CHARACTERISTIC EQUATIONS FOR A SUPERSONIC FLOW PROBLEM WITH MAGNETOHYDRODYNAMIC EFFECTS

F. C. Loper and M. B. Lightsey
ARO, Inc.

January 1967

Distribution of this document is unlimited.

PROPERTY OF U. S. AIR FORCE
AEDC LIBRARY
AF 40(600)1200

ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE
NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.
CHARACTERISTIC EQUATIONS FOR A
SUPERSONIC FLOW PROBLEM WITH
MAGNETOHYDRODYNAMIC EFFECTS

F. C. Loper and M. B. Lightsey
ARO, Inc.

Distribution of this document is unlimited.
FOREWORD

The work reported herein was sponsored by Headquarters, Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 65402234.

The results of research presented were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee, under Contract AF40(600)-1200. The research was conducted from December 1, 1965 to August 5, 1966, under ARO Project No. BB3501, and the manuscript was submitted for publication on September 21, 1966.

The authors wish to express their thanks to R. A. Kroeger, who monitored the research, and to C. H. Link, Jr., whose consultation was most valuable.

Publication of this report does not constitute Air Force approval of the report's findings and conclusions. It is published only for the exchange and stimulation of ideas.

Marion L. Laster
Aerospace Engineer
Research Division
Directorate of Plans and Technology

Edward R. Feicht
Colonel, USAF
Director of Plans and Technology
ABSTRACT

A derivation of the characteristic equations for supersonic inviscid flow with magnetohydrodynamic (MHD) forces present is given for the two-dimensional and axisymmetric cases. Workable forms of the equations relating the MHD effects are indicated for the axisymmetric problem.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>v</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. CHOICE OF VARIABLES</td>
<td>2</td>
</tr>
<tr>
<td>III. DEFINITION OF THE CHARACTERISTICS</td>
<td>4</td>
</tr>
<tr>
<td>IV. DERIVATION OF THE CHARACTERISTIC EQUATIONS</td>
<td></td>
</tr>
<tr>
<td>4.1 Part I</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Part II</td>
<td>6</td>
</tr>
<tr>
<td>4.3 Part III</td>
<td>6</td>
</tr>
<tr>
<td>V. MHD RELATIONS FOR THE AXISYMMETRIC PROBLEM</td>
<td>8</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>9</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td></td>
</tr>
<tr>
<td>I. Sonic Speed Relations</td>
<td>13</td>
</tr>
<tr>
<td>II. Check on the Compatibility Equations</td>
<td>15</td>
</tr>
</tbody>
</table>

NOMENCLATURE

- **a**: Sonic speed
- **B**: Angular component of \(\vec{B} \)
- \(\vec{B} \): Magnetic induction
- \(\vec{E} \): Electric intensity
- \(E_x \): x component of \(\vec{E} \)
- \(E_y \): y component of \(\vec{E} \)
- \(H \): Total enthalpy
- \(h \): Enthalpy
- \(\vec{J} \): Current density
- \(J_x \): x component of \(\vec{J} \)
- \(J_y \): y component of \(\vec{J} \)
\(p \) Pressure
\(s \) Entropy
\(u \) \(x \) component of \(\vec{v} \)
\(v \) \(y \) component of \(\vec{v} \)
\(\vec{v} \) Velocity
\(x \) Axial coordinate
\(y \) Radial coordinate
\(\mu_0 \) Permeability of free space
\(\rho \) Density
\(\sigma \) Conductivity
\(\phi \) Set of variables \((x, y, u, v, p, \text{ and } h)\)
SECTION I
INTRODUCTION

The conservation equations for the axisymmetric supersonic inviscid flow problem with magnetohydrodynamic (MHD) forces present are taken to be

\[\rho v + y \frac{\partial \rho v}{\partial y} + y \frac{\partial \rho u}{\partial x} = 0 \] \hspace{1cm} (1)

\[\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} - \frac{\partial p}{\partial x} = \frac{\partial J_y B}{\partial x} \] \hspace{1cm} (2)

\[\rho u \frac{\partial v}{\partial x} + \rho v \frac{\partial v}{\partial y} + \frac{\partial p}{\partial y} = -\frac{\partial J_x B}{\partial x} \] \hspace{1cm} (3)

\[\rho u \frac{\partial H}{\partial x} + \rho v \frac{\partial H}{\partial y} = \vec{J} \cdot \vec{E} \] \hspace{1cm} (4)

The primary purpose of the work that follows is deriving the characteristic equations corresponding to the above system and noting an appropriate set of relations for the MHD effects that would be solved simultaneously with the characteristic equations.

