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A theoretical estimate is attempted forthe effect ofa compliant coating on turbulent boundary
layer wall pressure fluctuations, The basic derivation shows that the problem reduces to one of
finding the distribution in the wall plane of two correlations involving the wall pressure and its
normal derivative, Exact expressions are derived for two-dimensional traveling wave pressure/ve-
locity admittances of an isotropic elastic coating, These admittances are combined with some
reasonable assumptions about the form of the pressure cross spectral density to yield approximate
expressions for the two desired pressure/derivative correlations, Finally, two surface integrals of
these correlations result in the wall pressure function in the presence of the compliant beundary,
The calculations indicate that the compliant wall increasesthe mean square wall pressure at low
speeds and decrcases the pressure fluctuations at high speeds, Unfortunately, the reduction at
high speeds probably cannot be achieved in practice because of the related mechanical problem
of static divergence of the coatitg,
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A THEORETICAL ESTIMATE OF TURBULENT WALL PRESSURE
FLUCTUATICNS ON A COMPLIANT BOUNDARY

INTRODUCTION

The problem of boundary layer behavior in the presence of a compliant
boundary was brought to attention by the intriguing experiments of M. O,
Kramer, !, %, * who demonstrated reduced drag on underwater towed bodies
covered by flexible coatings., Kramer intuitively ascribed the drag reduction to
a transition delay provided by the dissipation of the compliant boundary. Sub-
sequent theoretical studies, using an extension of the Orr-Sommerfeld stability
equation, verified the transition delay but indicated that the cause was not added
dissipation but rather a profound modification of the disturbance-wave structure
of the flow. These linearized laminar stability studies were begun by Boggs
and Tokita‘ and later iniproved and extended by Benjamin, ®» * Nonv .iler,’
Linebarger,® Landahl,’ Hains, !* and Kaplan.! Kaplan's thesis summarizes
the previous work and contains extensive numerical stability calculations for a
variety of model compliant boundaries.

Although the linearized theories definitely predict transition delay, the ex-
periments which have followed Kramer's pioneering work have met only mixed
success. The measurements of VonWinkle, '* Boggs and Frey, * and Laufer
and Maestrello!* do not yield a definitive interpretation, largely because the
transition delay, if it exists, is difficult to separate from whatever effect the
coating might have on the fully turbulent region. It is hoped that measurements
in the new water tunnel at the Underwater Sound Laboratory might clarify the
matter,

The fully turbulent boundary layer in the presence of a compliant surface
presents a formidable theoretical challenge. The sound radiated by turbulence
near a flexible boundary has been estimated by Ffowcs Williams and Lyon, '°
and the Reynolds stress very near the surface has been studied by Ffowcs
Williams,. '* To the authors' knowledge, there has been no theoretical study of
turbulent wall pressure fluctuations at a compliant boundary, and it is the intent
of the present report to present such a theory., The general development here-
in can easily be sifted for qualitative information. However, to produce quan-
titative results, the analysis has resorted to a series of approximations which
probably reduce the final calculations to the status of a fairly crude estimate.
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BASIC ANALYSIS

The basic problem of turbulent, boundary layer, wall pressure fluctuations
has been the subject of intense experimental study over the past decade for the
particular case of a rigid wall. Corcos!’ gives an excellent review of the many
publisied measurements of fluctuating pressure on a rigid wall, Probably the
most accurate of these measurements are those of Bakewell et al.!* and Will-
raarth and Wooldridge,* and it will be necessary to use these data in the anal-
ysis which follows. To the authors' knowledge, no measurements of fluctuating
pressure at a compliant wall have appeared in the cpen literature.

Although measurements abound, theoretical work on turbulent wall pres-
sure is lacking. Based on an approach suggested by Gardner, %°»>?! a complete,
though rather approximate, theory of the space-time distribution of rigid wall
pressure has been given by White, ? White's analysis indicates that the sta-
tistical properties of pressure at a rigid wall are primarily affected by the
shape of the mean velocity profile in the boundary layer. In particular, White's
results predict that the longitudinal space correlation is affected significantly
by the mean velocity profile, while the lateral correlation, the power spectrum,
and the convection speeds are affected very little. Actual measurements seem
insensitive to profile shape, a phenomenon Corcos!” calls "'space-time simi-
larity," although recent data by Schloemer? for pressure gradients indicate
some profile effect, particularly on the power spectrumn, This apparent overall
insensitivity of rigid wall data is exploited in the present analysis.

The fluctuating pressure p may be calculated in principle for incompres-
sible flow of a Newtonian fluid by taking the divergence of the Navier-Stokes
equations, yielding the Poisson equation

Vip = —p S(X,1) (1)

where the function S is a complicated combination of velocity derivatives and
t is time. The actual form of S is given by White? and is not important in
the present study. The position vector X has coordinates (x,,xX,,x,) which
are sketched in Fig. 1. The freestream flows in the x, direction.

