3LCOPeDT

VI=SIN(OMEGA®T)

DO 300 l=1sMP

wllel)=atle2)

Wils2)=w(l1e3)

CU“PUTE COEFFICIENTS A9B9CoD OF w SUCH THAT
A(M=1) W(M=1) + B(M~]1) wW(“j +C(M-1) W(M+1)=D(M-1)
CALL ABCD(MsC19C29C3+ChoVTDT)

ADJUST BOUNDARY CONDITIUNS

CALL BOUND (M)

GENERATE ELEMENTS IN ThE SOLUTION MATRIX

CALL GENERAT(M)

SOLVE THE SOLUTION MATRIX

CALL SOLVEiMsD2ADS2+1DWDTD524071)

IF (IDEBUG) 450+45C350

IF (T-TPRINT)450+,400,400

PHI=PHI1#VT

WRITE (6+9010) T,PHI

FORMAT( 87Xs 6H TIME=91£10e393XoHPHI=oE10e30/997X93H PTr13Xe1HW)
ARITE (6990110 (1an(1e3)el=ieiteNXPRT)

FORMAT (96Xxslarc20.8)

IF (T-TPRINT) 50014601460

LIST=LIST+1

SLIST=LIST

TPRINT=SLIST*DTPRT

WRITE (64,9C16) ToWiMe3) sD2WDS2+DWDT
FORMAT(17X»4£20.8)

IF (T-TMAX) 20096009600

WRITE (6,9020)

FORMAT(//79149%X922H #r#a%pnD OF CASER#u#x)

GJ T0 1

CALL EXIT

END

SUBROUTINE ABCDIM2CleC29C39C4aVTeDT)

DIMENSION wl1C093)y A(L1UU)BI100),CL100)+,D(100)
COMMON 1 AsB9 (oD

00 100 I=44M

MMz =]

MP=1+1

AtMM) ==-C1
CONSC2*SCRTIC3+((IWIT42)-WI(1s1))/DT)RR2) )
B{MM)=1eC-20%A(MM)+CON

CMM) =AIMM)

VIMM) ==A(eM) 2 {NIMPy 1) +WIMM 1) =2e0%W (1 s1)+2.0%(WIMPs2) +W(MM42)
1-20%W(142)))+CasVT+CON®W(T 1) + 2.0% ‘(192)-wilyl)
CLONTINUE

RETURN

LND

SUBROUTINE BCUND(M)

DIMENSICON Wl10C93)s ACL0VIHBLI00),CLI00)DI1CY)
CIAMON WeAsBoeCHD

al1493)=0,0
BREICESY
AP=M+]

ATMMY =A (M) 4 C(MM)
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DIMM)=C(MMI+CIMM) # (W{MPs1)-W{MMs 1) 42, 0% (W(MP+2)-WIMM,2)) )
RETURN
END 7
SUBROUTINE GENERAT (M)
DI“ENSIUN W(10093)s AC10C)B(100)+Ct100)+D(100) 4
COM4HON WoAsBaCoD M
Ctl)=Ctl)/8(1)
D(l)=D(1)/81(1)
MM2=M=2
D0 100 1=1eMM2
MP=1+3
B(MP)=B(MP)-A(MP)#C(]}
CLP)=C(MP) /BIMP)
D(MP)=(D(MP)-A(MP)#D(]))/B(MP)
10V CONTINUE
RETURN
END e
SUBRQUTINE SOLVE(MsD2WOS2sUKWDT +DS2,0T)
DIMENSION W(10093)e AC10U)BL100),C(100)+0(100)
COMMUN weAsBeCoD
MM=M=-1
MP=M+1
WiMs3)=D(MM)
00 100 1=22¢MM
J=iiM=-1+2
wlJe3)=D(J-11-ClJ-1)*W(J+1+3)
10U CONTINUE
DwoT = DeS%(W(Me3)-wiMel))/DT
SYMMETRICAL CONDITIONS AT POINTS M-1 AND M+l
WEFP» 3) =W (MMe3) =2 0% (WP s2)-W(MMs2) )=wiMP 31 )+N(MMs])
D2WDE2=0e 25% (WP 93 ) +WIMMa3 )+ W(MP o1 )+W(MMs 1) +2C* (WIMP 22 )+W(MMs2)
1 —wilMs3)-W(Ms1)-2e0% W(Ms2)))/DS2
RETURN
thND
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