NONEQUILIBRIUM STRUCTURE OF HYDROMAGNETIC GAS-IONIZING SHOCK FRONTS IN ARGON

by

Martin I. Hoffert

Distribution of this document is unlimited.

FEBRUARY 1967

POLYTECHNIC INSTITUTE OF BROOKLYN

DEPARTMENT
of
AEROSPACE ENGINEERING
and
APPLIED MECHANICS

PIBAL REPORT NO. 1008
NONEQUILIBRIUM STRUCTURE OF HYDROMAGNETIC GAS-IONIZING SHOCK FRONTS IN ARGON

by

Martin L. Hoffert

The research has been conducted under Contract N00014-66-A-0167(38) for PROJECT DEFENDER, and was made possible by the support of the Advanced Research Projects Agency under Order No. 529 through the Office of Naval Research.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Polytechnic Institute of Brooklyn
Department of Aerospace Engineering and Applied Mechanics
February 1967

PIBAL Report No. 1068
NONEQUILIBRIUM STRUCTURE OF HYDROMAGNETIC GAS-IONIZING SHOCK FRONTS IN ARGON

by

Martin I. Hoffert
Polytechnic Institute of Brooklyn

SUMMARY

This study deals analytically with the structure of gas-ionizing hydromagnetic shock waves. Since these waves, by definition, must have non-electrically-conducting upstream states, their existence at very high shock temperatures must be ruled out on the physical grounds that forward-radiated precursor ionization makes the unshocked gas conducting. A "low temperature" collisionally-ionizing shock with oblique magnetic field is studied here to determine whether certain concepts which exist in the current literature are relevant. Nondimensionalized equations governing the nonequilibrium structure of such a front propagating into un-ionized argon are formulated using ionization rates and an electron energy equation developed in an earlier paper. Comparison of the magnitudes of viscous and magnetic Reynolds numbers within this front indicates that, if a structure exists, it must consist of a narrow "imbedded" viscous shock standing upstream of a much wider hydromagnetic interaction and ionization relaxation zone. Hence, a modified form of the Zeldovich-von Neumann-Döring (ZND) approximation is applicable to the structure problem. It is shown that in this approximation nontrivial steady-state structures cannot be constructed for "fast" gas-ionizing shocks. On the other hand, solutions are possible for "slow" waves, and

The research has been conducted under Contract Nonr 839(38) for PROJECT DEFENDER, and was made possible by the support of the Advanced Research Projects Agency under Order No. 529 through the Office of Naval Research.

Graduate Student; also, Senior Scientist, General Applied Science Laboratories, Inc., Westbury, New York.
these are obtained numerically for a family of hydromagnetically oblique shocks at Mach number $M_1 = 20$ and Alfvén number $M_{A_1} = 1/\sqrt{2}$ with parametrically varied values of the upstream electric field. In contrast to previous expectations, the upstream electric field is not uniquely defined by the structure. Because the slow solutions are effectively exothermic, to the point where their post-shock temperatures are associated with radiation-induced precursor ionization, it seems likely that only the solution with the upstream electric field corresponding to a pure hydromagnetic shock has physical significance.
Table of Contents

1 Introduction .. 1
2 Global Hydromagnetic Equations in Oblique Magnetic Field
 Shock Geometries .. 5
3 Ionization Rates and Transport Properties in Partially Ionized
 Argon .. 15
4 Integral Curves in the "ZND" Approximation 25
5 Nonequilibrium Numerical Solutions 35
6 Concluding Remarks .. 40
 Footnotes ... 42
 Appendix - Integration of the Navier-Stokes Shock Structure
 Equations in Un-Ionized Argon. 44
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sketch of gas-ionizing shock structure geometry in an oblique magnetic field. The cartesian ((x',y',z')) coordinate system is shock-fixed. The "primes" denote physical (dimensional) quantities.</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>Integral curves in ((u_x,B_z)) phase space for fast ((M_1=\infty, \mathcal{M}{Al} = \sqrt{10})) gas-ionizing shocks of the 45° upstream magnetic field family ((B{X1}=B_{Z1}=1)). Of the three electric fields shown, (a) (E_{Y1}=1.0), (b) (E_{Y1}=0.625), (c) (E_{Y1}=0.25), only "(c)" admits a solution in the ZND approximation. This is actually a degenerate case of a hydrodynamic shock.</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>Integral curves in ((u_x,B_z)) phase space for slow ((M_1=\infty, \mathcal{M}{Al} = 1/\sqrt{2})) gas-ionizing shocks of the 45° upstream magnetic field family ((B{X1}=B_{Z1}=1)). All five electric fields shown, (a) (E_{Y1}=0.25), (b) (E_{Y1}=0.625), (c) (E_{Y1}=1.0), (d) (E_{Y1}=1.50), (e) (E_{Y1}=2.0), will admit solutions in the ZND approximation. Case "(e)" is the new "gas-ionizing switch-off shock" discussed in the text.</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Nonequilibrium structure of a pure hydrodynamic shock front ((B_{X1}=B_{Z1}=E_{Y1}=0)) propagating into un-ionized argon at pressure of (p_1=1.0 \text{ mm Hg}), temperature of (T_1=300 \text{ K}), at (M_1=20) computed with the ZND approximation. The scale has been stretched by a factor of ten for (x<0) compared to (x>0) to show the imbedded Navier-Stokes viscous shock more clearly.</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>Nonequilibrium structure of a slow ((M_1=20, \mathcal{M}{Al} = 1/\sqrt{2})) gas-ionizing shock front, of the 45° upstream magnetic field family ((B{X1}=B_{Z1}=1)), propagating into un-ionized argon at a pressure (p_1=1.0 \text{ mm Hg}) and temperature (T_1=300 \text{ K}) computed with the ZND approximation for (E_{Y1}=1.0). This case corresponds to the pure hydromagnetic boundary condition on the electric field. The scale has been stretched by a factor of ten for (x<0) compared to (x>0) to show the imbedded Navier-Stokes viscous shock more clearly.</td>
<td>52</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>

Nonequilibrium structure of a slow \((M_1 = 20, M_{Al} = 1/2)\) gas-ionizing shock front, of the 45° upstream magnetic field family \((B_{x1} = B_{z1} = 1)\), propagating into un-ionized argon at a pressure \(p_1 = 1.0 \text{ mm Hg}\) and temperature \(T_1 = 300^\circ \text{K}\) computed with the ZND approximation for \(E_{y1} = 2.0\). This is a "gas-ionizing switch-off shock". The scale has been stretched by a factor of ten for \(x<0\) compared to \(x>0\) to show the embedded Navier-Stokes viscous shock more clearly.

7

Variation of non-dimensionalized downstream streamwise velocity \(u_{x1}\), transverse magnetic field \(B_{z0}\), degree of ionization \(\alpha_2\) and non-dimensionalized relaxation length \(\ell_r\), for various shock-frame (and corresponding lab-frame) electric fields for a slow shock with \(M_1 = 20, M_{Al} = 1/2, p_1 = 1.0 \text{ mm Hg}\) and temperature \(T_1 = 300^\circ \text{K}\). A unique value of the electric field is not defined by the structure.
1. **INTRODUCTION**

In recent years, a number of investigators have contributed to the formulation of a theoretical model descriptive of the so-called gas-ionizing hydromagnetic shock wave (Xulikovskii and Lyubimov, Kunkel and Gross, Helliwell, Chu, Woods, May and Tendys and Taussig). These waves are thought to exist, for example, in electromagnetic shock tubes. All the aforementioned authors either postulate or imply that the structure of these waves conforms to the following archetype (this description can also be taken as a definition of a "gas-ionizing hydromagnetic shock" in the present context): Upstream, the gas is un-ionized, electrically non-conducting and hence uncoupled from the magnetic fields through which the shock moves. Consequently, the leading edge of the front develops precisely as an ordinary hydrodynamic shock. Because of collisional ionizing reactions associated with the rising temperature, an electrically conducting (hence hydromagnetically active) plasma is created somewhere in the shock interior. It follows that the overall structure is hybrid in nature, being partly hydrodynamic and partly hydromagnetic.

The most distinctive implication of this archetype is that the Rankine-Hugoniot conditions are no longer sufficient to predict the downstream state of the shock in terms of the upstream state and the shock velocity. This is because, in contrast to purely hydromagnetic shocks, the upstream gas-frame electric field is not uniquely defined in terms of the upstream velocity and magnetic fields: As a non-electrical conductor, the unshocked gas is incapable of sustaining a current flow, so the upstream boundary condition of no currents in the undisturbed gas is automatically satisfied for any electric field.

It has been argued that an analytic prediction of the electric field requires an analytic and physically correct solution for the ionizing wave structure. In order to gain some insight into the structure problem, prior studies have assumed temperature-dependent, step-function models for the variation of electrical
conductivity σ within the shock, i.e., $\sigma = 0$ for $T' < T^*\prime$ and $\sigma \neq 0$ for $T' > T^*\prime$, where T' is the gas temperature and $T^*\prime$ is some "reference" temperature. Analysis by May and Tendys10 indicates that shock structure integral curves deduced from this model are applicable only when $T^*\prime$ is of the same order-of-magnitude as the characteristic (first) ionization temperature of the unshocked gas.

The present study is concerned with obtaining shock-structure solutions (if any exist) which are consistent with the gas-ionizing archetype and which also incorporate realistic representations of transport and rate processes in a collisionally-ionizing monatomic gas, argon in particular. It is motivated by a realization that by misrepresenting the physics of high temperature gases, the step-function temperature-dependent conductivity approach can give qualitatively misleading results for two different reasons: (1) If the internal shock temperature approaches the ionization temperature, as May and Tendys suggest, the gas becomes fully ionized almost immediately (since each interparticle collision has enough energy on-the-average to "knock off" an outer electron), but at these temperatures radiation-induced precursor ionization levels are sufficiently high so as to preclude any reasonable interpretation of the upstream state as un-ionized14. Consequently, the "gas-ionizing" archetype with its implied electric field indeterminacy is violated and the shock is not gas-ionizing, in the present context. (2) Another possibility, the one actually explored in this paper, is that of a "low temperature" gas-ionizing shock, i.e., a front creating a nonequilibrium plasma in which photo-ionization is realistically negligible compared to collisional ionization. In this latter case the concepts embodied in the archetype may still be relevant but the step-function temperature-dependent conductivity model is unrealistic. In fact, the local electrical conductivity depends on the degree of ionization α, as well as temperature, so that ionization-lags in real nonequilibrium flows can have considerable influence on the variation of σ within the shock transition.

The macroscopic global conservation and Maxwell equations used in the
present analysis are developed in Sec. 2. For an electrically conducting upstream state, these can be integrated between upstream and downstream states, to give the usual hydromagnetic jump conditions. In order to express the dissipation fluxes (i.e., the stress tensor, heat flux vector and current density vector) in terms of lower-order dependent variables, it is assumed first that the electron cyclotron frequency was always much less than the electron collision frequency.

Secondly, the Navier-Stokes approximation is used, together with a two-temperature modification of the Chapman-Enskog expressions for transport coefficients. The first assumption, which rules out Hall currents, is removable in general by using a more general version of Ohm's law, but it is justified specifically for the flow conditions of the calculations to be presented later. It is well-known that the Navier-Stokes approximation is questionable in connection with strong hydrodynamic shock structure calculations. Nevertheless, its use in the present study is plausible on the grounds that qualitative misrepresentation of the structure, of the sort introduced by the aforementioned electrical conductivity models, are unlikely; moreover, Navier-Stokes equations have been used, with some success, to study the structure of purely hydromagnetic shocks (Marshall, Burgers, Ludford, Germain, Bleviss, and Anderson).

