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PREFACE

The analytic model described in this Memorandum is the culmination

of several years of research instigated by a request from Logistics

Plans, Headquarters USAF. References 3, 4, 6 and 9 are some of the

earlier publications from this project.

The Memorandum is intended for personnel engaged in implementation

of stockage policies, and for management scientists.



SUMMARY

METRIC is a mathematical model of a bese-depot supply system in

which item demand is compound Poisson with a mean value estimated by

a Bayesian procedure. When a unit fails at base level there is a

probability r that it can be repaired at the base according to an

arbitrary probability distribution of repair time, and a probability

1-r that it must be returned to the depot for repair according to

some other arbitrary distribution. In the latter case the base

levies a resupply request on depot. No lateral resupply between bases

is considered in the model. For high-cost, low-demand items the appro-

priate policy is (s-l,s), which means that items are not batched for

repair or resupply requests. This problem has a simple analytic

solution which is a function of the mean repair times rather than

the repair time distributions.

A practical and efficient computer program has been designed to

show the cost-effectiveness tradeoff for a large group of recoverable

items. In addition to minimizing expected backorders any system

investment, the program can evaluate any distribution of stock and

it can compute the optimal redistribution of stock. No arbitrary

estimates of backorder cost or holding cost are required.

The study includes numerical examples, and discusses the appli-

cation of the model in Air Force contexts.

Preceding Page Blank
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I. INTRODUCTION

This Memorandum employs the same mathematical approach of the

earlier work on a base stockage model (4) and applies it to the more

complex base-depot supply system.

Consideration of this larger problem resolves many of the practi-

cal difficulties of applying any base stockage model. For example,

items in long supply or short supply at the bases and depot are

handled routine', - - redistribution problem. Depot stock levels

are computed that are consistent with the base policy. In other words,

the multi-echelon point of view is a more appropriate and simpler

perspective for supply management.

Recoverable items typically have high cost and low demand. They

constitute an important management problem in the Air Force, accounting

for about j8 percent of the total investment in spares, or approximately

5 billion dollars. Yet from a mathematical perspective they are par-

ticularly simple because a one-for-one replacement policy is optimal

at base level.

Compared to current Air Force policy our technique has the advan-

tage that unit cost is considered in the calculation. But even more

important in our view is the system approach, which displays a range

of optimal cost-effectiveness alternatives to management. Instead of

computing stock levels on the basis of artificial estimates of holding

cost rate and backorder cost, this approach focuses management attention

on the entire weapon system so that an appropriate combination of system

effectiveness and system cost can be selected.

The base stockage policy has been tested successfully at Hamilton

Air Force Base and George Air Force Base. To our knowledge the model

described in this Memorandum is the first multi-echelon, multi-item

model ever proposed for implementation.
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II. GENERAL DESCRIPTION

METRIC is a mathematical model translated into a computer program,

capable of determining base and depot stock levels for a group of

recoverable items; its governing purpose is to optimize system per-

formance for specified levels of system investment. METRIC is

designed for application at the weapon-system level, where a particu-

lar line item may be demanded at several bases and the bases are

supported by one central depot. The support depot may vary by item

as in the item-manager sYsLtm or it may be fixed as in the weapon-

system storage site concept.

PURPOSES

1. Optimization. A major purpose of the model is to determine

optimal base and depot stock levels for each item, subject to a

constraint on system investment or system performance. Optimization

is of prime interest in the early weapon acquisition phase.

2. Redistribution. The model can take fixed stock levels on

each item and optimally allocate the stock between the bases and

depot. Redistribution is a major concern when items are in long

or short supply.

3. Evaluation. The model provides an assessment of the perform-

ance and investment cost for the system of any allocation of stock

between the bases and depot. Evaluation is important throughout the

life of a weapon system.

FEATURES

The technique embodies a number of advantageous features, out-

lined below.

1. Generalization of the RAND Base Stockage Policy. Because

METRIC has the same mathematical foundation as the Base Stockage

Policy (4), implementation experience gained with that policy is

directly relevant to METRIC. In fact METRIC can also be operated as

a single-echelon base stockage model, in which case it supersedes

the earlier computer program.
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2. Incorporation of anticipated program requirements. The model

uses past data, but combines them with estimates of future program

requirements to anticipate buildups or phase-outs.

3. Use of initial-estimate data with or without demand data.

METRIC enables a smooth transitioti from initial support planning to

follow-on provisioning, by allowing for the incorporation of a general

demand-prediction procedure. The procedure uses initial estimates in

combination with demand data when available.

4. Simplification in aaalyzing alternative support postures.

The impact of different maintenance policies or pipeline times on the

supply effectiveness for the weapon system can be readily evaluated.

5. Management capability to provide different levels of support

effectiveness depending on the weapon system. Management can examine

the effect of varying degrees of support depending on the mission

importance of different weapon systems.

DATA REQUIREMENTS

The list of METRIC input data below includes symbolic notation

for parameters that are referred to in subsequent mathematical deri-

vations. The subscripts indicate Item i and Base j, but will be

omitted in contexts where the meaning is clear.

By System

q -- Variance to Mean Ratio of Demand. This will be discussed

in Sec. III under the heading, 'Demand Prediction."

Optimization Targets. These are expressed as system investment

in dollars or expected backorders per item. Alternatively, a ratio

of backorder cost to holding cost rate can be used if a reduction in

computer time is desirable.

,By Item

Stock Number or Identification.

D. -- Average Depot Repair Time. This is the average of the
i

time required for a reparable carcass to be shipped from base to depot
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and repaired at depot. (To be precise we should also subtract the

average of the time between placement of an order at base and receipt

of the order at depot.)

c. -- Unit Cost.
1

M -- Initial Estimate of Mean Demand.

w-- Uncertainty of the Initial Estimate. This will be dis-1

cussed in Sec. III under the heading, "Demand Prediction."

n. -- Number of Squadron-Months of Demand Data (or Aircraft-

Months).

u. -- Demand Observed Over the Time Period n.

Total Stock for Redistribution.

By Iten and Base

r ij-- Average Fraction of Units that are Base Reparable.

A.. -- Average Base Repair Time.

ij -- Average Order and Shipping Time. This is the average

time between placement and receipt of an order at the base when the

depot has serviceable units on hand.

E.. -- Essentiality. This is the relative cost of a backorder

on Item i at Base j compared to a backorder on some standard item.

a.. -- Program Element. This reflects the anticipated change

in the level of operations for each item and base; e.g., if the flying

hours are expected to double over the next six months, say, this factor

would probably be estimated as two.

Stock for Evaluation. This is a set of stock levels, one level

for depot and one for each base.

Minimum Stocks for Optimization and Redistribution. The program

will accept minimum levels for each base, the depot, and the system

before optimization or redistribution is performed. In the standard

case where the minimum levels are zero, irut of minimum stock levels

is not necessary, The section entitled "Application" describes how

the minimum stock feature can be utilized.

Maximum Stocks for Optimization and Redistribution. In the

standard case where the maximum levels are unconstrained, input of

maximum levels is not necessary.
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The compuLer program has been designed to minimize data-input

requirements and to facilitate sensitivity testing. On the item data

cards there are codes from 0-9 for the average base repair fraction,

the average base repair time, the average order and shipping time,

the essentiality, and the program elements. A particular code iden-

tifies a set of numbers, one for each base. Thus each parameter can

be made to vary by base and item. Similarly, there are codes from 0-9

for average depot repair time and uncertainty. Each code identifies

a number so that each parameter can vary by item. Sensitivity testing

is simplified because only the meaning of the codes need be changed,

not the item data cards themselves.
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III. STRUCTURE OF THE MULTI-ECHELON PROBLEM

MATHEMATICAL ASSUMPTIONS

We shall state the general assumptions of the model, realizing

that none is exactly true, but believing that all are reasonable

approximations.

System Objective of Minimizing the Expected Number of Backorders

The objective will be to minimize the sum of backorders on all

recoverable items at all bases pertinent to a specific weapon system.

Thus, unless all bases are identical, the expected number of back-

orders will vary by base.

An alternative objective would be to specify an expected number

of backorders for each base. The METRIC computer program does not

provide this alternative objective as an option, but the mathematical

procedure is described under "Multi-Echelon Theory," below, and a

limited capability to employ this alternative is included in METRIC.

We should emphasize that depot backorders are not explicitly considered

under either objective. Depot backorders are of interest only insofar

as they affect base backorders.

Let us define the backorder objective. Take a fixed period of

time and add together the number of days on which any unit of any

item at any base is backordered. Dividing this number by the length

of the period and taking the expected value of the statistic yields

a number that is independent of the period length. This is the value

we seek to minimize. Under this criterion, a base backorder lasting

ten days is as serious as ten backorders lasting a day apiece.

It is important to stress that our definition of backorders differs

from Air Force parlance. Under our definition, a backorder exists at

a point in time if and only if there is an unsatisfied demand at base

level, e.g., a recoverable item is missing on an aircraft. Note that

this condition can arise even when the base has a positive authorized

spare stock for the item, because at a point of time all spares may be

in the base repair process or in the depot resupply process.
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In an earlier RAND Memorndum (4) which dealt with base stockage

only, we considered other objective functions, viz., fill rate, ser-

vice rate, ready rate. and operational rate. Under conditions of

identical average repair times for each item, we displayed an example

in which the resulting stockage policy was nearly independent of the

choice of objective function.

