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ABSTRACT

This report describes the status of the fifth in a series of five
experiments i1 semi-automated mathematics. This effort extended
from June 1, 1963 through September 30, 1966. These experiments
culminated in large complex computer programs which allow a
mathematician to prove mathematical theorems on a man-machine
basis. SAM V, the fifth program, uses & cathode ray tube as the
principal interface between the mathematician and a high speed digital
computer. An elaborate language and logical capability has been im-
plemented in SAM V. These include I/O languages for expressing
matnematical statements in a forrs suitable for both thr mathema-
tician and the machine to recognize and handle with ease and con-
venience; a language for expressing and handling sorts and range of
symbols; and an auto-logic algorithm and matching routine. The
latter constitute the capability for handling, automatically, logic with
equality. This capability is particularly useful at an intermediate
state of the proof when it is desired to have the machine try and

verify automatically a given portion of the proof.
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SUMMARY

This final report describes a series of five computer programs,
called SAM I through V, which are experimental tools for studwing
techniques in theorem proving via human interactic with computers.
The approach of semi-automated mathematics which underlies this
series of programs is that of using man-machine interaction to
achieve results which neither component could achieve alone. The
first four programs are describcd in detail in [1,2,2,4) (See
Bibliography). Each of the five programs concerntrat.d on attacking
specific phases of the problem. The current program is oriented
primariiy toward the development of efficient automatic techniques
for handling some of thr smallest processes of mathematical deduc-
tion and toward the realization of efficient real time interaction be-

tween man and machine through the use of CRT displays.

The first program, SAM I, implemented the propositionzl cal-
culus in a framework of natural deduction; the goal of human inter-
vention in SAM I was to obtain proofs > minimal length. SAM II
dealt with gquantifier-free first-oruer axiom systems of mathematics.
SAM II was adequate to investigate elementary mathematical theories
including geometry and elementary set theory. The program left
the entire burden of proof generation with the user. SAM II was
responsible for checking the validity of steps and generating conse-
quences by the basic rules. SAM III saw the beginning of the develop-
ment of auto-logic, which contained the capability for automatically
handling predicate and functional logic containing equality. This

capability is particularly usecful at an intermediate stage of a proof
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when it is desired to have the machine attempt to verifi- a portion
of » proof without requiring the user to suppiy all the elementary
steps in the derivation. The years have seen continual increase in
the power of auto-logic to automatically verify the truth of complex
deductions. SAM I initiated development of sophisticated input/

output techniques and contained the first general purpose languages
for expressing mathematically statements in suitable form for both

mathematician and mackine.

The prograrns, SAM I, II, and III, were implemented on a
sr:all scientific computer, the IBM 1420. SAM IV expanded th-
capability of SAM IIl in a number of directions and was implemented
on an IBM 7040, a medium acale scientific computer. The improve.
ments were primarily in auto-logic and in the use of SLIP (a list

processing language) as the underlying framework for the program.

SAM V gaw advances in auto-logic with respect to the semi-
automatic handling of equality and the algebraic aspects of mathe-
matical theories. It has also seen the implementation of a CRT
display as the primary interface between man and machine. This is
a2 most convenient and flexible means of interaction and the first
allowing truly real time commuracation between man and machine at
a rate that is efficient for the user. The program was implemented
on a PDP-6, a large-scale computer with a time-sharing system,

Time sharing is a mode of operation which allows efficient and econom-

ical interaction between man and machine at the convenience of the user.

This report expands and brings up to date the material contained
in [7.BJ . Our intention is to make this report a self-contained

description of SAM V as it existed on September 30, 1966.
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SECTION I

SYMBOLS AND FORMULAS

In this section we describe the symbols and formulas of SAM V
from the viewpoint of logical structure. The symbols and formulas
are the language of SAM, the fundamental entities with which the user
is concerned. In semi-automatic mathematics they bear the entire
responsibility for expressing theorems and steps in proofs. Mathe-
matical investigations in symbolic logic have shown that a small
collection of basic kinds of entities and rules for combining them into
formulas are sufficient to represent mathematical theorems and proofs.
In part, the success of SAM depends on the ability of its formulas to
conveniently express mathematical ideas in a way which lends itself
to efficient algorithmic methods. In Section III (Control, Input/OQutput)
we describe the manner in which formulas and proofs are actually
presented to the user in ways which promote understanding and rapid
communication. In this section our description is cast in terms of
representations internal to SAM. This is convenient in making precise

the sense oi the attributes carried by the language of SAM.

There are four types of symnbols represented in SAM V. These
are variables, constants, logical symbols, and punctuation. Variables
and constants are represented internally by a number which corres-
ponds to a single alphabetic letter of a single alphabetic letter with a
subscript. Certain bits in this representation of a symbol indicate
syntactical status of that symbol. For convenience in debugging they

appear as bits reflected in the leading digits in the '"subscript'.



Subscripts are positive integers less than 27. These subscripts are
writter. in octal notation. There is a table used in SAM V which
specifies which of the symbols are constants and which are variables.
The standard table has the symbols starting with A through H

and P through S as constants and the remaining s/mbols as
variables. A given variable can have three distinct representations
in SAM V according as the variable is free, bound, or temporarily
fixed. (A fixed variable corresponds to a variable whicl, in an in-
tuitive sense, has been fixed by a statement such as 'let x be a
positive number'). Constants have a single internal representation.
The internal representation of variables and constants is as follows:
Bits 3 and 4 are 00, 11, 10, or 0l according as the symbol is a
constant, variable, bound variable, or a fixed variable; hits 5 through
11 are the subscript (no subscript is represented by zero; and bits 12
through 17 are the 6-bit ASCII code for the alphabetic character. A
subscript 100 through 177 indicates a ''shadowed'" variable. The use
of '"shadowed' variables is a techniqu. used to avoid clashes of free
variables, This technique is described in more detail in 3ection II.
A subscript between 40 and 77 and 140 and 177 indicates a variable
which has temporarily been changed to a constant, called a '"frozen"
variable. '"Frozen' variables are a technical device used to simplify
the matching and instantiation routines. (See the description of
Matching in Section II} A subscript of 20 to 37 or 60 to 77 indicates
a variable which has been turned into a constant by the Skolemizing
process described below, These constants are called '"Skolemized
variables”. The logical symbols are typed as LAM, ALL, IS, =,
IMP, OR, AND, IFF, NOT, TRU, and FAL. Thrse are -epresented
internally respectively by the octal numbers 1 tbrouga 13 right justi-

fied in bits 3 through 17.



Tiie punctuation symbols are left and right parentheses, comma,
and left and right square brackets (thz square brackets are repre-
sen'ed by angle brackets on output). Punctuation has no internal
represeatation and is used only for rudimentary I/O. (The rudi-
meatary I/O language in which we express formulas in this section

is convenient for debugging and explanation of Section IIl.)

Tue symbols above are combined by the following rules to form
iormulas:
1. A single variable or constant is a formula.

