ON THE ASYMPTOTIC DIRECTIONS OF THE S-DIMENSIONAL OPTIMUM GRADIENT METHOD

BY

GEORGE E. FORSYTHE

TECHNICAL REPORT NO. CS 61
APRIL 13, 1967

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

ARCHIVE COPY
On the Asymptotic Directions of the
s-dimensional Optimum Gradient Method*

By

George E. Forsythe

Abstract

The optimum s-gradient method for minimizing a positive definite quadratic function \(f(x) \) on \(\mathbb{R}^n \) has long been known to converge for \(s \geq 1 \). For these \(s \) the author studies the directions from which the iterates \(x_k \) approach their limit, and extends to \(s > 1 \) a theory proved by Akaike for \(s = 1 \). It is shown that \(f(x_k) \) can never converge to its minimum value faster than linearly, except in degenerate cases where it attains the minimum in one step.

Computer Science Department
Stanford University

*Research sponsored by the U. S. Office of Naval Research under contract Nonr 225(37) = NR 044 211.
1. Introduction and Summary.

To minimize a smooth real-valued function $f(x)$ of n real variables, the optimum s-gradient method has been described by Birman [3], Faddeev and Faddeeva [5], Khabaza [8], and others. We here consider the model function $f(x) = \frac{1}{2}x^TAx$, where A is a positive definite matrix. Then each iterate x_k is equal to its error. The convergence of the method was proved long ago—see (2.14)—and the question now under study is to find the asymptotic manner in which the iterates $x_k \to \theta$, the null vector.

For $s = 1$ it was conjectured by Forsythe and Motzkin [7] and proved by Akaike [1]—see (4.12)—that the iterates x_k converge to θ by asymptotically alternating between two directions—the “cage” of Stiefel [10]. Thus the convergence of $f(x_k)$ to 0 for $s = 1$ is known to be linear, and no faster than linear, for any start x_0 that is not an eigenvector. Moreover, if coordinates are chosen so that A is a diagonal matrix, then the two asymptotic directions have only two nonzero components. Finally, any direction with only two nonzero components is invariant under two steps of the optimum 1-gradient method.

In the present paper the author has extended most of the known results to arbitrary $s > 1$. The main result (5.8) shows that the directions of the even iterates x_{2k} have as a limit set a continuum R (which might be a single direction). Moreover, each direction of R is invariant under two steps of the optimum s-gradient method. Let A be a diagonal matrix. It is then shown in (5.10) that in the optimum s-gradient process $f(x_k)$ converges to 0 no faster than linearly for any initial vector x_0 with at least $s + 1$ nonzero components.
Theorem (4.7) shows that all vectors of \(R \) have between \(s + 1 \) and \(2s \) nonzero coordinates, inclusive. Theorem (4.8) says that any direction with \(s + 1 \) nonzero components is invariant under two steps of the method, for any \(s \). Examples are shown in Sec. 4 of directions with this invariance and with as many as \(2s \) nonzero components.

Experimental evidence from computer runs for \(s = 2 \) suggests strongly that \(R \) is always a single point, just it has been proved to be for \(s = 1 \). The author conjectures without proof that \(R \) is a single point for all \(s \), so that \(x_k \rightarrow \theta \) in an alternating manner completely analogous to the case with \(s = 1 \).

The author is aware that for minimizing quadratic functions \(f(x) \) in practice, the conjugate-gradient method of Hestenes and Stiefel (see [5]) may usually be expected to be superior to the optimum \(s \)-gradient methods, although Khabaza [8] claims superiority for the \(3 \)-gradient method in some cases. For nonquadratic functions \(f(x) \) the relative merits of the methods are less clear. The purpose of the present investigation was the intellectual one of trying to understand the asymptotic behavior of the various gradient methods for quadratic functions. The author expects that this information may have some useful application to the minimization of general smooth functions \(f(x) \).
2. The Optimum s-gradient Method for Quadratic Functions.

Let $f(x)$ be real for all x in real euclidean n-space E_n. Let $f(x)$ assume a minimum value for a unique x, which can be taken as θ, the origin of E_n, without loss of generality in the analysis. The advantage of using θ is that the iterate x_k is then also its own error $x_k - \theta$ as a minimizing vector. We wish to analyze certain asymptotic properties of a class of optimum gradient methods for finding the minimum of $f(x)$.

The simplest f to analyze is the quadratic function

\[(2.1) \quad f(x) = \frac{1}{2}x^TAx,\]

where A is a symmetric, positive definite, nonderogatory matrix of order n. Moreover, (2.1) represents the local behavior at θ of $f(x) - f(\theta)$ for most sufficiently smooth functions f. The author conjectures that the theorems proved below for a quadratic function apply essentially also to any sufficiently smooth function f which is locally like (2.1). In this paper only quadratic functions will be studied. See Daniel [4] for an investigation comparing gradient methods for quadratic and nonquadratic functions in Hilbert space.

In the various gradient methods one starts with an arbitrary vector x_0, and computes a sequence $\{x_k\}$ converging to θ. We assume all arithmetic to be exact, and round-off error is not considered in this paper.

Let $z_k = \nabla f(x_k) = Ax_k$ denote the gradient of f at x_k. In the optimum l-gradient method [5], x_{k+1} is taken to be the unique
point on the line \(L_1 = \{ x_k + \alpha A x_k : -\infty < \alpha < \infty \} \) for which \(F(\alpha) = f(x_k + \alpha A x_k) \) is a minimum. (The existence and uniqueness of \(x_{k+1} \) result from the easily proved fact that \(F(\alpha) \) is a quadratic function of \(\alpha \) with \(F''(\alpha) > 0 \).) The line \(L_1 \) through \(x_k \) is called the line of steepest descent of \(f(x) \) at \(x_k \).

For \(x \in L_1 \), \(\text{grad} \ f(x) = A(x_k + \alpha A x_k) = A x_k + \alpha A^2 x_k \). We therefore consider the 2-dimensional plane through \(x_k \),

\[
L_2 = \{ x_k + \alpha_1 A x_k + \alpha_2 A^2 x_k : -\infty < \alpha_1 < \infty, -\infty < \alpha_2 < \infty \},
\]

and call it the 2-plane of steepest descent of \(f(x) \) at \(x_k \).

By extension, for any integer \(s \) \((1 \leq s \leq n) \) let

\[
L_s = \{ x_k + \sum_{i=1}^{s} \alpha_i A^i x_k : -\infty < \alpha_i < \infty \} \quad \text{(all \(i \))}
\]

be the \(s \)-dimensional plane of steepest descent of \(f(x) \) at \(x_k \). Since \(A \) is not derogatory, \(A x_k, \ldots, A^n x_k \) are linearly independent, provided \(x_0 \) is a vector whose minimum polynomial is of degree \(n \). In that case \(L_n \) is the whole space \(E_n \).

In the optimum s-gradient method [5] for minimizing the quadratic function \(f \) of (2.1), the point \(x_{k+1} \) is defined to be the unique point \(y \) in \(L_s \) for which \(f(y) \) is a minimum \((k = 0, 1, \ldots) \). (Again existence and uniqueness follow from the positive definiteness of \(A \).) It is the optimum s-gradient methods that we shall analyze in this paper.

We now give two representations of the minimizing \(\{ \alpha_i \} \) which are useful in the analysis. Actual computing algorithms for the optimum
s-gradient method often proceed differently, and find x_{k+1} by taking s steps of the conjugate gradient method, starting from x_k. See [5].

We concentrate on the gradients $z_k = Ax_k$.

First representation

Let

$$x_{k+1} = x_k + \gamma_1 A x_k + \ldots + \gamma_s A^s x_k.$$

Then the gradient of $f(x)$ at x_{k+1} is

$$(2.2) \quad z_{k+1} = z_k + \gamma_1 A z_k + \ldots + \gamma_s A^s z_k.$$

Since x_{k+1} minimizes $f(y)$ for $y \in L_s$, the vector z_{k+1} must be orthogonal to L_s. For this it is necessary and sufficient that z_{k+1} be orthogonal to $z_k, A z_k, \ldots, A^{s-1} z_k$. Then $\gamma_1, \ldots, \gamma_s$ are determined by the s conditions

$$
\begin{align*}
\langle z_k, z_{k+1} \rangle &= \langle z_k, z_k \rangle + \gamma_1 \langle z_k, A z_k \rangle + \ldots + \gamma_s \langle z_k, A^s z_k \rangle = 0 \\
&\quad \ldots \ldots \ldots \\
\langle A^{s-1} z_k, z_{k+1} \rangle &= \langle A^{s-1} z_k, z_k \rangle + \gamma_1 \langle A^{s-1} z_k, A z_k \rangle + \ldots + \gamma_s \langle A^{s-1} z_k, A^s z_k \rangle = 0.
\end{align*}
$$

Here $(u, v) = u^T v + v^T u$ denotes the inner product of two column vectors. Since $(A^p z, A^q z) = (z, A^{p+q} z) = z^T P^{p+q} z$, we may write the above equations as

5
As long as $z_k, Az_k, \ldots, z_{s-1}z_k$ are linearly independent, the equations (2.3) determine the minimizing $\gamma_1, \ldots, \gamma_s$ uniquely.

