B R L

REPORT NO. 1351

A NON-LINEAR SHOCK WAVE REFLECTION THEORY

by

Ralph E. Shear
Ray C. Makino

January 1967

Distribution of this document is unlimited.

U. S. ARMY MATERIEL COMMAND
BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
Destroy this report when it is no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
A NON-LINEAR SHOCK WAVE REFLECTION THEORY

Ralph E. Shear
Ray C. Makino

Computing Laboratory

RDT&E Project No. 1P014501A14B

ABERDEEN PROVING GROUND, MARYLAND
A NON-LINEAR SHOCK WAVE REFLECTION THEORY

ABSTRACT

A one-dimensional theory of normal reflection of blast waves from walls is given. The method satisfies the initial and boundary conditions of the problem. It is shown how the entire reflected wave zone, including the reflected shock front and the pressure and impulse on the wall, can be calculated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>7</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>11</td>
</tr>
<tr>
<td>FLOW EQUATIONS</td>
<td>12</td>
</tr>
<tr>
<td>SHOCK CONDITIONS</td>
<td>14</td>
</tr>
<tr>
<td>CONSTRAINTS</td>
<td>17</td>
</tr>
<tr>
<td>DETERMINATION OF REFLECTION DOMAIN</td>
<td>19</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>26</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>27</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

* = denotes dimensional quantities

a = a constraint parameter on u
b = a constraint parameter on u

c* = sound velocity in region traversed by incident shock

\[c_o = \frac{c*}{c_{oo}} \]

\[c* = \text{sound velocity in region traversed by reflected shock} \]

\[c = \frac{c*}{c_{oo}} \]

E* = specific internal energy of undisturbed air

\[E_o = \frac{E* - E^{*}_{oo}}{c*_{oo}^2} \]

E* = specific internal energy in region traversed by reflected shock

\[E = \frac{E* - E^{*}_{oo}}{c*_{oo}^2} \]

M* = mass of explosive

p* = total pressure of undisturbed air

\[p_o = \frac{p*}{p^{*}_{oo}} \]

\[p* = \text{total pressure in region traversed by reflected shock} \]
LIST OF SYMBOLS (Cont'd)

\[P = \frac{P^*}{P^*_{\infty}} \]

\[R^* = \text{gas constant} \]

\[S^*_{\infty} = \text{specific entropy of undisturbed air} \]

\[S^*_{\infty} = \text{specific entropy in region traversed by incident shock} \]

\[S^*_{\infty} = \frac{S^*_{\infty} - S^*}{R^*} \]

\[S^*_{\infty} = \text{specific entropy in region traversed by reflected shock} \]

\[S = \frac{S^* - S^*_{\infty}}{R^*} \]

\[t^* = \text{time} \]

\[t = \left(\frac{c^*}{M^*} \right)^{1/3} t^* \]

\[u^*_{\infty} = \text{particle velocity in region traversed by incident shock} \]

\[u^* = \text{particle velocity in region traversed by reflected shock} \]

\[u = \frac{u^*_{\infty}}{c^*_{\infty}} \]

\[U^* = \text{velocity of reflected shock} \]

\[U = \frac{U^*}{c^*_{\infty}} \]

\[x^* = \text{linear distance} \]

\[x = \left(\frac{p^*_{\infty}}{c^*_{\infty}^2 M^*} \right)^{1/3} x^* \]

\[\gamma = \text{specific heat ratio of air} \]

\[u = \left(\frac{\gamma - 1}{\gamma + 1} \right)^{1/2} \]
LIST OF SYMBOLS (Contd)

\(\rho_{\infty}^* = \text{density of undisturbed air} \)

\(\rho_{\infty}^* = \text{density in region traversed by incident shock} \)

\[
\rho_{\infty} = \frac{\gamma \rho_{\infty}^*}{\rho_{\infty}^*}
\]

\(\rho^* = \text{density in region traversed by reflected shock} \)

\[
\rho = \frac{\gamma \rho^*}{\rho_{\infty}^*}
\]
INTRODUCTION

The study of damage to structures by blast waves requires analysis of the normally reflected pressure on the wall. To solve this problem the hydrodynamical equations of flow must be solved in the region between the wall and the reflected shock front. Since the system of non-linear partial differential equations of flow are presently solvable only by numerical methods that, when reliable, are somewhat cumbersome, and the possibility of exact analytical solution is remote, a method that simplifies the mathematics somewhat and is more amenable to analytic solution is desirable. Here, we examine a direction of simplification that reduces the system of equations for one-dimensional flow to a system of ordinary differential equations, by introduction of a constraint that satisfies the initial and wall conditions, as discussed by Makino.¹