This is not true, however, in a base-depot supply system. For

example, fill rate -- defined as the fraction of demands that are

immediately filled by supply when the requisitions are received --

concentrates nearly all stock at the bases. The result is that when

a nonfill occurs, the backorder lasts a very long time.

Similarly, fill rate behaves improperly in allocating investment

at a base when the item repair times are substantially different.

Consider two items with identical characteristics except that one is

base-reparable in a short L. ý, and the other is depot-reparable with

a much longer repair time. Assume that our investment constraint

allows us to purchase only one unit of stock. In that case, the fill

rate criterion will select the first item, and the backorder criterion

the second.

Fill rate possesses an additional defect. A fill is normally

defined as the satisfaction of a demand when placed. But if we allow

a time interval T to elapse, such as a couple of days, on the grounds

that some delay is acceptable, the policy begins to look substantially

different. As longer delays are explored, the policy begins to resem-

ble the minimization of expected backorders.

Ready rate -- defined as the fraction of items which are not in

a backorder condition -- seems to be inappropriate because it does not

measure the number of units backordered on an item. Operational rate --

defined as the probability that k. or less aircraft have a supply short-

age at Base j at a random point of time -- is not very flexible. For

example, it is difficult to give essentiality an economic interpretation

here. Operational rate also requires the analyst to supply a set of kJ

values.

In summary, the backorder criterion seems to be the most reason-

able. The penalty should depend on the length of the backorder and

the number of backorders; linearity is the simplest assumption. This

is the criterion function most often employed in inventory models.
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Finally, experimentation seems to indicate that a policy which mini-

mizes the expected number of backorders provides good results with

respect to other criteria, but the converse is not necessarily true.

Expected number of backorders does have one drawback when compared to

fill rate in that it is harder to measure objectively in an appli-

cation. An estimate of backorders can be obtained by counting the

number of backorders at a random point in time, but it may be difficult

to prevent nonrandom phenomena from contaminating the estimate.

In our earlier single-echelon work we used service rate defined

as Il-E (expected backorders on item i with stock s.)/(X expected
1

backorders on item i with stock 0)1. The analogous multi-echelon

measure would be obtained by substituting in the numerator for the

base stock level si, a vector of stock levels for each base and the

depot; in the denominator for the base stock level 0, a vector of 0

stock levels for each base and the depot. Since the denominator is

independent of the stockage policy and the numerator is the expected

backorders, the allocation obtained from service rate is identical

with that resulting from expected backorders. We prefer backorders

to service rate (or backorder rate) because the service rates of

interest are so near one. With zero stock levels at each base and

depot, the denominator is extremely large and not particularly rele-

vant.

Compound Poisson Demand

We assume that demand for each item is described by a logarithmic

Poisson process, a member of the compound Poisson family. Compound

Poisson processes are generalizations of Poisson processes; the com-

pound processes allow the flexibility of incorporating more parameters,

yet retain the simple analytic properties of the Poisson.

The logarithmic Poisson is obtained by considering batches of

demand where the number of batches follows a Poisson process and the

number of demands per batch has a logarithmic distribution. Our

earlier work employed the geometric Poisson, still another member of

the compound Poisson family. The switch is occasined by the fact
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that the state probabilities -- the probability of n demands in a

time-interval of specified length t -- for the logarithmic Poisson

process are negative binomial, and these are particularly convenient

to compute. FurtLiermore, for variance to mean ratios less than three

(our range of interest in this application), the state probabilities

For the two distributions are almost identical. A thorough discussion

of discrete compound Poisson processes is given in Sherbrooke (9).

In particular, it is shown that if customers follow a Poisson process

with mean k per time period, and each customer can place a number of

demands that are independently and identically distributed as a

logarithmic distribution so that the compound Poisson demand process

has variance to mean ratio q, then the probability of x demands in the

time period has the negative binomial distribution

( (k+x-l)! _ x=0,1,2... ,(1 ~ ~ ) (k- I)! . qx k+x q>l,k,-O

q

where X = k(In q). Defining the mean as 6, we find 8=k(q-l), where

q is the variauce to mean ratio. Although the negative binomial

distribution is a function of two parameters, we shall only indicate

the conditioning of p(xi.) on the customer rate X, because q maintains

a constant falue on any particular item.

Demand is Stationary over the Prediction Period

It is assumed that the distribution of demand over some future

period of interest, such as six months, is stationary. Of course,

program element data can be used to reflect a change in the level of

operations from the data period.

Although this assumption may seem very restrictive, we should

point out that the compound Poisson demand model in conjunction with

a Bayesian probability distribution for true mean demand enables us

to represent fairly complex demand patterns over a prediction period

of arbitrary length.
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Decision on Where Repair Is to Be Accomplished Depends on the Com-
plexity of the Repair Only

The assumption is that the decision to repair a unit at base level

or send it to the depot is a function only of the type of malfunction

and the baae maintenance capability. Whenever possible, repair is ac-

complished at base level irrespective of maintenance workload. In a

study by Weifenbach (10), shipments to depot because of shop backload

accounted for only .3 percent of 10,965 reparable generations.

Lateral Resupply is Ignored

When a unit is shipped from base to depot for repair, a service-

able replacement will be resupplied from the depot if possible. If

the depot has no unit on the shelf, the base must wait until a unit

emerges from depot repair.

For the purposes of determining base and depot stock levels, the

model ignores the possibility of lateral resupply between bases in this

case. This appears to be appropriate for setting levels because the

number of lateral shipments is typically small and they are apt to

induce special costs of expediting. When lateral resupply is ignored,

transportation costs between bases and between bases and depot are not

needed because the total transportation cost is not a function of the

stockage policy.

System is Conservative

Consider a particular stock item demanded at Base j. We assume

that a uniE of stock has a probability r. of being reparable at
j

Base j, with a repair time drawn at random from a base repair distri-

bution with mean A.; a probability (l-rj) of being depot reparable,

with an order and shipping-time distribution having mean 0. and a
depot repair distribution having mean D. This implies that there are

no condemnations or that the system is conservative, as the name

"recoverable item" suggests. Of course, our data do show some con-
demnations, but these are typically less than five percent of the

reparable generations. A higher condemnation rate usually indicates
that the item should be redesigned. The condemnation rate must be

Cotdetonations were found to account for 4.1 perLent of 10,965
reparable generations in a study by Weifenbach (10).
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considered for procurement purposes, but the procurement process is

not considered in the METRIC optimization. If the procurement process

were included explicitly, the cost of placing a procurement at depot

level would be needed as well as the condemnation rate to determine

the procurement frequency and quantity.

The Depot Does Not Batch Units of a Recoverable Item for Repair Unless
There is an Ample Supply of Serviceable Assets

The model assumes that depot repair begins when the reparable

base turn-in arrives at tne depot. This appears to be a reasonable

approximation to current depot scheduling practice. Furthermore, an

earlier RAND study (8) concluded that such a depot repair policy

leads to minimum cost.

In the absence of priority information, the stockage model sug-

gests a natural repair scheduling policy. Since METRIC economizes

by buying fewer high-cost items, these are the items which are most

likely to be in short supply. Therefore, the higher-cost items should

be scheduled into repair first.

In those few cases where setup cost is an important factor and

demand is reasonably high, so that some batching is indicated, the

estimate of depot repair time should include the average waitiaig time

before depot repair is initiated.

Recoverable Items May Have Different Essentialities

METRIC will accept relative backorder costs or essentialities by

base and item. Suppose we define the standard essentiality on Item I

at Base I as I. Then if Item i at Base j is estimated to have an

essentiality relative to the standard of k, the correct allocation

is determined when backorders at Base j for Item i are multiplied by

k. This is shown at the conclusion of the section entitled 'Multi-

Echelon Theory," where essentiality variations by base are discussed

in some detail. Essentialities may vary by item, but as a first

approximation over the class of recoverable items it seems reason-

able to assume that all items have equal essentiality.
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Demand Data from Different Bases Can Be Pooled

We assume that demand from the several bases can be pooled in

some manner so that a composite initial estimate of demand per flying

hour (or any other prograim element) can be obtaioed. The pooled estimate

can be obtained by a simple averaging technique or a more sophisticated

procedure such as exponential smoothing. METRIC multiplies this number

by the flying hours per month for each item. Of course, the number of

flying hours per month will vary from base to base for which purpose the

program elements, a.,, are provided. Note that if on a particular

Item i, ail is twice as large as ai2' say, then the estimate of mean

demand is twice as large at Base I. If we believe that a doubled flying

program will produce less than a total of twice as much demand, then

a il should be less than twice ai 2 .

The program element is allowed to vary by item as well as by base

to cover cases where some items are applicable only to a portion of the

aircraft fleet.

MULTI-ECHELON THEORY

We shall limit our discussion to the two-echelon, base-depot

problem, since the extension to more echelons is an obvious conse-

quence. Demand is assumed to be represented by a compound Poisson

proc, 3s. For purposes of visualization, the compound Poisson can be

thought of as a series of customers following a Poisson process, each

of whom can demand an amount that is independently and identically

distributed according to a compounding distribution. Until further

notice we consider one item stocked at J bases, with known mean

customer arrival rates, X.,j=l,2...,J. The next section considers

the case in which the X. are unknown.J
When a customer arrives at a base to place one or several demands,

he turns in a like number of reparable units. It is assumed that with

probability r. these units can all be repaired at base level and withJ ,
probability l-r. they must all be shipped to the depot for repair.