The formal solution of Eq. (1) for pressure at the wall (x, = 0) is
given by Green's function integral solution:
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(2)

Note that the second integral in Eq. (2) requires knowledge of a boundary con-
dition in the form of the normal derivative of p at the wall. For a rigid wall,
this derivative is negligibly small, by analogy with boundary layer theory, as
Kraichnan® has shown. Thus, the rigid wall pressure is given simply by the
first integral, which involves only the source term S. If we accept the exper-
imental evidence that the wall-pressure correlation is insensitive to the form of
S, then the effect of a compliant wall must be primarily due to changes in the
boundary condition on p. It is the purpose of this report to investigate how the
compliant surface might affect the normal derivative of p at the wall, so that
the mean value of the second integral in Eq. (2) mignt be evaluated, at least
approximately.

To shorten the expressions which follow, let P denote wall pressure p
and let us rewrite Eq. (2) with the following tighter notation for the double
and triple integrals:

| P\ dZ , sdz
S Yt L
2r £ =0 az;’ IX _ Zl 27 r, 50 X ZI (3)

If we define the wall pressure, space-time correlation by the relation

R(X.X. ,rY=PX,0) P(X".(') (4)

where the overbar denotes the time average in the statistically stationary sense,
then, by substituting into Eq. (3) and performing the time average underneath
the integral signs, we obtain

-




o poF
R-|-2— az' dz’ + —/ 2% 47 4
) -7 |% - z|
(5)
oF

2P 2P 4 im \ —
37, 7 = Sy dzZdz
e %3 % _2|

|7 —z[ [x —Z] x-Z| v -7

where the integrals involving P are to be evaluated in the planes (z,,z,” = 0)
and the integrals involving S ace evaluated in the infinite half space above
this plane of the wall. After inspection, we find that the first two integrals on
the left-hand side are identical because of symmetry in a plane.

It should be noted that the right-hand side involves the source terms §
which occur in the boundary layer flow past whatever type boundary is under
study. That is, if we seek to use Eq. (5) to calculate R for a compliant
surface, then S should be the source function for flow past a compliant sur-
face. It is at this point that we use the experimental insensitivity of the source
function, previously discussed, to postulate that the right-hand side of Eq. (5)
is essentially identical tc R,, the pressure correlation in the presence of a
rigid wall. This assumption, although reasonable, cannot be verified until data
are available for mean and fluctuating velocities in the boundary layer past a
compliant surface, Apparently Professor J. Lumley at the Pennsylvania State
University is presently making such measurements. The question is also being
examined theoretically at present by the second author as a thesis for the Uni-
versity of Rhode Island,

Combining the first two integrals in Eq. (5) and utilizing the assumption
that the source integrsl is equal to R,, one obtains the following basic rela-
tion for calculating the wall pressure at a compliant surface:

aP p2F -z’ P P
o R.,——/ // o1 oty (6)
%~ z| |x-z||%x - Z|

At first glance, Eq, (6) might appear to predict that the compliant wall cor-
relation R is always less than the rigid wall value R,. However, we shall

see that the first integral is usually negative, while the second integral is posi-
tive, with the result that the effect on R is rather mixed.
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TRAVELING WAVE ADMITTANCES

Since R, is known from experiment, the evaluation of R from Eq. (6)
can be accomplished if the correlations involving P and its normal derivative
can be estimated. To do this, we must investigate the properties of an idealized
elastic coating. All available experiments indicate that turbulent boundary
layer fluctuating pressures have approximately the form of traveling waves
moving in the x, direction with a convection velocity U, somewhat less
than the ireestream velocity U, . Naturally, there is a certain amount of con-
vective incoherence, since the pressure waves as they move downstream are
undergoing continuous decay and regeneration. No attempt will be made here
to reproduce this effect; that is, the fluctuating pressures will be treated as a
simple summation of traveling waves of different frequencies. A second diffi-
culty is that the actual turbulent pressures are not plane waves but instead have
some unknown variable shape in the lateral (x,) direction. This analysis
will treat the case of plane waves and then attempt belatedly to introduce a
three~dimensional effect by use of the measured lateral spectra of wall pres-
sure.,

Consider a compliant coating of thickness h, backed up by a rigid under-
surface, as shown in Fig. 1. Several studies have been made of the response
of such a coating to a plane traveling wave for a Hookean isotropic coating, as-
suming small strains. The analytical results are in the form of traveling wave
admittances, which are ampiitude ratios of coating velocity to traveling wave
pressure. Following a suggestion of Nonweiler,” Kaplan' calculated admit-
tanrces by assuming a condition of plane stress wui the coating, while Tokita and
Boggs? gave admittances for the case of plane strain. Both Kaplan's results
and those of Tokita and Boggs contain algebraic errors which, hopefully, have
been eliminated in the present report. Also, Tokita and Boggs, by expanding in
a series and fruncating, gave approximate admittances (equation 7b9 of Ref.
25) which they later used in a study of coating stability.? However, numerical
evaluation of exact admittance formulas shows that these approximations are
valid only for a small range of frequencies and hence wili not be used here.

As is usual in elasticity theories, there is no great diffe~ence between the
plane stress admittances and the plane strain results. Let us reproduce a plane
stress analysis, similar to that of Kaplan,' comparing the final resul.s ob-
tained with those of Tokita and Boggs?* for plane strain.

