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ABSTRACT

i .. A computational algorithm for the determination of

a piece-wise linear approximation to an arbitrarily specified

function of one variable is described. In particular the

algorithm generates the optime piece-wise linear approximation

Wy

Pre——

consistent with a specified accuracy in the sense that the

number of segments is minimized. It is demonstrated that in

i
ot

contrast to the problem of minimizing the maximum error with

_ _a specified number of segments, this formulation leads to a

computation based only on local values of the given function

and a correspondingly efficient computational procedure.
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The representation of arbitrarily given curves in terms
of plece-wise linear approximations is a technique of importance
not only in many digital computer applications, but is widely
employed in analog computer embodiments for function represen-
tation. For many applications in the digital realm it is a
strong competitor to rational function approximation techniques
both with respect to the compactness of the representation and
the speed with which the approximation may be evaluated. Of
particular interest on both counts, speed and compactness, are S
approximations comprised of the minimum number of linear segments
consistent with the level of accuracy desired. While the problem
of discovering a minimum segment approximation to an arbitrarily
specified function has been previously treated by mathematical
programming techniques (see for example Gluss ;1] where it is
formulated as a dynamic program), the prdcedure described herein
treats the problem rather differently and leads to an efficient
computational algorithm.

The particular problem which is considered in this
paper is that of approximating a single valued function of one
variable in terms of a sequence of linear segments. More
formally we assume a given function f(x) defined on the interval
[a,b], and we seek an approximating function g(x) such that
[£(x)-g(x) j¢- for a<x<b. The function g(x) is to consist of a
sequence of linear pieces so that for every x in [3,b], g(x) is
of the form g(x)=g+px. More particularly values x; for 1=0,1,2,

...y are to be selected having the properties that a=Xq,
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X{“%j41> and x,=b, s0 that for x; ,<x<x;, glx)=g, (x)=q;+f;». Of
{? all approximating functions g(x) which meet the above conditions
7 we are interested in selecting one which is comprised of the
minimum possible number of linear segments. Two cases are to

+ be considered: (1) the function g(x) may be discontinuous at the
boundaries between the linear segmenis, (2} the function g(x)

{5 must be continuous everywhere on (a,b].

. Coﬁsider first the case in which discontinuities are
permitted at the linear segment boundaries. An ex;mple of a

& three segment approximation of this variety is given in Figure 1.
- - In this case the algorithm may begin by seiecting the longest

single linear segment which satisfies the error restriction

o everywhere from a to the right-most boundary of the initial

i: segment, i.e., by finding a;,f,, and X; such that I(cxl + BlX)
-£(x)j<» for agx<x; and moreover x, is as large as possible. It
b is clear that the segment gl(x)=(q1 + ﬁlx) for a gxgxl may be

taken as a2 component of the optimal approximation since any
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other choice of a left-most segment would result in a “"remaining
function to be approximated" which includes the interval [xl,b].

It is obviously not possible that the number of linear segments

———— o
H LRI

required to approximate f(x) over [£,b] is less than the number
ji required over [xl,b], where Efxl, since any M segment approxi-
mat ion of f(x) over [£,b] is itself an approximation over the
’_ subinterval [xl,b] consisting of at most M segments.
The algorithm proceeds by repeated selection of the
linear segment of maximum scope from the left-hand end of the

{- “remaining function to be approximated",
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Fig. 1 A three segment approximation with boundary discontinuities
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Since we are primarily concerned with the determination
of approximations to arbitrarily given functions by means of
a digital computer, we will deal with a slightly different
problem in which we assume that the function f(x) is defined only
at a discrete set of points which we take to be the non-negative
integers, Thus we restate the problem of selecting the initial
linear segment as foilous. Given real numbers 5,£(0),f£(1),
£(2),..., find real numbers a, £, and n such that |[£(j)-(a + fj}]|
<A for 0<j<n and n is maximal.