Makino and Shear² have obtained a theory of reflected impulse at the wall by regarding each element of the incident wave to be individually reflected like the shock front, but this is a zero'th order approximation, not satisfying derivative conditions at the wall. Chang and Laporte³ have obtained two theories of shock reflection. One is series expansion about the point of reflection, which, if truncated for practical purposes, may not fully satisfy the wall conditions. The other theory, which assumes the particle velocity to be zero all along the reflected shock line, may also not fully satisfy the wall conditions. Also, both theories are for the calculation of the reflected shock line only. In the theory we present here, we consider calculation of the entire reflected wave zone, from the shock front through interior points to points on the wall, such that wall conditions are satisfied through certain derivatives. However, it is probably most useful only in that phase of the wave exerting the greatest stress on the wall, which is the part of greatest interest for damage studies.

¹ Superscript numbers denote references which may be found on page 26.
Ryzhov and Khristianovich have developed a theory on the problem of two dimensional regular reflection, but the theory assumes isentropic flow and is therefore applicable to weak shocks only, and further, the boundary conditions are approximated. Shindiapin has improved the theory with respect to boundary conditions, but has not extended the theory to non-isentropic flow.

While the so-called self-similar type solutions can be extended to the reflection problem as an approximation, the choice of the similarity form to be assumed is made difficult by the strong influence of the wall and by the non-constancy of the quantities in front of the reflected shock.

The example considered here is for plane flow, or spherical flow at distances sufficiently far from the center of energy release that planar approximation suffices. It is shown how the flow parameters behind the reflected wave, in particular the pressure on the wall as a function of time and the impulse, can be obtained. For cylindrical and spherical flows, the same method is applicable if the reflecting surfaces have the corresponding symmetries.

FLOW EQUATIONS

The non-dimensionalized equations of flow describing the one-dimensional motion of air are, in Eulerian coordinates, conservation of mass

(1a) \[p_t + u p_x + \rho c^2 u_x = 0 , \]

conservation of momentum

(1b) \[\frac{1}{p} p_x + u_t + uu_x = 0 , \]

adiabaticity

(1c) \[S_t + u S_x = 0 , \]
where t is the time with the non-dimensionalizing scaling factor $(\text{ambient sound speed times ambient pressure/mass of explosive})^{1/3}$, x is the distance with the non-dimensionalizing scaling factor $(\text{ambient pressure}/(\text{ambient sound speed})^2/\text{mass of explosive})^{1/3}$, p is the pressure in units of the ambient pressure, u is the particle velocity in units of the ambient sound speed, c is the sound velocity in units of the ambient sound speed, ρ is the specific heat ratio γ (assumed constant) times the density in units of the ambient density, and S is the excess entropy over the ambient in units of the gas constant R.

This system of equations is supplemented by the equation of state, which, for illustrative purpose, we assume to be ideal:

\begin{align}
(2a) \quad & \rho = \gamma \rho^{1/\gamma} \exp \left(-\frac{\gamma-1}{\gamma} S \right), \\
(2b) \quad & E = \frac{1}{\gamma - 1} \frac{\rho}{\rho - \frac{1}{\gamma(\gamma - 1)}},
\end{align}

where E is the non-dimensionalized energy.

The Eulerian coordinates x, t in the equations above are replaced by Lagrange coordinates. We define m to be the mass integral

\begin{equation}
(3) \quad m = \int \rho(x,t) \, dx,
\end{equation}

where the integration is performed on a constant t line starting from the wall. From this definition and from the continuity Equation (1a) in the form

\begin{equation}
(4) \quad \rho_t = -\rho u_x,
\end{equation}

we obtain

\begin{align}
(5a) \quad & m_x = \rho, \\
(5b) \quad & m_t = -\rho u,
\end{align}

13
and also

(6) \[x_t(m,t) = u. \]

Using Equations (5) and (2), we put Equation (1) in the form

(7) \[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & \gamma \rho & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0 \\
\gamma \rho \\
0 \\
0
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix},
\]

where \(V \equiv \text{col} \left\{ S_t, p_t, u_t, u_m, p_m, S_m \right\} \).