From Fig. 1, a streamwise plane traveling pressure wave would have the
following complex form for any given frequency w :
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where U, isthe convection speedand « = /U, is the wave number. Let
E Dbe the coating displacement in the x, directionand  be the displace-
ment in the x, direction. Let the elastic coating have shear modulus G,

Poisson's ratic u, and Young's modulus E = 2G(1 + p). Then the equations
of elasticity for plane stress are

o O°E — o0n + 002
or Xy OXa
9% Q012 0022
L= +
f or ox X
E =
En = 9% ) fzzz'gl; Eq2 =‘ﬂ+—a'; (8)
Xy ox ox, oxX.
EEH = 0y — UGy
Eeyo = 622 — poy, -
Gey: = oy

Equation (8) contains eight linear algebraic and differential equations in the
eight variables i1, 0u, 012, €11, €22, €12, 1), and E. The stresses and strains
may easily be eliminated in favor of the two displacements for which boundary
conditions are known at the upper and lower surface of the coating. Since the
system is linear and the driving force is a traveling wave (Eq. (7)), it follows
that the resulting displacements must also be traveling waves with amplitudes
which vary through the thickness., Hence we postulate that

x ia (x; — Ut
8 (x4, 25, 0} = &, (xz) e (xi )

€

' = [/t
N (X1, Xo, 1) = R (x, )'

The exponential expressions will cancel properly from the equations of motion,
leaving a single ordinary fourth order linear differential equation in 1, (x.):

Mo — (1 4 ) " g = 0, (0




where the constants r, and r, are related to the ratio of the convection speed
U. to the coating shear wave speed C.= \/G/,. as follows:

rnf=1—=% (1 —u)Uz>/C?
(11)
rii =11 — URCEL.

The primes in Eq. (10) indicate differentiation with respect to x,. An equa-
tion identical to Eq. (10) holds for the other displacement, & .

The general solution of Eq. (10) is

o = Ay sinh (aryx.) 4 A, cosh (aryx.) 4 Aysinh (aruxy) 4 A, cosh (arux,) | (12)

where A ---A, are constants, Assuming that the coating is securely bonded
to the rigid understructure, the boundary conditions at the lower surface state
that the displacements must vanish:

En('—h):'ln(_h):()' (13)

At the upper c'irface, the vertical normal stress in the coating must equal the
traveling wave pressure:

ou2 (0) =

2G [on | aE] _
l — !,‘. ax-_r ™ p ax‘ T, — - p ) (14)

A simple and realistic fourth boundary condition is achieved by setting the shear
stress equal to zero at the upper surface:

08 9N _g 4 p—
ox: T on T (19)

Actually, the shear stress at the upper surface does not vanish but instead must
equal the fluid shear stress in the boundary layer at the wall, 1. However,
ty is small, and the fraction of 1 assigned to any given traveling wave
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must be very small indeed. Hence this refinement is not considered to be nec-
essary for an accurate calculation of the admittance of the coating.

Equations (13), (14), and (15) are sufficient to define unique values
of the four constanis A; in Eq. (12). Since we will ultimately be concerned
with velocities at the upper surface, it is convenient to give the solutions in
terms of the admittances Y, and Y,, defined as follows:

Y, = _.L(ﬂ)
p at =0
(16)
4 ot /z.=o

The negative sign in the definition of Y, is traditional, Unfortunately, the
admittances, although defined as ratios, are not dimensionless. It will be con-
venient to use the dimensionless group (p. C.,Y), whichis a function of the
dimensionless parameters r,, r,, and («h). The normal admittance is
given by the expression

pCo ¥y = —irn (U,/C)*

= (17)
2 (1 +rA)YA 4 Ay

The constants A, and A, have been incorporated into Eq. (17), but the
expressions for A, and A, are rather lengthy. If we adopt the short no-
tation

Ci = cosh ((lr,'h)
fori=1,2, (18)
Ti = tanh ((lr,'h)

then A, and A, may be written as follows:

l—rnrT To—Y2 (1 +r°) (1 —T,°)C,/C.
T.—nrnrT,

Ay =

(19)
(1— Ay T.) C./Cy — Vo (1 + 1) )

T,

A|=




In the limit as (ah) approaches infinity, T, and T, approach unity.
By inspection, we see that A, will approach unity and A, becomes

- % (+r’). From Eq. (17), the admittance will approach the limiting value

—ir (U./C,)? )
driry— (1 4r?)*

pCo Yy (%) = (20)

The denominator of Eq. (20) becomes zero, giving infinite Y,, ata speed
ratio (U./C,) varying from 0.874 for u = 0 to a value of 0,933 for p = 0.5,
For speeds less than this critical value, the denominator is positive, and Eq.
(17) predicts in general that Y, will be a pure negative imaginary quantity
for any subcritical speed.

Equation (17) applies for a coating which is perfectly bonded to the un-
dersurface, i.e., it satisfies Eq. (13). If one relaxes this condition, a much
simpler expression for Y, results, as shown by Kaplan,'' Instead of being
bonded, we could postulate that the coating slides without shear along the lower
surface, satisfying the following conditions:

=08 (_py=
n(—h) =< (—h)=0. (21)

oX.