*J

This assumption leads to the analytic simplification that the
steady state probabiliLies are compound Poisson. For compound Poisson
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Under these assumptions the customers from Base j who arrive at the

depot are described by a Poisson process whose mean is 1-r. times

the mean of the Poisson customer arrival process at Base j. There-

fore, the total demand at the depot is compound Poisson, with mean

customer arrival rate Ejl-r.). Letting fj be the mean demand per

customer at Base j, we find that the mean depot demand rate is

•j f (l-r.)=•Il-r')3 where e. is defined as the mean demand at

Base j.

Although the depot demand process is compound Poisson, the depot

compounding distribution, the distribution of demands placed by a

customer, is in general a complicated synthesis of the base compound-

ing distributions. There is no need to specialize our argument at

this time, but we note that METRIC employs a logarithmic Poisson

process. By assuming that all f. f, which implies that demand at each

base has the same variance to mean ratio, though difierent means, we

obtain a logarithmic Poisson process at depot with that variance to

mean ratio. This is an important computational advantage. The

preceding assertions are proved in Sherbrooke (9).

The essence of the multi-echelon solution is the following fact

derived from Eq. (12) of Feeney and Sherbrooke (3). Let s be the

spare stock for an item where demands are compound Poisson with

mean customer arrival rate X, and the resupply (repair) time is an

arbitrary distribution T(t) with mean T. Assume that when a customer

arrives, a resupply time is drawn from Y(t) that is applicable to

all demands placed by that customer. In the case where excess demand

is backlogged, the expected number of backorders at a random point in

time is

variance to mean ratios which are not too large we can justify this
mathematical assumption on the grounds that multiple demands by a
single customer occur infrequently. Thus the resulting state prob-
abilities are nearly unaffected. For example, in a logarithmic
Poisson process with a variance to mean ratio of two, the probabili-
ties that a customer picked at random will place exactly one, two,
or more than two demands are .72, 18, and .10, respectively.

Spare stock is defined as the sum of stock on hand plus on order
plus in repair minus backorders. It retains a constant value under
the one-for-one replacement policy.
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(2) B(s) t (x-s)p(xlXT),
x=s+l

where p(xlXT) is the compound Poisson probability density for a mean

customer rate XT. In the special case where the compound Poisson

process is logarithmic Poisson, p(xIXT) is given by Eq. (1).

We note that the expected number of backorders is a convex

function since

(3) B(s+l)-B(s) =- xý p(xLXT).

The computation of the multi-echelon solution consists of five

stages. (A mathematical justification will be given afterwards.)

1) We must compute, for each base, the average time which elapses

between a base request for a resupply from depot and base receipt of

the unit. This average response time is obviously a function of the

depot spare stock. With infinite depot spare stock, this time is the

average order and shipping time O; with zero depot spare stock, this

this time is O.+D, where D is the average depot repair time. There-
-3

fore, the delay at depot due to the fact that there is not always a

serviceable unit on the depot shelf when a resupply request is received

must be between zero and D. To compute the delay as a function of

depot spare stock, so, we recall that if the expected number of customers

who arrive at depot during a fixed time period is X, then X=EkX([-r.).

If there are s or less units in depot repair, no resupply is being

delayed. But if there are more than s units in depot reýpair, the

resupply on x-s 0 units is being delayed. From Eq. (2), the expected

number of units on which delay is being incurred at a random point

in time is

(4) B(So0 JD) -x sF+ (x-s°0)p(xJXD)

+1
0
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Eq. (4) is the expected number of units backordered at the depot, but

we choose not to use that terminology to avoid confusion with our

objective function, which is the sum of backorders only at the bases.

The total expected system delay over any time period is simply

the expected number of units on which delay is being incurred at a

random point in time multiplied by the length of the time period.

Since we are interested in the average delay per demand, we must then

divide by the expected number of demands over that time period. For

example, if X. and D have the dimensions of customers/month and months

respectively, the expected number of demands per month is U. Thus,

the average delay per demand expressed in months is

E(x-so)p(xjXID)
(5) _ _SoD" - 0()D

where

E(x-so)p(x IXD) B(s0 I XD)
6(s°) = _ D7 - B(OID)

2) For each level of depot stock, so, and each base we must

compute the expected backorders as a function of the base stock s..

This is accomplished by Eq. (2), with the specification s=s., X=kj,

and T=r.Aj+(l-rj)(O+6(s )D).
ii J 1 0

3) For each level of depot stock, so, we must determine the

optimal allocation of the first, second, ... units of stock to the

several bases so as to minimize the sum of expected backorders at

all bases. This is accomplished by a simple marginal allocation.

At each step the next unit of stock is added to that base where it

will cause the largest decrease in expected backorders. From Eq. (3)

backorders is a convex function when mean demand is known. The

Bayesian procedure described in the next section yields a linear

combination of such convex functions with positive coefficients

which, of course, is also convex, thus guaranteeing that the marginal

allocation technique produces optimal solutions.
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4) The two-dimensional table showing expected backorders as a

function of depot stock, s , and total base stock s under optimal

allocation, must be collapsed to one dimension. For each level of

constant total system stock, s +s, represented by a diagonal in the

table, we select the minimum expected system backorders. For item

decisions in Stage 5 we also record the actual allocation of stock

between bases and depot corresponding to each system optimum.

5) Now we consider the multi-item problem. Marginal analysis

is again employed. Using the item backorder functions computed in

Stage 4, the next investment is allocated to that item which produces

the maximum decrease in expected backorders divided by unit cost. This

is similar to the procedure we used in Stage 3, except that there we

were dealing with a single item so that unit cost was not a variable.

However, before marginal analysis is used here a preliminary

convex extension of the functions must be performed because the item

backorder functions are not necessarily convex. This procedure leads

to an optimal solution as shown in the Appendix. After each allocation,

the system investment and system backorders are computed. Allocation

terminates when the investment target is just exceeded or, alternatively,

when the expected backorders are just less than a target value.

Generalization of the Objective Function

We have described a computational procedure. Now we give a

mathematical justification of that procedure while generalizing the

objective function to allow constraints on the expected number of

backorders at each base.

The problem is to minimize system cost subject to the constraints

that expected backorders at Base j not exceed b.. Let 13i.(sio, sij )

be the expected backorders for Item i at Base j when the depot stock

is s. and the stock at Base j is s... Then the problem can be stated:

The possible nonconvexity may surprise the reader. After all,
we know that for a specified level of depot stock the item backorder
functions are convex. However, after Stage 4 is completed, nonconvexity
as a function of system stock may appear whenever the depot stock levels
change.
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1 J
mins

subject to

I
i,13ij (i, si ,j)1bj j=l,2,....J.

According to Everett (2) this problem can be reformulated with

Lagrange multipliers, &j, as:

(6) F = mrin i s j[ i Sj)-bjm
(sij} I i=1 j=o I j=l Li=1

The simpler objective function described earlier is obtained from

Eq. (6) by setting all &. equal.

Since this is a separable cell integer programming problem with

F-EFi, we restrict attention to a single item. Consider a fixed set

of i., and assume that the optimal policy on Item i is to allocate
m m m m

m units according to the vector (s, Sils,..., s )=Sm. A necessary
iJ I

condition on Sm is then

(7) F IrM+l) m - .m+l M+l m m(7) i )-Fi(Si) = c.-sio [sij $-.1 ijiioSij)1 a 0

where m+l m+l M+1 m+l
whrS (s io 'Sil s ) is chosen to minimize

Jl m+l M+l- E jkij io 'sij

j=l > 10 ]

subject to the constraint

J m+l J
s--o ij Zl o i m

j=O i j=O
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In other words for Si to be optimal, any allocation of m+l units must
mn+lad

increase F We have denoted the best such allocation by Si and
i*

this then forms the binding constraint. With the choice of sign in

Eq. (6) each & is negative. Note that L i must have dimensions of

cost. Thus, the absolute value of b£ is the imputed ratio of (back-

order cost/holding cost rate) at Base j where numerator and denomin-

ator are defined for a time period of the same length.

Similarly, the allocation of one less unit of stock results in

another necessary condition on S1m

Jrnim r M-I m-i1 <
(8) F (Sm)-F (Si c - lI (sioSij)-ij(s s.j <
(8) i i ii. i

m-l=. M-1 m-1 sM-1)isco

where Si (so ,Si .. s ) is chosen to minimize

-j]3ij~j(6io 'sij),
j-1

subject to the constraint

J m-l

j=o0

In the case where

Jm-Il<

j-o

we define

'iJ(s iO , si = • for all J.

A sufficient condition for optimality is that the following

function be a convex function of m:

J
,• (M ) m j j S o S j

= . jsosJ
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Convexity assures us that any fixed set of (each bi is non-positive)

defines a unique value of m for item i. Unfortunately, this function

is not necessarily convex. Let us define a new function EV(m) which

lies on the boundary of the convex hull of _'i(m). In other words at

any point where -7(m) is not convex the function is decreased to the

point of convexity in forming the new function Zi(m). At all other

points Hi(m) coincides with -'(m). The optimality of the resulting

allocation is shown in the Appendix. We note that E.(m) is a monotonic

decreasing function. This is obvious because the backorders result-

ing from the best allocation of m units plus an arbitrary allocation

of an (m+l)st unit cannot exceed the backorders from the best alloca-

tion of m units.

In order for m to be a solution, w'(m) must equal E.(m) and there-

fore Eqs. (7) and (8) can be rewritten as

F (?+I -Fi(Sm) c. i->A ini)-gi(m) a 0

(9)
F.(S- ) -.~(n~imlFi(Si)-Fi (Si =- < 0

As a computational matter we note that these constraints can be

incorporated in the five-stage procedure described earlier if each

base backorder function is multiplied by the corresponding known &

before Stage 3 is undertaken. Stage 5 is replaced by the comparison

indicated by Eq. (9).