Second representation

Let $q_s(t) = t^s + \beta_{s-1}t^{s-1} + \ldots + \beta_0$ denote any monic polynomial of degree s, with $\beta_0 \neq 0$. Then

$$q_s(A)z_k = A^sz_k + \beta_{s-1}A^{s-1}z_k + \ldots + \beta_0z_k,$$

and

$$\frac{q_s(A)z_k}{q_s(0)} = \frac{1}{\beta_0} A^sz_k + \frac{\beta_{s-1}}{\beta_0} A^{s-1}z_k + \ldots + z_k.$$

Comparing (2.4) with (2.2), we see that we can write

$$z_{k+1} = \frac{p_s(A)}{p_s(0)} z_k,$$

where $p_s(t)$ is the particular polynomial

$$p_s(t) = t^s + \frac{\gamma_{s-1}}{\gamma_s} t^{s-1} + \ldots + \frac{\gamma_1}{\gamma_s} t + \frac{1}{\gamma_s}.$$

Now $p_s(t)$ is a certain orthogonal polynomial. Without loss of generality assume A to be the diagonal matrix
where $0 < \lambda_1 < \lambda_2 < \ldots < \lambda_n$ are its eigenvalues (distinct because A is not derogatory).

(2.8) Definition. In the coordinate system corresponding to (2.7), let the nonzero vector z be $(\xi_1, \ldots, \xi_n)^T$. Let orthogonality of two polynomials $p(t), q(t)$ (relative to z) be defined by

\[
(p(t), q(t)) = \sum_{i=1}^{n} p(\lambda_i)q(\lambda_i)\xi_i^2 = 0 .
\]

(2.9) Definition. Let $P_s(t; z) = t^s + \ldots$ be the unique monic polynomial of degree s that, relative to z, is orthogonal in the sense of (2.8) to all polynomials of degree $\leq s-1$.

Note that $P_s(t; z)$ depends only on the direction of z, and not its magnitude. I.e., $P_s(t; z) = P_s(t; \alpha z)$, for all real $\alpha \neq 0$.

(2.10) Theorem. The polynomial $p_1(t)$ of (2.5), (2.6) is the orthogonal polynomial $P_s(t; z_k)$ defined in (2.9).

We shall not prove (2.10). For a related proof see, for example, p. 349 of [5]. The basic reason for (2.10) is the isomorphism, well expounded by Stiefel [11], between orthogonality of the polynomials
\(p(t), q(t) \) in the sense of (2.8) and geometric orthogonality of the vectors \(p(A)z, q(A)z \) in \(E_n \). That is,

\[
\langle p(t), q(t) \rangle = \langle p(A)z, q(A)z \rangle .
\]

Hence the conditions (2.3) asserting the orthogonality of the vector

\[
z_{k+1} = \frac{P_s(A; z_k)}{P_s(0; z_k)} z_k \quad \text{to} \quad A z_k, A^2 z_k, \ldots, A^{s-1} z_k
\]
equivalently asserting the orthogonality of the polynomial \(P_s(t; z_k) \)
to the polynomials \(1, t, t^2, \ldots, t^{s-1} \).

In summary, \(z_{k+1} \) is uniquely determined from \(z_k \) by the formula

\[
z_{k+1} = \frac{P_s(A; z_k)}{P_s(0; z_k)} z_k .
\]

Moreover,

\[
x_{k+1} = \frac{P_s(A; z_k)}{P_s(0; z_k)} x_k .
\]

Relation (2.12) is the basis for a proof by Birman [3] that in the optimum \(s \)-gradient method \(f(x_k) \) converges to 0 linearly, or faster. To be precise, let \(\sigma = (\lambda_n + \lambda_1)(\lambda_n - \lambda_1)^{-1} \). Let \(T_s(t) \) denote the Chebyshev polynomial on \([-1, 1]\), normalized so that \(\max_{-1 \leq t \leq 1} |T_s(t)| = 1 \). Let

\[
Q_s(u) = T_s \left(\frac{\lambda_n + \lambda_1 - 2u}{\lambda_n - \lambda_1} \right)
\]

Then \(Q_s(0) = T_s(\sigma) > 1 \), and \(|Q_s(t)| \leq 1 \), for \(\lambda_1 \leq t \leq \lambda_n \). It is
known that

\[T_s(\sigma) = \frac{(\sigma + \sqrt{\sigma^2 - 1})^s + (\sigma - \sqrt{\sigma^2 - 1})^s}{2} > 1. \]

Birman's proof goes as follows:

\[
f(x_{k+1}) = \left(\frac{P_{s}(A; z_k)}{P_{s}(0; z_k)} \right) x_k \leq \frac{Q_{s}(A)}{Q_{s}(0)} x_k, \quad \text{because } P_{s}(t; z_k) \text{ is the polynomial that minimizes } f(x_{k+1}) \]

\[
= \frac{1}{[Q_{s}(0)]^2} x_k T_{Q_{s}(A)} A Q_{s}(A) x_k = \frac{1}{[Q_{s}(0)]^2} \sum_{i=1}^{n} \lambda_i [Q_{s}(\lambda_i)]^2 [g_{1}(\lambda_i)]^2 \geq \frac{1}{[Q_{s}(0)]^2} \sum_{i=1}^{n} \lambda_i [g_{1}(\lambda_i)]^2 = \frac{1}{[T_{s}(\sigma)]^2} f(x_k). \]

(2.13)

Hence

\[
\sqrt{f(x_k)} \leq \frac{1}{[T_{s}(\sigma)]^k} \sqrt{f(x_0)}, \]

(2.14)

proving the convergence of \(f(x_k) \) to 0 to be linear or faster.

(2.15) Definition. For \(\alpha = 0, \pm 1, \pm 2, \ldots \), let the moments \(\mu_\alpha \) of \(z = (\xi_1, \ldots, \xi_n)^T \) be defined by
\[\mu_\alpha = \sum_{i=1}^{n} \lambda_i^\alpha \xi_i^2. \]

(2.16) Theorem. Fix \(s \geq 1 \). Except for a constant factor, the orthogonal polynomial \(P_s(t; z) \) of (2.9) can be expressed by the determinant

\[
P_s(t; z) = \begin{vmatrix}
\mu_0 & \mu_1 & \cdots & \mu_{s-1} & 1 \\
\mu_1 & \mu_2 & \cdots & \mu_s & t \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\mu_s & \mu_{s+1} & \cdots & \mu_{2s-1} & t^s
\end{vmatrix}.
\]

The proof is left to the reader.

In the next theorem we give an explicit representation for the ratio \(f(x_{k+1})/f(x_k) \) in terms of the moments of \(z_k \).

(2.18) Theorem. Fix \(s \geq 1 \). Let \(x_k \) be any vector in the optimum \(s \)-gradient method, and let \(\mu_\alpha \) be the moments defined by (2.15) for the gradient vector \(z_k = Ax_k \). Then

\[
\frac{f(x_{k+1})}{f(x_k)} = \frac{\mu_{s-1} \mu_s \mu_{s+1} \mu_{2s-1}}{\mu_{-1} M_{-1}},
\]

where \(M_{-1} \) is the minor determinant of \(\mu_{-1} \) in the above determinant.
\[M_{-1} = \begin{vmatrix}
\mu_1 & \mu_2 & \cdots & \mu_s \\
\mu_2 & \mu_3 & \cdots & \mu_{s+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_s & \mu_{s+1} & \cdots & \mu_{2s-1}
\end{vmatrix}. \]

Proof. We have
\[2f(x_k) = x_k^T A x_k = z_k^T A^{-1} z_k = \mu_{-1}. \]
To simplify the notation, let \(z_k = (\xi_1, \ldots, \xi_n)^T \) and \(z_{k+1} = (\xi_1', \ldots, \xi_n')^T \).

Then
\[\xi_1' = \frac{P_s(\lambda_1; z_k)}{P_s(0; z_k)} \xi_1, \]

by (2.11)
\[\frac{P_s(\lambda_1; z_k)}{(-1)^s M_{-1}} \xi_1', \]

where we use the representation (2.17) for \(P_s(t; z_k) \). Then

\[
(2.19) \quad 2f(x_{k+1}) = z_{k+1}^T A^{-1} z_{k+1} = \frac{1}{M_{-1}} \sum_{i=1}^n \left[P_s(\lambda_i; z_k) \right]^2 \frac{1}{\lambda_i} \xi_i^2
\]

\[
= \frac{1}{M_{-1}} \sum_{i=1}^n P_s(\lambda_i; z_k) \frac{P_s(\lambda_i; z_k)}{\lambda_i} \xi_i^2. \]

Now \(P_s(t; z_k) \) is orthogonal in the sense of (2.8) to all polynomials of degree \(\leq s - 1 \). Hence the only term of \(P_s(\lambda_i; z_k) / \lambda_i \) that contributes anything nonzero to the sum (2.19) is the term \((-1)^{s M_{-1}} / \lambda_i \).