Differentiation of Equation (7) with respect to \(m \) and \(t \) gives

(8) \[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & \gamma \rho & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
\gamma \rho \\
0 \\
0 \\
1
\end{bmatrix} = \begin{bmatrix}
\gamma + 1 & \frac{p_t}{\gamma} \left(\frac{p_t}{p} - \mu^2 s_m \right) \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix},
\]

where

(9) \[W \equiv \text{col} \left\{ p_m t, p_t t, u_m t, u_t t, p_m m, u_m m, s_m m, s_m t, s_t t \right\}. \]

SHOCK CONDITIONS

The Rankine-Hugoniot conditions that must be satisfied across the shock front are, in dimensionless form,

\[\rho(U - u) = \rho_o(U - u_o), \]

\[p(U - u) = p_o(U - u_o), \]

\[\gamma p(U - u) = \gamma p_o(U - u_o), \]

\[\gamma p^2 / \rho = \gamma p_o^2 / \rho_o, \]

\[\gamma p(U - u) = \gamma p_o(U - u_o), \]

\[\gamma p^2 / \rho = \gamma p_o^2 / \rho_o. \]
conservation of momentum,

$$(10b) \quad \rho(U - u)^2 + p = \rho_o(U - u_o)^2 + p_o,$$

conservation of energy,

$$(10c) \quad \frac{1}{2}(U - u)^2 + E + \frac{P}{\rho} = \frac{1}{2}(U - u_o)^2 + E_o + \frac{P_o}{\rho_o},$$

where U is the shock velocity $\frac{dx}{dt}$.

These conditions simplified by Equation (2) give

$$(11a) \quad u = u(p; u_o, p_o, S_o) = u_o$$

$$+ (p - \rho_o) \left[\frac{2 \exp \left(\frac{Y - 1}{Y} S_o \right)}{\gamma(\gamma + 1) \rho_o^{1/\gamma} (p + u^2 \rho_o)} \right]^{1/2},$$

$$(11b) \quad S = S(p; u_o, p_o, S_o) = S_o$$

$$+ \frac{Y}{Y - 1} \ln \left(\frac{p}{\rho_o} \right)^{1/\gamma} \left(\frac{u^2 p + p_o}{p + u^2 \rho_o} \right),$$

$$(11c) \quad U = U(p; u_o, p_o, S_o) = u_o$$

$$+ \left[\frac{(p + u^2 \rho_o) \exp \left(\frac{Y - 1}{Y} S_o \right)}{(1 - u^2) \rho_o^{1/\gamma}} \right]^{1/2}.$$
Let \(\frac{3}{3t} + \rho(U - u) \frac{3}{3m} \) be the differential operator in the direction of the shock line. Implicit differentiation of \(u \) and \(S \) along the reflected shock line gives

\[
- \frac{\partial u}{\partial p} p_t + u_t + \rho(U - u)u_m - \rho(U - u)\frac{\partial u}{\partial p} p_m = F_1,
\]

\((12a)\)

\[
F_1 = \frac{3u}{\partial p} Dp_o + \frac{3u}{\partial u} Du_o + \frac{3u}{\partial S} DS_o,
\]

\[
- \frac{\partial S}{\partial p} p_t = \rho(U - u) \frac{\partial S}{\partial p} p_m + \rho(U - u)S_m = F_2,
\]

\((12b)\)

\[
F_2 = \frac{3S}{\partial p} Dp_o + \frac{3S}{\partial u} Du_o + \frac{3S}{\partial S} DS_o,
\]

where the shock path is given by

\[(13)\]

\[
Dm = \rho(U - u).
\]

The quantities, identified by subscript \(o \), that result from the incident wave we assume to be known as functions of \(m \) and \(t \). From Equation (11), the first partial derivatives with respect to the arguments \(p, u_o, p_o, S_o \), become

\[(14a)\]

\[
\frac{\partial u}{\partial p} = \frac{(u - u_o)}{(p - p_o)} \left[\frac{p + (1 + 2u^2)p_o}{2(p + u^2 p_o)} \right],
\]

\[(14b)\]

\[
\frac{\partial u}{\partial u_o} = 1,
\]

\[(14c)\]

\[
\frac{\partial u}{\partial S_o} = \frac{\gamma - 1}{2\gamma} (u - u_o),
\]