2. If b is a variable or constant and a.l,a\.z,...,av.n are formulas,

then

K
b{a . ...,an} is a formula

3. If b is a formulc viih more than one symbol and a ' 2

l. . s n
are formulzs, then

[b) aj)...sa  is a formula

4. If b and ¢ are formulas and dl'dZ'”"dr are variables,
then
(b=c)
(ALL dl)(b)
(IS d,)(b)
(1AM dl' dZ’ oo 00D dr)(b)
(b IMP c)
(b OR c)
(b AND c)
(b IFF c)
NOT(b)

are f cmulas.
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have called TROLL for Threaded, Ringed, Oriented List Language.

k=]
£
=
g Formulas are represented internally by list structures. These
§ list structures are manipulated by a package of subroutines which we

Figures 1 through 3 on the next page show the representation of two
formulas as TROLL lists. A description of TROLL is included in

Section V.

In SAM V, only certain types of formulas are considered inter-
nally. These formulas are those which can be formed by using
variables, ccnstants, =, LAM and NOT. This set of symbols, how-
ever, is sufficient to represent any matheraatica entities which can

be described in an omega-order predicate c: lculus.

To see this we define the miniscope form and the Skolemization

of a formula. The Skoleraization of a formula is logically 2quivalent

O O 5 0 AR

to the original formula.

il

Definition. A wff is converted to its miniscope form by applying

the followirg replacement rules (repeatedly using the first applicable

i

rule: we write x ¢A to mean x is not free in A):

Rule Renlace Subformula by Subformula if §
1 NOT NOT A A 2
2 AIMPB NOT A OR B E
3 AIFF B (NOT A OR B) AND (A OR NOT B) =
4 NOT (A OR B) NOT A AND NOT B =
5 NOT (A AND B) NOT A OR NOT B =
6 NOT (ALL x) A (IS x) NOT A =
7 NOT (ISx) A (ALL x) NOT A =
8 (/LLL x) A A xé A =
9 (Isx) A A x ¢ A =

10 (ALL x) (A OR B) A OR (ALL x) B x ¢ A
11 (AL], x) (A OR B) (ALL x) A OR B x f A
12 (IS x) (A AND B) A AND (IS x) B xd A
13 (IS x) (A AND B) (IS x) A AND B x¢ A

-
=
2
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Rule Replace Subformula by Subformula
b 14 (ALL x) (A AND B) (ALL x) A AND (ALL x) B
£ 15 (IS x} (A OR B) (IS x) A OR (IS x) B
. 16 (ALL x) ((A AND B) OR C) (ALL x) {A OR C) AND (ALL x) (B OR C)
= 17 (ALL x) ((A OR (B AND C)) (ALL x) (A OR B) AND (ALL x) (A OR C)
18 (ISx) ((A OR B) AND C) (IS x) (A AND C) OR (IS x) (B AND C)
= 19 (ISx) (A AND (B OR C)) (IS x) (A AND B) OR (IS x) (A AND C)

1

Definition. The Skolemization of a wiff A is obtained by applying the

following steps to A :

g 1. Compietely lambda-convert A .
% 2 Take the universal closure of A .
3. Convert A to its miniscope form.
4 Reletter the universally bound variables so that no variable

appears with two universal quantifiers.

5. Replace an occurrence of a subformula of the form (IS x) B by
> x
H s B
F(xl,. .. ,xn)

where this occurrence of (ISx) B is within the scope of univer-

sal quantifiers binding x .,xn (n2 0) and F is a new

1 P N Y
constant.

6. Delete the universal quantifiers (after all possible applications of
step 5 have been completed),

7. Put the result in conjunctive normal form, i.e., replace sub-
formulas of the form (A AND B) OR C and A OR (B AND C)
by (A OR C) AND (B OR C) and (A OR B) AND (A OR <7)
respectively.
E Remark: Any quantifiers or logical connectives which occur within

the scope of a non-logical function or predicate are to be ignored by

the miniscope and Skolemization p.ocedures,

A st e
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In proofs, the conjuncts of the Skolemization of a formula

are treated as separate formulas, The disjuncts of each of the

UHTR T RG]

conjuncts are represented as a list. This list is called a pseudo-

" mubmau,mmmulmlii!umlmmumm;|mmmmemm"m“ww‘#;“!"u

C) . disjunction (PSD). These disjuncts are either atomic formulas or
negations of atomic formulas. As an example we apply Skolem-

ization to the formula below and write it in the form used by

SAM V. For example, the formula

(ALL XN(E(X U) IFF E(X,V,) IMP U=V

which says (when reading E(A,B) as A €B) that two sets are
equal if they have the same members, is transformed to the two
PSD's:

NOT E(F(U, V), U)

NOT E(F(U,V),V)

U=v
and A

E(F(U, V), U)

E(F(U,V),V)

U=v

"

The meaning of the new constant function F is that ¥(U,V) is
to be a member of exact.y one of the sets U or V if they are

not equal. Hence if F(U,V) is in both U and V or if

B R

F(U,V) is in neither U nor V + then in fact U=V . While in

i

f
i

this example the two PSD's generated seem somewhat remote from

their progenitor, this remoteness is an exception rather than the

i

il

rule. For example, the Skolemization is frequently a rather natural

M

rustatement of the original formula.

For SAM to deal effectively with any complicated mathematical

=
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structure, it must have an efficient means of distinguishing and
ordering the various classes (''sorts') of variables aad constants
which it encounters therein. This problem does not arise in, say,

a three-axiom elementary treatment of group theory, because all

variables and constants are assumed to be elements of the group in /
question. Suppose, however, that we wish to axiomatize a system

involving several distinct vector spaces over a given field of scalars.

Here, some variables will stand for spaces, others fcr subspaces of

a given space, and still others for field elements. Moreover, such

constants as the zero vectors in the spaces and the two identity ele-

men*s of the field must be distinguished and placed under the proper

headings.

Heretofore, we have gotten around this prob’ m in a rather
artificial manner by extensive use of PSD's. In order to tell SAM
that scalar multiplication distributes over vector addition, one needed
to write something like:

NOT P(Z)

NOT Q(Xl1, 2)

NOT Q(X2, 2)

NOT Ql(U)

G(U, H(X1, X2)) = H(G(U, X1), G(U, X2))
where G is scalar multiplication, H is vector addition, Q is
membership in a vector space, Ql is a membership in the scalar
field, and P(Z) is the statement ""Z is a vector space'. Disjuncts
of this kind are cumbersome on both sides of the man-machine

interface.

The recent implementation of sorts in the SAM package gives

us a more convenient and powerful method of handling axiom systems
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involving different types of variables and constants. By setting up
a sort structure for the linear algebraic system mentioned above,
we can indicate with a single statement that whenever an X (with
or without subscript) appears ir our axiomatization, it is to be
considered as a rn.ember of the sort of all vectors, that subscripted
or unsubscripted Y's belong to the sort of vectors in the vector
space’g , that subscripted or unsubscripted U's belong to the
sort of scalars, and so on, with all constants being similarly
placed in the sort to which they belong. With this set-up, it is
possible to express many algebraic notions in a more straightfor-

ward mannsr, without the use of disjuncts. Only the equality
G(U, H(X1i, X2)) = H(G(U, X1), G(U, X2))

is needed for distributivity, since the sort structure automatically
sees to it that the variables U,Xl,X2 are properly identified. The
(ne major criterion which a sort structure must meet in order for
SAM to be able to work with it is that the sorts be partially ordered
by inclusion. That is, if two subsorts of a given sort have non-
empty intersection, one of them must wholly contain the other. Ad-
missible sort structires may thus be represented by tree diagrams
such as the following for a system consisting of two vector spaces

?_ and () over the complex numbers:

Universal Sort

Bt it e ) (S

1 AN 10O TP Y O T O T
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Here, X represents the sort of all vectors, Y represents the
sort of vectors in the space » W the sort of vectors in w .