The use of Eq. (21) instead of Eq. (13) gives a much simpler normal ad-
mittance, which we term the ''shearless' coating result:

—i’l (U:'/C'"):G .
driry/Ty— (1 4+ r*)*/T,

p« Cu Y, (shearless) = (22)

Clearly, the limit of Eq. (22) as (ah) approaches infinity is identical to
Eq. (20) for the bonded coating. In general, for a given subcritical speed,
there is no great difference between the bonded and the shearless coating over
the entire frequency range, as Fig. 2 shows, using p = 0,5 as an approxi-
mate value for natural rubber. As Fig. 2 indicates, the shearless admittances
at low frequencies are about twenty per cent higher than the bonded values.

The high frequency asym .'otes are identical.

The tangential admittance Y, as defined inEq, (16) mayalsobe calculated.
The result for the bonded coating is

-~
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— (U./C,) (nr: Az + Ay)

PuCnyfz "
2rrnAz+ A, (1 4+ 1)

(23)

where A, and A, are again defined by Eq. (19). Once again a simpler
expression results for the '""shearless'" coating:

—(U./C) Rryro— (1 4+ r*) T./T)) : (24)

px C. Y, (shearless) =
drir; — (1 4+ r*)* To/T,

As before, the admittance is slightly larger for the shearless coating as-com-
pared to the bonded value. Figure 3 compares the tangential and normal admit-
tances for ;he shearless coating for u = 0.5. The asymptotic values of Y,
are roughly one-half of the asymptotic magnitude of Y, for the same speed
ratio. The tangential admittance suffers a singularity at the same "critical"
speed ratioas Y,, aslisted in Table 1.

Table 1

MINIMUM SPEED RATIO FOR AN ADMITTANCE SINGULARITY TO OCCUR

Poisson's Ratio Minimum (U,/C,)
0.0 0.8740
0.1 0.8913
0.2 0.9052
0.3 0.9162
0.4 0.9252
0.5 0.9325

10




As we shall see in the next section, the evaluation of Eq. (6) for a rea-
sonably thick coating (of the order of the boundary layer thickness) depends
only upon the asymptotic values of Y, . Figure 4 shows the magnitude of these
asymptotic admittances for subcritical speeds. Note that, for low speeds, the
asymptotic admittances vary linearly with speed ratio.

ADMITTANCE SOLUTION FOR PLANE STRAIN

The previous theoretical admittances, Eqs. (17) through (24), are de-
rived for the assumption of plane stress (zero stress inthe z direction).
The analogous solution for plane strain (zero z displacement) was given by
Tokita and Beggs,? following a somewhat more complicated analysis, using
the three-dimensional wave equation which results from the definition of the so-
calleq "displacement potentials.'" The boundary conditions used were Egs. (13)
and (15), that is, a tightly bonded coating, An exact expression for the admit-
tance was not given but can easily be calculated from equation (7b6) of Ref. 25,
The parameter r, is the same as for plane stress, but the quantity r, is
slightly different. That is,

i =1—Uz2/C.
(25)

I‘l’” =1 l/z-i-:—zi)— U,.:"/C,.." ’

(1 —p)

where the asterisk is included in r’l" as a reminder that it is the plane strain
value. Using this notation, the exact expression for the normal admittance for
plane strain in a bonded coating is

Pa C;; Y" =
(26)
_ir® (UJC)* (Ty* —r* ry Te)

ar*ry (1 —n*re T 1) — (L r#) (n*ro =T * Ty) —4n*ry (1 4+ 122)/C* Gy '

where T, and C, are as defined in Eqs. (18). Figure 5 compares values

of Y, from Eq. (26) to equivalent values for the plane stress case, Eq.

(17). For a given speed ratio, the plane strain admittance is somewhat smalier

and has a lower asymptote. The high frequency asymptote of Eq. (26) is
—in*(U./C,)*

),C,,Y,,(GC = (27
I ‘ dri*ry— (1 4 r?)* ' )

which is identical in form to Eq. (20) for the plane stress case. Table 2 gives
a comparison of these asymptotic values.

11




Table 2
ASYMPTOTIC NORMAL ADMITTANCES (paCu Yu () /iy FOR p=05

u./c, PLANE STRESS LANE STRAIN
0.2 - 0.1374 -0.1031
0.4 - 0.3038 -0.2282
0.6 - 0.5676 -0, 4232
0.7 - 0.8118 ~0.5950
0.8 - 1,3406 -0.9302
0.85 - 2,0189 -1.2926
0.9 - 4.6190 -2, 2262
0.91 ~ 6.4855 ~2.6433
0.92 -11,3029 -3.2873
0.93 ~54.1007 -4.4247

Although the plane strainvalues in Table 2 are substantially smaller in mag-
nitude, we shall see that this has no great effect on the wall pressure analysis
which follows. However, since a practical coating construction would probably
be constrained in a manner somewhere in between these two extremes, one can
look upon Table 2 as a measure of the uncertainty involved in a theoretical esti-
mate of the actual coating response to traveling waves.