The Lagrange Multiplier Method generates the set of price attain-

able efficient solutions. Let us relate this to our inventory problem

in Eq. (6). For any set of base backorder constraints, bj, there

exist Lagrange Multipliers, Lj, such that investment cost is minimized

subject to the constraints that base backorders are b9bj._ With a

large number of items each b; can be made almost, but not quite, equal

to b j* The solution generated by the Lagrangian procedure has the

property that no b' can be decreased without increasing investment.

On the other hand it may be possible by combinatorial methods to

Increase at least one b slightly without violating the constraint

- - w- r
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so that the resulting investment is decreased. This solution cannot

be obtained by Lagrangian methods.

With a large number of items the Lagrangian solution will differ

only slightly from the combinatorial solution. Furthermore, the

constraints in our problem are not rigid. They are only approxi-

mations. Our real interest is to display a set of efficient cost-

effectiveness alternatives for which the lagrangian method is sufficient.

A thorough treatment of generalized Lagrange methods may be found in

Everett (2).

The only difficulty with this generalized objective is that the

set of &. corresponding to the specified base backorder targets b

are unknown, and therefore an iterative procedure is required to

find the correct set of J. For this purpose a linear programming

formulation has been proposed by Brooks and Geoffrion (1). The

solution to the resulting J+l by J+l linear program is obtained by

the Simplex Method with an additional "column generating feature."

Although we have been describing optimization, the calculations

above (before convexification) indicate how any fixed set of stock

levels can be evaluated. Since evaluation is not a function of the

targets, no set of &J's is needed.

Redistribution of a fixed total quantity between the bases and

depot is accomplished with the output from Stage 4 after convexifi-

cation. For the generalized objective function, an appropriate set

of &..'s is again needed in Stage 3.
J

Limited Capability to Employ the Generalized Objective Function in
METRIC

To employ the generalized objective function, we would like to be

able to specify targets at each base for the expected number of back-

orders on all units of all items and have METRIC determine the set of

b. and the corresponding stock levels. Obviously if the appropriate3

set of & is known, the problem is trivial. Now we cannot estimate

the cost of a backorder at each base, but suppose that we can estimate
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the cost of a backorder at each base relative to the cost of a back-

order at a particular base. If the holding cost rate is assumed to

be constant across bases, then each &j in the solution set is simply

a constant multiplied by the relative backorder cost at Base j. From

the computational point of view we have reduced the problem of finding

J numbers to the problem of finding one. In our earlier terminology

these relative backorders costs are essentialities, E... As noted

earlier we can have essentialities by item as well as by base, though

let us restrict our attention here to essentialities by base.

For example, in a three-base optimization the user could specify

.5, 1, 2 as the base essentialities on all items and then optimize for

some investment target. METRIC will then allocate that investment and

find the actual Lagrange multipliers, subject to the constraint that

the backorder cost per unit at Base 1 is half that at Base 2, which in

turn is half that at Base 3. The resulting set of L. will be a constant
3

multiplied by .5, 1, 2 where each &j is independent of the multiplica-

tive scale factor in the original choice of essentialities. The user

must specify an investment target, not a backorder target, whenever one

or more E. .Il. This is because the backorder functions, beginning inii

Stage 2 of the five-stage procedure, are multiplied by the essential-

ities to produce the correct stock allocations. After optimization has

been completed, METRIC can evaluate the resulting stock levels to com-

pute the expected backorders.

We are not providing the capability to specify base backorder

targets, though by a judicious experimentation with essentialities,

the same effect can be obtained by the conscientious experimenter.

On the other hand, it is not unreasonable to suppose that relative

backorder costs (essentialities) can be estimated for different bases

though the actual values are unknown.

If essentialities are quite different from base to base on a given

item, the METRIC assumptions may become unrealistic. For example,

METRIC assumes that demands on depot are resupplied on a first come,

first served basis. However, if essentialities vary widely from base

to base, a priority system is obviously in order. In most planning

applications essentiality should probably not vary by base.
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DEMAND PREDICTION

We are primarily interested in computing the probability distribu-

tion of demand over a specified future time period for an item with

an initial engineering estimate of mean demand per flying hour and

perhaps some demand data. Our assumption is that true mean demand for

the period, 9, is stationary but unknown. Demand is assumed to follow

a compound Poisson process where the parameters of the compound Poisson

are known functions of the unknown variable 0. For example, the

METRIC computer program considers a logarithmic Poisson process. The

probability distribution of demand over any fixed time period is

then negative binomial, specified by two parameters, the variance to

mean ratio q and mean 0. We assume that qa•4f for all items where a

and 0 are estimated by maximum likelihood techniques described later.

Our first objective is to show that a Bayesian procedure is of

fundamental importance for all items, not merely low-demand items.

Now, current Air Force procedures produce an initial engineering

estimate of true mean demand for a new item. For the purpose of dis-

cussion we shall assume that this estimate is the expected value or

mean of the possible values for true mean demand as viewed by the

estimator. Actually there is a good deal of ambiguity as to what is

being estimated, but we shall defer this question until later in the

Section.

The naive approach would be to compute the expected backorders

by using the initial estimate. For example, let us suppose that

demand is Poisson and the initial estimate of demand over a unit

time interval is 1. Then the expected backorders under a stock level

of two is, from Eq. (2):

B(2) = (x-2) X .1036.
X.;.

On the other hand, we might believe there is a probability .5 that

the item has a low demand of .5, and a probability .5 that the item

has a relatively high demand of 1.5. Note that the mean initial
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estimate is still 1. When we compute backorders under this assumption

we find:

B*(2) - .5 (x-2) +.5 (x-2) I =.4
B*2 = .1485.

x. X

For the case of Poisson demand and positive spare stock, it is easy

to show that backorders computed from apoint estimate of demand always

understate the correct value when demand can assume more than one

value. This is shown by differentiating B(s) twice with respect to

X, yielding:

(10) ; 2 (s-l-- -> 0 for sk 1.2 2 (x ) (s-1).

Thus for any positive ) and spare stock of one or more, the number of

backorders is a strictly convex function of X and the assertion is

proved. For a spare stock of zero the second derivative is zero,

which means that backorders computed from a point estimate are identi-

cal to backorders computed from a range of estimates.

The fact just stated is also true for probability distributions

like the negative binomial, though difficult to prove analytically.

The discrepancy in the number of backorders computed by the two

methods may be very large. For any point estimate X, the extreme

case is obtained by selecting s sufficiently large so that expected

backorders are approximately zero. Under the alternate method if

there are two possible values of mean demand, 0 and X', with respec-

tive probabilities (X'-X)/X' and X/X', the overall mean is still X;

but as V' increases, the expected backorders with the same spare stock

a approach X.

In summary, unless we are certain of the value of true mean

demand -- an unlikely occurrence -- we will understate backorders by

using a point estimate. The discrepancy may be large and since it

varies by item, the resulting allocation of investment will produce

inferior results. From another point of view, an underestimate of

demand is more serious than a comparable overestimate when expected
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backorders is the objective function. This also implies that a point

estimate of demand provides insufficient information. The obvious

alternative is a Bayesian procedure.

Characteristics of initial Estimates

As noted above there is some ambiguity as to what an initial

estimate is trying to estimate. Is it the most likely value of true

mean demand or mode, the median value, the mean, or something else?

To answer this question we consider in Table 1 some data reproduced

from McGlothlin (7). Now, the distribution of true mean demand is

probably skewed to the right, in which case the mean exceeds both

the mode and the median. Since the McGlothlin data show that initial

estimates are generally much higher than the mean, we can immediately

discard the mode and median hypotheses. Table I displays twelve group-

ings of recoverable items from seven weapon systems. Demands were

underestimates for only one group; it comprises items on the F-106,

whose considerable similarity to the earlier F-102 may account for

the relative closeness of the group of estimates to the observed

demand -- a factor of .78=182.4/234.5. Excluding the Atlas missile

system -- for which initial estimates were seven times too high --

and airframe parts which are primarily insurance-type items, we find

that for the four groups of nonairframe parts the initial estimates

taken as an aggregate were still twice the observed demand. This

tends to confirm the belief that the analyst is not really estimating

the mean demand, but rather some larger number that has a small

probability of being exceeded. Since underestimates are apt to be

more serious than overestimates, particularly in the early stages of

weapon acquisition, such a bias is altogether reasonable when a point

estimate of demand is required.

Estimation of the True Mean Demand Distribution

The problem with Bayesian estimation is that it requires a prior

probability distribution for the values of true mean demand. In

principle, there are at least four ways to obtain this distribution:
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Table 1

RELATION OF INITIAL ESTIMATES TO OBSERVED DEMAND

Avg No. Demand for All Parts Corr. of
No. Flying per 1000 Hrs Estimated
of Hours & Observed

Weapon System Items (000) Estimated Observed Demand

F-105:
Airframe 37 35 73.6 9.3 .09
Non-airframe (A) 25 37 79.5 1 57.) .09
Non-airframe (B) 32 32 129.1 44.8 -. 09

F-106 51 36 182.4 234.5 .01
Atlas:

Airframe 56 6 4 1 a 4 . 6 a 2 . 0 a .16
Guidance 142 1 1 4 b 6 0 . 0 b 7 . 9 b .13

B-66 33 52 72.6 57.6 .67
C-133:

Airframe 31 48 22.0 3.0 .35
Non-airframe 29 50 48.8 21.6 .69

B-52:
Airframe 28 69 30.4 15.8 .21
Non-airframe 33 69 50.4 30.7 .14

F-101/102 23 116 63. 1 47.7 .58
al

Atlas airframe operational experience and demand rate are expressed
in missile months.

bAtlas guidance operational experience and demand rate are expressed

in equipment months.