Note that for each value of j in 0<j<n it follows that
Jach of the following relations must hold:

a + Bi<E(j) + », and
a + PBicf(j) - s,

Note that each of the above relations may be regarded as defining
a half-space in the two dimensional space whose coordinate axis
are o and B. Thus each value of j may be éssociated with two
half-spaces the interscction of which defines a strip in the
a,p plane. This strip includes the parameters of all of the
linear segments which meet the error conditions for that
particular value of j. Clearly values of ¢ and [} exist satisfy-
ing [£(j) - (a+$j)|<» for all 0<j<n, just in case the intersection
of all the associated half spaces i: not empty. This observation
suggests the computational algorithm. We begin with j=0 and
determine the egquations of the corresponding half planes. We
next set j=1 and find the "corners" of the convex polygon which

is the intersection of the 4 half planes. Note that at this



point the convex polygon will be in fact a parallelogram. We
next increment j by one and determine the resulting cumulative
intersection which will be either null or a convex polygon. We
proceed in this manner until we have found the largest value of
J such that the cumulative intersection is not empty. Having
found the laryest such value of j we may take as the parameters
of the initial linear segment any value of g and 3 within the
corresponding polygon.
While the preceding discussion outlines an algorithm

which is of interest in the determination of piece-wise linear

) approximations in the case where discontinuities are permitted,
a relatively minor variant of that procedure handles the more

- interesting case in which g(x) is continuous. While the
principle reason for our interest in the continuous case is
that discontinuities frequently are unacceptable because of
the way in which the approximation is emﬁloyed in subsequent
computations, the continuous approximation has the interesting
side benefit that it leads to a more compact representation.
This is due to the fact that although the number of linear
segments in a continuous approximation may be somewhat greater
than in the discontinuous case each, segment may be defined by
two rather than three parameters. To illustrate the procedure
for a continuous approximation we return to the consideration
of a continuous ft(x) and investigate some of the properties of

the linear segment such that | (o + px) - £(x)|<» for a<xgx, for

1

the largest possible x;. First, it is clear that }f(xl)—(n+Fxl)i

=4 since, if this were not the case, it would be possible to
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to increase x,. Let us assume that a+px,=f(x,;)+5. A theorem
due toaTEhebysheff tells us that there must be at least 3 points
at which the error takes on its maximum value and that the sign
of Ehe error at these points alternates as we move from one
point to the next. Thus there is a right-most point x0<xl at
which a+on=f(RO)—6. We show in Appendix C that the point x,
has the interesting property that there is in fact no point
2>x, such that a+Bz=f£(z)-5 and for all a<x<z, |£(x)-(a+px) [<r.
Suppose that by some process we have determined the
parameters of the left-most line segment, that it remains within
the error bound for agxg?l, and at y; we have a+ﬁy1=f(yl)+5.
Suppose further that Yq is the rightimost point in the interval
(a, yl) at which the linear segment touches the lower error
boundary, i.e., a+By0=f(yo)-b. Ve now observe that the re-
maining problem is that of finding a set of connected line
segments, minimum in number, such that foé Yo<x<b, gix)2f(x)-»,
and for ylgxgb,g(x)gf(x)+&. Any set of connected line segments
which meets the above condition will contain a line which
intersects the line [~+3:) along the segment joining the point
(yg, £(¥4)-») to the point (yy, £(y;)+s). Thus if we define
this point of intersection as the right-most boundary of the

init!.l zegnent re are ascurel o continuvl g 2t the bounliary and

over th2 seqnent. We next note that the difficulty (measured
in terms of the number of segments required) of the remaining
approximation problem (after the first segment has been selected)
can only be reduced by moving either or both of the points Yo

and Yy, to the right, since this diminishes the range over which

—— -
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the approximation is constrained by the upper and/or lower
error boundaries. Since the result of Appendix C shows that
both Yo and yl are maximized by the sawne linear segment we
cannot do better than to use that segment.

We note that after the first linear segment has been
establ ished the remaining approximation problem differs from
the original problem in that the upper and lower error
boundaries do not begin at the same point. This does not
complicate the problem in any essential way, however, and may
be easily takgn into account by selecting the appropriate half-
spaces to enter into the computational algorithm.

.An intuitively satisfying characterization of the
procedure is illustrated in Figure 2 in which the upper and
lower boundaries are regarded as defining a two dimension
tube into which a straight stick is pushed from the left.
Figure 2a illustrates the terminal position of the stick. This
position of the stick defines the first line in the approxi-
mating sequence. That part of the upper boundary to the left
of point b and that to the lef: of point a on the lower
boundary are then cut away and the process is repeated. This
leads to the terminal stick position of Figure 2b which defines
the second line in the sequence. The articulation point
between the first two sections is obviously their point of
intersection. A computational algorithm treating the discrete
case is described in Appendix A. An efficient procedure for

handling the intersection of a half-space and a convex polygon

[EgE——
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is given in Appendix B, while Appendix C presents the theorem
on the basis of which the optimality proof rests.