16
\[
\frac{\partial u}{\partial p_0} = \frac{-(u - u_0)\left[p^2 + (1 - \gamma)p p_0 + (\gamma - 1)p^2 \right]}{2(\gamma - 1) p_0 (p - p_0) (p + \mu^2 p_0)},
\]
\[
\frac{\partial S}{\partial p} = \frac{1}{\gamma + 1} \left(\frac{p - p_0}{p (p + \mu^2 p_0) (\mu^2 p + p_0)}\right),
\]
\[
\frac{\partial S}{\partial u_0} = 0,
\]
\[
\frac{\partial S}{\partial S_0} = 1,
\]
\[
\frac{\partial S}{\partial p_0} = \frac{1}{\gamma + 1} \left(\frac{p - p_0}{p_0 (p + \mu^2 p_0) (\mu^2 p + p_0)}\right).
\]

CONSTRAINTS

For simplicity, it is assumed that the reflecting wall is at \(m = x = 0 \) (see Figure). At the wall the particle velocity must satisfy the conditions

\[
\left(\frac{\partial^n u(x,t)}{\partial t^n}\right)_{x=0} = 0, \quad n = 0, 1, 2, \ldots.
\]

From this result and the ideal gas law (2a), we can show by taking higher derivatives of (1a) and (1b) that \(u \) must satisfy also the condition

\[
\left(\frac{\partial^2 u(x,t)}{\partial x^2}\right)_{x=0} = 0.
\]
We now impose some constraints on the flow. There is an infinity of ways of doing this. The choice will depend on the nature of the ambient conditions and the incident wave. For blast waves in still air, in the neighborhood of the wall at all times and also in the neighborhood of the asymptotic shock, we expect the particle velocity to vary slowly with \(x \), and so we choose

\[
(17) \quad u = a(t)x + b(t)x^3,
\]

where \(a(t) \) and \(b(t) \) are functions of \(t \) only. This expression satisfies both boundary conditions (15) and (16), and also permits the initial and shock conditions to be satisfied.

For subsequent purpose, we differentiate Equation (17) twice with respect to \(m \):

\[
(18a) \quad u_m = \frac{u + 2bx^3}{\rho x},
\]

\[
(18b) \quad u_{mm} = \frac{6bx}{\rho^2} - \frac{u_m}{\gamma p} \left[p_m - (\gamma - 1) p S_m \right].
\]
Determination of Reflection Domain

Equations (18a), (12), and (7) are six equations involving the six components of V. Solving for V, we obtain

\[V = \frac{H}{\gamma p_0 (U - u)} \left[\frac{3u}{\partial \rho} + 1 \right] \]

(19)

where

\[G = \frac{(u + 2bx^3)(U - u) - xF_1}{x(\rho(U - u)\frac{3u}{\partial \rho} + 1)} \]

\[H = \frac{\gamma p(u + 2bx^3)}{x(\rho(U - u)\frac{3u}{\partial \rho} + 1)} \]

By differentiating Equation (12) along the reflected shock line, we have

(20a)

\[-2 \frac{3u}{\partial \rho} \rho(U - u) p_{mt} - \frac{3u}{\partial \rho} p_{tt} + 2\rho(U - u) u_{mt} \]

\[+ u_{tt} - \rho^2(U - u)^2 \frac{3u}{\partial \rho} p_{mm} + \rho^2(U - u)^2 u_{mm} = F_3 \]
\[
(20b) \quad - \frac{3S}{\partial p} \rho (U - u) p_{nt} - \frac{3S}{\partial p} p_{tt} - \frac{3S}{\partial p} \rho^2 (U - u)^2 S_{nn}
\]
\[
+ \rho^2 (U - u)^2 S_{nn} = F_4 ,
\]

where

\[
(21a) \quad F_3 = DF_1 + Dp D \left[\frac{3u}{\partial p} \right] - \left[u_m - p_m \frac{3u}{\partial p} \right] D [\rho (U - u)] ,
\]
\[
(21b) \quad F_4 = DF_2 + \left[\frac{3S}{\partial p} p_m - S_m \right] D [\rho (U - u)] + Dp \left[\frac{3S}{\partial p} \right] .
\]