1) The estimator can sketch it freehand; 2) he can select a best

distribution from a prescribed set; 3) he can estimate a couple of

percentage points of a specified probability function; or 4) he can

estimate the probability distribution of demand, rather than mean

demand, over a fixed time interval. Note that Method 4 is quite

different from the other three methods. In the first three methods

we were concerned with continuous distributions for true mean value,

whereas in Method 4 we are concerned with a discrete distribution of

demand realizations. In Method 4 we assume that the compound Poisson

parameters are known as a function of true mean demand, and that the

distribution of true mean demand is a certain function. Then the

parameters of the prior distribution can be estimated.
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The author believes that one of the above methods should be

adopted by the Air Force where several estimators or groups of

estimators make independent assessments for each item. The author

also believes that i• the interim a procedure is required that incor-

porates the initial estimate data currently available. Let us now

consider such an interim procedure.

Interim Procedure for Estimating True Mean Demand

We shall assume that the initial estimate is the mean of the

true mean demand distribution and the distribution itself is gamma.

The gamma distribution is a two-parameter, continuous, unimodal

distribution defined for nonnegative values and skewed to the right.

Figure I shows a few gamma distributions to indicate the wide variety

of possible shapes. The gamma distribution is given by

iig()= 1 V-le-6/w 0o&<-wVF (v) v,w>O

2
where the mean is vw and the variance is vw . We have assumed that

true mean demand over a unit time period has a gamma distribution.

Now we demonstrate that this implies true mean demand over any time

period has a gamma distribution. This property is desirable com-

putationally because the period of time over which a distribution of

true mean demand is needed will vary from item to item depending on

the time period over which item data has been observed. We shall

return to this point later. Furthermore, without this property our

prior distribution would have three parameters, rather than two,

where the additional parameter would be the one (and only) time period

over which true mean demand was gamma distributed.

The property is easily establish4d. If we are interested in

the distribution of true mean demand over a time period n times as long,

This reproductive property is not peculiar to the gamma dis-
tribution. All continuous probability distributions behave similarly.
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then we require the distribution of ne=X. Since the Jacobian is

1/n, the new probability distribution G(X) is

X v-1 -X/nw 1 1 v-I -X/nw

wVr(v) 1 (nw) V(v)

Note that we did not compute the probability distribution for the

sum of n random observations from a gamma distribution. Rather, we

computed the probability distribution for the n-period mean demand

on an item whose 1-period mean demand uncertainty is described by a

gamma distribution. The true mean demand per unit time is constant

though unknown.

Estimation of Parameters

Since the gamma distribution has two parameters, we need two

estimation equations. We define the parameters v,w for some arbitrary

time period, perhaps six months. Denoting the initial estimate of

mean demand as M. and recalling that the gamma distribution has Piean

vw, one equation is:

(12) M. = vw

Unfortunately, we have no other data for the second estimation

equation. We resort to a hypothesis concerning the variance to mean

ratio of the true mean demand distribution, w. We shall refer to

this value as the prior distribution uncertainty ratio, to distinguish

it from the variance to mean ratio of the compound Poisson demand
*

process. As a first approximation we shall assume that the uncertainty

The lognormal distribution is quite similar to the gamma distri-
bution. Because of the simple transformation from a lognormal distri-
bution to a normal distribution facilitating integration, the lognormal
was used in our earlier work (3). However, we prefer the gamma distri-
bution in this application because the mean value and uncertainty of the
lognormal are complicated functions of the normal distribution parameters.
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ratio is constant across all items. This seems to be a reasonable

assumption, and empirically the resulting prior distributions look

sensible.

Of course, we have not yet specified the constant. In the METRIC

computer program the approach is to calculate the stockage policy for

several values of the uncertainty ratio. This demonstrates the impli-

cations of the assumption on item prior distributions as well as the

system stockage policy. This seems to be a meaningful way of capturing

the subjective judgment of supply personnel. Moreover, from a statis-

tical point of view we can then examine the robustness of our assump-

tions. A stockage policy computed under one assumption can be evaluated

under another.

Our assumption of a constant prior distribution uncertainty ratio

across items is only a first approximation. On the other hand it is

far more reasonable than a maximum likelihood point estimate, which

surely understates backorders. Our procedure has the advantage that

it can adapt to the increasing sophistication of supply managers.

METRIC will accept a different uncertainty ratio for each item if it

can be provided. Or at a later date METRIC can be modified to accept

subjective probability estimates and compute the gamma distribution

parameters.

One technical comment should be appended. It was shown in the

previous subsection that a gamma distribution with parameters v and

w becomes a gamma distribution with parameters v and nw over n time

periods (n not necessarily integral). Thus the new mean is vnw

and the new variance is v(nw)2 so that the variance to mean ratio or

uncertainty is nw over this time period. Therefore, if we estimate

the uncertainty ratio over a six-month period as three, then to be

consistent we should be prepared to estimate the uncertainty ratio

over a year as six.

Combination of Demand Data and Initial Estimates

Suppose we have observed u demands for an item over some period

of time, L. We can construct the prior distribution of true mean

demand over that period, g(8), by the procedure described above. We

combine the two types of information with Bayes theorem:
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(13) 0(elu)
SP (u I 1Vlf_)g('Ddt

remembering that p(uj[O/f)) is a compound Poisson density for u demands

when the mean customer rate is 9/7 or mean demand rate is e. 0(Olu)

is the posterior probability that true mean demand is l, having observed

u demands over the time period L.

The computer approximates the integral in Eq. (13) by a sum.

Five to ten points, 8k' appropriately chosen, are usually sufficient.

Now 0(0k1U) was computed for a specific time period, L, corresponding

to the item data period, but for the computation of expected backorders

in Eq. (2) we need probabilities defined over a period of .ength T,

where T is the aveLage response time. But over the new period the

same O's are appropriate for ekT/L. If in addition we expect a change

in the level of operations (measured by some program element like fly-

ing hours) by a factor a from the data period to the prediction period,

the same O's are appropriate for a kT/L. Since the mean number of cus-

tomers is the mean demand divided by f, the expected backorders during

a period T when u demands have been observed during a period L and

with spare stock s is, from Eq. (2):

CO

B*(slu) .e(91u) • (x-s)p(xl[aeaT/lf])de
Sx-s+l

(14)
cc

•0(Oklu) * (x-s)p(xl[aOkT/Lf'J)
k x&+l

The asterisk denotes the Bayesian function. 0(eklu) is given by the

discrete version of Eq. (13), reducing to g(ek) when there are no

demand data to combine with-the initial estimates. In METRIC p(xi.)

is given by Eq. (1).

For the special case where p(xl*) is Poisson, Eq. (14) can be

integrated to yield
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B*(s1u) - ,(-~~)
X= S

where h(x) is a negative binomial distribution. This result is

well known.

Debiasing the Initial Estimates

As noted above, the initial estimates taken as a group are

usually too high. The amount of bias for the group of items can be

estimated when demand data are also available. METRIC has the

facility of computing this bias and multiplying each initial estimate

by this bias factor. Alternatively, a bias factor can be input to

METRIC.

Estimation of Compound Poisson Parameters

Throughout this section we have assumed that the compound Poisson

is a function of only one unknown parameter. Specifically, METRIC

assumes that demand is logarithmic Poisson, which has two parameters

defined over a specific period, the mean 8, and variance to mean ratio

q. Further, it is assumed that q=oe-+ý where a and 5 are known. It

should be pointed out that ý is inversely proportional to the length

of the period, since the variance to mean ratio q is independent of

time. In other words if $ is estimated as .5 for a six-month time

period, it should be estimated as .25 over a year.

In METRIC we assume that one pair of tO applies to all items.

At first glance this may seem unnecessarily restrictive, but the

reader should recall that it is still a generalization of the Poisson

assumption, which always seems to understate the variability we

observe. Assuming a different q for each item is not a mathematical

problem, but one of statistical estimation.

We have employed maximum likelihood procedures to estimate ot and

Sfrom several sets of data. However, the bivariate estimation appears

to be quite unstable, by which we mean that the likelihood function has

nearly the same value for a wide range of a,5 combinations. For this
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reason we simplified our model by assuming ý=O and applied maximum

likelihood procedures again.

Our data consisted of N equal-length periods of data for a

large group of items. Since each item is assumed to have logalithmic

Poisson demand, the probability distribution of demand during each

period is negative binomial, where the parameters for an item are

constant over the N periods. Letting u, be observed demand on the

i-th item during the n-th time period, the likelihood function is

obtained from Eq. (1):

(k i+U in- 1)! iri (k.+u-l (or-)i
i,n (ka-l)'Uin k+uin

where a is the variance to mean ratio we seek and k. (ae-l) is the1

period mean for the i-th item. The simplest method of evaluation is

to take logarithms and then, for each assumed value of a, compute

the maximum likelihood estimates of each k.. Since the k.'s do not
I I

interact, this computation is straightforward. The value of a that

maximizes the likelihood function is selected.