While the preceding discussion has been in terms of
a uniform kand of tolerable error it should be apparent that
the uniformity of the error is in no way essential to the
method and in fact the computational algorithm outlined in
Appendix A is given in terms of an arbitrary '"upper" and "lower"
curves. While these curves may be defined as (flx)+3) and
(£(x2)-2) respectively they may also be established by an error
condition which depends cn either the independent or dependent
variable. Thus there may be regions of x in which the error
is not particularly important or the tolerable error may be
more reasonable specified as a given percentage of the
independent variable.

It is also possible to employ a variant of this
technique to represent general paths in 2 or more dimensions
where the path is specified by the coordinates of an ordered
set of points along the curve. This case may be handled by
using the algorithm of Appendix A to obtain approximations
to the parametric functions which describe the variation of
each of the coordiﬁates as functions of the index variable
over the original point set. The index variable may then be
eliminated between the parametric approximations and a
piece-wise linear approximation to the general path in 2 or

more dimensions may be obtained.

e e B i

(1) B. Gluss, "A Line-segment curve-fitting Algorithm" In-

formation and Control, Vol. 5, No. 3, Sept. 1$62
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Appendix A

An Algorithm for the Determination
of Piece-Wise Linear Approximations

The problem with which this algorithm deals is
illustrated in Fig. 3. Cl(M) is ordered set of points defining
the "bottom" curve and C2(M) is an ordered set of points de-
fining the top curve. M is employed as an index variable over
both Cl and C2. What is required is a set of lines which de-
fine a chain of connected line segments such that all of the
points on Cl are "under" the chain and all C2 points are "over"
the chain. The chain is defined by a sequence of lines
LL(I),I=1,2,... where the first segment is that part of LL(1l)
between its intersection with the vertical line through M=0,
and its intersection with LL(2), the next segment in the chain
is that part of LL(2) between its intersections with LL(l) and
LL(3), etc.

The computational algorithm is given in flow diagram
form in Fig. 4. With respect to Fig. 4 the following definitions
are in order.

Each of the lines in Fig. 3 may be defined in terms
of a y intercept and a slope, e.g. LL(l) may be defined by the
relation y=al+plh. Thus we may‘define a 1> dimensional space
with axes g and B, each point of which corresponds to a line in

Fig. 3. The notation POLY X is intended to refer to the

Al
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FIGURE 4 - FLOW DIAGRAM FOR APPROXIMATION ALGORTTHM
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interior and the boundary of a convex polygon in q,f space.
POLY INIT is intended to denote a very large, essentially
infinite, convex polygon which contains in its interior the
points which correspond to any line which could conceivably
be a member of theapproximating sequence. The requirement
that "1*'?1 M< C2(M) for each particular value of M ray be
regarded as defining a half-space in the a,p plane, i.e.

the half-space in which the relation holds, and this half-
space is denoted by S(C2(M)). The substitution operation
POLY A«+POLY B "S(C2(M)) means that POLY A is replaced with
the polygon which results from the formal intersection

of POLY B and the half space S(C2(M)). The variable LFTCl
is employed to denote the index of the left-most point in
the set Cl which is to be considered as a constraint on the
line segment being determined. LFTC2 is ﬁimilarly employed
to denote the left-most point on C2. Thus with respect to
Fig. 3 for LL(l1), LFTCl=LFTC2=0 since the first line must
be constrained by the points Cl1(0) and C2(0) and all points
to the right insofar as possible. The general strategy is
to index M and to determine at each step the polygon in the
a,B space which bounds the region in which acceptable line
parameters are to be found. Thus in Fig. 3 the intersection
of the 12 half-spaces, given by a;+B;M>C1(M) and a)+fyM<C2(M)
for M=0,1,2,3,4,5 are found to define a non-null convex polygon
while the intersection of that polygon witii the half-space

defined by g, +B, .6vC2(6) is null. This allows us to choose
Y ayTFy-0l

Sew .