U the sort of complex numbers, and V the sort of reals. The
diagram also establishes the convention that distinguished vectors

in (the zero vector, basis vectors, etc.) will be denoted by
subscripted or unsubscripted A's and similarly for B, C, and D .
We are thus spared the necessity of using a separate axiom to place
each distinguished constant in the sort to which it belongs. The
above sort structure is entered very economically in SAM with the

statement

5(S(X, s(Y, A), s(W, B)), (U, C, S(V, D)))

wkich is ingerted separately from the axioms for the system.
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SECTION II

AUTO-LOGIC

The purpose of the AUTO-LOGIC routine is to generate
"interesting' consequences of a finite set of pseudo disjunctions.
Such a routine is useful in two ways: firstly, it can be used to
generate new theorems which may be of interest to the mathematician
and which may be useful in further applications of AUTO-LOGIC;
secondly, a formula A is proved to be a consequence of a list of
pseudo-disjunctions if FAL is obtained as a consequence of the
list augmented by the PSD or PSD's representing the logical negation
of A. The underlying principle by which AUTO-LOGIC gererates
useful consequences is as follows. It has four processes called re-
duction, expansion, digression, and contradiction. Reduction uses
a set of PSD's from the initial set to 'reduce' or 'simplify' a given

PSD from the set using the logical rules of an omega-order predicate-

N 00050 R

function calculus with equality and lambda notation. Expansion and

digression use these same rules to generate new PSD's from a finite
set of PSD's. Contradiction eliminates 'trivial'' PSD's by automatic-
ally Skolemizing a copy of the negation of the PSD and attempting to

find a contradiction in a limited period of computer time. AUTO-

=
=
=
=
=
=
xE

LOGIC starts with a finite set of PSD's and applies these four pro-

cesses in a pattern which allows the newly genera‘ed PSD's to stay

in the set only if they cannot be reduced by reduction or deleted by

g

=

contradiction. %
SAM V lays special emphasis on developing and experimenting §

with different reduction, expansion, digression, and contradiction iéi
=

=
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processes as well as various patterns for applying these processes.

The reductions which are currently used in AUTO-LOGIC are
of two types.

The first type, called self-reduction, reduces a single PSD.

Self-reduction makes the following obvious kinds of simplification:

1. The PSD is deleted if it contains a disjunct of the form b=b
or a disjunct of the form TRU (in this and similar cases we
say the PSD has been reduced to TRU ).

2. If the PSD contains a disjunct of the form NOT(b=b) or a dis-
junct of the form FAL then such disjuncts are deleted. If
there were no additional disjuncts we say that the original PSD
disjunction was reduced to FAL . In this latter case the main
control of AUTO-LOGIC is notified that a contradiction has been
found.

3. If two disjuncts occur, one of which is the negation of the other,
the PSD is reduced to TRU and the PSD is deleted.

4. i twe identical disjuncts occur, one is deleted.

A disjunct of the form NOT(NOT(b)) is replaced by b .

The second t/pe of reduction uses a single PSD to reduce a
second PSD. TL - reductions fall into three kinds, depending on
whether the PSD is an equality, a single disjunct which is not an
equality, or a PSD which has two or more disjuncts. The first kind
depends on the fact that the terms which appear in SAM V are given
a well-ordering. Equalities in SAM V are always written so that the
left side of the equality is at least as high in this ordering as the
right side of the equality. This ordering of the terms in an equality
ie convenient for both reduction and expansicn. The well-ordering is

described at the end of this section.

11
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An asb reduction of ¢ is obtained by replacing all in-

stances of a in c¢ by the appropriate instance of b . Under

the assumption that lowness in this ordering can be equated with

simplicity, this type of reduction is in fact a simplification. In

the second kind of reduction, where a PSD consisting of a single

disjunction b reduces a PSD ¢ » instances of b are applied

to the disjuncts of ¢ in order to replace them where possible by
either TRU or FAL, a disjunct of ¢

TRU(FAL)

being replaced by
if it is an instance (negation of an instance) of

an instance of b . In the third kind of reduction, where a PSD

b has n disjuncts (n 1), a PSD ¢ is replaced by TRU i

n disjuncts from ¢, considered as q PSD, form an instance of

b .

In a similar classification expansions are of two types. The

first type called self-expansion takes a single PSD and applies the
following rules:

1. If the PSD has more than one disjunct,
form NOT(b=c), where b and ¢

one of which has the

can be made to corres-
pond by some instantiation of the PSD, a copy of the PSD is

made with the equality deleted and the instantiation made in
the copy.

If a PSD consists of a single disjunct of the form NOT(b=c)

where b and ¢ can be made to match by scme instantiation,

the main control of AUTO-LOGIC is notified that a contradiction
has been obtained.

3. If a PSD has two disjuncts b and ¢ which can be made

identical by some instantiation, the instantiated copy of the PSD

with one of the disjuncts deleted is generated,

12
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The process of finding a common instance of tvo formulas we
call matching. Matching is fundamental to several portions nf
AUTO-LOGIC and is described later.

The second type of eapansion uses a PSD, b, to expand a
second PSD, c¢. These expansions are exactly like the first two
of the three reduction caszs mentioned above except that an instan-
tiation of ¢ as well as b is required to make the corresponding
reduction. In these cases an instantiated copy of ¢ is made and
the appropriate reduction applied. In addition, there is an operation
of expanding with two multi-disjuncts. This operation, called reso-
lution by some authors, generates a third multi-disjunct by joininp
appropriate instances of the original two multi-disjuncts and dele*ing

two disjuncts of the form A and NOT(A).

Digression is an attempt to use on a simple level the proof
strategy of temporarily complicating a proof to gain some later sim-
plification, Digression expands a formula d with an equality b=c
by replacing an instance of the ''simpler’ term ¢ in the formula d
by the appropriate instance of b. When the result of this digression
is brought up from the list of expansions, its progenitors and, in
particular, b=c is not used to reduce the digression. If no other
PSD'!'s reduce the digression, it is deleted. If some reduction by a
PSD other than b=c is possible, the digressiun is kept and business
goes on as always. Hence, digression represents the use of ''one step

backward' ia simplification,

We now describe the method currently implemented in AUTO-
LOGIC for applying these expansion processes. Two ordered lists of
PSD's are kept during each phase of the algorithm, Initially, the

first list, the list of reductions (LR), contains the original PSD's in

13
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the order given to AUTO-LOGIC. The second list, the list of
expansions (LE), is initially empty. There i3 a main pointer
called LOW which proceeds through LR starting at the top

and proceeding down. At the top of the main loop, LOW dis-
tinguishes an element from the LR . The algorighm proceeds

as follows: self-reduction is applied to the distinguished PSD, b .
If b is reduced to FAL the - gorithm halts and the fact that

a contraaiction has been reached is signalled. If b is reduced
to TRU the LOW pointer is advanced and b is deleted. Other-
wise, the formulas above b on LR are used, one at a time,

to reduce b. If at any time b 1is reduced to TRU or FAL
the appropriate action is taken. If b has not been reduced to
TRU or FAL, then b is used to reduce the PSD's above b

on LR . If one of these PSD's should be rzduced to TRU it is
then deleted; if reduced to FAL the algorithm signale the main
control and is halted; but if reduced to some other PSD, this PSD
is removed and inserted immediately below the distinguished PSD
b. If no reduction is possible, expansions and digressions of b
with the PSD's above b, and conversely, are generated. The new
PSD's obtained by expanding and digressing are then placed on LE.
The PSD's on LE are ordered by some criterion of potential
utility. Various criteria have been tried with varying results.
Finally, after all the reductions upward and expansions have been
done, self-expansion is applied to the distinguished PSD and the re-
sults placed on LE.