Kendall (5) shows that for a single item the maximum likelihood

estimate of k is a root of a transcendental equation. Thus a numeri-

cal solution is required in any case.

In the computations we have performed, the estimated variance

to mean ratio has ranged from 1.5 to 2. Our earlier investigations

in the single-echelon case (4) indicated that optimal stockage for a

variance to mean ratio of two is substantially different from what

it is under a Poisson assumption. Section V looks at this sensitivity

for METRIC.

Point Estimates of Demand

In the event that a substantial amount uf data is available by

item, METRIC can utilize point estimates of demand where the uncer-

tainty is then zero. Even when the uncertainty is not close to zero

it may be desirable to compute the stockage policy under this assump-

tion for purposes of comparison.
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IV. APPLICATION

This section considers how METRIC should be applied.

COST- EFFECTIVENESS DECISIONS

When a w•eapon system is first phasing in to the Air Force inven-

tory, optimiZatiOn of stock levels is of interest. As time passes,

however, our demand cstiimares and program elements change, so that

any METRIC computet- run should include evaluation and redistribution

as well as optimization. We remind the reader that by evaluation we

mean the computation of expected backorders for any fixed distribu-

tion of item stocks between base and depot; by redistribution we mean

the allocation to bases and depot of a fixed total stock by item so

that expected backorders are minimized.

Effective decision-making depends on a comparison of these three

alternatives. For example, the decision to redistribute depends on the

increased effectiveness over the evaluated levels and on the cost of

redistribution compared with the effectiveness and cost of new procure-

ment. These are the management alternatives. Of course, they may be

constrained as in the case where no new procurement money is available,

or in the case where increased effectiveness is needed immediately

rather than a procurement lead-time from now.

The point to be emphasized here is that this display of manage-

ment alternatives is more appropriate for decision-making than is a

model that purports to produce optimal decisions continuously. There

can be only academic value in an "optimal" policy predicated on the

assumption that new procurement is possible, when in fact procurement

is constrained.

MINIMUM STOCK LEVELS

METRIC allows minimum stock levels to be specified by item for

each base, the depot, and the system in optimization or redistribution.

Thus if a policy decision is made to stock at least one unit of a partic-

ular item at each base and depot, METRIC can optimize and redistribute
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subject to that constraint. By setting the minimum stock levels

equal to the current stock levels at each base and depot, METRIC can

optimize new procurement subject to the constraint that no redistribu-

tion of existing assets takes place. Or METRIC can optimize without

constraints on minimum base and depot stocks, but with a constraint

that minimum system stock on each item equals the current stock. This

yields the optimal procurement policy subject to the fact that certain

stock is in the system and this stock may be redistributed.

Another application of the minimum stock level option is in

redistribution, when a minimum level of depot stock may be desired

to provide flexibility for contingencies. We expect that the usual

option would be to set minimum stock levels of zero.

MAXIMUM STOCK LEVELS

METRIC allows maximum stock levels to be specified by item for

each base, the depot and the system in optimization or redistribution.

In addition METRIC recognizes a maximum base stock level, depot stock

level, and system stock level which is constant across items.

A particular maximum value on a specific item is then computed

as the minimum of two numbers. This is done to provide item flexi-

bility while preserving a simple mechanism for adjusting all maxima

simultaneously to the smallest reasonable value. This is desirable

because the computer time is roughly proportional to the maximum stock

levels.

CHOICE OF COST-EFFECTIVENESS TARGET

METRIC will accept system optimization targets expressed as

either total dollars of investment or as expected backorders per

item. The system backorders are the sum of backorders at all bases,

whereas the system investment is the sum of investment at all bases

and the depot. The reader should keep in mind that backorders at a

base are simply the sum of all units back3rdered on all items at a

random point in time. Backordered units include those in base repair

as well as those being resuppli~d from depot.
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Selection of an appropriate target value is facilitated by know-

ing investment and backorders under current policy. Since METRIC

can reduce the backorders for the same investment or reduce the

investment for the same performance, it seems reasonable to choose

an intermediate tL'irget that should reduce both backorders and invest-

ment. The specific target should depend on the availability of funds,

the nature of the program, and the degree to which current supply

support is deemed satisfactory.

Some additional insight into an appropriate target can be gained

by remembering that the absolute value of the Lagrange multiplier is

the backorder cost divided by the holding cost rate. As noted earlier,

a Lagrange multiplier can be specified as an alternative target.

THE CASE OF DENAND DATA AND NO INITIAL ESTIMATES

We have concentrated on the case of initial estimates with or

without some demand data. Now let us consider the case in which there

are no initial estimates or the initial estimates are deemed irrelevant.

The RAND Memorandum on the Base Stockage Model (4) dealt only with

the case in which demand data were available, devising a Bayesian prior

distribution to be used on all items. The parameters of the prior

distribution were estimated from the observed data on all items. The

assumption was that before data are collected on an item, our state of

knowledge is the same for all items. Now, of course, this is not

strictly true because to a supply manager the item cost or even the

item name conveys information. For example, we almost always observe

a significant negative correlation between cost and demand, but this

correlation was ignored in our original technique. Another drawback

to that technique was that a data period of a fixed length was needed

for all items.

For these reasons we prefer to treat early demand data as an

initial estimate of mean demand. The prior distribution uncertainty

ratio, i.e., the variance to mean ratio of the gamma prior distri-

bution, should be smaller for items with longer demand history.
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COMMON ITEMS

METRIC will most likely be applied by weapon system, since appro-

riate cost-effectiveness targets and program elements vary from one

weapon system to another. This leads to a problem in the determina-

tion of stock levels for items common to more than one weapon system.

In the event that these common items appear on other weapon systems

located at the same set of bases and at no additional bases, we advise

considering all demands for these common items in the computation for

that weapon system with the lowest backorder/item target.

When many additional bases are involved, we advise estimating

depot stock based on all demands using any reasonable methods. This

then determines the average response time to each base. For these

common items METRIC should be operated in a single-echelon mode,

while for all other items it is operated in the multi-echelon mode.

To operate METRIC in a single-echelon mode for any number of bases

and a particular item, the fraction of units base reparable is set

to one. The average base repair time is set equal to the true

fraction base reparable multiplied by the average base repair time,

plus the true fraction depot reparable multiplied by the average

response time determined above.

ESTIMATION OF THE FRACTION OF UNITS BASE REPARABLE

We would like to point out that if the fraction of units base

reparable is estimated as one, there will be no depot SLC-ck because

it is assumed that there is no depot demand. In some cases this

will be appropriate, but in the early uncertain stages of weapon

acquisition the fraction of units base reparable should pr& ,ably be

estimated to be some value less than one.

ESTIMATION OF THE AVERAGE BASE REPAIR TIME

Suppose that we observe the repair times on a large group of

base reparable items and then use the average as our estimate of the

bi~se repair time. The resulting number will probably be much too

large and dependent on the stockage policy. For example with a large
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inventory on each item there is no particular hurry about returning

P reparable carcass to a serviceable condition.

We are really interested in a standard base repair time for an

item (independent of stockage policy) which reflects a normal repair

time. Our mathematical model assumes that the repair time for each

demand on a particular item is independently and identically distri-

buted. However, in practice, maintenance can schedule repair oppor-

tunistically to improve support performance. As a result, a seven-day

resupply time which fluctuates only slightly from the average can be

expected to provide lower support performance than a seven-day average

base repair time. As an approximation, the base repair time should be

estimated at some lower value.
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V. DETAILED DESCRIPTION OF METRIC COMPUTER PROGRAM, WITH AN EXAMPLE

ORGANIZATION OF THE COMPUTER PROGRAM

This section describes the operation of METRIC, illustrated by

computer output obtained for the F-Ill. For this weapon system we

had data on unit cost and initial estimates of mean demand per flying

hour for 652 recoverable items. Since we ourselves fabricated the

rest of the METRIC input data on these Items for this example, the

specific results are not applicable to tht. provisioning of the F-Ill.

Before turning to the example, some general comments are in

order on the organization of the computer program that will be partic-

ularly relevat., ,o those familiar with the base stockage program (6).

In METRIC each item is processed individually. Items are no longer

aggregated into cost-demand categories because there are many more

item variables in the multi-echelon case. Consequently, the computer

program is substantially slower. On the other hand, there are major

advantages to this redesign. The following is a comparison of the

parameters for METRIC with those for the base stockage program on

the IBM 7040-7044 with a 32,000-word memory.

Base
Maximum Value of Parameter METRIC Stockage

System
Number of line items 10,000 2000
Number of bases 20

Item
Number of depot repair times 10 2
Number of uncertainty codes 10 1

Number of observed demands unlimited 49
Item and Base*

Number of base repair times 200 2
Number of base repair fractions 200 2
Number of order and shipping times 200 2
Number of essentialities 200 1
Number of program elements 200 1

Item Stock
Each base 40 20
Depot 49 --

System 100 --

In METRIC each of the five variables by item and base
is specified by a code from 0 to 9 which references a set of
20 values, one for each base, producing a total of 200 possi-
bilities.
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In the base stockag. program most of the computer time is used

in allocating investment to the items. For example, allocating an

average of k units to each of n items requires an amount of time
2

proportional to kn . Each allocation is preceded by searching a

list of length n, and there are kn such searches. Of course, aggre-

gation helps to decrease the size of n.