As mentioned before, Ref. 25 did not attempt to calculate the exact plane
strain admittance as given by Fq. (26). Instead, Tokita and Boggs appro-i-
mated the hyperbolic functions by the first two terms of their Taylor series ex-
pansions. The result was an approximate admittance expic.ssion (equation (7b9)
of their report). In the present notation, this approximation is written as

12




—2ah
e 9 28
G Yo =@ —2) (UF/CF — ) )

where
= 4 a® h*
T atht(3—4p) —4(1—p)

Figure 6 compares the exact admittance from Eq. (26) with the approximate
value, Eq. (28), for the case (U./C,) = 0.5and u = 0,5. Itis seen that
Eq. (28) is accurate only for a small intermediate frequency range. Note that
Eq. (28) fails to predict a constant asymptotic admittance at high frequencies.
The approximate admittance, although apparently rather crude, was used by
Tokita and Boggs in Ref., 26 to predict the mechanical stability (static diver-
gence and flutter) of a compliant coating. Since their calculations were rather
complex and also involved further approximations, it is not clear exactly what
quantitative effect the error inherent in Eq. (28) would introduce into the re-
sults of Ref. 26.

Finally, we may note that, for '"supercritical" speeds (greater than those
in Table 1), all of the admittance expressions possess multiple singularities.
Since Ref. 26 predicts a statically unstable coating at such speeds, no super-
critical calculations were made in this report.

PRESSURE DERIVATIVE CORRELATIONS AT THE COMPLIANT WALL

The chief result of the basic analysis section of this report was to show
that the problem of estimating compliant surface pressure fluctuations reduces
approximately to the evaluation of Eq. (6). The first integral in Eq. (6) can-
not be evaluated until we know the distribution of the correlation function
P (9P’)/3x) in the plane of the wall. The second integral requires knowledge of
the correlation (P 3P’)/(ox. ox.’)in the wall plane. It is the purpose of this sec-
tion to show that these correlations can be reasonably approximated, using the

traveling wave admittance approach.

It is obviously necessary to the admittance approach that we assume that the
turbulent pressure disturbances are in the form of a superposition of many
small traveling waves having different amplitudes and frequencies. This is
certainly not true on an instantaneous basis. That is, turbulent pressure fluc-
tuations suffer by nature a convective incoherence. The disturbances are con-
stantly decaying and being regenerated as they move downstream with a con-
stantly changing convection speed. It is only on a time-averaged basis that the

13
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pressure simulates in any way a sum of traveling waves. Scme evidence of
convective incoherence persists even on a time-average basis. For example,
the convection speed U, is not truly constant but instead varies with the fre-
quency and with the spacing between correlated points. Also, the sharp de-
crease in the pressure correlation with lateral spacing indicates that the as-
sumption of plane traveling waves is not very accurate, even on the average.
However, it is fortuitous that these deviations from ideal traveling wave
behavior do not have a strong effect on the behavior of a compliant boundary,
because, as the calculations will show, the compliant wall responds in an ex-
tremely localized fashion to the pressure disturbances, That is, the correla-
tions needed in Eq. (6) drop off so rapidly with distance that their effect on the
calculation of R in Eq. (6) is confined to a small local region whose diam-
eter is less than a boundary layer thickness. Under these conditions, the con-
vective incoherence, which occurs on a somewhat larger scale, does not cause
any great error in the analysis.,

The normal derivative of P is related to the velocity components through
the normal component of the Navier-Stokes equations:

1 oF_pow o +u 2w () (29)
p | DN ot X1 [oL8

For a 1igid wall, u, and u, both vanish at the wall, leaving only the viscous
term on the right-hand side of Eq. (29). As mentioned before, Kraichnan?!
showed this viscous term to be negligibly small for a rigid wall. However, for
a compliant wall, none of the velocity terms in Eq. (29) vanish, and care must
be taken to ascertain their magnitude. The no-slip condition should still be
valid, so that the fluid velocities at the wall must equal the surface velocities in
the coating, which in turn are related through the admittance functions to the
fluctuating wall pressure. The use of coating velocity instead of fluid velocity
allows us to ignore the interplay between the fluid's mean and fluctuating veloci-
ties - an interplay which has caused erroneous results in stability studies, e.g.,
Ref, 4.

To evaluate the terms in Eq. (29), consider first a single traveling wave
of amplitude P,. Using the admittance concept, one can calculate the ampli-
tude of the normal acceleration at the coating surface:

_3_12‘ = , Y, [oP,. (30)

ot
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In a similar manner we obtain an estimate of the first convective term in Eq.
(29):

o
oxX

uy b= I Y" YI (IP,,: - (31)

Let us denote the dimensionless tangential admittance by the symbol
Y,* = ¢, C, Y,. Then the ratio of these two terms is, approximately:

0 [

LE

al?.,x' - - é’U (32)
Ot

From Fig. 4, Y,* is less than 5 for U,,'C, less than 0.8, while the dimen-
sionless pressure amplitude P,/(p, C,U,) is much smaller than unity. Then,
for a single traveling wave, the first convective term is negligibly small com-
pared to the local normal acceleration. Then, by superimposing a large number
of traveling waves, one arrives at the root-mean-square approximation:

( au2>
Uy ——— —
OX1/ rma = @ (Yt‘ Prm«__) . (33)