B Y s i I
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parameters for LL(1l). In particular since LL(l) fails to meet
the constraint for a point on the upper curve, we choose for
the parameters of LL(1l) the least slope Feasible point in the
polygon which defines the feasible region f6r all points from
M=0 through M=5, i.e. the line LL(1l) will come as close as
possible to satisfying C2(6). MMIN is defined to be the index
of the point on Cl which determines the minimum slope. In the
case of LL(1l) in Fig. 3, MMIN=3, Similarly MMAX is the index
of the point on C2 which determines the maximum allowable
slope. SMAX is intended to denote that point on the boundary
of a polygon in the a,p plane for which the slope is maximum
while SMIN is similarly intended as the point of minimum slope.
The notation L(SMAX) or L(SMIN) refers to the line in the y,M
plane which corresponds to the point SMAX in the «,p plane.
Thus in the case of the first line in Fig. 1 LL(l) is choosen
as L(SMIN) for the appropriate polygon. T%e variable ZZ is
reevaluated for each approximating line and is the smallest
value of M which need be considered in the determination of
that line, i.e. 2Z=MIN(LFTCl,CFTC2). For example for the
determination of LL(2) in Fig. 3, LFTCl=3, LFTC2=6, and 2Z=3.
Thus LL(2) must be above every point on Cl from M=3 on to the
right as far as possible while LL(2) need be below points on
C2 from M=6 on to the right. The variable T denotes the total

number of points for which Cl and C2 are defined. The condition

=T terminates the algorithm.

A3
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Appendix B ;

An Algorithm for Calculating the Intersection of a
Convex Polygon and a Linear Half-Space

The intersection of a linear half-space and a convex !
polygon is either null or a convex polygon. The‘input data on
which the algorithm is based is a description of a convex
polygon plus a description of the half space, the output is
either a description of a convex polygon or an indication that
the intersection is null. Since the algorithm is to be used
recursively we require that the format of the output description ;

be the same as that of the input description. The format 3sr the

specifination =7 the conven olvodn iz un prdered list »8 the i
"corners" of the polygon (.t} the first corner repeited as
the last corner) plus an indication of the number of such
corners. The notation employed for the input polygon in the
flow diagram of Fig. 5 is n for the number of corners, and
AO, Al’ ey An for the coordinates of the corners with Aﬁhn.
The notation for the resultant polygon is Bn, Bj, ..., Bm,
with LV:Bm‘ The half-space, S, is denoted by tlie equation
of the separating line L. The term (AisS?) asks whether the

point Ai is an element of the half space defined by the

boundary L. The term LN(Ai, Ai—l) denotes the line segment

joining the point Ai to the noint Ai—l and the term

Bl

P — - - Cn et L 2 _—
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(LAOLN (A, Ai-l))denotes the point of intersection of the
separation line L and the segment L i(A,, Ai~1). A geometric
illusti ation of the input and output polygons is given in

Fig. 6. The algorithm itself is illustrated in the flow
diagram of Fig. 5. The algorithm is based on the fact that
the "corners" of the resultant polygon will be the corners

of the input polygon that are in the half-space plus the points
of intersection of the separating boundary and th; boundaries

of the input polygon,
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Appendix C

A 'Theorem on Tchebysheff Approximation

Let £(x) be a continuous real valued function defined
everywhere on the non-negative axis. Let g(x) be an arbitrary
polynomial of degree n and let G be the set of ail such nth
degree polynomials. Define R(f,g) to be the largest value of
x such that for all O<y<x, |£(y)-g(y)|<s. If |£(0)-g(0)|>d,
then R(f£,g) is defined to be zero. Let xp be defined as

x,=max R(£f,q),

R
geG

and denote by gp the polynomial which maximizes R, i.e.,
xp=R(£,gp) . '

Define T(f,g) to be the maximum value of x such that for all

0<y<x, |£(y)-g(y)|<d and further g(x)=f(x)+s. Let x, be

defined as

xp=max T(£f,q),
geG

and denote by dp the polynomial which maximizes T, i.e.,
xT=T(f,gT).
Define B(f,g) to be the maximum value of x such that
for all 0<y<x, |E(y)-g(y)|<s, and further g(x)=£(x)-b. Let
X be defined as

Xp=max B(f,q)
geG
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and denote by dg the polynomial which maximizes B, i.e.,
xB=B(f,gB).

Less formally, if we think of an upper boundary given
by E£+% and a lower boundary given by f-b, 9 is the polynomial
which stays within the error band, i.e., the interval between
E+5 and £-5, as far to the right as possible and Xp the point
at which it leaves the error band. 9t is the polynomial which
stays in the error band everywhere from zero to Xy at which
point it contacts the '"top" boundary. Xm is as far to the
right as possible. dg is similarly defined excépt that at the
point X5 the polynomial-gB contacts the "bottom" boundary. The
theorem we wisn to prove may now be stated as follows:

Theorem 1: Xp=maximum (xT,xB), and further g,=g,=gg.