In a typical METRIC computation, allocation consumes only about

one-third of the total computer time. Furthermore the allocation
2

time is approximately proportional to n, not n , because the Lagrange

multipliers, corresponding to the solutions, are estimated from a

sample of less than one hundred items. Using this estimate, the final

adjustment to the exact optimum for the entire set of items is obtained

by passing a scratch tape with information on all items a small number

of times. The time to estimate the Lagrange multiplier is nearly

constant, whereas the tape time is proportional to n. As noted under

"Multi-Echelon Theory," allocation begins with zero stock on all

items. An alternative would be to guess the value of the Lagrange

multiplier and start the allocation at that point. However, for the

typical example described in this section, the alternative procedure

would reduce computer time by only two percent.

METRIC is composed of about 900 FORTRAN TV instructions. The

computer time is approximately proportional to the product of (number

of items) x (number of Bayes states) x (number of bases) x (maximum

system stock). In the example below, for the standard case with two

targets and with or without redistribution and evaluation, the computer

required six seconds per item.

EXAMPLE

As noted above, we had data on unit cost and initial estimates of

mean demand per flying hour for 652 recoverable items. We selected

arbitrary values of observed demand over time periods ranging from

six months to a year, by item, for a base flying an average of 1000

hours per month, For the prediction period, our system consists of a

depot and three bases, the bases having average monthly flying programs

of 500, 1000, and 2000 hours, respectively. For simplicity we assumed
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that all base resupply times were .25 months, and that for each item

there was a base repair time of .25 months, a depot repair time of

1.0 months, and a fraction of units base reparable of .5. The minimum

stock levels were zero and maximum stock levels were [0 for each base,

20 for the depot, and 40 for the system. Redistribution and evalu-

ation were not performed.

Many kinds of sensitivity tests would be interesting, and should

be the subject of a detailed investigation. In this Memorandum, how-

ever, we shall consider only two types: 1) sensitivity to the un-

certainty ratio of the initial estimate, i.e., the variance to mean

ratio of the gamma distribution; and 2) sensitivity to the variance

to mean ratio of the logarithmic Poisson demand process. Each type

of sensitivity is examined by comparison with our standard case, in

which the uncertainty ratio over a six-month period was taken as

three and the logarithmic Poisson variance to mean ratio was two.

The targets for the standard case were .10 and .02 backorders/item.

With 652 items, these targets imply that at a random point in time the

expected numbers of backordered units in the system are 65.2 and 13.0.

UNCERTAINTY RATIO OF THE INITIAL ESTIMATE

To indicate the effect of the uncertainty ratio we shall examine

two sample items. For the first item in Table 2 the initial estimate

of demand during a six-month display period, with an average of 1000

flying hours per month, was 9.12. Assuming an uncertainty ratio of 3,

the other parameter of the ganmma distribution from Eq. (12) is then

3.04. A set of seven possible values of true mean demand, 9i, was

selected ranging from 0.81 to 34.40, and the prior distribution was

computed where

g(e)= prob 2 2

The computed mean of the gamma distribution of 9.57 differs from the

true mean of 9.12 because of the discrete approximation to the density

function. One demand was assumed observed during a six-month period
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and the corresponding Bayesian posterior distribution, was

computed. Note that this value of observed demand is much lower

than expected from the initial estimate, so that the posterior dis-

tribution with a mean of 3.88 is quite different from the prior.

The above information for an uncertainty ratio of three can be

compared with the corresponding information for an uncertainty ratio

of one. In the latter case with w=l the value of v must be 9.12.

The posterior mean is 5.84, indicating a greater reliance on the

initial estimate or less uncertainty. However, it is difficult to

compare the two posterior distributions since the e. values are

different. For this reason we have computed p(u), the probability

distribution for the number of demands to be observed in a six-month

period when demand is logarithmic Po3.sson with a known variance to

mean ratio, q. For instance, there is a probability of .135 that

no demands will be observed in a six-month period at a base with

1000 flying hours per month when the uncertainty is three, initial

estimate is 9.12, variance to mean ratio of the logarithmic Poisson

is two, and past demand in six months is one. The probabilities of

zero, one, two, ... , nine, and more thar. nine demands are shown. A

comparison of these two sets of probabilities corresponding to

different uncertainty indicates a substantial difference. Yet the

remarkable fact is that when $18.28 million is allocated among the

652 items under the two different uncertainty ratios, the allocations

are very similar, ditfering by only one unit at depot and one unit at

basce three. Thc amount of $18.28 million is used for comparison

because it yields the target of .10 expected backorders per item in

the standard case.

Similar observations apply to the second sample item in Table 3

for which, by contrast, observed demand is much higher than the

initial estimate. We have purposely chosen two items whose initial

estimates are very different from the observed data. Most items will

show even less difference in allocation under the two uncertainty

ratios.

From the system point of view we can summarize sensitivity to

the uncertainty ratio by Table 4. For example, in the first column
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Tab le 4

SENSITIVITY TO UNCERTAINTY RATIO WHEN
LOGARITHMIC POISSON VARIANCE/MEAN = 2.0

Assumed Uncertainty

31

True Bases Bases
Uncertainty .024 .025

.100 .031 .109 .034
Expected 3 .045 .050

Backorders
per Item Bases Bases

.027 .025
1 .112 .035 .103 .032

.050 .046

Total $18.285 $18.287
Investment Depot 5.781 5.715

(in $ million) Base 1 2.220 2.275
Base 2 3.921 3.953
Base 3 6.364 6.345

Assumed Uncertainty

3 1

True Bases Bases
Uncertainty .006 .006

.020 .006 .023 .007
Expected 3 .008 .010

Backorders

per Item Bases Bases
.007 .006

1 .023 .007 .020 .006
.009 .008

Total $3A.031 $34.070
Investment Depot 9.056 8.760

(in $ million) Base 1 5.272 5.341
Base 2 7.991 8.067
Bare 3 11.712 11.902

NOTE: Uncertainty ratios are defined relative to
a six-month time period.
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of the upper matrix we see the result of allocating stock under the

assumption that the uncertainty ratio is 3. If the true ratio is

also 3 the expected number of backorders is .100 distributed as .024

at Base 1, .031 at Base 2, and .045 at Base 3. Looking at either

row in the upper matrix we find that an incorrect uncertainty assump-

tion leads to an increase in expected backorders/item of about 9

percent (.109/.100 or .112/.103). In the lower matrix, with almost

twice as much investment, the degradation is on the order of 15 percent

(.0231.020). As we have seen earlier, the two uncertainty ratios

can lead to substantially different probabilities, so the small

degradation evidenced here is somewhat surprising and very reassuring.

It appears that correct estimation of the uncertainty ratio becomes

more important with increasing investment. This tends to support

our belief that in the early stages of weapon acquisition, when the

uncertainty ratio is hardest to estimate, the investment targets

should be kept as low as possible to prevent misallocation. This

does not necessarily result in a small range of items on which posi-

tive stock is maintained. In the standard case with a .02 backorder/

item target, all items have positive stock levels; and with a .10

backorder/item target, only nine items have zero stock levels.

We should remind the reader that system investment is the sum

of investments at the bases and depot, whereas system backorders/

item is the sum of backorders/item at the bases. Note that the

fraction of system investment allocated to the depot decreases as

investment increases.

VARIANCE TO MEA1N RATIO OF THE LOGARITHMIC POISSON PROCESS

Table 5 is a display of the system sensitivity to the variance

to mean ratio of the logarithmic Poisson process. The upper left-

hand corner of each matrix contains the standard case, as in Table 4,

*
We believe the relative error is more meaningful than the

absolute error because expected backorders decreases approximately
exponentially with increasing investment.
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Table 5

SENSITIVITY TO LOGARITHMIC POISSON
VARIANCE/MEAN WHEN UNCERTAINTY RATIO = 3.0

Assumed

0 Variance/Mean

2I

True Bases Bases

Variance/Mean .024 .027
.100 .031 .129 .041

Expected 2 .045 .061
BackordersBakrIers Bases Basesper Item .009 .004

1 .031 .009 .017 .005
.013 .008

Total $18.285 $18.287
Investment Depot 5.781 6.062

(in $ millions) Base 1 2.220 2.509
Base 2 3.921 1 3.700
Base 3 6.364 6.016

Assumed
Variance/Mean

Bases Bases
.006 .009

2 .020 .006 .036 .012

Expected .008 .015
Backorders
per Item Bases Bases

.001 .000

1 .002 .001 .000 .000
.000 .000

Total $34.031 $34.034

Investment Depot 9.056 8.501
(in $ millions) Base 1 5.272 5.795Base 2 7.991 8.118

Base 3 11.712 11.620
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with a variance to mean ratio of two. Based on our maximum likeli-

hood calculations mentioned earlier, this value of two is about as

large as we would expect to observe. The smallest possible value is

one corresponding to the Poisson.

In the upper matrix we see that an incorrect assumption of

variance to mean ratio equal to one produces a 29-percent increase in

expected backorders (.129/.100). By contrast, an incorrect assumption

of variance to mean ratio equal to two yields an 82-percent increase

in expected backorders (.031/.017). In the lower matrix, with almost

twice the investment, an incorrect assumption of variance to mean

ratio equal to one results in an 80-percent increase in expected back-

orders (.036/.020).

Clearly, the logarithmic Poisson variance to mean ratio is an

important parameter. As in the sensitivity tests of the uncertainty

ratio, it appears that correct estimation becomes more important with

increasing investment. By looking at the columns in Table 5 we see

that if backorder targets are specified, rather than investment

targets, the resulting investment is extremely sensitive to variance

to mean ratio.