Hence
\[2f(x_{k+1}) = \frac{(-1)^s}{M_{-1}} \sum_{i=1}^n P_s(\lambda_i; z_k) \frac{\xi_i^2}{\lambda_i}. \]
Dividing $2f(x_{k+1})$ by $2f(x_{k}) = \mu_{-1}$ and rearranging the columns of the last determinant proves theorem (2.18).

(2.20) Corollary. In the notation of theorem (2.18), for $s = 1$,

\[
\frac{f(x_{k+1})}{f(x_{k})} = \frac{\mu_{1}^{2} - \mu_{0}^{2}}{\mu_{1}^{2} - 1}.
\]

If $n = 2$ and $s = 1$, then

\[
\frac{f(x_{k+1})}{f(x_{k})} = \frac{\xi_{1}^{2} \xi_{2}^{2} (\lambda_{2} - \lambda_{1})^{2}}{(\lambda_{2}^{2} + \lambda_{1}^{2}) (\xi_{1}^{2} + \xi_{2}^{2})} = c^{2} = c^{2}(x_{k}).
\]

Proof. The second expression comes from the first by using (2.15) and (2.21), where $z_{k} = (\xi_{1},\xi_{2})^{T}$, with some algebraic manipulation.

(2.23) Corollary. The expression (2.22) for $f(x_{k+1})/f(x_{k})$ is unchanged, if $(\xi_{1},\xi_{2})^{T}$ is changed to $(-\xi_{2},\xi_{1})^{T}$.

12
The inequality (2.13) yields an upper bound for the expression in (2.18). We may state this result in the form of the following inequality, valid for \(s = 1, 2, \ldots \):

\[
\begin{vmatrix}
\mu_{-1} & \mu_0 & \mu_1 & \cdots & \mu_{s-1} \\
\mu_0 & \mu_1 & \mu_2 & \cdots & \mu_s \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mu_{s-1} & \mu_s & \mu_{s+1} & \cdots & \mu_{2s-1}
\end{vmatrix}
\leq \frac{1}{\left[T_s \left(\frac{\lambda_n \lambda_1}{n \lambda_n - \lambda_1} \right) \right]^2}.
\]

This is essentially the inequality of Meinardus [8a], who derived it by the same argument for a slightly different iteration in which \(\|x\|^2 \) is minimized instead of \(f(x) \).

The special case for \(s = 1 \),

\[
\begin{vmatrix}
\mu_{-1} & \mu_0 \\
\mu_0 & \mu_1
\end{vmatrix} \leq \frac{1}{\left[T_1 \left(\frac{\lambda_n \lambda_1}{n \lambda_n - \lambda_1} \right) \right]^2} = \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1} \right)^2
\]

is a well-known inequality of Kantorovich; see (8) on p. 410 of [5].

It was stated by Birman [3] that the bound (2.14) is sharp, in the sense that for each \(s \) and each given \(\lambda_1, \lambda_n (s < n) \), one can find \(A \) and \(x_0 \) so that (2.14) is an equality for all \(k \). This is done by finding a set of \(\lambda_i \) and \(x_i^{(0)} \) so that the shifted Chebyshev polynomial \(Q_s(t) \) is (up to a scalar factor) identical with \(P_s(t; z_0) \) and so that \(|Q_s(\lambda_1)| = 1 \) for each eigenvalue \(\lambda_1 \). This is known to be possible because the Chebyshev polynomials, like cosines, are orthogonal with respect to summation over certain points.
However, Birman did not investigate the actual manner or rate of convergence of \(f(x_k) \) to 0 in the optimum \(s \)-gradient method for a general given \(A \) and \(x_0 \). He left open the question of whether the convergence of \(f(x_k) \) to 0 might actually be faster than linear in certain nontrivial cases.

For \(s = 1 \) Forsythe and Motzkin [7] conjectured that if \(g(0) \neq 0 \), then \(g(k) = o(||x_k||) \), as \(k \to \infty \), for all \(i \) with \(1 < i < n \). In words, \(x_k \to \theta \) asymptotically in the 2-space \(\pi_{1,n} \) spanned by the eigenvectors belonging to \(\lambda_1 \) and \(\lambda_n \). The conjecture was proved by Forsythe and Motzkin (unpublished) only for \(n = 3 \). Akaike [1] proved the conjecture for arbitrary \(n \). In an unpublished manuscript Arms [2] had found a similar proof. We give a proof in (4.12) as a consequence of our result (3.8) for the \(s \)-gradient method.

Suppose the optimum \(l \)-gradient process is performed entirely in the two-dimensional space \(\pi_{1,n} \). Then, if \(x_0 \in \pi_{1,n} \) and \(x_0 \) is not an eigenvector, it is easy to prove that:

(i) \(x_0, x_2, x_4, \ldots \) are all collinear vectors, and that \(x_1, x_3, x_5, \ldots \) are also collinear in another direction. Furthermore, \(x_{2k+2} = c^2 x_{2k} \) and \(x_{2k+1} = c^2 x_{2k-1} \), for all \(k \). Here \(c^2 \) is given by (2.22). The basic reason why these vectors are collinear is that the gradients \(z_{k+1} \) and \(z_k \) must always be perpendicular in any optimum gradient method.

(ii) Moreover, for each \(k = 0, 1, \ldots, f(x_{k+1}) = c^2 f(x_k) \). This is an immediate consequence of Corollary (2.23). Hence \(f(x_k) \to 0 \) in a strictly linear fashion, like the \(k \)-th term of a convergent geometric series, even though the vectors \(x_k \) alternate between two fixed directions.
It is a consequence of the Forsythe-Motzkin-Arms-Akaike result on the manner of convergence of x_k to θ in E_n for $s = 1$ that the iteration behaves asymptotically, as $k \to \infty$, as though it were entirely in the two-space $\pi_{1,n}$. The vectors x_k behave ultimately as though they had resulted from an iteration started with some x_0^* in $\pi_{1,n}$. In particular, we find that $f(x_k) \to 0$ linearly, in the sense that

$$\lim_{k \to \infty} \frac{f(x_{k+1})}{f(x_k)} = c^2(x_0^*).$$

However, the vector x_0^* is an extremely complex function of x_0.

Till now, the asymptotic nature of the optimum s-gradient method has not been described for $s > 1$. This problem, posed on p. 314 of Forsythe [6], is studied in the next section.
3. **Asymptotic Behavior of the s-gradient Method.**

We are still assuming A to have distinct positive eigenvalues $\lambda_1 < \lambda_2 < \ldots < \lambda_n$. Fix any s with $1 \leq s$. Motivated by (2.11) and by Akaike's approach [1] for $s = 1$, we shall consider the transformation

$$w' = P_s(A; w) w.$$ (3.1)

Here $w \neq \theta$ and $P_s(t; w) = t^s + \ldots$ is the orthogonal polynomial defined in (2.9). Let

$$\varphi(w) = \frac{||w'||^2}{||w||^2} = \frac{||P_s(A; w)||^2}{||w||^2},$$ (3.2)

where $||u||$ denotes the euclidean length of u.

Similarly, if $w' \neq \theta$, let $w'' = P_s(A; w') w'$, so that

$$\varphi(w') = \frac{||w''||^2}{||w'||^2}.$$

The following theorem is of basic importance to our analysis of the asymptotic behavior of the s-gradient method.

(3.3) **Theorem.** Let ψ be the angle between w and w''. For any w such that $w'' \neq \theta$, we have

$$\varphi(w) = \frac{||w'||^2}{||w||^2} = \cos^2 \psi \frac{||w''||^2}{||w'||^2} \leq \frac{||w''||^2}{||w'||^2} = \varphi(w'),$$

16
and there is equality if and only if \(w'' = cw \) for some scalar \(c > 0 \).

Proof. By the Cauchy-Schwarz inequality and the definition of \(\psi \),

\[
(w'w'')^2 = \cos^2 \psi \|w'\|^2 \|w''\|^2 \leq \|w\|^2 \|w''\|^2,
\]

with equality if and only if \(w = cw'' \), for \(c \neq 0 \).

Now

\[
\|w'\|^2 - w'Tw'' = \|P_s(A; w) w\|^2 - w'TP_s(A; w') P_s(A; w) w
\]

\[
= w'T[P_s(A; w) w] \|w''\|^2 - w'TP_s(A; w') P_s(A; w) w
\]

\[
= w'TP_s(A; w) [P_s(A; w) - P_s(A; w')] w
\]

\[
= w'TP_s(A; w) D(A) w
\]

\[
= 0,
\]

by (2.3), because \(D(t) \) is a polynomial of degree at most \(s - 1 \), since the leading terms \(t^s \) cancel. Hence \(\|w'\|^2 = w'Tw'' \), whence

\[
(3.5) \quad \|w'\|^2 = (w'Tw'')^2.
\]

Combining (3.4) with (3.5), we have

\[
\|w'\|^2 = \cos^2 \psi \|w'\|^2 \|w''\|^2 \leq \|w\|^2 \|w''\|^2,
\]

with equality if and only if \(w'' = cw \). That \(c > 0 \) follows from the fact that \(w'Tw'' = \|w'\|^2 > 0 \). This proves theorem (5.3).
(3.6) Definition. Fix s with $1 \leq s \leq n - 1$. Fix a euclidean coordinate system in E_n so A takes the form (2.7). Let Σ be the unit sphere in E_n. Define $\Sigma^s \subset \Sigma$ to consist of all unit vectors y with at least $s + 1$ nonzero components. We define a transformation $T : \Sigma^s \to \Sigma^s$, as follows: For each y in Σ^s, let $y' = Ty = w / \|w\|$, where $w = P_s(A; y) y$. (That $w \neq \theta$ and $y' \in \Sigma^s$ are proved in theorem (5.1).)