LOW is then advanced. When LOW advances beyond t lasi
PSD of LR, the PSD on the top of LE is removed and inserte? at

14
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the bottom of LR and becomes the distinguishec¢ PSD. The

algorithm then continuer. If LE becomes exhausted the main

control is so signalled and the algorithm halts.

For the purposes of defininy the well-ordering of terms of

SAM V, we consider the symbols of SAM V to be divided into

two groups: constants and all other symbols. Within each group

we consider the elemente to be ordered by the magnitude of its

numerical representation in SAM V. A term A is 'greater than"

B in the well-ordering of terms in case

a) A cuntains more occurrences of some constant
than B, and both terms have exactly the same

number (prssibly zero) of occurreances of each of
the constants ''greater than"

o

c, or

b) A and B have exactly thr same constants each

with the same nun‘ber of cuccurrences, but A follows
B ir the lexicographic order where all constants are
considered to be greatc. than all non-constants and all

non-constants are assumed to be in the same order
position, or

c¢) The 'constant structure' of A and B is the same
but A is bigger than B in the lexicographic order
(i.e., there is some non-constant ¢ in A and d
in B and A and B are identical up to occur-
rences at ¢ and d, but the numerical representation

of c is greater than that of d ).

This well-ordering of terms has several interesting properties.
Firat of all it guarantees that a re-lettering of the variables of a
term will not drastically change its position in the well-crdering.
Secondly, by using constants of different relative ''size! we can

give preference to nne concept over another. As an application

cf this it is convenient to symbolize a newly defined concept with a
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symbol that is relatively high compared to the symbols used in
the definition. While the basic theorems are being proved for

the new concept, it is important that terms containing the new
symbol he replaced by their definition. Once all the basic
theorems concerning that concept are proved, we replace the new
symbol by a symbol that is small relative tc the symbols used in
its definition. Then terms corresponding to the definitions can be
"'simplified" to a term involving the new symbol by using the basic

theorems which have just been proven.

We clcse this section with a description of matching. Two
formulas are said to match if they have a substitution instance in
common. For example, the formulas Q(a,x) and Q(y, Hly,z))
match because the formwa Q(a,H(a,z)) (called a matching formula)
r.:ay be gotten by appropriate substitutions in either of them. In
this particular example, Q(a,H(a,z)) 1is in fact a general matching
formula, since all other matching formulas for the original pair
may be obtai..ed from it by substitution. The process of matching,
i.e., oi obtaining a general matching formula for two given expres-
sions, is a basic tool in the construction of proofs. Consequently,
much effort has been devoted to developing match algorithms and

implementing them in SAM.

The fundamental match algorithm in AUTO-LOGIC is described

below:

Step 1 Consider B and C as being stored at lines (1) and (2)
respectively. Reletter the variables of line {2) so that it has no

variables in common with line (1).

Step 2 Let us denote the n-th symbol -- ignoring parentheses and
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comr.as -- of line (1) by (l)

P ot N b

- Similarly we define (Z)

Case a) If lines (1) and (2) are iden*ical, the a.lgorxthm out-
puts (1) and stops.

Case b) Suppose n is the smallest integer such that (1) is

different from (2)n - Since wffs are involved and Case a)
does not hold, neither (l)n nor (Z)n can be vacuous. We con-
sider four subcases:
i)  Suppose (2) is a variable, say x, while (1) is a
function or individual constant. Then call D the
unique subformula of (1) starting at (l) ¥ D
contains x , output DOES ~OT MA'TCH and stop. If
D does not contain x » Substitute D for x every-
where in (1) and (2) . Go back and repeat Step 2.

ii) Proceed as in i} if the roles of (1) and (2) are inter-

changed.

iii) If (l) and (2) are different variables, replace (2)
everywhere in (1) and (2) by (l)

iv) If (l)n and (2)n are different constants, output DOES
NOT MATCH and stop,

Examgles

Let us apply matching to P(G(G(x, Gly, x)), 2z)) and P(G(G(x, y), G(x,x))).
(1) PGG x Gy x z
(2) PGG uvG uu
(1) PGG x Gy x 2
(2) PGG x v G x x
17
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(1) PGGxGyxaz

(2) PGGxGyxGxx
(1) PGGx Gy x Gxx
(2) PGGxGyxGxx

Then P(G(G(x, G(y,x)) , G(x,x))) is the output of the algorithm and

is in fact a general matching formula for the two wiffs .

Let us apply matching to Q(x,x) and Q(y, H(y)) .

(1) Qxx

(2) Qy Hy

(1) Oxx

(2) Qx Hx

(1) DOES NOT MATCH

The variable x cannot be replaced by H(x) .

For a proof tha* this algorithm actually does produce a general

matching formula or a '"does not match" response in finitely many

steps, see [2] » PP. 26-27.

The abcve process, although quite helpful in some instances,

cannot by itself come up with many of the matches one would like

to be able to find. Suppose, e. g., that P ig a commutative func-

tion. Clearly the two formulas P(a,x) and P(g(y),y) will match

under this assumption -- P(G(a), a) = P(a, G(a)} is a general matching

formula -- but the algorithm will fail, The obvious thing to do here

is commute the terms in One of the expressions and then apply the

2lgorithm, but the trick becomes a iittle more difficult when one tries

to match longer, more complicated formulas under the assumption of

18
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commutativity. Matching with associativity gives rise to similar

problems.

Recently, a general method for matching expressions invoiving
commutative and/or associative functions has been worked out on
paper and incorporated into SAM. It works by first taking the two
formulas to be matched as they stand and applying the fundamental

algorithm. If a general matching formula is not found in this first

=
=
:
%
i

attempt, the arguments of all the associative functions are associated

to the right and another try is made. The process continues in this
way, associating and commuting arguments according to a prescribed
pattern and invoking the algorithm at each step. until either a general

matching formwula is found or all the permissible rearrangements of

F

terms are exhausted, in which case a definitive ''does not match' re-
sponse is given. The crux of the problem was, of course, the dis-
] covery cof a method for generating permutations of terms in such a
way that all allowable regroupings and reorderings would be gotten

eventually with a min.mum of repetitions.