The manner in which the results of the following derivation can be made applicable to the two-dimensional problem is indicated in Section V.

Coupled with the conservation equations are five auxiliary relations which must also hold.

\[H = h + \frac{1}{2} (u^2 + v^2) \] \hspace{1cm} (5)

\[\rho = f_0 (p, h) \] \hspace{1cm} (6)

\[J_y B = f_1 (\phi) \] \hspace{1cm} (7)

\[J_x B = f_2 (\phi) \] \hspace{1cm} (8)

\[\vec{J} \cdot \vec{E} = f_3 (\phi) \] \hspace{1cm} (9)

Equation (5) is the definition of total enthalpy. Equation (6) is the equation of state. It is assumed that \(f_0 \) has continuous first derivatives with respect to \(p \) and \(h \). Equations (7), (8), and (9) are intended to assert that the MHD forces are known continuous functions of \(\phi \).
The reader is reminded that, for the axisymmetric problem, \(f_1, f_2, \) and \(f_3 \) must obey the appropriate laws of symmetry.\(^1\)

An explicit set of conditions for the MHD relations is noted in Section VI. For the derivation of the characteristic equations, however, it is convenient not to introduce these cumbersome expressions.

As this is a problem of deriving the characteristic equations corresponding to Eqs. (1), (2), (3), and (4) and not one of actually solving the equations, boundary and initial conditions need not be specified.

SECTION II

CHOICE OF VARIABLES

The independent variables in Eqs. (1), (2), (3), and (4) are \(x \) and \(y \). The dependent variables are \(u, v, p, \) and \(h \), partly as a matter of choice. It is desirable, therefore, to rewrite the system of partial differential equations so that derivatives with respect to the independent variables of only the dependent variables appear. For example, since \(\rho \) is not a dependent variable and in lieu of Eq. (6)

\[
\frac{\partial \rho}{\partial x} = \frac{\partial \rho}{\partial p} \frac{\partial p}{\partial x} + \frac{\partial \rho}{\partial h} \frac{\partial h}{\partial x}
\]

\(\frac{\partial \rho}{\partial p} \) and \(\frac{\partial \rho}{\partial h} \) can be obtained from Eq. (6), and \(\frac{\partial p}{\partial x} \) and \(\frac{\partial p}{\partial x} \) are derivatives of dependent variables with respect to an independent variable (dependent derivatives).

The desired form of Eqs. (1), (2), (3), and (4) is\(^2\)

\[
\rho y \frac{\partial u}{\partial x} + \rho y \frac{\partial v}{\partial y} + uy \frac{\partial p}{\partial x} + vv \frac{\partial p}{\partial y} + yu \frac{\partial p}{\partial h} \frac{\partial h}{\partial x} + yv \frac{\partial p}{\partial h} \frac{\partial h}{\partial y} = -\rho v \tag{10}
\]

\[
\rho u \frac{\partial v}{\partial x} + \rho v \frac{\partial u}{\partial y} + \frac{\partial p}{\partial x} = J_y B \tag{11}
\]

\[
\rho u \frac{\partial v}{\partial x} + \rho v \frac{\partial v}{\partial y} + \frac{\partial p}{\partial y} = -J_x B \tag{12}
\]

\[
\rho u^2 \frac{\partial u}{\partial x} + \rho u v \frac{\partial u}{\partial y} + \rho u v \frac{\partial v}{\partial x} + \rho v^2 \frac{\partial v}{\partial y} + \rho u \frac{\partial h}{\partial x} + \rho v \frac{\partial h}{\partial y} = J \cdot E \tag{13}
\]

\(^1\)i.e., \(f_1 \) and \(f_3 \) are even functions of \(y \), and \(f_2 \) is odd.