(3.7) Definition. By a continuum we mean a closed connected set in E_n with the understanding that a single point is a continuum.

(3.8) Theorem. Fix s with $1 \leq s \leq n - 1$. Let $y_0 = (\eta_1^{(0)}, \ldots, \eta_n^{(0)})^T$ be any vector in Σ^s with $\eta_i^{(0)} \neq 0$ ($i = 1, \ldots, n$). For $k = 0, 1, \ldots$, define $y_{k+1} = Ty_k$, where T was defined in (3.6). Then the set of limit points of the sequence $\{y_{2k} : k = 0, 1, 2, \ldots\}$ of normalized gradients is a continuum $R \subset \Sigma^s$. Moreover, for any point r in R, we have $r = T^2 r = T(Tr)$.

Proof: Let $w_0 = y_0$. For $k = 0, 1, \ldots$, let $w_{k+1} = P_s(A; y_k) w_k$, where $P_s(t; y)$ was defined in (2.9). It is easily shown that $y_k = w_k / \|w_k\|$, for all k. Since $n \geq s + 1$ components of w_0 are nonzero, it follows from theorem (5.1) that at least $s + 1$ components of w_k are nonzero for $k = 1, 2, \ldots$. Hence no $w_k = \theta$.

Let $w_k = (\omega_1^{(k)}, \ldots, \omega_n^{(k)})^T$. By theorem (3.3),

$\varphi(w_0) \leq \varphi(w_1) \leq \ldots \leq \varphi(w_k) \leq \ldots$.

18
But for each k the s zeros of $P_s(t; w_k)$ lie in the interval (λ_1, λ_n). Hence $|P_s(t; w_k)| \leq (\lambda_n - \lambda_1)^s$, for $\lambda_1 \leq t \leq \lambda_n$, and so

$$\varphi(w_k) = \frac{\|w_{k+1}\|^2}{\|w_k\|^2} = \frac{\|P_s(A; w_k)\|^2}{\|w_k\|^2}$$

$$= \frac{\sum_{i=1}^n [P_s(\lambda_i; w_k)]^2 [w_i^{(k)}]^2}{\sum_{i=1}^n [w_i^{(k)}]^2}$$

$$\leq (\lambda_n - \lambda_1)^s,$$ for all k.

As a monotone bounded sequence, $\{\varphi(w_k)\}$ has a limit L. Hence

(3.9) \quad \varphi(w_{k+1}) - \varphi(w_k) - 0 \quad (\text{as } k \to \infty).$

But, by theorem (3.3),

$$\varphi(w_{k+1}) - \varphi(w_k) = \frac{\|w_{k+2}\|^2}{\|w_{k+1}\|^2} - \frac{\|w_{k+1}\|^2}{\|w_k\|^2}$$

(3.10) \quad \frac{\|w_{k+2}\|^2}{\|w_{k+1}\|^2} [1 - \cos^2 \psi_k],$

where ψ_k is the angle between w_k and w_{k+2}. Then, by (3.9),

$$\cos^2 \psi_k \to 1, \quad \text{and} \quad \psi_k \to 0, \quad \text{as } k \to \infty. \quad (\text{Since } c > 0 \text{ in } (3.3), \quad \psi_k \to \pi.)$$

Now consider the set Y of unit vectors $\{y_{2k} : k = 0, 1, 2, \ldots\}$. As an infinite subset of the compact unit sphere Σ, $\{y_{2k}\}$ has limit points; let R be the set of all limit points of Y. Since $\psi_k \to 0,$
as $k \to \infty$, we have $\|y_{2k+2} - y_{2k}\| \to 0$, as $k \to \infty$. Then, as Ostrowski shows on p. 203 of [9], the set R must be a continuum in the sense of (3.7).

Let r be any point of R. Then there is a subsequence $\{y_{2k_1}\}$ converging to r. Since $\|y_{2k+2} - y_{2k}\| \to 0$, we have also that $y_{2k_1+2} = T^2 y_{2k_1} \to r$. But T is a continuous transformation. Hence $T^2 y_{2k_1} \to T^2 r$, and $T^2 r = r$. Since $T^2 r = r$, we see from theorem (5.1) that $r \in \mathbb{L}$. Hence $R \subseteq \mathbb{L}$. This completes the proof of theorem (3.8).

The author has programmed a number of test cases with $s = 2$, to investigate the nature of the set R. In every case, R appeared to be a single point. The author conjectures that R is always a single point in theorem (3.8). So far, this has been proved only for $s = 1$, and we give the proof in (4.12).

The following theorem shows one way in which one might be able to prove that R consists always of a single point.

(3.11) Theorem. Suppose in the proof of theorem (3.8) that $\varphi(w_k)$ were to converge to L so rapidly that, for some $\alpha < 1$.

$$0 \leq \varphi(w_{k+1}) - \varphi(w_k) \leq \alpha(\varphi(w_k) - \varphi(w_{k-1})), \quad \text{for all } k.$$

Then R would consist of a single point.

Proof. If (3.12) held, then the following infinite series would be convergent:
as is seen from (3.12), by the ratio test. It is shown in (3.10) that

(3.14) \[|\varphi(w_{k+1}) - \varphi(w_{k})|^\frac{1}{k} \sim \sin |\psi_k|, \quad \text{as } k \to \infty, \]

where \(\psi_k \) is the angle between the vectors \(w_k \) and \(w_{k+2} \). Then, from (3.13) and (3.14), we would have

(3.15) \[\sum_{k=0}^{\infty} |\psi_k| < \infty. \]

Now, let \(y_k = w_k/\|w_k\| \) be the unit vector in the direction of \(w_k \). It would follow from (3.15) that

(3.16) \[\sum_{k=0}^{\infty} \|y_{2k+2} - y_{2k}\| < \infty, \]

whence

(3.16) \[\sum_{k=0}^{\infty} (y_{2k+2} - y_{2k}) \]

would be an absolutely convergent series of vectors. Since \(y_{2k} = \sum_{h=0}^{k-1} (y_{2h+2} - y_{2h}) + y_0 \), we see that the sequence \(\{y_{2k}\} \) would then have one limit point. This proves the theorem (3.11).
However, the author sees no way to prove (3.12) nor the conjecture.

The following theorem proves that, whether R has one point or an infinite number, $f(x_k) \to 0$ no faster than linearly.

(3.17) Theorem. Fix s with $1 \leq s \leq n - 1$. Given any A in the form (2.7). Let $x_0 = (x_1^{(0)}, \ldots, x_n^{(0)})^T$ be any vector in E_n with m nonzero components. Then in the optimum s-gradient method $f(x_k)$ converges to 0 in the following ways:

(i) If $1 < s < n - 1$, then $x_1 = \theta$, $f(x_1) = 0$, and the iteration terminate in one step.

(ii) If $s + 1 < m$, then the convergence of $f(x_k)$ to 0 is asymptotically linear, in the sense that there exist constants c_1, c_2 depending on x_0, with

$$0 < c_1 \leq \frac{f(x_{2k+2})}{f(x_{2k})} < c_2 < 1,$$

for all k.

Proof. We may ignore any zero components of x_0, as they remain zero throughout the iteration. We are thus minimizing $f(x)$ in E_m.

Proof of (i): If $m < s$, then the subspace L_s defined in Sec. 2 is E_m. Hence $x_1 = \theta$ and $f(x_1) = 0$, the minimum of $f(x)$ in E_m.

Proof of (ii): That

$$\frac{f(x_{2k+2})}{f(x_{2k})} \leq c_2 < 1$$

follows from the chain of inequalities (2.13). We have to prove the inequalities involving c_1.

22
Given \(x_0 \) with at least \(s + 1 \) nonzero components. By theorem (5.1) all other vectors \(x_k \) have at least \(s + 1 \) nonzero components, so that no \(x_k = 0 \). By theorem (3.8), the normalized gradient vectors \(y_{2k} \) have as a limit set a continuum \(R \). For each point \(r \) in \(R \), we have \(T^2 r = r \). Suppose a position vector \(x \) were such that \(r = Ax/\|Ax\| \in R \). That is, \(x \) would be in the direction of \(A^{-1}r \). Let \(x'' \) be the result of two steps of the optimum s-gradient method applied to \(x \). Since \(T^2 r = r \), we see that \(x'' \) would be in the same direction as \(x \). Hence

(3.19) \[x'' = \gamma x \] and so \(f(x'') = \gamma^2 f(x) \),

for some \(\gamma \) with \(0 < \gamma = \gamma(r) < 1 \).