In Sec. 3, the ionization rates and transport properties of partially ionized nonequilibrium argon are developed in terms of fundamental collision cross-sections. The sole source of electrons is taken to be collisional ionization by the reactions:

\[
\begin{align*}
\text{Ar} + \text{Ar} & \xrightleftharpoons[k_{rA}]{k_{fA}} \text{Ar}^+ + e^- + \text{Ar}, \\
\text{e}^- + \text{Ar} & \xrightleftharpoons[k_{rA}]{k_{fe}} \text{Ar}^+ + e^- + e^-,
\end{align*}
\]

where \(k_{fA} \), \(k_{fe} \) are the forward ionization rate coefficients and \(k_{rA} \), \(k_{re} \) are the
reverse three-body recombination rate coefficients. The kinetics of Eqs. (1a, b) were treated previously in connection with flow in the relaxation zone of a hydrodynamic shock. It is assumed that the plasma remains quasi-neutral throughout so that electrogasdynamic influences on shock structure are negligible compared to magnetogasdynamic effects. Because the reaction rates, transport properties and thermodynamics of partially ionized argon depend on both electron and heavy-particle temperatures, an appropriate electron energy equation is required.

Sec. 4 deals with the nature of the shock structure integral curves which are consistent with the gas-ionizing archetype. In this portion, it is suggested that the "ZND" approximation of detonation wave theory is applicable to the present problem and the consequences of this representation are examined for both "fast" and "slow" gas-ionizing shocks. In Sec. 5, selected numerical shock structure solutions are presented and numerical techniques are treated briefly. The conclusions of this investigation are given in Sec. 6, where the applicability and relevance of the present results are discussed and potentially profitable directions of future research are suggested.
2. **GLOBAL HYDROMAGNETIC EQUATIONS IN OBLIQUE MAGNETIC FIELD SHOCK GEOMETRIES**

We shall be concerned here with the distribution of flow variables within the transition region of the oblique gas-ionizing shock whose geometry, in shock-frame coordinates, is shown in Fig. 1. This shock may be envisaged as having begun its career as an ordinary hydrodynamic gas-ionizing shock which later "penetrated" a region of nonzero magnetic field and subsequently attained a steady-state structure. An \((x', y', z')\) coordinate system is selected in which the upstream magnetic field vector resolves along the \(x'\) and \(z'\) axes. For the scalar electrical conductivity assumed previously, the shock-frame electric field is in the \(y'\) direction and all electromagnetic components which are initially zero, remain zero (the "switch-on" shock is an exception not explicitly considered here).

As a general rule "primes" are used to distinguish physical variables, all of which are in mks units, from the more convenient nondimensionalized variables used later in developing the equations; furthermore, cartesian tensor notation is used to express the general form of the governing equations more concisely. The component directions in the tensor notation are related to the coordinate system of Fig. 1 as follows: \(x_1' = x', x_2' = y', x_3' = z'; (\)_1 = (\)x', (\)_2 = (\)y', (\)_3 = (\)z'.\)

In the present rotation \(\delta_{ij}\) is the usual Kronecker delta: \(\delta_{ij} = 1, \) if \(i=j; \delta_{ij} = 0, \) if \(i\neq j.\)

The symbol \(\epsilon_{ijk}\) is the permutation tensor: \(\epsilon_{ijk} = 0, \) if \(i=j, i=k, \) or \(j=k; \epsilon_{ijk} = 1, \) if \(ijk\) are in cyclic order \((123, 213, 312)\) and \(\epsilon_{ijk} = -1, \) if \(ijk\) are unequal but not in cyclic order \((132, 231, 321)\).

The thermodynamic pressure \(p'\) and specific enthalpy \(i'\) of partially ionized two temperature argon satisfy the equations of state \(^{26}\)

\[
p' = \rho' R(T' + \alpha T'_{e}) , \tag{2}
\]

\[
i' = \frac{5}{2} R(T' + \alpha T'_{e}) + \alpha R \Theta'_{ion} \tag{3}
\]

where \(\rho'\) is the mass density, \(T'\) is the heavy particle temperature, \(T'_{e}\)
is the electron temperature, α is the degree of ionization, $R = 2.082 \times 10^2$ joule/kg \cdot K is the gas constant for atomic argon and $T_{\text{ion}} = 183,100$ K is a characteristic temperature for the single ionization of argon.

Using Eqs. (2) and (3) to immediately eliminate pressure and enthalpy, the global conservation and Maxwell equations for the steady flow of a quasi-neutral plasma can be written in divergence form as follows:

$$\frac{\partial}{\partial x_i} \left(\rho' u_i' \right) = 0$$ \hfill (4)

$$\frac{\lambda}{\lambda x_i} \left[\rho' u_i' u_j' + \rho' R (T' + \alpha T_e') \delta_{ij} + \frac{1}{\mu_o} \left(\delta_{ij} \frac{B_{ij}'}{2} - B_i' B_j' \right) + \tau_{ij}' \right] = 0, \ \text{ (5)}$$

$$\frac{\lambda}{\lambda x_i} \left[\rho' u_i' \cdot \frac{5}{2} \cdot R (T' + \alpha T_e' + \frac{2}{5} \cdot \alpha \delta_{\text{ion}}') + \rho' u_i' \cdot \frac{\mu^2}{2}
+ \varepsilon_{ijk} \cdot \frac{E_k'}{\mu_o} + u_j' \tau_{ij}' + q_i' + q_{e_i}' \right] = 0, \ \text{ (6)}$$

$$\varepsilon_{ijk} \cdot \frac{\lambda B_k'}{\lambda x_j} = \mu_o J_i' \ \text{, (7)}$$

$$\varepsilon_{ijk} \cdot \frac{\lambda E_k'}{\lambda x_j} = 0 \ \text{, (8)}$$

$$\frac{\lambda E_i'}{\lambda x_i} = 0 \ \text{, (9)}$$

6
\[
\frac{\partial B_i'}{\partial x_j'} = 0, \quad (10)
\]

where \(u_i' \) is the flow velocity, \(B_i' \) is the magnetic induction, \(E_i' \) is the electric field intensity, \(\mu_0 = 4\pi \times 10^{-7} \text{ henry/m} \) is the free space magnetic permeability in mks units, \(J_i' \) is the current flux density vector, \(q_i' \) and \(q_e,i' \) are the heavy-particle and electron-gas heat flux vectors and \(\tau_{ij}' \) is the viscous stress tensor.

As indicated in Sec. 1, a scalar electrical conductivity \(\sigma \) is assumed in this analysis, in which case the relevant form of Ohm's law is

\[
J_i' = \sigma (E_i' + \varepsilon_{ijk} u_j' B_k'), \quad (11)
\]

where \((E_i') = E_i' + \varepsilon_{ijk} u_j' B_k' \) is the electric field in coordinates moving with the gas velocity \(u_i' \) through a magnetic field \(B_i' \). Using the Navier-Stokes approximation discussed in Sec. 1, and recognizing that the partially ionized plasma is a mixture of monatomic heavy particles (atoms and ions), and an electron gas which can in general maintain distinct temperatures, the heat fluxes and stress tensor can be written

\[
q_i' = -\kappa \left(\frac{\partial T'}{\partial x_i'} \right), \quad q_e,i' = -\kappa_e \left(\frac{\partial T_e'}{\partial x_i'} \right), \quad (12)
\]

\[
\tau_{ij}' = -\eta \left(\frac{\partial u_i'}{\partial x_j'} + \frac{\partial u_j'}{\partial x_i'} - \frac{2}{3} \delta_{ij} \cdot \frac{\partial u_k'}{\partial x_k'} \right), \quad (13)
\]
where \(\kappa \) and \(\kappa_e \) are the heavy-particle and electron-gas thermal conductivities and \(\eta \) is the coefficient of shear viscosity for the entire gas. Combining the Maxwell equation for induced magnetic field, Eq. (7), with Ohm's law, Eq. (11), gives an expression for the gas-frame electric field in terms of magnetic field derivatives

\[
(E_j')' = E_j' + \epsilon_{ijk} u'_j B'_k = \frac{\epsilon_{ijk}}{\sigma \mu_0} \left(\frac{\delta B_k'}{\partial x_j'} \right) .
\]

(Eqs. (2) - (14) are applicable within the transition region of Fig. 1. It is useful to re-express the governing equations in terms of new "unprimed" variables which have been nondimensionalized with respect to quantities in front of the shock. Define:

\[
p = \frac{p}{\rho_1}, \quad T = \frac{T'}{T_1}, \quad T_e = \frac{T_e'}{T_1}, \quad \Theta_{1on} = \frac{\Theta_{1on}}{T_1},
\]

\[
x_1 = \frac{x_1'}{\lambda_1}, \quad u_i = \frac{u_i'}{x_1}, \quad B_i = \frac{B_i'}{B_{x_1}}, \quad E_i = \frac{E_i'}{u_{x_1} B_{x_1}}.
\]

\[
J_i = \frac{u_{i,1}}{B_{x_1}} J_i', \quad q_i = \frac{q_i'}{\Gamma_1 u_{x_1} RT_1}, \quad q_{e,i} = \frac{q_{e,i}'}{\rho_1 u_{x_1} RT_1}.
\]

\[
\tau_{ij} = \frac{\tau_{ij}'}{\rho_1 u_{x_1}^2}.
\]
where the relationship between tensor indices and the components of Fig. 1 has been discussed. Note also that the subscript 1 in Eqs. (15) - (18) denotes upstream conditions generally, and that λ_1, λ the mean free path in the undisturbed gas.