To invoke this new matching capability, the operator merely in-
sertc labels for the commutative and/or associative functions of his
system in special program locations. A certain degree of control
over matching and instantiation (a special case of matching in which
the variables ir one of the formulas to be matched are treated as con-
stants) is possible through the setting of limits on the amount of
machine time SAM is to spend applying either process to a pair of
formulas. Usually, the timers for matching and instantiation are set
for two seconds and one second, respectively, but they may be varied

at will depending on the characteristics of the mathematical system

19
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being investigated. If long, difficult matches and instantiations

are expected to be important in the proof of theorems, the timers

can be set higher. Setting them lower, on the other hand, forces

i

SAM to de-emphasize these twc processes in its development of

results. In short, the implementation of commutative-associative

matching offers the experimenter yet another means of interacting

with SAM, as well as a helpful new methc. for generating theorems.

Despite the successes that have been achieved to date, it would

be wrong to say that the matching procedure which SAM currently

employs is an optimal one. Formula pairs involving commutative and
associative functions frequently have several general matching form-

ulas, but at present SAM finds only one of these. Right now, this is

HNHETHT

not a major handicap, but it will certainly have to be Jvercome before

it

SAM is able to consider axiom systems in which free function

variables are present. Fortunately, the theoretical groundwork for a
more complete extension current matching techniques has already been
laid, and implementation of same is now in progress. A thorough
treatment of matching in omega-order logic, including many of the

problems we are dealing with at the moment, may be found in C53 .

i

guitiil

BlHIAE

i

I

20




== 3

=

SECTION III

. CONTROL, INPUT/OUTPUT

il !Ih

In this section we describe how SAM operates as a running
program and, in particular, the man-machine interface. In con-
ceptual and programming terms this breaks up into the two aspects
of control and input/output. At the beginning of this year it seemed
reasonable to expect that we would soon wish to have sophisticated
language facilities for man-machine communication and activity at

the level of full proofs in a natural deduction calculus. However,

A

experience quickly showed that AUTO-LOGIC was so powerful and

flexible that it would be very worthwl’le to work extensively with

R

man-machine interaction at the AUTO-LOGIC level. Hence, opera-

tion of SAM has evolved into a mode in which the user is monitoring

i

the lists of reductions and expansions as the AUTO-LOGIC algorithm
is transforming them. The user may intervene by stopping the al-
gorithm process and himself adding or modifying the lists of formulas,
The use of the CRT display and PDP-6 time sharing system are of
course essential to these activities. It seems unlikely that SAM V
could have grown by a process of evolution as it has without the use
of the time shared system t¢ make programming, debugging, And in-

core modification feasible and rapid.

In the currunt implementation of SAM the user initiates action
by setting up a list of PSD's as the initial list of reductions (with a
void LE ). Some of the formulas may be marked witk an asterisk

to indicate that they are the negations of formulas whose proof is

21
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sought. AUTO-LOGIC is then turned loose to generate consequences

of these initial formulas. If none of the original formulas are
starred then the results are consequences of the original formulas,
presumably axioms or previously proved theorems. If some of the
original formulas are starred then all- consequences of the original
starred formulas are starred and it is noped that SAM will derive a
contradiction {prove FAL ), In that event SAM has demonstrated

by contradiction that the disjunction of the unnegated versions of the

original starred formulas is a logical conzequence of the other initial

formulas (the latter are usually axioms and previously proved theorems).

As AUTO-LOGIC works on the lists of expansions and reductions,

the user is able to watch these lists on the CRT display. He sees

formulas appearing on the list of reductivns, being reduced to simpler
form, reducing other formulas, gener=ating formulas for the list of

expansions, and disappearing in favor of more powerful formulas. In

this monitoring process the user gains great insight into the logical

processes of SAM. It is like having a window on the thoughts of a

powerful but very different kind of mathematician. Such an under-

standing of AUTO-LOGIC as a dynamic entity is very important for

finding useful improvements to make in the basic algorithm. It is

also important in allowing the user to interact with a given proof.

The user may intervene in the process of proof in a number of

ways. His selection and ordering of the initial formulas is of course an

important factor in determining the course that AUTO-LOGIC will take.
Too many or ill chosen sets of initial formulas tend to send AUTO-

LOGIC off proving trivial and uninteresting results without ever getting

to interesting formulas. From a good starting point AUTO-LOGIC

will produce useful and interesting results, As the user sees that
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AUTO-LOGIC is running out of useful things to do with the formu.-
las first given, he can halt the process and insert additional axioms
cr other material. He can also guide the process by deleting formu-
las which seem unimportant or distracting. This real time interplay
between man and machine has been found to be an exciting and re-

warding mode of operation.

Since formulas both appear and disappear in the process of proof,
a record is kept of each formula as it comes under consideration.
This record yields a history of a session which can be used for later
analysis and review. A program called HIST can step through this
history and display on the scope only those steps actually used in the

proof of a sequence pointed at by the light pen.

In operating SAM, the user sits at a display-teletype console.
The display shows a section of the proof and a set of buttons. By
using the light pen on the display buttons the user controls the display
and the action of SAM. He can cause any section of the proof to be
displayed, have the proof '"roll" by, or track on the end of the re-
ductions -- i.e., display the lowest formulas on the list. The dis-
play is updated every second to show the current proof status. The
user can halt the proof procedure, continue, indicate a desire to in-
sert or delete formulas, request a proof history, enter the debugging
mode, and request a print out. For insertion or deletion of formulas
the user indicates position by light pen and, for insertions, types the

desired formula.

In Section I we described the symbols wnd formulas of SAM as

they appear in their simplest form -- symbols as single letters
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with subscripts and forinulas as strings of symbols with parenthe-

ses showing complete structure. Simple routines have been written
for input and output of formulas in this notation. Such routines are
convenient for debugging and preliminary experimentation. But for
more effective man-machine communication we require input/output

in notation closer to that in commmon use by mathematicians. There

are two aspects to this requirement, the need for a large set of

symbols with such features as varying size and position, e.g., sub-

il

scripts and superscripts, and the need for flexibility in the format

of for:aulas.

At the symbol level we are conceraed with two distinct situations.

Hard copy can be quickly and easily produced on teletype and line

it

printer. With the line printer even very large sets of formulas can

i

be printed rapidly. However, the set of characters and the output

format available are limited and modifications are expensive and slow.

=

z On the other hand, the CRT display and incremental plotter can

accommodate any symbols and formats that the user cares to specify.

LT e

However, the CRT display cannot easily produce hard copy of high
quality and the plotter is not a fast economical device for producing
hard copy. With these considerations in mind, input/output for SAM

has been programmed to deal with symbols in three modes.

Internally a symbol is simply a number. The first output mode,

I

the character-subscript mode, treats this number as a direct coding
of the symbol as a sequence of ASCII characters. It is useful rep-
resentation when working on the programming of SAM since output

may be quickly produced on the line printer and the correspondence

between internal and external form is constant, The second mode,
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the actual drawing of symbols, associates with each internal code
a special symbol which is drawn in the form that the user wishes.
For convenience, flexibility and efficiency, the correspondence be-
tween number and form is kept entirely arbitrary - a simple table
in SAM contains all the information on the correspond.nce. This
tabie does not contain actual instructions for drawingz symbols but
transliterated codes for the symbol. For example, thc Greek
letters~/ and ’-)"/appear as 4GA and fcB , the mathematical sym-
bols {/ and n appear as \J and \M. With this transliteration
approach the actual service routines for I/O devices can be written
completely independently. The use of transliteration codes gives us
a third mode of output, that in which symbols are represented by
their transliterations. This mode can actually be used to produce
quick output on the line printer for debugging or cursory examination,
More important, it allows for the input of arbitrary formulas from
the teletype. In addition, formulas in transliteration can be stored

in machine readable form.