I.e., for each point \(r \) of \(R \) there is a positive real number \(\gamma(r) \) such that whenever the gradient of a vector \(x \) lies in the direction of \(r \), then (3.19) holds.

Let \(C \) be the minimum of \(\gamma(r) \) for \(r \in R \). Since \(R \) is compact, the minimum is assumed and \(C > 0 \). Hence

(3.20) \[C < C^2 \leq \frac{f(x'')}{f(x)}, \]

for all \(x \) such that \(Ax/\|Ax\| \in R \).

Now the ratio \(f(x'')/f(x) \) is a continuous function of \(x \). Let \(N(R) \subseteq \Sigma \) be such a neighborhood of \(R \) that

(3.21) \[C^2 \leq \frac{f(x'')}{f(x)} \]
for all \(x \) with \(Ax/\|Ax\| \in N(R) \). Consider the sequence \(\{x_{2k}\} \).

Let \(z_{2k} = Ax_{2k} \) and let \(y_{2k} = z_{2k}/\|z_{2k}\| \). By theorem (3.8), the \(\{y_{2k}\} \) have \(R \) as a limit set. Hence there is a \(K \) such that for \(k \geq K \), all \(y_{2k} \) lie in \(N(R) \). By (3.21) then for \(k \geq K \) we have

\[
\frac{1}{2}c^2 \leq \frac{f(x_{2k+1})}{f(x_{2k})}.
\]

Letting \(c_1 = \frac{1}{2}c^2 \) completes the proof of the theorem.

Actually we could have taken \(c_1 = C^2 - \epsilon \), for any \(\epsilon > 0 \).

(3.22) Corollary. With the hypotheses of theorem (3.17), there exist constants \(d_1, d_2 \) with

\[
0 < d_1 \leq \frac{f(x_{k+1})}{f(x_k)} \leq d_2 < 1, \quad \text{for all } k.
\]

Proof. The corollary follows from theorem (3.17), the inequalities (2.13), and the fact that \(f(x_k) \to 0 \), as \(k \to \infty \).

(3.23) Theorem. Fix \(s \geq 1 \). Let \(x_0 \) be any vector such that \(x_2 \) is parallel to \(x_0 \) in the optimum \(s \)-gradient method. In other words, \(z_0/\|z_0\| \) is in the set \(F(A) \) of (4.5), where \(z_0 = Ax_0 \). Then

\[
\frac{f(x_{k+1})}{f(x_k)} = c^2 \quad (k = 0, 1, 2, \ldots),
\]

where \(c^2 \) depends on \(A \) and on \(x_0 \).

Remark. The import of this theorem is that, although the \(x_k \)

24
alternate between two fixed directions, as $k \to \infty$, the ratio (3.24) is constant for all k, and does not alternate.

Proof of (3.25). We first note from Corollary (2.23) that the theorem is true for $s = 1$, and that (2.22) gives a formula for c^2 in terms of the two nonzero components ξ_1, ξ_2 of z_0.

For any fixed $s > 1$, let π be the 2-space spanned by x_0 and x_1. Let $f_\pi(x)$ be the restriction of $f(x) = \frac{1}{2}x^TAx$ to the subspace π. Then the vectors x_0, x_1, x_2, \ldots can be shown by a geometrical argument to be the successive iterates of the optimum 1-gradient method for finding the minimum of $f_\pi(x)$ in π, starting with x_0. Then (3.24) for $s = 1$ states that

$$\frac{f_\pi(x_{k+1})}{f_\pi(x_k)} = c^2,$$

for some constant c^2 depending on the eigenvalues of f_π. Since $f_\pi(x) = f(x)$ in π, this proves the theorem for s.

Presumably theorem (3.23) could somehow be proved from theorem (2.18), just as the case $s = 1$ follows from (2.22).

Corollary (3.22) could also be proved from theorem (3.23).
4. **Nature of the Asymptotic Directions.**

We should like to characterize as well as we can the possible limiting vectors \(r \in \mathbb{R} \) of the (normalized) gradient vectors \(y_{2k} \) of theorem (3.8). Since \(T^2 r = r \), for \(r \) in \(\mathbb{R} \), we have

\[
(4.1) \quad cr = P_s(A; Tr) P_s(A; r) = Q_{2s}(A) r,
\]

where \(c > 0 \) is a constant and \(Q_{2s}(t) \) is the product of the two polynomials \(P_s(t; Tr) \) and \(P_s(t; r) \). Letting \(r = (\rho_1, ..., \rho_n)^T \), we have

\[
(4.2) \quad c \rho_i = Q_{2s}(\lambda_i) \rho_i \quad (i = 1, ..., n).
\]

Recall from p. 44 of [12] that \(P_s(t; Tr) = t^s + ... \) and \(P_s(t; r) = t^s + ... \) are polynomials of degree \(s \), each with \(s \) distinct real zeros in the open interval \((\lambda_1, \lambda_n) \). Hence \(Q_{2s}(t) = t^{2s} + ... \) is a polynomial of degree \(2s \) with \(2s \) real zeros in the interval \((\lambda_1, \lambda_n) \), counting double zeros twice, if any. Now \(c > 0 \) in (4.2), which implies that for each \(i \)

\[
(4.3) \quad Q_{2s}(\lambda_i) = c > 0 \quad \text{or} \quad \rho_i = 0 \quad (i = 1, ..., n).
\]

Since \(Q_{2s}(t) \) vanishes for some \(t \) in \((\lambda_1, \lambda_n) \), the equation \(Q_{2s}(t) = c > 0 \) can have \(2, 3, 4, ... \), or \(2s \) distinct real roots, which we call \(\mu_j \) \((j = 1, ..., m) \), and number so that
\[\mu_1 < \mu_2 < \ldots < \mu_m. \]

(Here we count a multiple root of \(Q_{2s}(t) = c \) only once.) Thus

\[Q_{2s}(\mu_j) = c \quad (j = 1, \ldots, m). \]

By (4.3) each \(\lambda_1 \) for which \(\rho_1 \neq 0 \) is one of the \(\mu_j \).

(4.4) Definition. Given \(x_0 \). Let \(R \) be the set of limiting points of the normalized gradients \(\{ y_{2k} : k = 0, 1, \ldots \} \) of the optimum s-gradient method starting from \(x_0 \). For any vector \(r = (\rho_1, \ldots, \rho_n)^T \) in \(R \), let \(S \) be the set of \(\lambda_1 \) for which \(\rho_1 \neq 0 \). Any such set is called an asymptotic spectrum of the optimum s-gradient method for the given \(x_0 \). Any \(r \) in \(R \) is called an asymptotic gradient vector of the same iteration.

Note that \(R \) depends on \(A \) and \(x_0 \), and we occasionally write \(R(x_0, A) \) to make the dependence explicit. Note that \(S \) is a property of \(r \) only, and only indirectly of \(x_0 \).

(4.5) Definition. For a given \(A \), we define the invariant set \(F(A) \) of the optimum s-gradient method to be the set of unit vectors \(r \) such that \(T^2 r = r \).

We have shown in theorem (3.8) that, for any \(x_0 \), \(R(x_0, A) \subseteq F(A) \). It is never true that \(R(x_0, A) = F(A) \). However, it is true that

\[F(A) = \bigcup_{x_0 \in E_n} R(x_0, A). \]
For, if \(r \in F(A) \), then \(T^2 r = r \), so that \(r = R(r, A) \).

(4.6) Theorem. Given \(x_0 = (\xi^{(0)}_1, \ldots, \xi^{(0)}_n)^T \) with \(\xi^{(0)}_i \neq 0 \) (\(i = 1, \ldots, n \)). Assume \(s < n \). Then both eigenvalues \(\lambda_1 \) and \(\lambda_n \) belong to all asymptotic spectra \(S \) of the optimum \(s \)-gradient method starting with \(x_0 \).

Proof. Assume that \(\lambda_q \) (\(q < n \)) is the largest eigenvalue in the asymptotic spectrum \(S \) corresponding to an asymptotic vector \(r \) of \(R(x_0, A) \). The zeros of each \(P_s(t; z_k) \) (\(k = 0, 1, \ldots \)) lie in the open interval \((\lambda_1, \lambda_n) \). Hence \(P_s(\lambda_n; z_k) \neq 0 \) for all \(k \). Hence \(\eta^{(2k)}_n \neq 0 \) for all \(k \), where the \(\eta^{(2k)}_i \) are the components of \(y_{2k} = z_{2k}/\|z_{2k}\| \).