Equations (20), (18b), and (8) are nine equations involving the nine components of \(W \). Solving for \(W \) gives

\[
(22) \quad W = B^{-1} Y ,
\]

where

\[
(23a) \quad Y = \begin{pmatrix}
\frac{Y + 1}{\gamma} p_t (p_m - \frac{\rho^2 S_m}{\gamma}) \\
\frac{Y + 1}{\gamma} p_t^2 \\
0 \\
0 \\
0 \\
F_3 \\
\frac{6b x}{\rho^2} \frac{\gamma + 1}{\gamma} \frac{1}{m} \left(\frac{1}{\gamma + 1} p_m - \frac{\rho^2 S_m}{\gamma} \right) \\
Y_h \\
0 \\
0
\end{pmatrix}
\]
\[\begin{align*}
(23b) \quad B^{-1} &= \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}, \\
(23c) \quad \xi &= [\rho(U - u)^2 + \gamma p] \frac{\partial u}{\partial p} + 2(U - u),
\end{align*}\]

\[\begin{align*}
\begin{vmatrix}
1 & 0 & 0 & 0 \\
\frac{-\gamma p (2\rho(U - u) \frac{\partial u}{\partial p} + 1)}{\xi} & \frac{\rho(U - u)^2 \frac{\partial u}{\partial p} + 2(U - u)}{\xi} & \frac{-\gamma p^2 (U - u)^2 \frac{\partial u}{\partial p}}{\xi} & \gamma p
\end{vmatrix},
\end{align*}\]

\[\begin{align*}
(23d) \quad B_{11} &= \begin{bmatrix}
1 & 0 & 0 & 0 \\
\frac{2\rho(U - u) \frac{\partial u}{\partial p} + 1}{\rho \xi} & \frac{1}{\rho \xi} & \frac{\rho(U - u)^2 \frac{\partial u}{\partial p}}{\xi} & -\frac{1}{\rho \xi}
\end{bmatrix},
\end{align*}\]

\[\begin{align*}
\begin{vmatrix}
0 & 0 & -\gamma p \\
-\frac{\gamma p}{\xi} & \frac{\gamma p \rho \left(\rho(U - u)^2 + \gamma p + 2\gamma p^2 (U - u) \frac{\partial u}{\partial p}\right)}{\xi} & 0 \\
\frac{1}{\rho \xi} & -\frac{\gamma p \rho \left(\rho(U - u)^2 + \gamma p + 2\gamma p^2 (U - u) \frac{\partial u}{\partial p}\right)}{\xi} & 0
\end{vmatrix},
\end{align*}\]

\[\begin{align*}
(23e) \quad B_{12} &= \begin{bmatrix}
0 & 0 & 0 \\
0 & \gamma p \\
0 & 0
\end{bmatrix},
\end{align*}\]
\[
B_{21} = \begin{bmatrix}
- \frac{2\rho(U - u)\frac{\partial u}{\partial \rho} + 1}{\rho \xi} & - \frac{1}{\rho \xi} \frac{\partial u}{\partial \rho} & \frac{\gamma p}{\rho \xi} \frac{\partial u}{\partial \rho} + 2(U - u) & \frac{1}{\rho \xi} \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

(23f)

\[
B_{22} = \begin{bmatrix}
- \frac{3\rho(U - u)^2 - \gamma p}{\rho^2(U - u)^2} \frac{\partial S}{\partial \rho} & \frac{2}{\rho^2(U - u)^2} \frac{\partial S}{\partial \rho} & 2(U - u) \frac{\partial S}{\partial \rho} & \frac{\rho(U - u)^2 + \gamma p}{\rho^2(U - u)^2} \frac{\partial S}{\partial \rho} \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

(23g)

\[
- \frac{1}{\rho \xi} \left[\rho(U - u)^2 + \gamma p + 2\gamma \rho(u - U) \frac{\partial u}{\partial \rho} \right] \frac{\partial u}{\partial \xi} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\]

(23g)
Solving Equation (18a) for $b(t)$, there is obtained

\begin{equation}
(24) \quad b(t) = \frac{\rho x u_m - u}{2x^3}.
\end{equation}

Differentiating this expression with respect to t along the reflected shock line, there follows

\begin{equation}
(25) \quad Db = \left(\frac{\rho x u_m - u}{2x^3}\right)_t + \rho(U - u)\left(\frac{\rho x u_m - u}{2x^3}\right)_m \equiv F_5,
\end{equation}

Equations (2a), (11), (13), (25), together with the implicit derivative

\begin{equation}
(26) \quad Dp = p_t + \rho(U - u) p_m,
\end{equation}

give the system of ordinary differential equations

\begin{equation}
(27) \quad \begin{array}{cccccccc}
D & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & D & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & D & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & D & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array} \begin{array}{c}
p \\
b \\
x \\
m \\
u \\
\rho \end{array} = \begin{array}{c}
p_t + \rho(U - u) p_m \\
F_5 \\
U(p;u_o,p_o,S_o) \\
\rho(U - u) \\
u(p;u_o,p_o,S_o) \\
S(p;u_o,p_o,S_o) \\
\rho(p,S) \end{array}.
\end{equation}

Using (19) and (22), we can solve this system.