Since the formulas present in AUTO-LOGIC contain few logical
connectives and are usuilly short, the conveniences of notation
which we have implemented are restricted to the presentation of
central binary connectives (such as + and = ) betweea their argu-

ments and the suppression of some unnecessary parentheses.

In actual operation, the I/O modes are used as follows. Form-
ulas for display on the scope are transliterated and passed through a

display service routine which pruuuces suitable display instructions.

Formulas for hard copy output are written out on tape, drum,

line printer or teletype in the form that the user wishes,




£

11 - I ————-
.

transliterated or character-subscript. From tape or drum)output
may be later produced on line printer or plotter. Plotter output
is produced from transliterated formulas in a tape or drum file

by a small independent program. Thus it does not slow down the

use of SAM nor waste space in the program.
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SECTION IV
EXPERIMENTATION WITH SAM V

In this section we describe some of the experimentation that

has been done with SAM V., Along with development of the basic

program, experimentation with SAM V has been a continuing activity.
Such experimentation serves to determine whether or not SAM V is
progressirg toward the ultimate goal of being a program which can

be of practical utility in proving th( »rems of real mathematical sub-

stance. In addition experimentation with SAM indicates the features

which are in ne-d of imrrovement and thus serves as a basis for

plans for the future o-xpansion,

In the first part of this section we discuss experimentation

with abstiact algebra, group theory in particular. Experimentation

along tbise lines L.as demonstrated that the techniques of AUT-
LOGIC in handling equality and algebraic notions are very powerful.
In the second part, we report on an exciting result of currant ex-

psrimentation, the actual solution by man-maciine interaction of an

open problem in the field of lattice theory. ‘This result, called

SAM's Lemma, can he viewed as a rudimentary demonstratisn of
the great utility of the man-machine approach to the autumation of
matFzmatic: and as an actual sample of a program which partially

realizes such aspirations., In the third part we present some

examples of experimentation done with the simpie sort structure

that has been added to the repertoire of SAM,

The AUTO-LO'JIC algorithm described ‘n Section II seems to
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be quite successful in cases where the PSD's are equalities. We
give an example from group theory below in two diiferent forms.
We take quantifier-fre:. axioms for rgroup theory which say that

for the ;roup multiplication.ﬁ( a/,-{ﬁ‘ th ¢ -1{«) is the left in-
verse and A is the left identity, In the first run we derive some
consequences of these axiums (See Figure 1). In addition, we have
printec out the history of the proofs of four of the more interesting
consequences (See Figures 2 through 5. 1In Figure 6 we list those
PSD's which SAM generated but was unable to reduce immediately
to TRU ). This should help explain the subject matier of Section
id. In the second run we insert the negation o{ the statement that
V is also a right inverse and that A 1is also a right identity and
that -1(«) -1(-1(;{) =.n (See Figure 7) This shows the second

mode in which SAM can operate.
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Experimentation with SAM V and AUTO-LOGIC produced

LT
e AL MM bl

an important result, one which we found both exciting and en-

LB T

couraging - the proof of a previously unrcsolved open problem.

A mathematician - one with an intimate knowledge of the innards
of SAM - and SAM V obtained the proof in a significant display

of man-machine cooperaticn. Preliminary work was being done

in the theory of modular lattices with a partial goal being to sece i
whether SAM V could be guided to a proof of the results in [6_ .

In addition, it seemed possible to hope for a later attack on the

unresolved problem presented there. Long before it seemed likely

that enough development had been made along elementary lines it

‘ was noted that AUTO-LOGIC had proven a formula from which a

A

positive solution was an immediate consequence. That formula

was o crude form of what we now call SAM's Lemma. In evaluating

the significance of this demonstration it is important to note the

interactive aspects of its construction. The mathematician was

guiding SAM in the broad lines of development of the theory of
modular lattices and was present to notice a useful intermediate result.
At the same time, the algorithms of AUTO-LOGIC were working

to geaerate results that might be useful without getting lost in a

| mass of trivial and nearly equivalent formulas. SAM V was not

capable of understanding all the consequences of many of the proven

iiittiisidl

formulas but the mathematician despite a reasonable amount of prior

effort, had not been able to see the key steps required to obtain a

useful lemma, ‘SAM's Lemma.

il

At this stage in the development of SAM we are always E
careful to check the results of automatic proofs. In thicz case the ?
check verified the result and, as usually happens with first proofs E%

%
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in mathematics, led to a much more compact way of presenting

the key ideas in the demcnstration. The re-phrasing into common

mathematical terms is given below along with a version of the

proof by AUTO-LOGIC. The version of the semi-automatic proof

that we give is somewhat shorter and more straightforward than
the original siance, with the benefit of hindsight, we were able to
gaide the process more directly to the Lemma. Note that the

phras‘ - of some axioms is imposed by the search for simplicity
in axioms (e.g., the associative law is SAM's choice of the simp-
lest form in a context where commutativity is also present). Note
also the following table of correspondence between the symbols of

SAM and the notions mentioned below:

P 0 (first element)

Q 1 (last element)

D meet (analogous to intersection and minimum)
A join (analogous to union and maximum)

Al, Bl the a,b of [6)

R1,R2 (a v b)!, (a A b)!

A2, B2 the x,y of [6]

Theorem 1, Bumcrot [6] }) If (L, £ ) is a modular lattice with 0

==

and 1 and if a,b in L are such that ayv b and a A b have
(not necessarily unique) complements, then a and b have com-

plements.

Theorem 2, (Bumcrot [6] ) If (L, 8§ ) is a modular lattice with
0and 1, if a,b

in L have unique complements a',b' respec-
tively, and if aV b and a A b have compleinents, then a'{ bt

is a complement of a A b and a' A b!

Open Problem Bumcrot [6:‘ ) Under the hypotheses of Theorem 2 is

it necessarily true that the complements of ay b and a A b are

unique ?

37
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SAM's Lemma Under the hypotheses of Theorem 1

(avb)=xAy
dually
(@ Ab) =%VY

Theorem (Oglesby, SAM V) Under the hypotheses of Theorem 2,

the complements of a y b and a Ab are unique.

The theorem follows immediately from SAM's Lemma since, by th-
assumed uniqueness of complements for a and b, xA y and
XV ¥ are independent of which (aV b)! and (a A b)' are used

in their construction.

In Figures 8 and 9 we show an early proof of SAM's Lemma.
The numbers at th: left margin indicate the order in which SAM has
added the formulas to the list of reductions, missing numbers corres-
pond to formulas that SAM has eliminated in favor of combinations of
simpler formulas. The numbers at the right margin indicate the
depth of proof required. Note how the introduction of the associative
axioms is deferred so that SAM can first work on the consejuences

of the other axioms.