Acoustic and Alfvén speeds a_{x1}' and b_{x1}' are defined which are characteristic of the undisturbed $(\alpha_1 = 0)$ state:

\[
a_{x1}' = \left(\frac{5}{3} RT_1' \right)^{\frac{1}{2}} \quad b_{x1}' = B_{x1}' \left(\rho_1' u_0' \right)^{-\frac{1}{2}}
\]

These, in turn, may be used to define the Mach and Alfvén numbers of the shock M_1 and M_{A1}:

\[
M_1 = \frac{u_{x1}'}{a_{x1}'} = \frac{u_{x1}'}{\left(\frac{5}{3} RT_1' \right)^{\frac{1}{2}}} \quad M_{A1} = \frac{u_{x1}'}{b_{x1}'} = \frac{\left(\rho_1' u_0' \right)^{-\frac{1}{2}}}{B_{x1}'}
\]

In order to assess the relative significance of viscosity versus electrical conductivity as dissipative mechanisms these transport properties must be incorporated into suitable dimensionless numbers, i.e., fluid dynamic and magnetic Reynolds numbers Re and Rm. Noting that the characteristic length scale in the present problem is the upstream mean free path λ_1, define:

\[
Re = \frac{\rho_1' u_{x1}' \lambda_1}{\eta}
\]

\[
Rm = \sigma u_0' u_{x1}' \lambda_1
\]
Furthermore, a Prandtl number Pr is defined which incorporates the effects of heavy-particle thermal conductivity.

$$ Pr = \frac{5}{2} \cdot \frac{R \eta}{\kappa} \quad (22) $$

It is noted in passing that, from kinetic theory, in a pure monatomic gas

$$ \nu = \left(\frac{15 R \eta}{4} \right), \text{ so that when } \omega = 0, \text{ } Pr = \frac{2}{3}. $$

The governing equations, Eqs. (4) - (14) can now be written in terms of the dimensionless quantities defined by Eqs. (15) - (22) as follows:

$$ \frac{\partial}{\partial x_1} \left(\rho u_i \right) = \frac{\partial E_i}{\partial x_1} = \frac{\partial B_i}{\partial x_1} = \epsilon_{ijk} \frac{\partial E_k}{\partial x_j} = 0, $$

$$ \frac{1}{\lambda x_1} \left[\rho u_i u_j + \frac{3}{5M_1} \cdot \rho \left(T + aT_e \right) \delta_{ij} + \frac{1}{M^2 A_1} \left(\delta_{ij} \frac{B^2}{2} - B_i B_j + \tau_{ij} \right) \right] = 0, $$

$$ \frac{1}{\lambda x_1} \left[\rho u_i \cdot \frac{5}{2} \left(T + aT_e + \frac{2}{5} \sigma_{\text{ion}} \right) + \frac{5}{6} M_1^2 u_i^2 + \epsilon_{ijk} \frac{M_1}{3} \cdot E_j B_k + \frac{5}{3} M_1^2 u_j \delta_{ij} + q_1 + q_e,1 \right] = 0, $$

$$ E_i + \epsilon_{ijk} u_j B_k = \frac{J_i}{Rm} = \frac{\epsilon_{ijk}}{Rm} \cdot \frac{\partial B_k}{\partial x_j}, $$

$$ q_1 = -\frac{5}{2} \cdot \frac{1}{Pr Re} \cdot \frac{\lambda T_e}{\lambda x_1}, \quad q_e,1 = -\frac{5}{2} \left(\frac{\nu_e}{x} \right) \cdot \frac{1}{Pr Re} \cdot \frac{\lambda T_e}{\lambda x_1}. $$

10
Bearing in mind the relationship between the tensor notation indices and the components of the vector quantities in Fig. 1, and substituting these quantities into the above set gives the ordinary differential equations:

\[
\frac{d}{dx}(\rho u_x) = \frac{dB_x}{dx} = \frac{dE_y}{dx} = 0, \quad (23)
\]

\[
\frac{d}{dx} \left[\rho u_x^2 + \frac{3}{5M_1^8} \cdot \rho (T + \alpha T_e) + \frac{1}{2M_{A_1}^8} (B_x^2 - B_x^2) + \tau_{xx} \right] = 0 \quad (24)
\]

\[
\frac{d}{dx} \left[\rho u_x u_z - \frac{B_x B_z}{M_{A_1}^8} + \tau_{xz} \right] = 0 \quad (25)
\]

\[
\frac{d}{dx} \left[\rho u_x \cdot \frac{5}{2}(T + \alpha T_e) + \frac{2}{5} \alpha \alpha_{lon} + \frac{5}{6} M_1^8 (u_x^2 + u_z^2) + \frac{5}{3} M_1^8 \cdot E_y B_z + \frac{5}{3} M_1^8 (u_x \tau_{xx} + u_z \tau_{xz}) + q_x + q_{e,1} \right] = 0 \quad (26)
\]
\[
\frac{dB_z}{dx} = -J_y = \text{Rm} \left[u_x B_z - u_z B_x - E_y \right],
\]

(27)

\[
q_x = -\frac{5}{2} \frac{1}{\text{PrRe}} \frac{dT}{dx}, \quad q_{e,1} = -\frac{5}{2} \left(\frac{x_e}{x} \right) \frac{1}{\text{PrRe}} \frac{dT_e}{dx},
\]

(28)

\[
\tau_{xx} = -\frac{4}{3} \frac{1}{\text{Re}} \frac{du_x}{dx}, \quad \tau_{xz} = -\frac{1}{\text{Re}} \frac{du_z}{dx},
\]

(29)

Eqs. (23) - (26) can be integrated immediately between conditions in the undisturbed gas and some arbitrary point \(x \) in the shock interior. Note first that, using the definitions of Eqs. (15) and (16), the flow variables must satisfy the following conditions asymptotically upstream:

\[
@ x \rightarrow -\infty : u_x = B_x = T = \rho = 1,
\]

(30)

\[
a = u_z - c, \quad B_z = B_{z1}, \quad E_y = E_{y1}.
\]

Now, substituting the fluxes of Eqs. (28) and (29) into Eqs. (24) - (26), and performing the aforementioned integrations with the boundary conditions of Eq. (30), Eqs. (23) - (27) become:

\[
\rho u_x = B_x = 1, \quad E_y = E_{y1}
\]

(31)

\[
\frac{du_x}{dx} = \frac{3}{4} \text{Re} \left[u_x - 1 + \frac{3}{5 M_z^2} \left(\frac{T + a T_e}{u_x} - 1 \right) + \frac{1}{2 M_{A1}^2 (B_{z1}^2 - B_{z1}^2)} \right]
\]

(32)
\[
\frac{du}{dx} = Re \left[u - \frac{(B_z - B_{z1})}{M_{A1}^2} \right], \quad (33)
\]
\[
\frac{dT}{dx} = - \left(\frac{\nu_e}{\nu} \right) \frac{dT_e}{dx} - \frac{2}{3} PrM_1^2 \left(\frac{4}{3} \frac{du}{dx} + u \right) \left(\frac{4}{3} \frac{du}{dx} + u \right) + Pr Re \left[T + \nabla^2 T_e + \frac{2}{5} \alpha e_{ion} - \Gamma + \frac{M_1^2}{M_{A1}^2} (u^2 + u_z^2 - 1) + \frac{2}{3} \frac{M_1^2}{M_{A1}^2} E_{y1} (3z - B_{z1}) \right] \quad (34)
\]
\[
\frac{dB_z}{dx} = Rm \left[B_z \left(\frac{u - 1}{M_{A1}^2} \right) + \frac{B_{z1}}{M_{A1}^2} - E_y \right] - \frac{Rm}{Re} \frac{du_z}{dx}. \quad (35)
\]

It is instructive to examine, at this point, the significance of the hydro-magnetic boundary condition on the electric field \(E_{y1} \). If the boundary conditions of Eq. (30) are introduced into Eqs. (32) - (34), the flow derivatives quite properly vanish identically in the undisturbed gas:

\[
\frac{du}{dx} \rightarrow -\infty, \quad \frac{dT}{dx} \rightarrow -\infty, \quad \frac{dB_z}{dx} \rightarrow 0.
\]

In order to insure that the transverse magnetic field vanishes upstream, i.e., \(\frac{dB_z}{dx} \rightarrow 0 \), it is required, from Eqs. (30) and (35), that
In a pure hydromagnetic discontinuity where the gas is electrically conducting upstream, $Rm_1 \neq 0$, so that from Eq. (36) $E_{y_1} = B_{z_1}$. On the other hand, for the gas-ionizing shocks, of interest here, $a_1 = Rm_2 = 0$, so that E_{y_1} is not uniquely defined.

Eqs. (32)-(35) are four differential equations in the six unknowns: u_x, u_z, B_z, T, T_e and \tilde{a}. In order to mathematically close the set, two additional equations are required describing the nonequilibrium behavior of a and T_e within the shock transition; also the transport-property-dependent dimensionless numbers Re, Rm and Pr must be expressed in terms of local values of the flow variables.
3. IONIZATION RATES AND TRANSPORT

PROPERTIES IN PARTIALLY IONIZED ARGON

Formulation of equations which deal specifically with distinct electron, atom and ion species is facilitated by introducing the following approximations, definitions and derived relations, most of which follow directly from the assumptions of Sec. 1:

\[
m_e / m_A < < 1, \quad m_1 = m_A, \quad n'_e = n'_1, \quad n_e = n_1' = n'_A,
\]

\[
\alpha = \frac{n'_e}{n'_e + n'_A}, \quad n'_e = n_e \left(\frac{\dot{\alpha}}{\alpha}\right), \quad n' = 2n'_e + n'_A,
\]

\[
n'_e = \left(\frac{n}{1 + \alpha}\right), \quad n'_1 = \frac{2\rho'}{m_A}, \quad n'_A = \left(\frac{1 - \alpha}{1 + \alpha}\right), \quad n' = \frac{(1 - \alpha)\rho'}{m_A},
\]

\[
\rho' (1 + \alpha) = n' m_A, \quad \frac{n'_e m_e}{\rho'} = \left(\frac{m_e}{m_A}\right) \rho', \quad \frac{n'_1 m_1}{\rho'} = \alpha.
\]

where \(n'_A\), \(n'_e\) and \(n'_1\) are the number densities of \(Ar^+\), \(e^-\) and \(Ar^+\) species respectively, \(\rho'\) is the total number density, \(n'_e\) is the net electron number density production rate from all sources, \(\dot{\alpha}\) is the degree of ionization production rate from all sources, \(m_e = 9.107 \times 10^{-31}\) kg and \(m_A = 6.628 \times 10^{-26}\) kg are the masses of an electron and an argon atom respectively.

The one-dimensional conservation of electron mass and energy equations
applicable to the present oroblem can be written26

\[
\frac{d}{dx'} (n_e' u_x') = (\dot{n}_e')_A + (\dot{n}_e')_e,
\]

\[
n_e' u_x' \frac{d}{dx'} \left(\frac{3}{2} kT_e' \right) + n_e' kT_e' \frac{du'}{dx'} = 3 n_e' \left(\frac{m_e}{m_A} \right) \nu_e k (T' - T_e') - (\dot{n}_e')_e \kappa_{\text{ion}} + \frac{J^2}{c},
\]

where \(k = 1.380 \times 10^{-23} \text{ Joule/K} \) is Boltzmann's constant. \((\dot{n}_e')_A \) and \((\dot{n}_e')_e \) are the electron density production rates resulting from atom-catalyzed reactions Eq. (1a), and electron-catalyzed reactions, Eq. (1b), respectively, and \(\nu_e' \) is the collision frequency of the electron gas. The effects of electron thermal conductivity were not included in Eq. (42) in anticipation of a future development, however, a Joule heating term \(J^2 \frac{c}{2} \) was added to the energy equation of Ref. 26 to account for dissipation due to induced currents flowing through the gas within the transition region.