The solutions of this system give $b(t)$ as a function of time; $a(t)$ is then determined by

\begin{equation}
(28) \quad a(t) = \frac{u - b(t)x^3}{x}.
\end{equation}
The flow behind the reflected shock can now be calculated as solutions of ordinary differential equations, with each point on the calculated shock line serving as an initial point. \(x \) is given by

\[
(29) \quad x_t = u = a(t)x + b(t)x^3,
\]

which integrates along the \(m = \) constant line into

\[
(30) \quad x = x(m) \exp \left\{ \int_{t(m)}^{t} a(t) \, dt \right\} \left[- \int_{t(m)}^{t} 2x^2(m)b(t) \, dt \right]^{-1/2} \exp \left\{ \int_{t(m)}^{t} 2a(t) \, dt \right\} + 1 \right],
\]

where \(x(m), t(m) \) is a point on the shock line. This value of \(x \) substituted into Equation (29) gives \(u \) as a function of \(m, t \). The pressure is then obtained from Equation (7):

\[
(31) \quad p_t = - \gamma p u_m = - \gamma p [a(t) + 3b(t)x^2] ,
\]

which integrates into

\[
(32) \quad p = p(m) \exp \left\{ \int_{t(m)}^{t} \gamma [a(t) + 3b(t)x^2] \, dt \right\}.
\]

On this \(m = \) constant line, the entropy \(S = S(m) \) is constant and is given on the shock line. The density then follows from Equation (2).

On the wall the pressure simplifies to

\[
(33) \quad p(0,t) = p(0) \exp \left\{ - \int_{t(0)}^{t} \gamma a(t) \, dt \right\}.
\]
The positive impulse imparted to the wall we take to be

\[(34) \quad \text{Pos. impulse} = \int_{t(0)}^{\bar{t}} \gamma \left[p(0) \exp \left\{ \int_{t(0)}^{t} a(t) \, dt \right\} - 1 \right] \, dt, \]

where \(\bar{t} \) is the time at which \(p(0,t) = 1 \).