In Figure 10 we show the history of a proof of SAM's Lemma
on the latest version of SAM. In this proof v, A . o replace
A,D, and P respectively. In addition, the functions y , A are
given to SAM as being both associative and commrtative so that the
resulting proof is much simpler. In fact, the new proof looks de-

cepiively simple.
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“§ PROOF OF SAM's LEMMaA
E 0081 [ Acp. = x . (02)
= w082 J 0P, x) = p Q=1 (20)
= 2283 Avg,xy = (84)
g 2294 | D(X,A(X,Y)) = X (80)
g . 00es ACX,0(X,Y)) = ¥ (29)

- with 0611 & 0622 yive lattice
G6oe8s6 0(Y,x) = D(x,Y) (8Y)
0087 ACY,x) = A(x,Y) ) (00
2010 NOT (D(X,2) = X) (80)
2011 NOT (D(X,2) = #) modular lattice
P12 —E(u.n z X (90)
g 2013 D(X,X) = X 0624 EXP OF PBuS (81)
5014 ACY,Y) = v 08YS EXP OF 8913 (92)
4866 0(61,82) = p (20)
0ve67 A(E1,B2) = @ Implied by 0072-0100 (2d)
0270 DiA1,A2) = p (SAM was able to prove these (89)
and did so earlier)
871 A(AL,A2) = @ (2¢)
0872 A(R2,D(A1,8)) = @ R2 a complement of (30)
Pa73 DCA1,D(B1,R2)) = p D(Al, Bl) (2¢)
K874 ACAT,A(BL,R1)) = @ R1 a complement of (Gb)
A(Al, Bl)
8375 O(R1,4(A1,8)) = p (99)
ve76 A(R1,U(AL,R2)) = ‘
oA He L ook of mm & T Lee)
2100 A(R1,D(B1,32)) = A2 (80)
0542 D(R1.,A2) = R1 2004 LXP OF 21u@ (91)
0543 J(R1,82) = Ry 2044 EXP OF 976 (81)
8551 NOT (D(Y,2) = 2) 4007 RED OF @55@ (83)
ACY,4) = v
Figure #8
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0555 w01 (Ag = P) 0278 RED OF 9554 (82)
Al = g

8557 NOT (Be = P) 2066 RED OF ¢556 (B5)
31 = @

8563 NOT (D(A1,A(B1,R1)) = A(B1,R1)) ¥551 EXP OF @@74(g4)
Al = @

2564 NOT (D(B .,R2) = P) 9551 EXP OF @073 (24)
A(A1,D(B1,R2)) = Al

06Ro * D(B2,A(R1,Y)) = A(R1,D(B2,Y)) 00086 RED OF 9577 (@4)

p611 '{:E(t.A(X;Y))=A(X;A(Y.£)) (09)

0517 A(R1,B2) = B2 2014 RED OF 0616 (1.8)

0621 0T (ACAL1,B1) = P) 8874 RED OF 9620 {06)
R1T = @

8622 —[E}E.D(X.Y))=(D(X.;(Y.2)) (68)

p630 NOT (D(A1.B1) = P) #0973 RED OF @627 (86)
R2 = «

v634 NOT D(B1.,D{(R1,R2))sD(831,R2))P006 RED OF 2633 (86)
A2 ¢ Ri

V636 D(R1,D(B2,2))=D(R1,2) @206 RED OF B635 (83)

0637 NOT (Rr2 = R1) 8636 RED OF 8575 (B¢)
a(B2,D(R1,Y))=R}

643 D(R1,A(B2,Y))=R1 9543 RED OF @642 (85)

p643 O(R1,D(A2,#£))=D(R1,2) 2006 RED OF @642 (83>

©645 D(R1,A‘A2,Y)) = R1 €542 RED OF 0644 (95)

0650 OCA1,D(A2,2))=P PABd2 RED OF 0647 (83)

0w653 0(B1,D(82,24))=P 0882 RED OF p652 (63)

P656%%x OJ(A2,B2) = R1 90081 RED OF 8655

* Key resuit

*%* SAM's Lemma

Figure #9
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90001 (Y vXr» a X -2
Y AX) 2o X=X

3003 - ZAX-N)
TAY)I v X 'YX Al

I

il T

00205 > A X -

0e12 Ry 4 By) = 7, - Ay AXM
206:3 (R, 4 A v By - By axM
30815 Ay APy =5
07 Q5 A 7 - Ry

eee32 o v X = X

e

e2e3n
i (ﬂ2 AY) v Ri = ‘Rl ¢ Y) A 92
M245
(Ha A (92 A ql\) 4 Pi - 82 A az
g 22046

fﬂz A0 Rl 5 B? A 92

o7 Py, ¢ o0 - 23 A QE

@

Figure #10
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215 RED GF 20043 (2Y4)

20005 RED OF Ceg.6 (93)
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SECTION V

TROLL

A. Introduction

The coding for SAM V has been done in machine language to take
advantage of the large flexible instruction set availahle on the PDP-6
and to achieve the speed and efficiency necessary to the practical
operation of SAM. The basic framework of the programming of SAM
has been a list processing language which we have named TROLL
(Threaded, Ringed, Oriented L -t Language). This list processing
language is of interest as a separate entity in its own right. It is a
general purpose list language of the type which is most aseful for the
purposes of SAM. Within the requirements of storage ind linking in-
formation required by SAM ic¢ 1s a most efficient variety of link pro-

cessing language.

TROLL is a set of list processing subroutines designed to be
embedded in FORTRAN or a machine language. It could consist of
a set of primitives, coded in machine language for a particular
machine, and a set of routines canonically written in FORTRAN, but
in actuality coded in machine language for added efficiency. The
primitives could be used to fetch values from fields within list cells,
and to store values within these fields. Obviously by changing the
primitives one can greatly change the nature of the list processor. In
our implementation all the routines are written in MACRO-6, the

PDP-6 assembly language.
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TROLL is threaded in that the last cell of a simple sublist
links back to its reference. Thus a pushdown stack is not needed
when searching structurally through a simple list. TROLL is
ringed {(or knotted) in that it is possible to have multi-referenced
sublists. Of course in searching through a list with multi-
referenced sublists, a pushdown memory is needed in order to come
back up through the stru~ture. This is provided in one set of

search functions. TROLIL, unlike a symmetric list language, is

oriented in that ‘here is a preferred left to right, top to bottom

direction for list:.

B. Definitions

A liist is either simple or multi-referenced.

A simple list is a list that is referenced exactly once.

A multi-referenced iist is a list that may be referenced zero,

one, or many times. A reference count, which is *he num-

ber of times that the multi-reference list is referred to, is
kept in a designated item in the list called the header. For
most purposes the header looks like a one item list which re-
fers to the simple list which is the body of the multi-referenced
list. Each item of a list is stored in a cell, the exact nature
of which is determined by the particular implementation of
TROLL.

A datum cell is a cell containing a quantity of information, the
size depending on the particular implementation of TROLL.

An address cell is a cell containing a link to an arbitrary data

gtructure.

A reference cell is a cell containing a link to a simple list.
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A multi-reference cell is a cell containing a link to a multi-

referenced list.