Making use of Eqs. (4), (38) and (39), and the fact that \(R = k/m_A \), Eqs. (41) and (42), in terms of the degree of ionization \(c \), become

\[
\frac{d u_x'}{dx'} = \alpha^e_A + \alpha^e_e,
\]

\[
\frac{3}{2} u_x' \frac{dT_e'}{dx'} + T_e' \frac{du_x'}{dx} = \ldots
\]

16
\[\dot{\alpha}_A' = (1 - \alpha) \left(\frac{\rho}{m_A} \right)^2 \cdot k_{r_A}(T') \cdot \frac{(\mu^{\alpha'})_A^2 \cdot \alpha^{2 - \frac{2}{1 - \alpha}}}{1 - \alpha^{2 - \frac{2}{1 - \alpha}}} \]

\[\dot{\alpha}_e' = \alpha \left(\frac{\rho}{m_A} \right)^2 \cdot k_{r_e}(T'_e) \cdot \frac{(\mu^{\alpha'})_e^2 \cdot \alpha^{2 - \frac{2}{1 - \alpha}}}{1 - \alpha^{2 - \frac{2}{1 - \alpha}}} \]

The collisional ionization source terms for atom-catalyzed and electron-catalyzed reactions, \(\dot{\alpha}_A' \) and \(\dot{\alpha}_e' \) respectively, can be expressed as:

where \(\alpha_{eq}(T') \) and \(\alpha_{eq}(T'_e) \) are reference degrees of ionization which would prevail at a given gas density \(\rho' \), degree of ionization \(\alpha \) and either the heavy-particle temperature \(T' \) or the electron temperature \(T'_e \). These, in turn, are defined by:

\[\alpha_{eq}(T') = \left[\frac{1 + \frac{\rho'(1 + \alpha)}{m_A K_{eq}(T')}}{1 + \frac{\rho'(1 + \alpha)}{m_A K_{eq}(T')}} \right]^{-\frac{1}{2}} \]

\[\alpha_{eq}(T'_e) = \left[\frac{1 + \frac{\rho'(1 + \alpha)}{m_A K_{eq}(T'_e)}}{1 + \frac{\rho'(1 + \alpha)}{m_A K_{eq}(T'_e)}} \right]^{-\frac{1}{2}} \]

where \(K_{eq}(T') \) and \(K_{eq}(T'_e) \) are equilibrium "constants" associated with the heavy-particle and electron temperatures, respectively. The recombination
rate coefficients, \(k_{rA}(T') \) and \(k_{re}(T_e') \), and equilibrium constants associated with Eqs. (la, b) behind strong normal shocks, as discussed in Ref. 26, are:

\[
k_{rA}(T') = 5.80 \times 10^{-49} \left(\frac{135,300}{T'} + 2 \right) \cdot \exp \left(\frac{47,800}{T'} \right) \text{ (m}^6/\text{sec)}, \tag{47a}
\]

\[
k_{re}(T_e') = 1.29 \times 10^{-44} \left(\frac{135,300}{T_e'} + 2 \right) \cdot \exp \left(\frac{47,800}{T_e'} \right) \text{ (m}^6/\text{sec)}, \tag{47b}
\]

\[
K_{eq}(T') = 2.90 \times 10^{22} \cdot T'^{\gamma/2} \cdot \exp \left(-\frac{\Theta_{ion}'}{T'} \right) (1/\text{m}^3), \tag{48a}
\]

\[
K_{eq}(T_e') = 2.90 \times 10^{22} \cdot T_e'^{\gamma/2} \cdot \exp \left(-\frac{\Theta_{ion}'}{T_e'} \right) (1/\text{m}^3). \tag{48b}
\]

It is convenient to define nondimensionalized "unprimed" variables \(\dot{\sigma}_A, \dot{\sigma}_e, \nu_e \) corresponding to the production rates and collision frequencies appearing in Eqs. (43) and (44):

\[
\dot{\sigma}_A = \frac{\lambda_1 \sigma_A'}{u_{x1}'}, \quad \dot{\sigma}_e = \frac{\lambda_1 \sigma_{e}'}{u_{x1}'} \tag{49}
\]

\[
\nu_e = \left(\frac{m_e}{m_A} \right) \frac{\lambda_1 \nu_{e}'}{u_{x1}'} \tag{50}
\]
The production rates of Eq. (49) are completely specified in terms of local values of n, T' and T'_e by Eqs. (45a) though (48b). Relations are now sought which express v_e and also the dimensionless numbers Re, Rm and Pr in terms of a, T' and T'_e.

In principle, all collision-dependent transport properties needed in this analysis are obtainable from a knowledge of the elastic collision cross section for the various encounters occurring in a partially ionized gas. These will be briefly summarized for argon.

The Coulomb cross-sections for collisions between charged particles are

$$Q_{II}' = \frac{e^4}{36\pi(e_0 k T')^2} \ln \left[12 \frac{n}{n_e} \left(\frac{e_0^3 k^3 T'^3}{e^6 n'_e} \right)^{1/2} \right]$$

$$Q_{el}' = Q_{ee}' = \frac{e^4}{36\pi(e_0 k T'_e)^2} \ln \left[12 \frac{n}{n_e} \left(\frac{e_0^3 k^3 T'_e^3}{e^6 n'_e} \right)^{1/2} \right]$$

where Q_{II}', Q_{el}' and Q_{ee}' are the cross-sections for $Ar^+ - Ar^+$, $e^- - Ar^+$ and $e^- - e^-$ collisions respectively, $e = 1.602 \times 10^{-19}$ coulomb is the charge of an electron and $e_0 = 8.854 \times 10^{-12}$ farad/m is the dielectric permittivity of free space in mks units. Making the required numerical substitutions in the above yields

$$Q_{II}' = \frac{1.95 \times 10^{-10}}{T'} \ln \left[1.53 \times 10^{14} \frac{T'^3}{n_e} \right] \text{ (m}^2) \tag{51a}$$
\(Q'_{el} = Q_{ee} = \frac{1.95 \times 10^{-10}}{T_{e}^{3/2}} \ln \left[\frac{1.53 \times 10^{14} \cdot T_{e}^{3}}{n'_{e}} \right] \quad (m^3); \quad (51b) \)

the remaining cross-sections can be expressed, after Jaffrin

\[Q'_{AA} = 170 \times 10^{-20} \cdot T'^{-1/4} \quad (m^3), \quad (51c) \]

\[Q'_{IA} = 140 \times 10^{-20} \quad (m^3), \quad (51d) \]

\[Q'_{eA} = \begin{cases}
(-0.35 - 0.775 \times 10^{-4} \cdot T_{e}') \times 10^{-20}, & T_{e}' > 10^{40} K \\
(0.39 - 0.551 \times 10^{-4} \cdot T_{e}' + 0.595 \times 10^{-8} \cdot T_{e}'^3) \times 10^{-20}, & T_{e}' < 10^{40} K
\end{cases} \quad (m^3), \quad (51e) \]

where \(Q'_{AA} \), \(Q'_{IA} \) and \(Q'_{eA} \) are the elastic cross-section for \(Ar - Ar \), \(Ar^+ - Ar \) and \(e^- - Ar \) collisions, respectively.

The electron elastic collision frequency \(\nu_e' \) and the electrical conductivity of the partially ionized gas \(\sigma \) can be written directly in terms of these cross sections

\[\nu_e' = \left(\frac{8kT_{e}'}{\pi m_e} \right)^{1/2} \left(n'_{A} Q'_{eA} + n'_{e} Q'_{eI} \right), \quad (52) \]

\[\sigma = \frac{e^2 n'_{e}}{m_e \nu_e'} = \left(\frac{n_e^4}{8m_e kT_{e}'} \right)^{1/2} \cdot \frac{n'_{e}}{n'_{A} Q'_{eA} + n'_{e} Q'_{eI}}; \quad (53) \]
moreover, the thermal conductivities of the atom, ion and electron species are

\[\kappa_A = \frac{75k}{64Q_{AA}} \left(\frac{n_k T'}{m_A} \right)^{\frac{3}{2}} \left[1 + \frac{n_e' Q_{IA}}{n_A' Q_{AA}} \right]^{-1} \] (54)

\[\kappa_I = \frac{75k}{64Q_{IA}} \cdot \frac{n_e'}{n_A'} \cdot \left(\frac{n_k T'}{m_A} \right)^{\frac{3}{2}} \left[1 + \frac{n_e' Q_{II}}{n_A' Q_{IA}} \right]^{-1} \] (55)

\[\kappa_e = \frac{75k}{64Q_{ee}(1+\sqrt{2})} \cdot \left(\frac{n_k T_e'}{m_e} \right)^{\frac{3}{2}} \left[1 + \frac{\sqrt{2} n_e' Q_{ee}}{(1+\sqrt{2}) n_e' Q_{ee}} \right]^{-1} \] (56)

The viscosity coefficients are related to the thermal conductivities by

\[\eta_A = \frac{4}{15 R} \kappa_A, \quad \eta_I = \frac{4}{15 R} \kappa_I, \quad \eta_e = \frac{4}{15 R} \left(\frac{m_e}{m_A} \right) \kappa_e. \] (57)

The upstream mean free path \(\lambda_1 \) which is used here as a reference length is

\[\lambda_1 = \frac{1}{\sqrt{2} n_1' Q_{AA1}} = \frac{m_A}{\sqrt{2} \rho_1' Q_{AA1}} \] (58)

where \(Q_{AA1} \) is Eq. (51c) evaluated at \(T' = T'_1 \). Note also that

\[\kappa = \kappa_A + \kappa_I, \quad \eta = \eta_A + \eta_I. \] (59)
where the electron viscosity has been dropped from \(\eta \) since \(\eta_e / \eta \) is of the order \((m_e / m_A)^{1/2} \sim 1 \); cf. Eqs. (56) and (57).

Combining Eqs. (20), (39), (54), (55), (56), (58) and (59) and introducing the definition of the upstream Mach number \(M_1 = u_{x1} / (5 RT_1)^{1/2} \) gives an expression for the fluid dynamic Reynolds number in terms of \(\alpha \) and \(T \):

\[
R_e = \left(\frac{128}{15 \pi} \right)^{1/2} M_1 T^{-1} \cdot \frac{1}{Q_{AA1}} \left[\frac{1 - \alpha}{Q_{AA'} + \alpha(Q_{IA} - Q_{AA'})} + \frac{\alpha}{Q_{IA'} + \alpha(Q_{II} - Q_{IA'})} \right]^{-1}
\]

(60a)

Using the fact that \(Q_{AA'} / Q_{AA1} = (T'/T_1)^{-1/2} = T^{-1/2} \), from Eq. (51c), Eq. (60) can be simplified considerably if the argon remains un-ionized:

\[
@ \alpha = 0 : R_e = \left(\frac{128}{15 \pi} \right)^{1/2} M_1 T^{-3/4}
\]

(60b)

Combining Eqs. (21), (39), (53) and (58), and using the Mach number, as before, gives an expression for magnetic Reynolds number in terms of \(\alpha \) and \(T_e \):

\[
R_m = \rho^* M_1 \alpha T_e^{-1/2} \cdot \left[\frac{Q_{AA1}}{Q_{eA} + \alpha(Q_{el'} - Q_{eA})} \right],
\]

(61a)

where \(\rho^* \) is a nondimensionalized reference density defined by

\[
\rho^* = \rho_1' Q_{AA1}^2 \left(\frac{5 \pi^2 \hbar^3}{360} \right)^{1/2} \left(\frac{m_e \hbar}{m_A} \right)^{1/2} = 8.39 \times 10^{-40}
\]

(61b)
It may be noted here that while the fluid dynamic Reynolds number based on mean free path \(\text{Re} \) is density-independent, this is not the case for the Magnetic Reynolds number \(\text{Rm} \). From Eq. (61) it follows that \(\rho \) and therefore \(\text{Rm} \) increase with decreasing upstream density \(\rho_1' \).