(%)
at rms

All available measurements indicate that the root-mean-square turbulent pres-
sure P,., = 0.003 pU,’, where », isthe fluid densityand U, is
the freestream velocity. Thus, the dimensionless pressure in Eq. (33) is a
very small fraction for subcritical speeds, making the first convective term
negligible. A similar comparison of the second convective term to the local
acceleration yields exactly the same order of magnitude estimate as that of Eq.
(33), so that this term is also quite small. Finally, the ratio of the viscous
term in Eq. (29) to the local acceleration is found to be of order c;, the
local skin friction coefficient., Since c¢; for a turbulent boundary layer is ap-
proximately 0,005 or less, the viscous term is also negligible. Clearly, then,
the pressure normal derivative in Eq. (29) is dominated by the lecal normal
acceleration, and an accurate estimate to the first of the two desired pressure
correlations is:
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(34)

To evaluate Eq. (34), we note that, for a single traveling wave, the correla-
tion between P and the normal acceleration would be

s

Ot

P, =iY,0P?. (35)

To generalize this expression to a omplete distribution of traveling waves, we
make use of the space-frequency correlation @' of the wall pressure, which
is the Fourier transform of the space-time correlation R defined in Eq. (4);

R (E n, 10) :f” T(Eqe)e ™ do, (36)

where £, 1n, and t, are the longitudinal separation, the lateral sepa-

ration, and the time delay between the two correlated boundary points, respec-
tively, Utilizing this function I' to generalize Eq. (35), we obtain the fol~-

lowing expression for the first desired pressure correlation function:

poF =---ipf°c wY.Te " do, (37)
oxs —

where Y, is taken to be frequency dcpendent as given by Eq. (17), for ex-
ample, for a bonded coating., Equation (37) is not an exact representation un-
less Y, is given spatial properties to account for the fact that turbulent
pressure disturbances are not purely plane waves. The authors have not at-
tempted to introduce such a sophisticated admittance function into this analysis,
arguing in the previous paragraphs that the '"localized'" behavior of the coating
makes a spatially distributed admittance unnecessary.

Extensive measurements are available for the frequency correlation I',
for the case of a rigid wall, For zero separation, [', reduces to the power
spectrum ¢ = [, (0,0, w). The data of Ref. 18 show that the dimension-
less power spectrum ($o Ur/d 1,2) is essentially a functicn of the
Strouhal number (wd/U.), with negligible Reynolds number effect. Let
¢* and o * denote these two dimensionless variables, Figure 7 shows
the data of Bakewell etal.,' compared with the simple empirical formula

16
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e 0.16

= . 38
1 4+ .012 w*? 4 .0000036 w** (%8)

-

Equation (38) is convenient for the calculations which follow, For example,
the area under the ¢* curve equals the dimensionless mean square pressure,
as Eq. {36) shows. Equation (38) may be integrated exactly to give the re-
sult Ppw = 2.071., which is the commonly accepted experimental value
without a transducer-size correction. Let us now define dimensionless vari-
ables:

P* = P/1,

y* = x./d

I* =T U./(d ) (38)
Y * = pu G Yo/i

t,*=1tU,/d .

In terms of these variables, Eq. (37) may be rewritten in dimensionless form:

fm® t,®

pe PPV _ b YU [ ey apse dos* (40)

a)’*’ Px Cld -

We note from the coefficient of the integral that the correlation must, for a given
value of the ratio (h/ d ), be proportional to the fluid density and freestream
velocity, i.e., the mass flow per unit area past the coating.

In an exactly similar manner, we arrive at a dimensionless expression for
the second desired correlation function:

* */ 2 L] Tm® .
%EI % = (L _LCJL) f w2 Y, e dot (41)
y Px . —®

indicating that this correlation is proportional to the square of the mass flow
past the coating. As the next section shows, the integration is-somewhat com-
plicated by the fact that Y,* and [I'* depend on system parameters other
than simply the frequency o *.
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NUMERICAL EVALUATION OF COMPLIANT COATING INTEGRALS

In carrying out the integrations given in Eqs. (40) and (41), we first note
that the argument of Y _* is not simply * but instead involves the coating
thickness and the convection speed. That is,

Y.* = Y.* (0h/U) = Y, * [w* (h/d) (U, U], (42)

For a given Reynolds number and pressure gradient, the ratio (U, /U.) is
roughly constant, with a value varying from approximately 1.0 for a high
Reynolds number and/or favorable pressure gradient to a value of about 2.0
for a low Reynolds number and/or adverse gradient, References 17, 18, 19,
and 23 give measured values of this ratio for various flow conditions. For a
given flow, then, Eq. (42) shows that the function Y * shifts to the rigat
along the o * axis as the thickness ratio (h/d) decreases. This effect is
sketched in Fig. 8, which compares Y,* for various thicknesses to the re-
mainder of the integrand of Eq. (40). Since, as already noted, Y,* has an
asymptotic constant value, the value of the integrand will approach a constant
distribution no matter how much the coating thickness is increased. In prac-
tice, an increase of the coating thickness beyond (h/d ) = 1.0 has little or no
effect on the integration. Thus, according to the present analysis, a coating
designed for noise attenuation need not be more than the thickness of the bound-
ary layer itself,