The first part of the theorem, i.e., xR=maximum
(xT,xB) may be established as follows. Assume that max
(Xpy%g) = X,. It cannot be the case that X <x, since
R(f,g94)>x, contrary to hypothesis. Similarly it cannot be that
Xo>X., since in this case either T(f,gp)>x, or B(f,gp)>x, both
contrary to hypothesis. Since it cannot be the case that
Xp>¥p Or that x.>x,, it must be that xp=x,. A similar
argument can be advanced for the case max (xT,xB)'—'xB by simply
reversing the roles of X and X in the above argument.

For the purpose of the following argument let us
again assume that xR=max(xT,xB)=xT. Clearly 9r=9p and in order

to complete the proof of the theorem we must show that 95 =9R"*

Toward this end we employ a theorem due to Tchebysheff which

c2

[t A, 4
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says in effect that the guantity If(y)—gR(y)I takes on its

maximum value at least n + 2 times over the interval [O,xR],
Say Xy <X <o < 1<K 10Ty and that the sign of the error at
successive points alternates. Thus if n is even and g(xR)=

£(x)+» we have that alx )=E(xj)+é for j=2i, lgig% + 1 and

b
similarly g(xj)=f(xj)-b for j=2i-1, lgig% + 1. We will have
our desired result if we demonstrate that X, 417 %g- Let us
assume that it is not the case that X=X 41 but that Xn+1
<xB<xR=xT. Since X1 is the rightmost point at which-

gp=f-b it follows that gR(xB)>gB(xB). We note that g, is a

nth degree polynomial determined by the n+l points

(%), £(x1)=8), (Xyy E(X ) #0) yuuny (X, E(x)48), (X, Elxy ) =0) .
Similarly 9g is an nth degree polynomial determined by
(xl,f(xl)-bfﬁl), (xz,f(x2)+h—A2),..., (xn,f(xn)+a—An),

fx

(x -8+An+l) in which Aj20. Consider the nth degree

n+l’ n+l)
polynomial h(x) defined by the points (xl’Al)’(x2”A2)""’
(xn,-An)(xn+l,An+l). It must be true that gg=gp+h since
they are all nth degree polyncmials and 9g coincides with
gR+h at n+l points. We note that h(x) changes sign between
every pair of points so that all of the roots of h(x) are
accounted for and h(x) must be positive for all >< ., . We
have that h(xB)>0 or that gB(xB)>gR(xB). Thus we have a
contradiction resulting from the assumption that xB>xn+l'

Since B(E,gR)=x it cannot be that xp<x ., and therefore

n+l
X=X, 11 and dg=9g- Similar arguments can be advanced for

the case of n odd and also for the case in which xR=xB.




Unclassified

Security Classification

DOCUMENT CONTROL DATA-R & D ;

(Secarity clussilicution of tile, body of abstract and indexing annotation muxt be entered when the overall report s clausitiod)

1. ORIGINATING ACTIVITY (Corporate uuthor) 28. REFPORT SECURITY CLASSIFICATION
IIT Research Institute Unclassified
10 West 35th Street 26, GrROUP
Chicago, Illinois 60616 None

3. REPORT TITLE

Piece-Wise Linear Approximations

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report

S. AUTHORIS) (First name, middle initial, last name)

Scott H. Cameron

-

6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS A
February 1966 21 0
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
Nonr 3392(00) ,
b. PROJECT NO ( Technical Note No. CSTN-106
RR0O03-09-01 k
c. 9b. OTHER HEPORT NO(S) (Any other numbery that may be assigned -
this report)
a 3

10. DISTRIAUTION STATEMENT 4:;

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
None Information Systems Branch s
Office of Naval Research :
Washington, D. C. 5]

13. ABSTRACT

A computational algorithm ror the determination of a piece-wise

linear approximation to an arbitrarily specified function of one
variable is described. 1In particular the algorithm generates the
optimal piece-wise linear approximation consistent with a specified
accuracy .-in the sense that the number of segments is minimized. It
is demonstrated that in contrast to the problem of minimizing the
maximum error with a specified number of segments, this information
leads to a computation based only on local values of the given

function and a correspondingly efficient computational procedure.
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