Combining Eqs. (39), (50), (52) and (58) with the definition of Mach number gives the following expression for nondimensionalized electron collision frequency in terms of \(\alpha \) and \(T_e \):

\[
\nu_e = \left(\frac{m_e}{m_A} \right)^{\frac{3}{5}} \left(\frac{12}{5} \right)^{\frac{3}{5}} \frac{T_e}{M_1} \left[\frac{Q_{eA} + \sigma(Q_{eI} - Q_{eA})}{Q_{A1}} \right].
\]

From Eqs. (22), (57) and (59) the Prandtl number of the Mixture is simply

\[
Pr = \frac{2}{3}.
\]

The conservation of mass and energy equations for the electron gas can be put in a dimensionless form consistent with that of the global conservation equations of Eqs. (32) - (35). Note first from Eqs. (17), (21) and (27). That the term \(J' \frac{2}{3} / \sigma \) can be written

\[
\frac{J'}{\sigma} = \frac{\text{Rm}B'}{\sigma} \left(u_x B' - u_y E_x - u_z E_y \right)\frac{u_x}{u_0} \frac{u_y}{u_0} \frac{u_z}{u_0}.
\]

Substituting Eq. (64), together with the dimensionless production rates and collision frequencies of Eqs. (49) and (50) and the unprimed variables defined
earlier by Eqs. (15) - (19), into Eqs. (43) and (44) yields

\[
\frac{d \alpha}{dx} = \frac{\dot{a}_A + \dot{a}_e}{u_x},
\]

\[
\frac{dT_e}{dx} = \frac{2 v_e (T_e - T_0)}{u_x} - \frac{2}{3} \left(\frac{\dot{a}_e}{a} \right) \frac{q_{on}}{u_x} + \frac{10}{9} \left(\frac{R_m}{a} \right) \left(u_x B_z - u_z B_x - E_y \right)^2.
\]

It is significant that Eq. (66) is not singular when \(a = 0 \) since from Eqs. (45b), (49), (61) and (62) it follows that \(v_e, \frac{\dot{a}_e}{a} \) and \(\frac{R_m}{a} \) are all bounded as \(n \to 0 \). Certain formulations of the electron energy equation which have appeared in the literature have not had this useful and physically reasonable property.
4. INTEGRAL CURVES IN THE "ZND" APPROXIMATION

Equations (32) - (35), (65) and (66), together with the auxiliary algebraic expressions for Re, Rm, Pr, \(\lambda_A \), \(\lambda_e \), and \(v_e \) developed in the preceding section, form a mathematically closed set of six ordinary differential equations in the six primary variables \(u_x \), \(u_z \), \(B_z \), \(T \), \(T_e \) and \(n \). The formal solution of these equations as an initial-value problem starting from the upstream boundary conditions of Eq. (30) is not possible however owing to the mathematical nature of the system. Briefly, this can be explained as follows. The leading edge of the gas-ionizing front must begin as an ordinary hydrodynamic shock, but a predominant characteristic of the Navier-Stokes hydrodynamic shock structure in a monatomic (\(Pr = 2/3 \)) gas is that the integral curve solution in \((u_x, T) \) phase space has a singularity of the node type at the upstream state; consequently, the downstream state is "unattainable" from the upstream state by numerical integration. Since the gas-ionizing shock begins its upstream structural development as a pure gasdynamic shock, the latter conclusion applies to the present case as well.

Fortunately, it is appropriate to employ a useful approximation here which has been developed in the theory of detonation waves. Commonly known as the Zeldovich-von Neumann-Döring (ZND) approximation, in the present context this amounts to recognizing that ionizing reactions of Eqs. (1a,b) are sufficiently "slow" such that gas-ionizing shock structure can be computed in two distinct regions: (1) a perfect-gas viscous shock wave standing in front of (2) a much longer ionization relaxation zone where finite-rate chemistry and hydromagnetic interactions are significant.

It has been recognized, e.g., by Germain, Bleviss and Leonard, that, for hydromagnetic shocks, when the magnetic Reynolds number is small
compared to the viscous Reynolds number, a viscous shock is imbedded in a much wider region of hydromagnetic interaction. For the (collisionally ionizing) gas-ionizing hydromagnetic waves treated in the present paper, this must be the case since realistic ionization rate-processes yield values of $R_{in}/Re \ll 1$ within the initiating perfect-gas shock regardless of the ultimate electrical conductivity level. It should also be clearly understood that unlike certain imbedded viscous shocks which can occur in pure hydromagnetic wave fronts, the imbedded shock here must stand upstream of the hydromagnetic interaction since it creates the necessary electrically conducting environment.

The equations governing flow in the two regions can be obtained formally from Eqs. (32)-(35), (65) and (66) by applying the appropriate limiting conditions. In the perfect-gas-shock region we have the limit: $a = 0$, $R_{m} = 0$, so that Eqs. (65) and (66) for a and T_e are not relevant and Eqs. (30), (32)-(35) become:

$$\frac{du}{dx} = 0, \quad u_z = u_{z1} = 0; \quad \frac{dB}{dx} = 0, \quad B_z = B_{z1};$$

(66)

$$\frac{du}{dx} = \frac{3}{4} \text{Re} \left[u_x - 1 + \frac{3}{5M_1^2} \left(\frac{T}{u_x} - 1 \right) \right],$$

(67)

$$\frac{dT}{dx} = -\frac{16}{27} M_1^2 u_x \frac{du}{dx} + \frac{2}{3} \text{Re} \left[T - 1 + \frac{M_1^2}{3} (u_x^2 - 1) \right],$$

(68)
where we have used the fact that $\Pr = 2/3$ in the above. Clearly the transverse magnetic field and transverse velocity are constant across the perfect-gas shock. Eqs. (67) - (68) describe the Navier-Stokes shock structure of a perfect monatomic gas. Their solution has been treated elsewhere35-37, and is discussed here in the Appendix. The upstream and downstream states implied by these equations can be found by setting $\frac{du_x}{dx} = \frac{dT}{dx} = 0$ in Eqs. (67) and (68),

$$u_x - 1 + \frac{3}{5M_1^2} \left(\frac{T}{u_x} - 1 \right) = 0, \quad T - 1 + \frac{M_1^2}{3} (u_x - 1) = 0,$$

eliminating the temperature T between these to get the quadratic

$$4u_x^2 - \left(5 + \frac{3}{M_1^2} \right) u_x + \left(1 + \frac{3}{M_1^2} \right) = 0,$$

and solving for the velocities and corresponding temperatures associated with the two roots. This yields the upstream and downstream states of the imbedded perfect-gas shock:

$$@x \rightarrow - \infty ; \quad u_x = T = 1, \quad (69a)$$

$$@x \rightarrow + \infty ; \quad u_x = \frac{1}{3} \left(1 + \frac{3}{M_1^2} \right), \quad T = \frac{5}{16} \left(M_1^2 - \frac{3}{5M_1^2} \right) + \frac{7}{8}. \quad (69b)$$

In the relaxation zone regions the governing equations are found by applying the limit $Re \rightarrow \infty$ to Eqs. (32) - (35) which yields the set
\begin{align*}
u^2_x - 1 + \frac{3}{5M_1^2} \left(\frac{T + \alpha T_e}{u_x} - 1 \right) + \frac{1}{2M_{A_1}^2} (B_{z} - B_{z_1}) = 0, \tag{70}
\end{align*}

\begin{align*}
u_z = \frac{B_2 - B_{z_1}}{M_{A_1}^3}.
\end{align*}

\begin{align*}
T + \alpha T_e + \frac{2}{5} \alpha \Theta_{\text{ion}} - 1 + \frac{M_{A_1}^3}{3} (u_x^2 - 1)
+ \frac{2}{3} \frac{M_{A_1}^3}{M_{A_1}^3} \cdot (B_z - B_{z_1}) \left(E_y + \frac{B_{z_1} - B_{z_1}}{2M_{A_1}^3} \right) = 0,
\end{align*}

\begin{align*}
\frac{dB_k}{dx} = Rm \left[B_z \left(\frac{u_x - 1}{M_{A_1}^3} \right) + \frac{B_{z_1}}{M_{A_1}^3} - E y \right] = Rm \cdot g(u_x, B_z).
\end{align*}

Eliminating the quantity \((T + \alpha T_e)\) between Eqs. (70) and (72) gives a quadratic equation in \(u_x\) corresponding to \(Re \rightarrow \infty\),

\begin{align*}
f(u_x, B_z, \alpha) = 4u_x^2 - \left(5 + \frac{3}{M_1^2} + \zeta_1 \right) u_x + \left(1 + \frac{3}{M_1^2} - \zeta \right) = 0, \tag{74}
\end{align*}

where \(\zeta_1 = - \frac{5}{2} \cdot \frac{B_z^2 - B_{z_1}^2}{M_{A_1}^2}\).
$$\varepsilon_0 = \frac{6}{M_1^2} \left[\frac{1}{5} \eta_{\text{ion}} + \frac{1}{3} \cdot \frac{M_1^2}{M_{A1}^2} (B_z - B_{z1}) \left(\frac{E_y}{y_1} + \frac{B_z - B_{z1}}{2M_{A1}^2} \right) \right].$$

In the ionization relaxation zone the flow will proceed along the path $f = 0$; it is useful to introduce an analogous path, $g = 0$, corresponding to the limit $R_m \to 0$.

\begin{align*}
g(u_x, B_z) &= B_z \left(\frac{1}{x} - \frac{1}{M_{A1}^2} \right) + \frac{B_{z1}}{M_{A1}^2} - E_{y1} = 0. \tag{75}
\end{align*}

Equation (74) has two roots, given by

\begin{align*}
u_x &= \frac{1}{3} \left(5 + \frac{3}{M_1^2} + c_1 + \left[9 \left(1 - \frac{1}{M_1^2} \right) ^2 + c_1^2 + \left(0 + \frac{6}{M_1^2} \right) c_1 + 16 c_1 \right]^{1/2} \right), \tag{76}
\end{align*}

while solving for u_x from Eq. (75) gives

\begin{align*}
u_x &= \frac{E_{y1}}{B_z} + \frac{1}{M_{A1}^2} \left(1 - \frac{B_{z1}}{B_z} \right). \tag{77}
\end{align*}

Prior to discussing numerical shock structure solutions in physical space, it is instructive to examine the path of the ZND solutions in (u_x, B_z) phase space. Since the integral curves are more meaningful if a distinction is made between "fast" and "slow" hydromagnetic waves, these classifications will be briefly reviewed in the context of the present work.

Analysis of the linearized hydromagnetic equations yields the so-called
fast and slow disturbance speeds \(c_{f_1}' \) and \(c_{s_1}' \), which, together with the acoustic and Alfvén speeds \(a_1' \) and \(b_{x_1}' \) of Eq. (19a), are properties of the undisturbed flow. These speeds are conveniently written in terms of the quantity:

\[
b_1' = (b_{x_1}' + b_{z_1}') \frac{B}{B_{x_1}} = b_{x_1}' \left[1 + \frac{(B_{z_1}')^2}{B_{x_1}'} \right] = b_{x_1}' (1 + B_{z_1}')
\]

as follows:

\[
c_{f_1}' = \left[\frac{1}{2} \left((a_1'^2 + b_1'^2) + \sqrt{(a_1'^2 + b_1'^2)^2 - 4a_1'^2 b_{x_1}^2} \right) \right]^\frac{1}{2}, \quad (79a)
\]

\[
c_{s_1}' = \left[\frac{1}{2} \left((a_1'^2 + b_1'^2) - \sqrt{(a_1'^2 + b_1'^2)^2 - 4a_1'^2 b_{x_1}^2} \right) \right]^\frac{1}{2}. \quad (79b)
\]

Pure hydromagnetic shocks are generally classified as either fast or slow depending on whether they satisfy the inequalities:

\[
\frac{u_{x_1}'}{c_{f_1}'} \geq 1 ; \text{ fast shock,} \quad (80a)
\]

\[
\frac{c_{s_1}'}{b_{x_1}'} \leq \frac{u_{x_1}'}{b_{x_1}'} < 1 ; \text{ slow shock.} \quad (80b)
\]

Using the definitions \(M_1 = u_{x_1}' / a_1' \), \(M_{A1} = u_{x_1}' / b_{x_1}' \) and Eq. (78), the following useful formulas are obtained:
For the purposes of this section, attention is restricted to (hydromagnetically) oblique shocks in the infinite Mach number limit, since hypersonic \((M_i \gg 1)\) Mach numbers yield ionization levels required for hydromagnetic interaction and this particular limit does not change any important features of the integral curves. For \(M \rightarrow \infty\) then, Eqs. (81a, b) give \(u'/c' = M_A (1 + B_{z1}^2)^{-1/2}\) and \(c'/c_A = 0\). For the special case when the upstream magnetic field is inclined at 45° to the shock front \((B_{x1} = B_{z1} = 1)\), the criteria of Eqs. (80a, b) become

\[
M_{A1} \geq \sqrt{2} : \text{fast shock,}
\]
\[
0 \leq M_{A1} < 1 : \text{slow shock.}
\]

It might be observed here that no pure hydromagnetic shocks can exist between the weakest (acoustic) fast wave at \(M_{A1} = \sqrt{2}\) and the slowest (switch-off) slow wave at \(M_{A1} = 1\).