Let \(\tau \) be the largest zero of \(P_s(t; Tr) P_s(t; r) \). Since the zeros of both \(P_s(t; Tr) \) and \(P_s(t; r) \) lie in the open interval \((\lambda_1, \lambda_q) \), we see that \(P_s(t; Tr) P_s(t; r) \to 0 \), as \(t \to \tau \), for \(t > \tau \). Hence

\[c^2 = P_s(\lambda_q; Tr) P_s(\lambda_q; r) < P_s(\lambda_n; Tr) P_s(\lambda_n; r) \]

But then, by continuity,

\[P_s(\lambda_q; z_{2k+1}) P_s(\lambda_q; z_{2k}) \leq \sigma P_s(\lambda_n; z_{2k+1}) P_s(\lambda_n; z_{2k}) \]

for some \(\sigma < 1 \) and all \(k \geq K \). Since all \(\eta^{(2k)}_n \neq 0 \), and since \(\eta^{(2k)}_q \to \rho_q \neq 0 \), for a certain subsequence \(k_j \), this means that \(|\eta^{(2k)}_n| \to \infty \), as \(j \to \infty \). This is impossible, since all \(y^{(2k)} \) lie
on the unit sphere. Hence \(q = n \), and \(\lambda_n \) is in the asymptotic spectrum \(S \).

The proof that \(\lambda_1 \) is in \(S \) is analogous.

(4.7) Theorem. Given \(x_0 \) with \(\xi_1^{(0)} \neq 0 \) \((i = 1, \ldots, n) \); assume that \(s > n \). Let \(m \) be the number of eigenvalues in any asymptotic spectrum \(S \) of the optimum \(s \)-gradient method. Then

\[
s + 1 < m < 2s.
\]

Proof. Let \(r \in R \) be an asymptotic gradient vector corresponding to a given \(S \). As shown after (4.3), the asymptotic spectrum \(S \) is a subset of the set of \(t \) for which \(P_s(t; Tr) \) \(P_s(t; r) = c \), and the number of such \(t \) is between 2 and \(2s \).

However, if \(m \leq s \), one step of the optimum gradient method would carry \(r \) into \(\theta \), and so \(r \) could not belong to \(R \). Hence

\[
s + 1 \leq m \leq 2s.
\]

(4.8) Theorem. Suppose \(s < n \). Let \(x_0 = (\xi_1^{(0)}, \ldots, \xi_n^{(0)})^T \) be any vector in \(E_n \) with exactly \(s + 1 \) nonzero components \(\xi_1^{(0)} \). Then \(x_0, x_2, x_4, \ldots \) are all collinear vectors. That is, the normalized gradient vector \(y_0 = Ax_0/\|Ax_0\| \) is in the invariant set \(F(A) \) of (4.5).

Proof. Let \(z_0 = Ax_0 \). It will suffice to prove that \(z_2 = c_0 z_0 \), for some positive constant \(c_0 \). Without loss of generality we may assume that \(n = s + 1 \), since the components for which \(\xi_1^{(0)} = 0 \) remain zero.
By (2.2)

\[(4.9) \quad z_1 = z_0 + \gamma_1 A z_0 + \ldots + \gamma_s A^s z_0,\]

and \(\gamma_1, \ldots, \gamma_s\) are so chosen that \(z_1\) is orthogonal to \(z_0, A z_0, \ldots, A^{s-1}z_0\). Because \(s + 1\) components of \(z_0\) are nonzero, the \(s\) vectors \(z_0, A z_0, \ldots, A^{s-1}z_0\) are linearly independent. Hence the set \([z_0, A z_0, \ldots, A^{s-1}z_0]\) forms a basis for the subspace of \(E_{s+1}\) orthogonal to \(z_1\).

Next, \(z_2\) is formed as a linear combination of \(z_1, A z_1, \ldots, A^s z_1\) which is orthogonal to \(z_1, A z_1, \ldots, A^{s-1}z_1\). Since \(z_2\) is orthogonal to \(z_1\), it is expressible in terms of the basis \(z_0, \ldots, A^{s-1}z_0\):

\[(4.10) \quad z_2 = c_0 z_0 + c_1 A z_0 + \ldots + c_{s-1} A^{s-1} z_0.\]

We shall prove that \(c_1 = c_2 = \ldots = c_{s-1} = 0\).

Take the inner product of (4.10) with \(A z_1\):

\[(4.11) \quad z_1^T A z_2 = c_0 z_1^T A z_0 + c_1 z_1^T A^2 z_0 + \ldots + c_{s-2} z_1^T A^{s-1} z_0 + c_{s-1} z_1^T A^s z_0.\]

But \(z_1^T A z_2 = z_2^T A z_1 = 0\) because \(z_2\) is orthogonal to \(z_1\). And \(z_1^T A z_0 = z_1 A^2 z_0 = \ldots = z_1 A^{s-1} z_0 = 0\), because \(z_1\) is orthogonal to \(A z_0, A^2 z_0, \ldots, A^{s-1}z_0\). And \(z_1 A^s z_0 \neq 0\), since otherwise by (4.11) \(z_1\) would be \(0\). It then follows from (4.11) that \(c_{s-1} = 0\).
Next, taking the inner product of (4.10) with A^2z_1 and using the same argument and the fact that $c_{s-1} = 0$, we show that $c_{s-2} = 0$.

After taking the inner product of (4.10) with $Az_1, A^2z_1, \ldots, A^{s-1}z_1$, we will have proved that $c_{s-1} = \ldots = c_2 = c_1 = 0$. Then, from (4.10), $z_2 = c_0z_0$. That $c_0 > 0$ follows from the proof of (3.3). This completes the proof of theorem (4.8).

Theorem (4.8) implies that any $s + 1$ eigenvalues of A can be in the asymptotic spectrum for some start x_0. Moreover, any vector r with exactly $s + 1$ nonzero components can be an asymptotic gradient vector of an iteration. This extends to $s = 2$ the known fact for the ordinary optimum 1-gradient method in 2 dimensions that any initial gradient direction is repeated at every other step of the iteration.

See the end of Sec. 2 above, or p. 214 of Ostrowski [9].

That for all s the period of the iteration in theorems (3.8) and (4.8) is 2, and not higher than 2, was a surprising fact to the author. However, the experiments of Khabaza [8] for $s = 3$ suggest the period 2.

For $s = 1$ we have $s + 1 = 2s = 2$, and then by theorem (4.7) all the vectors invariant under two steps of the optimum 1-gradient method are of the type covered in theorem (4.8). From this we can now show for $s = 1$ that the limiting set R of theorem (3.8) is actually a single point. The following is a modification of Akaike's proof in [1] of the Forsythe-Motzkin conjecture [7].

(4.12) Theorem (Akaike). Let $s = 1$. Let $y_0 = (\eta_1^{(0)}, \ldots, \eta_n^{(0)})^T$ be any vector in Σ^* with $\eta_i^{(0)} \neq 0$ ($i = 1, \ldots, n$). Then the sequence $\{y_{2k} : k = 0, 1, \ldots\}$ of normalized gradients converges to a single point r whose spectrum is $[\lambda_1, \lambda_n]$. Moreover, $T^2r = r$.

31
Proof. By theorem (3.8) the set of unit vectors \(\{ y_{2k} : k = 0, 1, \ldots \} \) has a continuum \(R \) as a limit set. By theorem (4.7), for any \(r \in R \) the corresponding spectrum \(S \) of \(r \) has only 2 eigenvalues in it (for \(s + 1 = 2s = 2 \)). Now by theorem (4.6) the two eigenvalues in \(S \) must be \(\lambda_1 \) and \(\lambda_n \). Let \(r \) be any point of \(R \); let \(r = (\rho_1, 0, \ldots, 0, \rho_n)^T \), with \(\rho_1^2 + \rho_n^2 = 1 \). Then \(P_1(t; r) = t - \mu, \) where \(\mu = \lambda_1 \rho_1^2 + \lambda_n \rho_n^2 \). Hence \(P_1(A; r) r = ((\lambda_1 - \mu)\rho_1, 0, ..., 0, (\lambda_n - \mu)\rho_n)^T \).

By the proof of theorem (3.8),

\[
L = \lim_{k \to \infty} \varphi(y_{2k}) = \varphi(r) = \| P_1(A; r) r \|^2, \quad \text{since } \| r \|^2 = 1 \\
= (\lambda_1 - \mu)^2 \rho_1^2 + (\lambda_n - \mu)^2 \rho_n^2,
\]
or

\[(4.13) \quad L = (\lambda_n - \lambda_1)^2 \rho_1^2 \rho_n^2. \]

Now \(L \) is a number determined by the iteration, \(\lambda_1 \) and \(\lambda_n \) are given eigenvalues, and \(\rho_1^2 + \rho_n^2 = 1 \). Hence the pair \(\rho_1^2, \rho_n^2 \) are determined by (4.13), up to an interchange at most. Hence the set \(R \) can have at most eight vectors in it, if all permutations of signs are considered. But then, since \(R \) is a continuum, it must consist of a single point, which we call \(r \). Then \(y_{2k} \to r \), as \(k \to \infty \). This proves theorem (4.12).

Actually, if \(r = (\rho_1, ..., \rho_n)^T \), then \(Tr = (\rho_n, ..., -\rho_1)^T \), where all components \(\rho_i = 0 \) for \(1 < i < n \). Then \(r = \lim y_{2k} \) and \(Tr = \lim y_{2k+1} \) as \(k \to \infty \). So, the directions of the gradient vectors \(z_k \), alternately approach the directions of \(r \) and \(Tr \), as \(k \to \infty \).
The reason we cannot extend our proof of theorem (4.12) to $s > 1$ is that the equation analogous to (4.13) involves between $s + 1$ and $2s$ unknown components of r, and we do not see how to limit r to a finite number of vectors. Even for $s = 2$, theorem (4.8) shows that all vectors r with 3 nonzero components are invariant under T^2. Prescribing the vector r to have unit length and prescribing the value of L reduce the number of free parameters in r to 1. But, so far as the author can see, there remain 1 possible limiting vectors r in R.