RALPH E. SHEAR

RAY C. MAKINO
REFERENCES

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Commander</td>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>Defense Documentation Center</td>
<td>U.S. Army Combat Developments Command</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: TIPCR</td>
<td>ATTN: COR for CORG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cameron Station</td>
<td>Fort Belvoir, Virginia 22060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Director of Defense Research and Engineering (OSD)</td>
<td>Director</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Asst Dir/Tac Msl & Ord</td>
<td>U.S. Army Research Office</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20301</td>
<td>ATTN: CRDPES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Director Weapons Systems Evaluation Group</td>
<td>3045 Columbia Pike</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20305</td>
<td>Arlington, Virginia 22204</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Headquarters</td>
<td>1</td>
<td>Chief of Naval Operations</td>
</tr>
<tr>
<td></td>
<td>Defense Atomic Support Agency</td>
<td>ATTN: Op-03EG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: STBS, Mr. J. Kelso</td>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20301</td>
<td>Washington, D.C. 20350</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
<td>3</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
<td>U.S. Naval Air Systems Command</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCRD-TE</td>
<td>Headquarters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
<td>ATTN: AIR-604</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
<td>1</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Engineer Research & Development Laboratories</td>
<td>U.S. Naval Air Development Center, Johnsville</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: STINFO Div</td>
<td>Warminster, Pennsylvania 18974</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fort Belvoir, Virginia 22060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
<td>3</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Frankford Arsenal</td>
<td>U.S. Naval Ordnance Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Lib Br, 0270</td>
<td>ATTN: Explo Rsch Dept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania 19137</td>
<td>Mr. P. Hanlon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. W. Filler</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. L. Rudlin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver Spring, Maryland 20910</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Commanding Officer</td>
<td>1</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Picatinny Arsenal</td>
<td>U.S. Naval Ordnance Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: SMUPA-V</td>
<td>ATTN: Lib</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMUPA-DK</td>
<td>Corona, California 91720</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dover, New Jersey 07801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>Commander</td>
<td>1</td>
<td>FTD (TD)</td>
</tr>
<tr>
<td></td>
<td>U.S. Naval Ordnance Test Station</td>
<td></td>
<td>Wright-Patterson AFB 45433</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 753 (2 cys)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Code 4541</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>China Lake, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>U.S. Naval Weapons Laboratory</td>
<td></td>
<td>Environmental Science Services</td>
</tr>
<tr>
<td></td>
<td>Dahlgren, Virginia 22448</td>
<td></td>
<td>Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: Code R, Dr. J. Rinehart</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U.S. Department of Commerce</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Boulder, Colorado 80302</td>
</tr>
<tr>
<td>3</td>
<td>HQ USAF (AFXPD; AFGOA; AFRDQ)</td>
<td>3</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20330</td>
<td></td>
<td>Lawrence Radiation Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: Mr. B. Crowley Dr. G. Dorough Dr. S. Fernbach</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P.O. Box 808</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Livermore, California 94551</td>
</tr>
<tr>
<td>2</td>
<td>AFSC (SCTN)</td>
<td>4</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Andrews AFB</td>
<td></td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20331</td>
<td></td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: Mr. Pierce</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Langley Research Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: Mr. Pierce</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Langley Station</td>
</tr>
<tr>
<td>1</td>
<td>AEDC (AEOI)</td>
<td>1</td>
<td>National Aeronautics and Space</td>
</tr>
<tr>
<td></td>
<td>Arnold APS</td>
<td></td>
<td>Administration</td>
</tr>
<tr>
<td></td>
<td>Tennessee 37389</td>
<td></td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>1</td>
<td>APGC (PGOW)</td>
<td>1</td>
<td>ATTN: Mr. Pierce</td>
</tr>
<tr>
<td></td>
<td>Eglin AFB</td>
<td></td>
<td>Langley Station</td>
</tr>
<tr>
<td></td>
<td>Florida 32542</td>
<td></td>
<td>Hampton, Virginia 23365</td>
</tr>
<tr>
<td>2</td>
<td>AFCD (CRRDM)</td>
<td>2</td>
<td>National Aeronautics and Space</td>
</tr>
<tr>
<td></td>
<td>L. G. Hanscom Fld</td>
<td></td>
<td>Administration</td>
</tr>
<tr>
<td></td>
<td>Bedford, Massachusetts 01731</td>
<td></td>
<td>Langley Research Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: Mr. Pierce</td>
</tr>
<tr>
<td>2</td>
<td>AUL (3T-AUL-60-118)</td>
<td>1</td>
<td>Langley Station</td>
</tr>
<tr>
<td></td>
<td>Maxwell AFB</td>
<td></td>