Returning to the discussion of integral curves in the ZND approximation, the 45° upstream magnetic field and \(M_i \rightarrow \infty\) assumptions (which were introduced to make the problem specific) should be borne in mind, as they apply to the balance of this section. From Eqs. (69a, b) one can expect
an initial jump in streamwise velocity from $u_x = 1$ to $u_x = 1/4$ while
$B_z = 1$ remains constant, corresponding to the perfect-gas-shock transition.
This embedded shock transition is denoted: $1 \rightarrow 1^*$, where 1^* is the downstream
state of the perfect-gas shock. Subsequently, the flow progresses in the
relaxation zone along the path $f(u_x, B_z, \alpha) = 0$, until the downstream
state of the gas-ionizing shock is attained. The latter step of the overall shock
transition is denoted: $1^* \rightarrow 2$. As a consequence of all flow derivatives vanishing
downstream, e.g., $du_x/dx = dB_z/dx = 0$ @x → ∞, the downstream state
in the (u_x, B_z) plane is indicated by the intersection of the curves $f(u_x, B_z) = 0$
and $g(u_x, B_z) = 0$. Note that in the infinite Mach number case

$$\lim_{M_1 \to \infty} \frac{6 \varepsilon_{\text{ion}}}{5 M_1^2} = 0,$$

so that, from Eq. (74), $f(u_x, B_z)$ does not depend on α.

(a) Fast Shocks

Consider now the possible trajectories of the fast shock $M_{A1} = \sqrt{10} (>\sqrt{2})$
shown in Fig. 2. Recall from Eq. (36) that because $\gamma_1 = f_{\text{ion}} = 0$, an
indeterminacy exists in the value of E_{y1} for gas-ionizing shocks; it is there-
fore appropriate at this point to treat the shock-frame electric field as a free
parameter. This was done in Fig. 2 which shows the curves $f = 0$ and $g = 0$
computed from Eqs. (76) and (77) for (a) $E_{y1} = 1.0$, (b) $E_{y1} = 0.625$ and
(c) $E_{y1} = 0.25$. The first trajectory, namely that with $E_{y1} = B_{z1} = 1.0$,
corresponds to the upstream boundary condition on the electric field in a pure
hydromagnetic shock, cf. Eq. (36). As indicated previously, the transition, if
it occurs, must take place by the path $1 - 1^* \rightarrow 2$ in the ZND model. It can be
shown that this path is **impossible** for fast shocks from the following argument:

Since \(g < 0 \) below the curve \(g = 0 \), it follows from Eq. (73) that \(\frac{dB_z}{dx} < 0 \) at point \(1^\circ \) (\(R_m > 0 \), of course); but \(B_{z2} > 1 \), from the intersection point of \(g = 0 \) and \(f = 0 \); therefore, the downstream state is inaccessible by the path \(1^\circ - 2 \) along the \(f = 0 \) curve since the magnetic induction equation predicts a decrease rather than the required increase in transverse magnetic field. The same reasoning applies for all values of \(E_{x1} > 1/4 \), cf. Fig. 2(b).

An analogous, but oppositely directed situation occurs when \(E_{x1} < 1/4 \), since \(B_{z2} < 1 \) and the \(1 - 1^\circ - 2 \) transition becomes impossible because \(g > 0 \) along \(1^\circ - 2 \) and Eq. (73) predicts an increase of \(B_z \) instead of the required decrease. In fact, the only permitted \(1 - 1^\circ - 2 \) transition in a fast gas-ionizing shock is the degenerate case of \(E_{x1} = 0.25 \) in Fig. 2(c), which is nothing more than a pure gas shock with no change in magnetic field:

\(u_{x2} = 1/4, \, B_{z2} = B_{z1} = 1 \).

If the gas were electrically conducting \(\ldots \) stream, but with \(R_m/R_e < 1 \), the pure hydromagnetic transition \(1 - 2 \), along the upper branch of the \(f = 0 \) curve in Fig. 2(a), would be indicated. In this regime \(g > 0 \), \(\frac{dB_z}{dx} > 0 \), and there are no contradictions of the type encountered in the ZND gas-ionizing integral curves. As indicated previously, this branch must be ruled out here since it violates the gas-ionizing archetype of Sec. 1.

Although switch-on \((B_z = 0, \, B_{z2} \neq 0) \) and transverse \((B_x = B_z = 0) \) gas-ionizing shocks have not been dealt with specifically, it can be shown that ZND structures are impossible in these shocks, for the same general reasons that were given for the fast oblique shocks discussed in this section.
(b) Slow Shocks

From Fig. 3 it is evident that the \(f = 0 \) and \(g = 0 \) curves for slow shocks take substantially different forms from those of the aforementioned fast shocks. These curves are plotted for the slow shock \(M_{A_1} = 1/\sqrt{2} \) at five different values of the shock-frame electric field: (a) \(E_{y_1} = 0.25 \), (b) \(E_{y_1} = 0.625 \), (c) \(E_{y_1} = 1.0 \), (d) \(E_{y_1} = 1.50 \) and (e) \(E_{y_1} = 2.0 \). In this case, Fig. 3(c) is the plot associated with the pure hydromagnetic boundary condition on the electric field. All the electric fields shown have in common the property that ZND structures are possible. After the \(1 - 1^* \) perfect-gas-shock transition the flow is in a region where \(g < 0 \); but \(B_z < 1 \) in this case so the derivative \(dB_z/dx \) is in the proper direction, thereby permitting the \(1 - 1^* - 2 \) path to the downstream state. There are two limiting cases of interest: (1) \(E_{y_1} = 1/4 \) in Fig. 3(a) is the degenerate case corresponding to the pure gasdynamic shock with constant magnetic field and (2) \(E_{y_1} = 2.0 \) in Fig. 3(e), which yields a new kind of switch-off shock which can only occur in gas-ionizing fronts. It follows from Eq. (73) that when \(E_{y_1} = B_{z_1}/M_{A_1}^2 = 2.0 \), \(g = 0 \) along the straight lines \(B_z = 0 \) and \(u_x = 1/M_{A_1}^2 = 2 \). The latter part of the \(g = 0 \) curve is not visible in this plot because the ordinate is cut off at \(u_x = 1.2 \). Since the intersection of the \(f = 0 \) curve with \(B_z = 0 \) corresponds to the downstream state, the lab-frame electric field \(E_{y_1} = B_{z_1}/M_{A_1}^2 \) results in a complete switch-off of the transverse magnetic field. The switch-off shock is only possible in ordinary hydromagnetics when \(M_{A_1} = 1 \), but it is clearly obtainable in slow gas-ionizing shock waves propagating at other Alfvén numbers.
5. NONEQUILIBRIUM NUMERICAL SOLUTIONS

It should be clear by this point that the mathematical nature of the problem in the present ZND approximation is fundamentally different from that implied originally by Eqs. (32)-(35), (65), (66) and the associated initial conditions of Eq. (30). Rather than attempt the solution of six differential equations in the major flow variables \(u_x, u_z, B_z, T, T_e \) and \(\alpha \), it is proposed instead to solve simpler sets of equations in two different regions and to match their solutions at a suitable point. Specifically, in the perfect-gas-shock region, only two differential equations need be integrated [Eqs. (67) and (68)], while in the ionization relaxation zone there are three [Eqs. (65), (66) and (73)]. In the latter case, the velocity components \(u_x, u_z \) and the heavy-particle temperature \(T \) are evaluated locally from algebraic relations [Eqs. (71), (72) and (76)]. In addition, the local values of \(\dot{\alpha}_A, \dot{\alpha}_e, \) and \(\nu_e \) needed to numerically integrate the relaxation zone differential equations are available from relations introduced and developed in Sec. 3 [Eqs. (45a,b), (51b,c,d), (61a,b) and (62)].

In order to solve for the distribution of flow variables within the gas-ionizing front, two different IBM 7090 computer programs were created: one to solve the perfect-gas Navier-Stokes shock structure problem (see Appendix) and the other to solve the hydromagnetic ionization relaxation zone problem. Since the perfect-gas-shock structure extends from \(x = -\infty \) to \(x = \infty \) and the ionization relaxation extends from some finite value of \(x \) (say \(x=0 \)) to \(x = \infty \), the two regimes overlap in physical space; consequently, it was necessary to cut the perfect gas shock solution off at some arbitrary point, as explained in the Appendix and tack it on again to the beginning of the relaxation zone in order to construct a single-valued solution.
over the entire range of x, from \(-\infty\) to \(+\infty\). The somewhat legislated nature of this matching procedure is characteristic of so-called singular perturbation problems — these are invariably generated by physical processes which involve disparate length scales — and is a familiar feature of boundary-layer solutions and detonation wave structure solutions in the ZND approximation\(^{40}\). It is possible, in principle, to obtain a more rigorous formulation of the connecting region between the two solutions by the method of matched asymptotic expansions\(^{41}\).

For all calculations discussed in this section it was assumed that the fronts propagate into "cold" un-ionized argon which is at a pressure of \(p' = 1.0 \text{ mm Hg} = 1.33 \times 10^5 \text{ newton/m}^2\) and a temperature of \(T' = 300^\circ \text{K}\) and has a corresponding upstream mean free path of \(\lambda_1 = 5.38 \times 10^{-5} \text{ m}\); furthermore, all of these fronts were considered to be traveling at the same gas dynamic Mach number \(M_1 = 20\), corresponding to an upstream flow velocity of \(v'_x = 6.45 \times 10^3 \text{ m/sec}\), when viewed from a shock-fixed reference frame. It will become evident that a number of phenomena of interest develop at these flow conditions.

Figure 4 shows the results of a combined perfect-gas-shock and relaxation zone calculation for the limiting case of an ordinary hydrodynamic gas-ionizing front, i.e., with no imposed electric or magnetic fields: \(E'_{y_1} = B'_{x_1} = B'_{z_1} = 0\).