Moreover, for an even number $s > 1$, there are asymptotic spectra containing more than $s + 1$ eigenvalues, as will now be demonstrated. We shall consider only spectra with symmetry about a midpoint. We do not know whether there are asymptotic spectra with more than $s + 1$ eigenvalues without such a symmetry.

We shall first examine possible asymptotic spectra with an even number $2q$ of eigenvalues. Let the eigenvalues in S be $a - \mu_q$, $a - \mu_{q-1}$, ..., $a - \mu_1$, $a + \mu_1$, ..., $a + \mu_{q-1}$, $a + \mu_q$, where $0 < a - \mu_q$ and $0 < \mu_1 < \ldots < \mu_q$. Let us consider unit vectors r with symmetric components ρ_q, ..., ρ_1, ρ_1, ..., ρ_q, corresponding to the respective points of the spectrum.

Because of the symmetry about the point $t = a$, the orthogonal polynomials $P_{2k}(t; r)$, $P_{2k+1}(t; r)$ associated with S and the $\{\rho_i^2\}$ satisfy the conditions

\begin{equation}
(4.14) \quad P_{2k}(t; r) = g_k((t - a)^2),
\end{equation}
where \(g_k \) is a monic polynomial of degree \(k \);

\[(4.15) \quad P_{2k+1}(t; r) = (t - a) h_k((t - a)^2),\]

where \(h_k \) is a monic polynomial of degree \(k \).

By symmetry, the even and odd polynomials \(P_k(t; r) \) are automatically orthogonal. By (4.14) orthogonality of the \(P_{2k}(t; r) \) among themselves can be expressed in the form

\[(4.16) \quad \sum_{i=1}^{q} g_j(\mu^2) g_k(\mu^2) \rho_i^2 = 0 \quad (j, k = 0, 1, \ldots; j \neq k).\]

Thus the \(g_k(t) \) are themselves orthogonal polynomials over the set \(\mu_1, \ldots, \mu_q \) with the weight factors \(\rho_1, \ldots, \rho_q \). Moreover, \(\hat{g}_k(t) = (-1)^k g_k(a^2 - t) \) are monic orthogonal polynomials over the transformed set \(\hat{S} = \{a^2 - \mu_1^2, \ldots, a^2 - \mu_q^2\} \) with the same weights \(\rho_1^2, \ldots, \rho_q^2 \).

Note that \(|\hat{g}_k(0)| = |P_{2k}(0; r)| \) and that \(|\hat{g}_k(a^2 - \mu_i^2)| = |P_{2k}(a + \mu_i; r)| \) for \(i = 1, \ldots, q \). Hence \(|\hat{g}_k(t)/\hat{g}_k(0)| \) has the same constant value over the set \(\hat{S} \) that \(|P_{2k}(t; r)/P_{2k}(0; r)| \) has over the set \(S \).

By (4.15) the orthogonality of the \(P_{2k+1} \) among themselves can be expressed as

\[(4.17) \quad \sum_{i=1}^{q} h_j(\mu^2_i) h_k(\mu^2_i) \mu_i^2 \rho_i^2 = 0 \quad (j, k = 0, 1, \ldots; j \neq k).\]

Thus the \(\hat{h}_k(t) = (-1)^k h_k(a^2 - t) \) are monic orthogonal polynomials over the set \(\hat{S} = \{a^2 - \mu_1^2, \ldots, a^2 - \mu_q^2\} \) with the different weights \(\mu_1^2 \rho_1^2, \ldots, \mu_q^2 \rho_q^2 \). Note that \(|\hat{h}_k(0)| = |h_k(a^2)| = |P_{2k+1}(0; r)|/a, \) and that

34
Thus constancy of $|p_{2k+1}(t; r)|$ over S does not imply constancy of $|h_k(t)|$ over S. The even and odd polynomials transform differently.

By means of these orthogonal polynomials \hat{g}_k we can reduce the problem of the invariance of the r under two steps of the optimum $2s$-gradient method over S to the problem of the invariance of an optimum s-gradient method over \mathbb{R} in a space of half the dimension.

To be precise, the above relations imply the following result, which we do not prove.

(4.18) Theorem. If s is even and $s + 1 < 2q < 2s$, then the vector $r = (\rho_q, \ldots, \rho_1, \rho_1, \ldots, \rho_q)^T$ (with no $\rho_1 = 0$) is in the invariant set (4.5) for the optimum s-gradient method for the diagonal matrix of $2q$ nonzero elements

$$\text{diag}(a - \mu_q, \ldots, a - \mu_1, a + \mu_1, \ldots, a + \mu_q)$$

if and only if the vector $\hat{r} = (\rho_1, \ldots, \rho_q)^T$ (with no $\rho_1 = 0$) is in the invariant set for the optimum $(s/2)$-gradient method for the diagonal matrix of q nonzero elements

$$\text{diag}(a^2 + \mu_q^2, \ldots, a^2 + \mu_q^2).$$

Moreover, when iterations exist with these invariance properties, if $z_0 = r/\|r\|$ and $\hat{z}_0 = \hat{r}/\|\hat{r}\|$, then $\|z_k\| = \|\hat{z}_k\|$ for $k = 0, 1, 2, \ldots$, where z_k and \hat{z}_k are the gradient vectors of the respective iterations.
We do not know a comparable theorem for odd integers \(s \).

As an application of theorem (4.18), we can show that for any \(s \) of the form \(s = 2^p \) \((p = 0, 1, 2, \ldots)\). There exist vectors with \(2s \) nonzero components that are in the invariant set of some optimum \(s \)-gradient method. For \(p = 0 \) this is theorem (4.12), and is true for any diagonal matrix of two positive elements \(\text{diag}(a^2 + \mu_1^2, s^2 + \mu_2^2) \) and any vector \(r = (\rho_1, \rho_2)^T \). Application of the first sentence of (4.18) leads to \(s = 2 \) with any matrix of form \(\text{diag}(b^2 + v_1^2, b^2 + v_2^2, b^2 + v_3^2, b_2 + v_4^2) \) where \(b^2 + v_1^2 = a - \mu_2 \), \(b^2 + v_2^2 = a - \mu_1 \), \(b^2 + v_3^2 = a + \mu_1 \), \(b^2 + v_4^2 = a + \mu_2 \), and corresponding vector \(c(\rho_2, \rho_1, \rho_1, \rho_2)^T \). Another application of (4.18) leads to \(s = 4 \) with the matrix

\[
\text{diag}(b - v_4, \ldots, b - v_1, b + v_1, \ldots, b + v_4)
\]

and corresponding vector \(c'(\rho_2, \rho_1, \rho_1, \rho_2, \rho_2, \rho_1)^T \). It is clear that the process may be continued to \(s = 2^p \) for any \(p \).

Note from theorem (4.7) that \(2s \) is the maximal number of nonzero components in any vector in the invariant set for an optimum \(s \)-gradient method. Our above example illustrates the maximal case.

We next consider symmetric asymptotic spectra with an odd number \(2q + 1 \) of eigenvalues \(a - \mu_q, \ldots, a - \mu_1, a, a - \mu_1, \ldots, a + \mu_1, \ldots, a + \mu_q \) and a corresponding symmetric vector

\[
(\rho_q, \ldots, \rho_1, \rho_0, \rho_1, \ldots, \rho_q)^T,
\]

invariant under \(T^2 \). Then again the orthogonal polynomials take the
forms (4.14) and (4.15). The odd polynomials are still defined by the condition (4.17), but the condition (4.16) must be replaced by

\[(4.19) \quad 2 \sum_{i=1}^{q} g_j(\mu_1^2) g_k(\mu_1^2) \rho_1^2 + g_j(0) g_k(0) \delta_{jn} = 0 \quad (j, k = 0, 1, \ldots; j \neq k).
\]

The analog of theorem (4.18) is now stated, but not proved:

\[(4.20) \text{Theorem. If } s \text{ is even and } s + 1 \leq 2q + 1 < 2s, \text{ then the vector } r = (\rho_q, \ldots, \rho_1, \rho_0, \rho_1, \ldots, \rho_q)^T \text{ (with no } \rho_1 = 0 \text{) is in the invariant set (4.5) for the optimum } s\text{-gradient method for the diagonal matrix of } 2q + 1 \text{ nonzero elements}
\]

\[
\text{diag}(a - \mu_q, \ldots, a - \mu_1, a, a + \mu_1, \ldots, a + \mu_q)
\]

if and only if the vector \(\hat{r} = (\rho_0/\sqrt{2}, \rho_1, \ldots, \rho_q)^T \) (with no \(\rho_1 = 0 \)) is in the invariant set for the optimum \((s/2)\text{-gradient method for the diagonal matrix of } q + 1 \text{ elements}
\]

\[
\text{diag}(a^2, a^2 + \mu_1^2, \ldots, a^2 + \mu_q^2).
\]

Moreover, when iterations exist with these invariance properties, if \(z_0 = r/\|r_0\| \) and \(\hat{z}_0 = \hat{r}/\|\hat{r}\| \), then \(\|z_k\| = \|\hat{z}_k\| \) for \(k = 0, 1, 2, \ldots \), where \(z_k \) and \(\hat{z}_k \) are the gradient vectors of the respective iterations.