The cross spectral density 1° varies considerably with the spacing co-

ordinates £ and 1 . For a rigid wall, Corcos* suggests the following
empirical formula which approximates the existing data:

I*=g*exp[ — (0/U) (+ 01154060y 4i8)], {43)

where the subscript ' ' indicates the rigid wall case. As a first approxima-
tion to the evaluation, we assume that the compliant surface spectrum I
required in Eqs. (40) and (41) is identical to Eq. (43) except that the power
spectrum ¢* has an adjustable magnitude:

d* g = B (1 4+ .012 w** 4 .0000036 w*') , (44)

where B = 0.16 for the rigid wall from Eq. (38). Although this seems to
be a crude estimate a pricri, the calculations which follow show it to be actually
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quite accurate, so thai a second approximation was not needed, Non-dimension-
alizing the separations by the boundary layer thickness, we have the following
reasonable formula:

F‘mmlh)g = ’i"ﬂmllnz exp [ S (J.)‘ (Uz/U«') (a E" + b ']‘ + l E,‘)] ) (45)
where a = 0,11 and b = 0,50, approximately. Equation (40) be-
comes

oPY
p* —— (46)

o« — w* /U. =¥ i *
2__f W Y, ot e o* (U,/U.) (ag* + b y*) cos [w* (1,* — (U./U,) %)) do* .
0

The integration is laborious but easily accomplished on a digital computer.
Note that the integral depends upon only two parameters, which are the coef-
ficients of ® * in the exponential and cosine terms, respectively. For a
thick coating (h>5), Y,* may be taken equal to its asymptotic value. The
maximum value of the integral clearly occurs for zero separation and zero time
delay with a thick coating. This maximum may be calculated exactly if ¢* is
assumed to follow Eq. (44). The result is

ps aPu) =3194 (pU./p,C) Yu* () B, (47)
ay" max

which may be used to normalize the integral in Eq. (46). Figure 9 shows the
resulting normalized correlation as a function of its two parameters. This
normalized space-time distribution is ready to be substituted into the first in-
tegral of Eq. (6) as a contribution to the compliant wall pressure correlation
R.

In an exactly similar manner, Eq. (45) may be substituted into Eq. (41)
to evaluate the second desired pressure-derivative correlation. The maximum

value of this quantity again occurs at zero separation and time delay:

_oP* _aP_*’) = 13175 [(p U./pu C.) Yu* ()]* B. (48)
ay‘ aytl max

Figure 10 shows the second desired correlation normalized by Eq. (48). This
distribution is ready to be substituted into the second integral in Eq. (6).

19
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The evaluation of the two integrals in Eq. (6) is a tedious but straightfor-
ward proposition. All such laborious computations in this report were per-
formed on the IBM 1410 computer at the University of Rhode Island. The in-
tegrals in this case are considerably simplified by the use of polar coordinates
and the symmetry of the problem. Let us consider first the special case

R(0, 0, 0), the mean-square pressure at the wall. Equation (6) after integra-
tion yields

pP*2 = P,* _268QB —23.5Q*8, (49)

where Q = (p U./p: C.) Yo* (). However, we note from direct integration of
Eq. (44) that

P*:—25B, (50)

which we may use to eliminate B from Eq. (49). The result is the following
final estimate’ for the general effect of the compliant coating:

P Pyt (Thick =
p* . . ( )
1+ 1.07Q + 0.94 Q* Coating)

(8

The numerical constants 1.07 and 0,94 are not particularly accurate and a
rounded value of unity would probably suffice for both. For example, by at-

tempting slightly different curve-fits to Fig. 7, both constants can be varied as
much as twenty per cent.

Since the factor Q is negative for subcritical speeds from Table 2, Eq.
(51) indicates that the coating effect is mixed in character. The mean wall
pressure fluctuation is actually increased at low speeds and is decreased only
for near-critical speeds. If we assume an average value of 1.5 for the con-
vection speed ratio U,/U., Eq. (51) may be plotted versus the speed ratio
U, /C, for a given coating. Further let us assume that the coating has a spe-
cific gravity of 1.0 and Poisson's ratio of 0.5. Figure 11 shows the effect of
the coating on the mean square wall pressure in this case for both plane stress
and plane strain admittances from Table 2.

Figure 11, while representing the central result of this study, is very
probably only a qualitative estimate, because of the many approximations en-
countered en route to its derivation. However, this analysis clearly predicts
qualitatively that the coating increases the wall pressure slightly at low speeds
and causes a dramatic decrease at higher speeds. However, the dash-dot
vertical line in Fig. 11 shows the prediction of Ref. 26 that the coating suffers
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a static divergence at Uy, = C,. The accuracy of this static instability pre-
diction is not known, but it appears probable that it will be difficult to achieve
the hoped for reduction in flow noise because of the coating's own instability.

Equation (51) and Fig. 11 are valid for an asymptotically thick coating. A
reduction in thickness would merely modify the constants in Eq. (51). That is,
in general,

— P *:
4+ m Q4 mQ]

where m, and m, are functions of thickness ratio (h/ %), with asymp-
totic values of 1.07 and 0.94, respectively. Figure 12 shows calculated val-
ues of these constants as a function of thickness. It is seen that a thin coating
is surprisingly effective and that there is no point in increasing the coating
thickness beyond h = 3 .