The solutions have been joined at \(x = 0\) and the scale has been stretched by a factor of ten for \(x < 0\) compared to \(x > 0\) scale in order to show the relatively narrow Navier-Stokes shock structure. Clearly, the ionization relaxation takes place over several hundred upstream mean free paths compared to the few mean free paths required by the perfect-gas shock, thus providing an \(a \text{ posteriori}\) verification of the assumptions leading to the ZND approximation. The relaxation zone behavior of a purely hydrodynamic front has been discussed elsewhere\(^{26}\).
It should be mentioned that the initial electron temperature used in the numerical integration of Eq. (66) in all cases was taken as $T_e(0) = T(0) = T_0$. Although the value of electron temperature immediately behind the perfect-gas shock is not well defined (since $\alpha = 0$ there), it was shown in Ref. 26 that relaxation zone calculations are almost entirely insensitive to arbitrarily selected initial values of the electron temperature.

For reasons explained in Sec. 4, it is not possible to compute ZND structures for fast gas-ionizing fronts, so attention has been turned toward the family of slow oblique shocks discussed previously, whose upstream magnetic field is inclined at 45° to the front and whose Alfvén number is $M_{A1} = 1/\sqrt{2}$. In dimensional terms, the corresponding streamwise magnetic field upstream is $B_{x1} = 0.473$ Wb/m², a reasonably attainable value in laboratory experiments. Structure calculations were carried out with various values of the electric field. These results are displayed in Figs. 5 and 6, respectively, for the pure hydromagnetic boundary condition on the electric field $E_{y1} = 1.0$, and for the gas-ionizing switch-off shock $E_{y1} = 2.0$, whose somewhat unique existence was discussed earlier in Sec. 4. As the nonequilibrium ionization progresses and the gas becomes electrically conducting, the transverse magnetic field is decreased. In the case of Fig. 6 it is completely switched off. The energy associated with the magnetic field is consequently transferred into other modes, i.e., thermal and ionization energy. The converted magnetic energy can be viewed as an effective exothermicity within the front. The scale stretching for $x < 0$ discussed previously was also applied to the plots in Fig. 5 and 6 so that, even though they appear to be approximately the same width, the perfect-gas-shock is still an order of magnitude narrower than the relaxation zone in the extreme case of $E_{y1} = 2.0$ (Fig. 6).

37
As indicated in Sec. 1, it has been held by certain writers that the electric field E_{y_1} associated with a gas-ionizing hydromagnetic front will be determined by the structure. On the other hand, it was shown in Sec. 4 that, although structural considerations may well rule out the steady-state existence of certain (fast, gas-ionizing) shocks, they do not appear to furnish a criteria as to which of the possible electric fields will actually be observed in the (slow) shocks whose existence, in a ZND approximation, is possible. Fig. 7 illustrates computed distribution of downstream values B_{zz}, T_2, U_{x2} and a_2 corresponding to the upstream conditions discussed previously for various values of the shock-frame electric field E_{y_1}. Also shown is a scale indicating the corresponding nondimensionalized lab-frame electric field (which happens to equal the upstream gas-frame electric field $E_{y_1}^* = E_{y_1} - B_{zz}$, since the undisturbed gas is obviously motionless with respect to the laboratory). Evidently B_{zz} decreases almost linearly with increasing electric field until it is finally switched off at $E_{y_1} = 2.0$. It is interesting that $B_{zz} = 1.0$ occurs at $E_{y_1} = 0.1$, rather than $E_{y_1} = 0.25$ as one might expect from Fig. 3(a). This is due to the finite Mach number used in the present calculations, so that $6 \approx \frac{\rho_{ion}}{5M_1}$ was not zero as assumed in the Fig. 3 plots. As B_{zz} decreases in Fig. 7, a_2 and T_2 increase as energy is redistributed. Ultimately when the equilibrium gas becomes fully ionized, at about $E_{y_1} = 1.2$, the kinetic energy $u_x/2$ and hence u_x increases as well.

The extent of the relaxation zone can be estimated if we define a suitable characteristic length l_r (strictly speaking, of course, equilibrium is not attained until $x \to \infty$). Consistent with Ref. 26, let:

$$l_r = \frac{[x]_{a=2}}{b_2}$$

The upper graph in Fig. 7 shows the variation of this nondimensionalized relaxation length $l_r = \frac{\ell_r}{\ell_1}$, where ℓ_r is the physical relaxation length. Since the perfect gas shock is the same thickness, $\frac{\ell_2}{\ell_1} = \frac{7}{5}$, in all cases (because it depends only on
upstream Mach number) it follows from this plot that \(\frac{4a}{c} \ll 1 \) for all values of \(E_{y_1} \), thus justifying the ZND approximation for these particular calculations.
6. CONCLUDING REMARKS

The present study has dealt theoretically with the existence and structure of gas-ionizing hydromagnetic shock waves, as defined by the archetype of Sec. 1. In the case singled out for attention, the gas within the front was collisionally ionizing argon (by atom-atom and electron-atom impacts) in a nonequilibrium two-temperature state. In view of the relatively low temperature expected, photoionization was ruled out on an ad hoc basis; moreover, the ionization lags associated with finite-rate chemistry indicated that the ZND approximation could be employed. This model, in turn, led to a number of surprising results: (1) No steady-state structure could be constructed for fast gas-ionizing waves; (2) for the slow waves, where numerical solutions were obtained, the ZND approximation was verified a posteriori for the shock conditions studied here; and (3) the Rankine-Hugoniot indeterminacy of the electric field, which is intrinsic to the concept of gas-ionizing shocks, was not removed by considerations of structure.

As to the applicability and relevance of these results, it should be first recalled that "high temperature" gas-ionizing shocks were ruled out at the outset on the physical grounds that they create radiation-induced electron precursors and hence make the upstream state electrically conducting; but any "gas-ionizing" shock which propagates in the real world must move into a region where there is some electrical conductivity, however small. Consequently, the gas-ionizing archetype actually presupposes some low threshold below which the gas acts as though it were non-electrically-conducting. It is not entirely clear that such a threshold exists physically. Furthermore, even in the supposed low temperature case considered here, the post shock temperatures become sufficiently high (since the slow shock is effectively exothermic) to indicate a relatively high level of precursor ionization, particularly for large electric fields. For this reason, in lieu of specific experimental evidence to the contrary, it seems quite possible that solutions with arbitrarily selected electric fields are not obtained in practice, and that only the solution with a purely
Hydromagnetic boundary condition on the electric field has physical significance.

It is suggested that future research into the nature of hydromagnetic shocks propagating into "cold" upstream states might profitably include the effects of radiative nonequilibrium and photo-ionizing reactions in the analytical models.
FOOTNOTES

32. The term \(\frac{(2T_e/3u_c)(dT_e/dx)}{\infty} \) has been dropped here, as in Ref. 26, since it is always negligibly small in shock relaxation zones compared to the other terms in Eq. (66).
34. This was verified \textit{a posteriori} for the shock structure calculations presented here.
APPENDIX: INTEGRATION OF THE NAVIER-STOKES

SHOCK STRUCTURE EQUATIONS IN UN-IONIZED ARGON

The numerical solution of the imhomogeneous perfect-gas viscous shock structure, while not entirely straightforward, is well-understood and will be discussed briefly here. The applicable differential equations in \(u \) and \(T \) are [cf. Eqs. (67) and (68)]:

\[
\frac{du}{dx} = Re \cdot F(u_x, T)_x = \frac{3}{4} \frac{Re}{M_1^8} \left[1 + \frac{3}{5 M_1^8} \left(\frac{T}{u_x} - 1 \right) \right], \tag{A1}
\]

\[
\frac{dT}{dx} = Re \cdot G(u_x, T)_x = \frac{16}{27} M_1^8 u_x \frac{du}{dx} + \frac{2}{3} \frac{Re}{M_1^8} \left[T - 1 + \frac{M_1^8}{3} (u_x^2 - 1) \right]. \tag{A2}
\]

Ordinary, numerical integration of such differential equations as an initial-value problem would be indicated. It is well-known, however, that this is not possible for this particular system because the derivative \(dT/du_x = G(u_x, T)/F(u_x, T) \) becomes indeterminate, of the form \(0/0 \), at the upstream and downstream states where \(F = G = 0 \); moreover, the singular-point is of the node type upstream and of the saddle-point type downstream;
consequently, a stable numerical solution is obtained by integrating from the
downstream state toward the upstream, but not vice versa. It might be
mentioned that the energy equation has an exact integral for $Pr = 3/4$, in
which case singular points in (u_∞, T) space are irrelevant to numerical
integration\(^{35}\). Remember, however, that in the present problem $Pr = 2/3$ so inte-
gration must proceed backward from the vicinity of the downstream point.

We can obtain consistent initial values for (u_∞, T) in the neighborhood
of (u_∞^*, T^*), where the asterisk (*) denotes the downstream state of the
perfect gas shock, provided we know the value of the derivative asymptotically
downstream, viz. $\lim_{x \to \infty} \frac{dT}{du_\infty}$. To this end, consider the situation
when u_∞ and T are perturbed slightly an amount Δu_∞ and ΔT from their
downstream values

$$
\begin{align*}
 u_\infty &= u_\infty^* + \Delta u_\infty, \\
 T &= T^* + \Delta T,
\end{align*}
$$

where $\frac{\Delta u_\infty}{u_\infty^*} < 1$, $\frac{\Delta T}{T^*} < 1$. To simplify the algebra, we make
the reasonable (for the present problem) assumption that $M_1^* > 1$ so
that all terms of order $1/M_1^*$ or less compared to unity will henceforth be
dropped. The downstream values, from Eq. (69b), become $u_\infty^* = 1/4$, $T^* = 5M_1^*/16$ and the corresponding near-downstream velocity and temperature
are

$$
\begin{align*}
 u_\infty &= \frac{1}{4} + \Delta u_\infty, \\
 T &= \frac{5}{16} M_1^* + \Delta T. \\
\end{align*}
$$

(A.3)
Substituting Eq. (A3) into Eqs. (A1) and (A2) and dropping perturbation terms consistent with \(\Delta u_x << \frac{1}{4} \) and \(\Delta T << \frac{5M_1^2}{16} \) yields the linearized equations

\[
\frac{du_x}{dx} = \frac{3}{4} Re \left(\Delta u_x + \frac{12}{5M_1^2} \cdot \Delta T \right),
\]

\[
\frac{dT}{dx} = -\frac{4}{27} M_1^2 \cdot \frac{du_x}{dx} + \frac{2}{3} Re \left(\frac{M_1^2}{6} \cdot \Delta u_x + \Delta T \right).
\]

Dividing (A4) into (A5) gives

\[
\frac{dT}{du_x} = -\frac{4}{27} M_1^2 + \frac{\frac{2}{3} \left(\frac{M_1^2}{6} + \Delta T \right)}{\frac{3}{4} \left(1 + \frac{12}{5M_1^2} \cdot \Delta u_x \right)}.
\]

Now, making use of the identities

\[
\lim x \rightarrow \infty \frac{dT}{du_x} = \lim x \rightarrow \infty \frac{\Delta T}{\Delta u_x} = \left(\frac{dT}{du_x} \right)^*.
\]

and evaluating Eq. (A6) at \(x \rightarrow \infty \) in the above leads to an equation for \((dT/du)^* \) which is exact at the downstream singular-point (accepting, of course, the approximations related to \(1/M_1^2 << 1 \)).
and which has the two roots

\[
\left(\frac{dT}{du_x} \right) = 0, \quad -\frac{7M_1^2}{36},
\]

of which only the latter has physical significance.