A sgublist is a list which is linked to by a reference cell or a

TREETIRRL

multi-reference cell in another list.

Hgbbinlg

C. Cells

Cells contain the following information:
The terminal or T field, which contains 1 if the cell is the
last cell of a sublist (0 otherwise).
The code or C field, which contains:

0 if the cell contains a datum,
1 if an address,

Z2 if a reference, and

3 if a multi-reference.

The datum or D {ield, which contains the datum of the cell.

The link or L field, which contains the address, reference,
or multi-referen. .

The head or H field, which contains 1 if the cell is a
header, 0 otherwise.

The count or _1}_1 field, which contains the reference count.

i

The successor or S field which contains a link to the cell
to the right of the current cell.

In a header cell, the datum and successor fields are undefined.
In a non-header cell the count field and eiter the datum or link
field is undefin=d.

On the PDP-6 a cell is a single 36-bit machine word with the
fields stored as follows:

T {C] Dor LJH N or S
0 123 17 18 19 35

When the N f{ield exists (i.e., bit 18=1), the one's complement
of the reference count is stored there. Otherwise the fields
contain their actual values as dc-.ribed above.
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N: Gl 1f1o | N+L 2 2 Figure 1
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D, More Definitions

Rl ativun i R R

There are five basic types of cells:
Datum or D cells

Reference or 1_1 cells

Empty or E cells - (special case of reference cells, with
pointer field of zero)
Address or A cells

Multi-reference or l\_fi cells

There are four groupings of cells:
Word or W celis (any cell)

Element or E cells (datum or” address)

dili

Name or I_\I cells (reference, multi-reference or header)

Extreme or X cells (furthest cell in a given direction on a
list of sublist)

From a given cell there are four possible directions:

Up - U

Down -

Left_ -

Right -

iw 1T g

I

Relative to a cell, there are four possible locations:
Top (T) of sublist
Bottem (B) of sublist
Left (L)

Dl

Right (R)

E. Basic TROLL ProErams

Look functions: L % *%  (IP)

where * is a direction and %% is a grouping. They search

a list starting at [P, in the direction indicated, until a cell of

A

i

b
i

I
it

i
It

|
I

Sy
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the required grouping is found. They anormally return an
unflagged pointer to the quantity found; return a pointer to the
header and a flag of 3 if a header is found; return a pointer
with a flag of 2 to the reference cell if the argument of LR *¥
is the last cell of a sublist or if the argument of LL *% g
the first cell of a sublist; return a flagged pcinter to the multi-
reference cell if LU ** or LD ¥%* requires going into the

multi-referenced sublist.

In the PDP-6 version of LDW , LDE, LDN, if an address is
found in bits 3-17 of the pointer, the cell with this address
functions, for the look, as a header; that is, if a look reaches
this cell by way of the successor field of the previous cell, a

pointer with a flag of 2 is returned. Bits 3-17 is called a stop

address.

New functions: N * wk (IP,I)
where % is a basic type, *%* is a relative location. The

quantity I is inserted into a new cell in the relative location,

and a pointer to this new cell is returned.

ND #**x (IP,I) the datum I is placed in the new cell.

NR #** (IP,I) I is a pointer to an unreferenced
header. The header is erased and a
reference to the body of the list is
created.

NE *%x (IP) an empty reference is created. These
functions have only the first argument

since no quantity is inserted into the
cell.

NA *x (IP,]) the quantity I 1is placed into a new
cell, and a new address cell is
created, pointing to the copy of 1.
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NM % (IP,]) The reference count on the header
pointed to by I is incrcased by 1.

N * T(IP,I) and
N * B(IP,I) require IP to point to a name cell.

Instead functions: IN % (IP,I)

where * is a basic type. Instead functions erase the contents
of the cell to which IP points and inserts the quantity 1 in
a similar manner to the new functions. They return the old
datum, or quantity pointed at by an address, or -1 if the
original contents were a header or reference, or -2 if the

original contents were a multi-reference.

Multi-reference look functions: M % %% (IP)

where * 1is a direction, and *% jig a grouping. These are
similar to look functions. If a list contains no multi-referenced
sublists, they are identical to look, returning an unflagged pointer
to the cell found, and zero if the header of the main list is found.
Multi-reference looks have a pushdown memory so that a look
into a multi-referenced sublist, and return, is possible. If such
a look is required, the proper addition to the pushdown list is
made and the look continues. Jf an MR ** or ML ** re-
quires coming out of a (multi-referenced) sublist, a flagged

pointer to the multi-reference cell is returned.

List of Available Space

The list of available space (LAV) is a linear pushdown list of
available cells. LAV is initialized by CALL LAS(IPA,IPB)
where IPA, IPB are (inclusive) poiaters to the ends of the

block of memory to be initialized. The first cell of the available
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space block is initialized to a header for the list of available
space. A pointer to this header is found in (g.obal) location
LAV . The second cell of the available space block is initial-
ized to an empty header for the recursion pushdown list. A
pointer to this header is found in (global) location LAVS.
The rest of the available space block is initialized as the body

of LAV, a linear list each element of which is a zero datum.

NUC(IX) returns a pointer to a new cell, the previocus top

cell of LAVS. IAC is updated. IX 1is a dummy argument.

ERACEL(IP) zeros cell IP, pushes it on LAVS, and up-
dates IAC.

JNK(IP) makes a linear list out of the cell IP and any cell
linked to by IP, links this linear list to the top of LAVS,
updates IAC , and relinks the list in which IP originally
occurred. If IP points to a header, the reference count

is decreased by 1. If it now is negative, the whole list is
erased. When a multi-reference cell is erased, the reference
count is decreased by 1 and, if now negative, the whole

multi-referenced sublist is erased.

NOTE: By changing the list pointed to by LAV one can use more

H.

than one list of available space.

Minor Routines

LVL(IP) returns pointer to reference cell for current sublist
or flagged pointer if same is a header.

MOV(IP) returns IP. Removes IP from its list and makes
it into a header. If IP not a reference cell, dc~s

nothing, returns zero.
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LCOPY(IP)

MTH(IX)

Examples

returns pointer to header of copy of IP. IP
must be a header or reference.
returns a pointer to an empt; (pointer field = 0)

header. IX ie a dummy argument.

Let "adr" be a FORTRAN variable containing a pointer to adr .

Referring to Figure 1:

Look

New

MTH

JNK

LRX("L+1") returns L+5
LLW("L+7") retv 18 L+6
LUE("L+4") retu.ns L+2
LDN("L+3") returns L+4
LDE("L+3") returns L+4 flagged
LRW("L+5") returns 0

NAL("L+3", 3275) inserts an address cell pointing
to the word containing 3275, between L+2 and L+3.

NNR(L+2", N) inserts a multi-reference cell between
L+2 and L+3 and increases the reference count of N

to 3 (stored as 3).

NDT("L+5", P) inserts a datum celi pointing to P
before L+6.

The list (1, (2,3)) can be created by
I-= NDR(NDT(NER(NDT(PATH(IX).1)). 2), 3)

JNK("L+1") pushes L+1, L+2, and L+3 on LAVS, up-
dates IAC, changes the pointer of L from L+1

to L+4 and decreases the reference count of N

by 1,
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