(52)

» It is necessary to check these calculations by computing the power spectrum
in the presence of the coating, since it was assumed in Eq. (44) that ¢ was
identical in shape to the rigid wall spectrum of Fig. 7 and merely scaled up or
down in magnitude. To check this point, we must calculate the autocorrelation
R(0,0,t,) from Eq. (6) and take its inverse Fourier transform. It is sufficient

to consider only the excess of R over the rigid wall value R,, which we may
‘put in normalized form by defining the following factor f:

R (0.0,t*) —R,(0,0,¢,%)

x)
D = 2706,0,0) — R, (0,0,0)

(83)

Some numerical results for f(tf) are compared in Table 3 with the exponential
approximation e~!? %)

Table 3
NORMALIZED EXCESS AUTOCORRELATION FOR A THICK COATING

g

tx £(t*) e-12 t7
0.0 1.000 1.000
0.1 0.296 0.301
0.2 0.086 0.091
0.3 0.034 0.027
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It is seen that the exponential approximation is sufficiently accurate to use
in estimating the shift in the power spectrum, which is easily evaluated for an
exponential:

1

| + (w*/12)* (5

® 121,
Ao ~f e " cos (w* 1,*) dt,* ~
0

This additional power spectrum should be added to #, to account for the
presence of the coating, Equation (54) indicates that the corrected spectrum
should be very similar in shape to the rigid wall spectrum, thus verifying the
assumption made by Eq. (44).

Equation (54) predicts that the compliant coating has the effect of essen-
tially raising or lowering the entire power spectrum curve until the area 'inder
it - the mean-square pressure - equals the value predicted by Eq. (52). How-
ever, at present, it would be nearly impossible to verify this effect experi-
mentally with the transducers now available. For, from Figs. 9 and 10, we
see that the time-averaged effect of a compliant coating is confined to a very
narrow area about the point being studied, with a diameter roughly equal to
one-tenth of the boundary layer thickness. Thus, a transducer capable of
measuring such localized effects would need a shank whose diameter was an-
other order of magnitude smaller, say, one-hundredth of the boundary layer
thickness. Since the smallest available transducer has a shank diameter of
approximately 0.1 inch, it is seen that accurate spectrum measurements would
require a boundary layer thickness of ten inches or greater. Even then, the
coating dynamics would surely be modified by the presence of the relatively
rigid shank protruding through its thickness.

PRESSURE ATTENUATION BENEATH A COMPLIANT COATING

Since the previous analysis does not predict any clearly attainable i..ise
reduction at the upper surface, it is natural to look elsewhere for a practical
solution to the problem. One possibility is the expectation that the pressure
fluctuations at the '"upper' or boundary layer surface might be attenuated
through the coating thickness and be much smaller at the "lower' or bonded
surface.

Returning to the previous traveling wave study, we may define an attenua-

tion factor "F" as a lower-to-upper pressure ratio for any given traveling
wave of the form of Eq. (7):
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FoSu(=f) (55)
20 (0)

The dimensionless factor F should depend upon frequency (« h), speed ratio
(U./C,), Poisson's ratio (n), the type of bond (shearless or bonded), and the
geometry (plane stress or plane strain).

If we confine our attention to the bonded coating in a condition of plane !
stress, the attenuation factor F may be written in terms of the quantities 2
r;,, C;, and T, from Eqgs. (11) and (18), as follows:

F— rnra(UJ/C)*[2C — (I +"::2) C.} . (56)
CCo(Ts—nr.Ty) [2(1-+r?) A+ 4r r: Ay

where A, and A, are the constants given by Eq. (19). At very low fre-
quencies, F is unity, while at very high frequencies F is inversely pro-
portional to C,, that is, exponentialiy decreasing. Figure 13 shows the fre-
quency variation of F for Poisson's ratio equal to one-hcif and for various
subcritical speed ratios. It is seen that the pressure attenuation through the
thickness is much greater at low speeds.

With the frequency distribution of F known, the total attenuating effect of
a bonded coating is determined by simple integraticn over the frequency range.
If P(w) isthe power spectrum of pressure at the upper surface, the mean-
square pressure at the lower surface is given by

muﬁﬁ:zf”m¢mnm. (57)
1]

Since F is afunctionof (ah) and @ is a function of (a d ), the in-
tegral in Eq. (57) depends upon the thickness ratio (h/6 ). If we take # to
be given by Eq. (44), and if F is given by Eq. (56), then Eq. (57) may be
evaluated numerically, The results are shown in Fig. 14, indicating the re-
duction in mean-square pressure beneath the surface 4s a function of speed ratio
(U./C,) for various coating thicknesses. It is seen that even a rather thin coat-
ing will cause a substantial mean-pressure reduction through its thickness,
particularly at low speeds. One also notes that a very thick coeating will give a
dramatic decrease in lower surface pressure level,
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Fig. 1 - Schematic of the Flow Geometry
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Fig. 2 « Comparison of Normal Admittance for the Bonded and
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