In order to begin numerical integration it was first assumed, quite arbitrarily, that we were at the point where \(\Lambda u_x = \frac{1}{100} \ll \frac{1}{4} \); the consistent value of the temperature perturbation is, from the linearized analysis,

\(\Delta T = (dT/du_x) \Delta u_x = -\frac{7M_1^2}{3600} \). The initial values of \(u_x \) and \(T \) used to start numerical integration at this point follow immediately from Eq. (A3); furthermore, it was assumed that \(x = 0 \) here, in order to match the relaxation zone solution which (as discussed in Sec. 5) proceeds by forward integration from \(x = 0 \) toward \(x \to +\infty \). Integration of Eqs. (A1) and (A2) was carried out in physical space by conventional numerical techniques from \(x = 0 \) toward \(x = -\infty \) until the velocity and temperature came arbitrarily close to their upstream values \(u_x = T = 1 \). In these calculations the temperature dependence of the Reynolds number was given by \(\text{Re} (T) = 1.65 M_1 T^{-3/4} \) as indicated, for un-ionized argon, by Eq. (60b).
ρ'_1, p'_1, T'_1
\[a_1 = 0 \]

ρ'_2, p'_2, T'_2
\[a_2 \neq 0 \]

Fig. 1. Sketch of gas-ionizing shock structure geometry in an oblique magnetic field. The cartesian (x', y', z') coordinate system is shock-fixed. The "primes" denote physical (dimensional) quantities.
Fig. 2. Integral curves in (u_x', B_z) phase space for fast $(M_1 \to \infty$, $M_{AI} = \sqrt{10}$) gas-ionising shocks of the 45° upstream magnetic field family ($B_x = B_y = 1$). Of the three electric fields shown, (a) $E_{yi} = 1.0$, (b) $E_{yi} = 0.625$, (c) $E_{yi} = 0.25$, only "(c)" admits a solution in the ZND approximation. This is actually a degenerate case of a hydrodynamic shock.
Fig. 3. Integral curves in (u_x, B_z) phase space for slow $(M_1 \to \infty, M_{AI} = 1/\sqrt{2})$ gas-ionizing shocks of the 45° upstream magnetic field family $(B_{x1} = B_{z1} = 1)$. All five electric fields shown, (a) $E_{y1} = 0.25$, (b) $E_{y1} = 0.625$, (c) $E_{y1} = 1.0$, (d) $E_{y1} = 1.50$, (e) $E_{y1} = 2.0$, will admit solutions in the ZND approximation. Case (e) is the new "gas-ionizing switch-off shock" discussed in the text.
Fig. 4. Nonequilibrium structure of a pure hydrodynamic shock front \((B_x' = B_z' = E_y = 0)\) propagating into un-ionized argon at pressure of \(p^* = 1.0\) mm Hg, temperature of \(T^*_f = 300^\circ\)K, at \(M_1 = 20\) computed with the ZND approximation. The scale has been stretched by a factor often for \(x < 0\) compared to \(x > 0\) to show the embedded Navier-Stokes viscous shock more clearly.
Fig. 5. Nonequilibrium structure of a slow \((M_i = 20, M_{Ai} = 1/\sqrt{2})\) gas-ionizing shock front, of the 45° upstream magnetic field family \((B_{xi} = B_{zi} = 1)\), propagating in an ionized Argon at a pressure \(p'_i = 1.0\) mm Hg and temperature \(T'_i = 300^\circ\)K computed with the ZND approximation for \(E'_y = 0.0\). This case corresponds to the pure hydromagnetic boundary condition on the electric field. The scale has been stretched by a factor of ten for \(x < 0\) compared to \(x > 0\) to show the embedded Navier-Stokes viscous shock more clearly.
Fig. 6. Nonequilibrium structure of a slow ($M_1 = 20$, $M_{A1} = 1/\sqrt{2}$) gas-ionizing shock front, of the 45° upstream magnetic field family ($B_{z1} = B_{x1} = 1$), propagating into uni-ionized argon at a pressure $p_1 = 1.0 \text{ mm Hg}$ and temperature $T_1 = 300 \text{ K}$ computed with the ZND approximation for $E_{y1} = 2.0$. This is a "gas-ionizing switch-off shock". The scale has been stretched by a factor of ten for $x < 0$ compared to $x > 0$ to show the imbedded Navier-Stokes viscous shock more clearly.
Fig. 7. Variation of nondimensionalized downstream streamwise velocity u_{x2}, transverse magnetic field B_{z2}, degree of ionization α_2 and nondimensionalized relaxation length l_r, for various shock-frame (and corresponding lab-frame) electric fields for a slow shock with $M_1=20$, $M_{Al}=1/\sqrt{2}$, $p_i=1.0$ mm Hg and temperature $T_i=300^\circ K$. A unique value of the electric field is not defined by the structure.
International Business Machines
326 E. Montgomery Avenue
Rockville, Maryland

Monsanto Research Corporation
Dayton Laboratory
Attn: Dr. J. W. Butler
1515 Nicholas Road
Dayton, Ohio

Naval Research Laboratory
Attn: Dr. Alan Kolb, Code 7470
Washington, D.C. 20390

National Bureau of Standards
Attn: Dr. E. L. Brady
National Standard Reference Data Center
Washington, D.C. 20234

New York University
Attn: Dr. Benjamin Bederson
Physics Department
University Heights
New York, N.Y. 10453

Oak Ridge National Laboratory
Attn: Dr. S. Datz
P.O. Box X
Oak Ridge, Tenn.

Office of Naval Research
Department of the Navy
Attn: Dr. S. G. Reed, Jr.
Science Director
Washington, D.C. 20360

Office of Naval Research
Department of the Navy
Attn: Dr. J. H. Sheng
Materials Science Div.
Washington, D.C. 20360

Office of Naval Research
Department of the Navy
Attn: Dr. W. E. Wright
Physical Sciences Div.
Washington, D.C. 20360

Polytechnic Institute of Brooklyn
Attn: Mr. Jerome Fox
Research Office
33 Jay Street
Brooklyn, N.Y. 11201

Queen's University of Belfast
Attn: Professor D. R. Bates
Department of Applied Math.
Belfast 7, Northern Ireland, UK

Lincoln Laboratory, M.I.T.
Attn: Dr. M. Balser
P.O. Box 73
Lexington, Mass. 02173

National Bureau of Standards
Attn: Dr. Karl G. Kessler, Chief
Atomic Physics Division
Washington, D.C. 20234

Polytechnic Institute of Brooklyn
Attn: Mr. Jerome Fox
Research Office
33 Jay Street
Brooklyn, N.Y. 11201

Queen's University of Belfast
Attn: Professor D. R. Bates
Department of Applied Math.
Belfast 7, Northern Ireland, UK

National Bureau of Standards
Attn: Dr. M. E. Wallenstein
Chief, Physical Chem. Div.
Washington, D.C. 20234

Polytechnic Institute of Brooklyn
Attn: Mr. Jerome Fox
Research Office
33 Jay Street
Brooklyn, N.Y. 11201

Queen's University of Belfast
Attn: Professor D. R. Bates
Department of Applied Math.
Belfast 7, Northern Ireland, UK
<table>
<thead>
<tr>
<th>Institution</th>
<th>Name</th>
<th>Address</th>
<th>City, State</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Rand Corporation</td>
<td>Attn: Library</td>
<td>1700 Main Street</td>
<td>Santa Monica, Calif.</td>
<td>90401</td>
</tr>
<tr>
<td>Stanford Research Institute</td>
<td>Attn: Dr. C. Flammer, Mgr.</td>
<td>Mathematical Division</td>
<td>Menlo Park, Calif.</td>
<td>94025</td>
</tr>
<tr>
<td>United Aircraft Corporation</td>
<td>Research Laboratories</td>
<td>Attn: Dr. R. G. Meyer and East Hartford, Conn.</td>
<td>06118</td>
<td></td>
</tr>
<tr>
<td>University of Alabama</td>
<td>Attn: Dr. Eric Rodgers</td>
<td>Physics Department</td>
<td>University, Alabama</td>
<td>48106</td>
</tr>
<tr>
<td>University of California</td>
<td>Attn: Prof. Kenneth Watson</td>
<td>Physics Department</td>
<td>Berkeley, Calif.</td>
<td>94704</td>
</tr>
<tr>
<td>University of California</td>
<td>Lawrence Radiation Laboratory</td>
<td>Attn: Dr. Marvin Mittleman</td>
<td>Livermore, Calif.</td>
<td>94551</td>
</tr>
<tr>
<td>University of California</td>
<td>Attn: Dr. Herbert P. Broida</td>
<td>Department of Physics</td>
<td>Santa Barbara, Calif.</td>
<td></td>
</tr>
<tr>
<td>Space Technology Laboratories</td>
<td>Attn: Dr. L. Hromas</td>
<td>1 Space Park</td>
<td>Redondo Beach, Calif.</td>
<td>90200</td>
</tr>
<tr>
<td>Stanford Research Institute</td>
<td>Attn: Dr. C. J. Cook, Director</td>
<td>Chemical Physics Division</td>
<td>Menlo Park, Calif.</td>
<td>94025</td>
</tr>
<tr>
<td>University of Chicago</td>
<td>Attn: Dr. John Light</td>
<td>Chemistry Department</td>
<td>Chicago, Illinois</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Naval Ordnance Test Station</td>
<td>China Lake, Calif.</td>
<td>93357</td>
<td></td>
</tr>
<tr>
<td>University of Southern Calif.</td>
<td>Attn: Prof. C. L. Weisler</td>
<td>Department of Physics</td>
<td>University Park</td>
<td>Los Angeles, Calif.</td>
</tr>
<tr>
<td>Westinghouse Electric Corp.</td>
<td>Attn: Dr. A. Phelps</td>
<td>Research Laboratories</td>
<td>Pittsburgh, Pa.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Office of Naval Research</td>
<td>Branch Office 207 West 24th Street</td>
<td>New York, N. Y.</td>
<td>10011</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Office of Naval Research</td>
<td>Box 39</td>
<td>P.O. New York, N.Y.</td>
<td>09510</td>
</tr>
</tbody>
</table>
This study deals analytically with the structure of gas-ionizing hydromagnetic shock waves. Since these waves, by definition, must have non-electrically-conducting upstream states, their existence at very high shock temperatures must be ruled out on the physical grounds that forward-radiated precursor ionization makes the unshocked gas conducting. A "low temperature" collisionally-ionizing shock with oblique magnetic field is studied here to determine whether certain concepts which exist in the current literature are relevant. Nondimensionalized equations governing the nonequilibrium structure of such a front propagating into un-ionized argon are formulated using ionization rates and an electron energy equation developed in an earlier paper. Comparison of the magnitudes of viscous and magnetic Reynolds numbers within this front indicates that, if a structure exists, it must consist of a narrow "imbedded" viscous shock standing upstream of a much wider hydromagnetic interaction and ionization relaxation zone. Hence, a modified form of the Zeldovich-von Neumann-Döring (ZND) approximation is applicable to the structure problem. It is shown that in this approximation nontrivial steady-state structures cannot be constructed for "fast" gas-ionizing shocks. On the other hand, solutions are possible for "slow" waves, and these are obtained numerically for a family of hydromagnetically oblique shocks at Mach number $M_1=20$ and Alfvén number $M_{A1}=1/2$ with parametrically varied values of the upstream electric field. In contrast to previous expectations, the upstream electric field is not uniquely defined by the structure.
INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Date" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified: DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that caution markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parentheses immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first or a, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."
 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 (3) "U. S. government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through.
 (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through.
 (5) "All distribution of this report is controlled. Qualified DDC users shall request through.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.