ITEM DETAIL FOR THE STANDARD CASE

Table 6 displays the allocation for a sample of items in the

standard case, where the uncertainty ratio is three, the logarithmic

Poisson variance to mean ratio is two, and the target is .10 back-

orders per item. The purpose of Table 6 is to show allocation as a

function of unit cost and demand, where the demand value is the mean

of the posterior distribution for a base with a level of operations

one. The first two items were described in detail in Tables 2 and 3.

We also display elapsed depot time, which is the average time delay

at depot due to the fact that the depot does not always have a ser-

viceable unit on the shelf when a demand occurs. Since the average

depot repair time was taken as one month on all items, the elapsed

depot time must be between zero and one.
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Table 6

SAMPLE OF ITEM DETAIL FOR THE STANDARD CAGE
WITH TARGET OF .10 BACKORDERS/ITEM

Stockage

Bases
Item Cost Elapsed

No. ($) Demand Sum Depot 1 2 3 Depot Time

1 922 3.88 15 3 3 4 5 .14
2 1,595 15.42 24 6 4 6 8 .15
3 17,329 1.06 1 1 0 0 0 .37
4 35,370 14.73 10 4 1 2 3 .29
5 159 21.76 40 12 8 10 10 .03
6 444 6.05 21 4 4 6 7 .11
7 84,498 19.09 7 4 0 1 2 .38
8 110,500 3.29 0 0 0 0 0 1.00
9 5,687 .16 0 0 0 0 0 1.00
10 393 .18 6 1 1 2 2 .32
11 3,460 .53 3 1 0 1 1 .34
12 3,200 3.77 11 2 2 3 4 .26
13 29 .91 17 1 4 5 7 .36
14 10,925 6.18 9 3 1 2 3 .20
15 884 7.42 20 4 4 5 7 .14
16 204 5.30 25 3 6 7 9 .18
17 1,402 5.29 16 3 3 4 6 .18
18 48,451 19.09 11 4 1 2 4 .38
19 369 15.35 30 6 6 8 10 .15
20 220 .08 5 1 1 1 2 .31
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SUMMARY STATISTICS FOR THE EXAMPLE

Over the entire group of 652 items, the average unit cost per

item was $3778 and the average predicted demand per item for the

system was 16.10 demands during a six-month period. We remind the

reader that the system consists of three bases with levels of operation

of .5, 1, and 2. Due to the positive correlation between demand and

unit cost in our data, the expected dollar value of daily demand

for the system was $439,000, which is substantially larger than the

uncorrelated product 3778x16.10x652/180=$220,000. Consequently,

the targets of .10 and .02 backorders/item are obtained with invest-

ments of 18.285/.439=41.68 and 34.031/.439=77.58 days of supply.

As noted earlier the absolute value of Lj, the Lagrange multiplier,

is the imputed ratio of the backorder cost divided by holding cost

rate at Base j, where in our example this ratio is constant for the

several bases. The two Lagrange multipliers corresponding to targets

of .10 and .02 backorders/item are -1.577xl0J and -7.194x10 5, re-

spectively. Thus, if we estimate the holding cost rate per year as

.20 (expressed as a fraction of unit cost), the imputed costs of a

backorder per day are (1.577xlO x.2)/36ý=$86.54 and (7.194xlO5 x.2)/

365=$394.19, respectively.
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VI. GENERALIZATIONS OF THE PECOVERABLE ITEM MODEL

In this section we discuss two theoretical extensions of the

recoverable item model, though neither is incorporated in METRIC.

BAYESIAN ESTIMATION FOR THE FRACTION OF UNITS BASE REPARABLE

In METRIC, the fraction of units reparable at Base j on a

particular item, r., was assumed to be a known or estimable constant.

By contrast, true mean demand, base repair time, depot repair time,

and order and shipping time were variables. Let us consider how a

Bayesian procedure could have been used to represent variability in

the fraction of units reparable. As a simple example, assume that

there are two possible values for the fraction of units reparable
(I) _(2)

at Base j for a specific item, r, and r. , with associated probabili-
(1) (2) ] i

ties z. and z. Then the compound Poisson demand process atJ I
depot Ihas a mean

kjl-r. ,
j=l 1

with probability

J •

liz.
j~l ]

where each j"=1 or 2. Since g. may have two values and a particular

depot mean is composed of J such ý j, there are 2 possible values of
J

mean demand to consider. For each particular value of mean depot

demand, Stages 1 and 2 under "Multi-Echelon Theory" would have to

be computed and multiplied by the appropriate probability

fz.
j=l j

Of course, the \, are computed by a Bayesian procedure as well. Thus,
iif there are 10 Bayes states in the approximation for demand and 2
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possibilities arising from rip there are (1Ox2j) required computations.

For a reasonable value of J such as 10 bases, the computation is not

feasible.

A simpler Bayesian computation results when we consider t'?

fraction base reparable to be the same at all bases, though ur'nown.

Suppose there are K Bayes states r() (2) ( Inste

2 calculations of Stages I and 2, this procedure entails only K compu.

tations. Furthermore, this model is probably more reasonable than the

more complicated formulation in which the probability of a large frac-

tion reparable at Base J is independent of the fraction reparable at

other bases. However, we do not believe that the complications of

estimating the Bayesian probabilities for fractions base reparable and

additional computations warrant inclusion in MITRIC.

INCLUSION OF CONDEMNATIONS

One of the assumptions for METRIC is that the system is conser-

vative, which means that there are no condemnations. As noted above,

this seems to be a reasonable approximation for Air Force recoverable

spare parts. However, we shall present the mathematics for general-

izing that assumption.

Cons*dJe a 4Angle item 'tose c..aJeai4.atioa rate it y. ter hr

the fraction of units at base j which are base reparable as before,

but let (l-rj) be the fraction of units either depot reparable or

condemned. We assume equally spaced procurement intervals of T.

Whenever a condemnation occurs, depot stock is reduced, and we suppose

that depot stock is sufficiently large so that the probability of

exhausting depot stock during a procurement cycle is negligible.

The average response time for base J is now a function of time

t because the depot spare stock is a function of time. Generalizing

the expression obtained in Stage 2 of Sec. III yields

T3 (t) w rjAj+(1-r 3 )(0 3 t4(s 0ot)D) O' t'T ,

where b(so,t) is the generalization of 6(s ). Imediately following

a procurement delivery when t-O, the depot stock level is s0 so that



L(so,O)=6-(s ). After a positive tLim t has elapsed, the depot stLck

level will be (so-k), where 0 : k % so, provided that k condemnations

have taken place. Under the assumption that all demands by a particu-

lar customer are either base reparable, depot reparable, or condemned,

the probability distribution of condemned items is compound Poisson

with a cuatomer rate Xtly. As noted earlier we assume that the prob-

ability of more than s condemnations is negligible, but we obtaino

a better approximation to the delay if we assume that in such cases

the depot spare stock is zero. Generalizing Eq. (5) yields

A (s, BOX) F B(So-kIXD)p(klkty)+B(OIXD) , p(kllty) Ott..T

s ) B(O•XD) ko k=so

1 o

- B(o X-D) F, B(so-kIXD)p(klhty) + p(klXt-y) 0--t -T.
I k =O I k o

The expected bnckorders at base J with a base stock level sj fs

then a function of t:

B(sj1 % jTji(t)) 0%t "-; T

We are interested in the time average of this statistic which can be

approximated by evaluating the function at several points tl,t2 .... tn

in the interval O,i and averaging the result. This function general-

izes Stage 2 of the multi-echelon procedure described in Sec. III.
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APPENDIX

Theorem Let h"-l(mi) be a monotonic decreasing function with a finite

lower hound defined for mi=0,l,2, . . . . Define El(mi) vn the boundary

of tie Convex hull of !i(mi) such that -i(mi)%~i(mi). Suppose the

objective is to find tile IF which

(A. I) min ,Lcim +ýi(m1 )] mi=0 , 1 ,2 ...
[mtj i

where the tc J are nonnegative and not all zero. Then unique optimiz-

ing [ij arc determined by

- i (m-)
(A.2)

C I + - - m, - 7m -i < o

Proof Since the objective function in Eq. (A.1) is a sum of independ-

ent functions for each item i, we can disregard the summation sign

and deal with a single item. We shall begin by showing that when

in Eq. (A.1) is replaced by j, Eq. (A.2) '..s a ,nique optimal

solution. Then we shall demonstrate that this solution is also

appropriate for I.i"

It is clear that if d•i exist which satisfy Eq. (A.2), then

Eq. (A.1) is solved for-H'. Define E'(-l)-a. We use the fact that

a monotonically decreasing sequence bounded below has a limit. This

shows that Eq. (A.2) has at least one solution for any nonnegative

value of ci. But Eq. (A.2) implies that the set of points -. (;ni1 ),

-H'(mi). and Hi(Fi+l) is strictly convex. Since the function is

convex, m is unique.

Consider any point mi at which E was decreased to form -'"i"
The value of XI(mi) lies on a secant line so that Hj(mi+l)-Hj(mi)=

-(mi-l). And thus, the artificial point mi cannot satisfy

Eq. (A.2). Replacing Z-i(m ) by "Y(mi) can only decrease the minimum

in Eq. (A.l), but as we have just seen any mi satisfying Eq. (A.2)

implies that at point ( solving the original problem.
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In other words if Eq. (A.1) is mirjimized for aL'J and then ealch

is artificially increased at some values raim mi 2 ... not coinciding

with the solution .i, the original solution is obviously unaffected.
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