If \(s \) is odd, then the set of \(2q + 1 \) eigenvalues \{a - \mu_q, \ldots, a - \mu_1, a + \mu_1, \ldots, a + \mu_q\} can never be the asymptotic spectrum of an optimum \(s\text{-gradient iteration} \).
The first two sentences are strict analogs of theorem (4.18). The third is true because $P_{2k+1}(s; r) = 0$ for all k.

The signs of the ρ_i are of no importance in theorems (4.18) and (4.20), and any ρ_i could be left alone or replaced by $-\rho_i$ independently at any place it is mentioned.
5. Singular and Derogatory Quadratic Forms; Zero Components.

Two restrictions placed on \(A \) above are really irrelevant—that \(A \) be regular and nonderogatory. If \(A \) is singular, then for some \(p \geq 1 \), we have \(\lambda_1 = \ldots = \lambda_p = 0 < \lambda_{p+1} < \ldots < \lambda_n \). Then it follows from (2.12) that

\[
\xi_i^{(k+1)} = \xi_i^{(k)}, \quad \text{for } 1 \leq i \leq p; \quad k = 0, 1, 2, \ldots
\]

while all components \(\xi_i^{(k)} \to 0 \), as \(k \to \infty \), for \(p + 1 < i \leq n \). On the other hand \(f(x) = \sum_{i=1}^{p} \lambda_i \xi_i^2 = \sum_{i=p+1}^{n} \lambda_i \xi_i^2 \). Thus \(f(x) \) is minimized for all vectors in the subspace \(N \) where \(\xi_1 = \ldots = \xi_p = 0 \), and the gradient methods proceed from \(x_0 \) to the closest point \(x_\infty \) of \(N \), with all \(x_k - x_\infty \) and all gradients \(z_k \) located in the orthogonal complement of \(N \).

If \(A \) is derogatory, it has multiple eigenvalues but a complete set of eigenvectors (because \(A \) is symmetric). Suppose, for example, that \(0 < \lambda_1 = \lambda_2 = \ldots = \lambda_r < \lambda_{r+1} < \ldots < \lambda_n \), and suppose that

\[
x_0 = (\xi_1^{(0)}, \ldots, \xi_r^{(0)}, \xi_{r+1}^{(0)}, \ldots, \xi_n^{(0)})^T.
\]

Now the orthogonal basis of eigenvectors belonging to \(\lambda_1, \ldots, \lambda_r \) is not uniquely defined. Our preceding analysis required at various places (e.g., in the proof of (4.8)) that the \(\lambda_i \) be distinct for each nonzero component \(\xi_i^{(0)} \), but zero components \(\xi_i^{(0)} \) were ignored. If any of \(\xi_2^{(0)}, \ldots, \xi_r^{(0)} \) are nonzero, make an orthogonal transformation of the eigenvector basis so that \(x_0 \) takes the form...
Then drop the new zero components ξ_2, ..., ξ_r entirely, and effectively reduce A to a nonderogatory matrix A of order $n - r + 1$.

Thus, in effect, only the set and number of distinct nonzero eigenvalues of A have a real relevance to the gradient methods for quadratic functions $\nabla^T x A x$.

Moreover, zero components of any x_k should be ignored, and the order of A reduced by unity for each zero component $\xi_1^{(k)}$ that occurs at any stage of the iteration.

If fewer than $s + 1$ components of any x_k are nonzero, then $x_{k+1} = \theta$ and the iteration terminates at once. Hence we have always insisted that at least $s + 1$ components of x_0 be nonzero. Even so, one may ask, might not enough $P_s(\lambda_1; z_h)$ be "accidentally" zero, so that for some later x_k fewer than $s + 1$ components are nonzero?

The answer is negative, as the following theorem shows:

(5.1) Theorem. Assume $s + 1 \leq n$. Assume $\xi_i^{(k)} \neq 0$ for $i = 1, \ldots, n$. Then at least $s + 1$ components $\xi_i^{(k+1)} \neq 0$.

Proof. By (2.12), $\xi_i^{(k+1)} = P_s(\lambda_i; z_k) \xi_i^{(k)}$, up to a multiplicative constant that does not matter, where $P_s(t; z_k)$ is the orthogonal polynomial of degree s over the set $\{\lambda_1, \ldots, \lambda_n\}$ with weights $[\xi_1^{(k)}]^2$.

We shall prove that there exist $s + 1$ eigenvalues out of the λ_1:

(5.2) $\lambda_1' < \lambda_2' < \ldots < \lambda_{s+1}'$,
such that \(P_s(\lambda_1'; z_k) \) \(P_s(\lambda_{i+1}; z_k) < 0 \) for \(i = 1, \ldots, s \). A fortiori, \(P_s(\lambda_1; z_k) \neq 0 \) for \(i = 1, 2, \ldots, s + 1 \), and the theorem will have been proved.

If the above sign-alternation property is false, then let \(q \leq s \) be the largest integer such that we can find \(\{\lambda_i'\} \) with

\[
(5.3) \quad P_s(\lambda_i'; z_k) \) \(P_s(\lambda_{i+1}'; z_k) < 0 \quad \text{for} \quad i = 1, \ldots, q - 1.
\]

(Clearly some \(q \geq 2 \) exists, or else \(P_s(\lambda_1; z_k) \) would always be of one sign and hence \(P_s \) could not be orthogonal to \(P_0 = 1 \). Then pick \(\mu_1, \ldots, \mu_{q-1} \) with

\[
\lambda_1' < \mu_1 < \lambda_2' < \mu_2 < \cdots < \lambda_{q-1}' < \mu_{q-1} < \lambda_q',
\]

so that, if \(Q(t) = (t - \mu_1) \cdots (t - \mu_{q-1}) \), then \(P_s(\lambda_i; z_k) Q(\lambda_i) > 0 \) for all \(i = 1, \ldots, n \). (We omit details of the construction.) Then

\[
\langle P_s(t; z_k), Q(t) \rangle = \sum_{i=1}^{n} P_s(\lambda_i; z_k) Q(\lambda_i) \left[\ell_i^{(k)} \right]^2 > 0,
\]

so that \(P_s \) and \(Q \) are not orthogonal. But, since \(Q \) is of degree \(q - 1 \leq s - 1 \), \(P_s \) must be orthogonal to \(Q \). This contradiction completes the proof of theorem (5.1).
References

The optimum s-gradient method, for minimizing a positive definite quadratic function $f(x)$ on \mathbb{R}^n, has long been known to converge for $s \geq 1$. For these s, the author studies the directions from which the iterates x_k approach their limit, and extends to $s > 1$ a theory proved by Akaike for $s = 1$. It is shown that $f(x_k)$ can never converge to its minimum value faster than linearly, except in degenerate cases where it attains the minimum in one step.
Minimization of functions
Gradient methods
Method of steepest descent
Generalized gradient method
Nature of convergence

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. ORIGINATOR'S REPORT NUMBER(S): Enter the originating activity or other organization number (if applicable) used to identify the report. This may include a project number, system number, etc.

4. SECURITY CLASSIFICATION: Enter the security classification of the information contained in the document. Include the form designation. The form designation is mandatory if the document is classified.

5. SECURITY CLASSIFICATION IMPRIMIS: Enter the form designation for an unclassified document.

6. NUMBER OF PAGES: Enter the number of pages in the document. Include any attachments.

7. KEY WORDS: Enter up to five key words or phrases that characterize the document. These words should be meaningful to the reader. Include synonyms or related terms. Each term may be up to 225 characters.

8. CONTRACT OR GRANT NUMBER: Enter the applicable number of the contract or grant under which the report was written.

9. PROJECT NUMBER: Enter the appropriate project code number, geographic location, or similar data.

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Restricted Data" shall not be released except as authorized by the originating activity or other organization issuing the report.

 (2) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified users shall request through DDC Security Clearance Office (TS)."

 (3) "All distribution of this report is controlled. Qualified DDC users shall request through DDC Security Clearance Office (TS)."

 (4) "U.S. military agencies may obtain copies of this report by DDC. Other qualified users shall request through DDC Security Clearance Office (TS)."

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through DDC Security Clearance Office (TS)."

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

12. ABSTRACT: Enter an abstract giving a brief and factual summary of the document. It shall not exceed the suggested length of 225 words.

13. REFERENCES: Enter bibliographic references alphabetically arranged. Each reference shall be identified by an identification number, title, and authors. There is no limitation on the length of the references.

14. KEY WORDS: Key words are technical meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Each key word must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.