<td>Hampton, Virginia 23365</td>
</tr>
<tr>
<td></td>
<td>Alabama 36112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BSD</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norton AFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>California 92309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AFML (MAY)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson AFB 45433</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ohio 45433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>President Research Analysis Corporation</td>
<td>2</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>ATTN: Lib McLean, Virginia 22101</td>
<td></td>
<td>77 Massachusetts Avenue Cambridge, Massachusetts 02139</td>
</tr>
<tr>
<td>1</td>
<td>Director Applied Physics Laboratory</td>
<td>2</td>
<td>The Pennsylvania State University Department of Engineering Mechanics</td>
</tr>
<tr>
<td></td>
<td>The Johns Hopkins University 8621 Georgia Avenue</td>
<td></td>
<td>ATTN: Professor N. Davids Professor P. S. Theocaris</td>
</tr>
<tr>
<td></td>
<td>Silver Spring, Maryland 20910</td>
<td></td>
<td>University Park, Pennsylvania 16802</td>
</tr>
<tr>
<td>1</td>
<td>The Rand Corporation 1700 Main Street</td>
<td>1</td>
<td>Purdue University Statistical Laboratory</td>
</tr>
<tr>
<td></td>
<td>Santa Monica, California 90401</td>
<td></td>
<td>ATTN: Lib Lafayette, Indiana 47907</td>
</tr>
<tr>
<td>1</td>
<td>Sandia Corporation P.O. Box 5800</td>
<td>1</td>
<td>Stanford Research Institute 333 Ravenswood Avenue</td>
</tr>
<tr>
<td></td>
<td>Albuquerque, New Mexico 87115</td>
<td></td>
<td>Menlo Park, California 94025</td>
</tr>
<tr>
<td>1</td>
<td>California Institute of Technology</td>
<td>2</td>
<td>Stevens Institute of Technology Davidson Laboratory</td>
</tr>
<tr>
<td></td>
<td>Aeronautics Department ATTN: Professor H. Leipmann</td>
<td></td>
<td>ATTN: Lib Castle Point Station Hoboken, New Jersey 07030</td>
</tr>
<tr>
<td></td>
<td>Pasadena, California 91102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cornell Aeronautical Laboratory Inc.</td>
<td>1</td>
<td>University of Michigan Department of Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: Library P.O. Box 235 Buffalo, New York 14221</td>
<td></td>
<td>ATTN: Lib Ann Arbor, Michigan 48104</td>
</tr>
<tr>
<td>1</td>
<td>IIT Research Institute ATTN: Lib 10 West 35th Street</td>
<td>1</td>
<td>University of Utah Institute of Rate Processes</td>
</tr>
<tr>
<td></td>
<td>Chicago, Illinois 60616</td>
<td></td>
<td>ATTN: Lib Salt Lake City, Utah 84112</td>
</tr>
<tr>
<td>1</td>
<td>The Johns Hopkins University Institute for Cooperative Research Ballistic Analysis Laboratory 3506 Greenway Baltimore, Maryland 21218</td>
<td>1</td>
<td>Professor K. O. Friedrichs Applied Mathematics Panel New York University New York, New York 10053</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professor M. Holt</td>
</tr>
<tr>
<td></td>
<td>Graduate Division of Applied Mathematics</td>
</tr>
<tr>
<td></td>
<td>Brown University</td>
</tr>
<tr>
<td></td>
<td>Providence, Rhode Island 02912</td>
</tr>
<tr>
<td>1</td>
<td>Professor G. B. Whitham</td>
</tr>
<tr>
<td></td>
<td>Institute of Mathematical Sciences</td>
</tr>
<tr>
<td></td>
<td>New York University</td>
</tr>
<tr>
<td></td>
<td>25 Waverly Place</td>
</tr>
<tr>
<td></td>
<td>New York, New York 10003</td>
</tr>
<tr>
<td>1</td>
<td>Dr. W. Bleakney</td>
</tr>
<tr>
<td></td>
<td>Palmer Physical Laboratory</td>
</tr>
<tr>
<td></td>
<td>Princeton University</td>
</tr>
<tr>
<td></td>
<td>Princeton, New Jersey 08540</td>
</tr>
<tr>
<td>1</td>
<td>Dr. S. R. Brinkley</td>
</tr>
<tr>
<td></td>
<td>Combustion and Explosives Research, Inc.</td>
</tr>
<tr>
<td></td>
<td>1007 Oliver Building</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, Pennsylvania 15222</td>
</tr>
<tr>
<td>1</td>
<td>Dr. P. Richards</td>
</tr>
<tr>
<td></td>
<td>Technical Operations Research</td>
</tr>
<tr>
<td></td>
<td>South Avenue</td>
</tr>
<tr>
<td></td>
<td>Burlington, Massachusetts 01801</td>
</tr>
<tr>
<td>1</td>
<td>Mr. R. T. Bodurtha</td>
</tr>
<tr>
<td></td>
<td>E. I. DuPont de Nemours and Company, Inc.</td>
</tr>
<tr>
<td></td>
<td>10th & Market Streets</td>
</tr>
<tr>
<td></td>
<td>Wilmington, Delaware 19898</td>
</tr>
<tr>
<td>1</td>
<td>Mr. R. McAlevy</td>
</tr>
<tr>
<td></td>
<td>Forrestal Research Center</td>
</tr>
<tr>
<td></td>
<td>Department of Aeronautical Engineering</td>
</tr>
<tr>
<td></td>
<td>Princeton University</td>
</tr>
<tr>
<td></td>
<td>Princeton, New Jersey 08540</td>
</tr>
<tr>
<td></td>
<td>Aberdeen Proving Ground</td>
</tr>
<tr>
<td></td>
<td>Ch, Tech Lib</td>
</tr>
<tr>
<td></td>
<td>Air Force Ln Ofc</td>
</tr>
<tr>
<td></td>
<td>Marine Corps Ln Ofc</td>
</tr>
<tr>
<td></td>
<td>Navy Ln Ofc</td>
</tr>
<tr>
<td></td>
<td>CDC Ln Ofc</td>
</tr>
</tbody>
</table>
A one-dimensional theory of normal reflection of blast waves from walls is given. The method satisfies the initial and boundary conditions of the problem. It is shown how the entire reflected wave zone, including the reflected shock front and the pressure and impulse on the wall, can be calculated.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th></th>
<th>LINK B</th>
<th></th>
<th>LINK C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock Reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock Interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blast Wave Reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure And Impulse On Wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blast Load On Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Differential Equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulse On Wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>