\(^2\)It is assumed until otherwise indicated that \(y \neq 0 \). A limiting process will be employed in Section IV, Part III to determine certain conditions on the \(x \)-axis.
Notice that the above equations can be interpreted as a system of four linear algebraic equations in eight unknowns, the unknowns being the dependent derivatives. Also, by definition,

\[\frac{\partial u}{\partial x} \frac{dx}{dx} + \frac{\partial u}{\partial y} \frac{dy}{dy} = dv\]

(14)

\[\frac{\partial v}{\partial x} \frac{dx}{dx} + \frac{\partial v}{\partial y} \frac{dy}{dy} = dv\]

(15)

\[\frac{\partial p}{\partial x} \frac{dx}{dx} + \frac{\partial p}{\partial y} \frac{dy}{dy} = dp\]

(16)

\[\frac{\partial h}{\partial x} \frac{dx}{dx} + \frac{\partial h}{\partial y} \frac{dy}{dy} = dh\]

(17)

whenever these differentials exist. Equations (10) through (17) are, therefore, a system of eight linear algebraic equations in eight unknowns.

This concept, that of coupling the given differential equations with the equations defining the dependent differentials, and interpreting the results as a system of linear algebraic equations, is fundamental to this method of deriving the characteristic equations.

As much of what follows is directly related to the system of eight equations, they are presented according to a convenient format in the following illustration. 3

<table>
<thead>
<tr>
<th>(\frac{\partial u}{\partial x})</th>
<th>(\frac{\partial u}{\partial y})</th>
<th>(\frac{\partial v}{\partial x})</th>
<th>(\frac{\partial v}{\partial y})</th>
<th>(\frac{\partial p}{\partial x})</th>
<th>(\frac{\partial p}{\partial y})</th>
<th>(\frac{\partial h}{\partial x})</th>
<th>(\frac{\partial h}{\partial y})</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho v)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-(\rho v)</td>
</tr>
<tr>
<td>(\rho u)</td>
<td>(\rho v)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(\rho u)</td>
<td>(\rho v)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\rho u^2)</td>
<td>(\rho u)</td>
<td>(\rho v)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\rho u)</td>
<td>(\rho v)</td>
<td>0</td>
</tr>
<tr>
<td>(\rho u^2)</td>
<td>(\rho u)</td>
<td>(\rho v)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\rho u)</td>
<td>(\rho v)</td>
<td>0</td>
</tr>
<tr>
<td>(dx)</td>
<td>(dy)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(du)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(dx)</td>
<td>(dy)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(dx)</td>
<td>(dy)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(dp)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(dx)</td>
<td>(dy)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3Shapiro made use of such a format in Ref. 1, p. 518.
SECTION III
DEFINITION OF THE CHARACTERISTICS

With the introduction of a limited amount of matrix notation, the definition of the characteristic equations can be conveniently and simply stated.

Let \mathbf{X} be the 8 by 1 column vector, the components of which are the dependent derivatives, and let \mathbf{Y} be the 8 by 1 column vector whose elements are the right-hand side of the system of equations.

Let \mathbf{A} be the 8 by 8 coefficient matrix. Then Eqs. (10) through (17) can simply be written

$$\mathbf{A} \mathbf{X} = \mathbf{Y} \quad (18)$$

The \mathbf{A} augmented matrix will be denoted by \mathbf{C}. That is, \mathbf{C} is the 8 by 9 matrix obtained by including the elements of \mathbf{Y} as an additional column to the matrix \mathbf{A}.

Definition: The set of characteristic equations consists of all equations that follow on requiring that $R(\mathbf{A}) = R(\mathbf{C}) \leq 7$.

This definition is motivated by the question, "Do there exist curves within the domain of interest on which Eq. (18) has multiple solutions?" It is known from the theory of linear algebra that if such curves exist, then it is necessary that $R(\mathbf{A}) \leq 7$ (Ref. 2, p. 61). It is known also, that no solution can exist unless $R(\mathbf{A}) = R(\mathbf{C})$ (Ref. 3, p. 15).

SECTION IV
DERIVATION OF THE CHARACTERISTIC EQUATIONS

The purpose of this section is to determine the equations that follow on requiring that $R(\mathbf{A}) = R(\mathbf{C}) \leq 7$. These results will be derived in

4For any matrix \mathbf{K}, $R(\mathbf{K})$ denotes the rank of \mathbf{K}.

Part I and Part II. Certain special cases will be treated in Part III.

4.1 PART I

Since \(\tilde{C} \) is the \(\tilde{A} \) augmented matrix, it follows that \(R(\tilde{A}) \leq R(\tilde{C}) \) necessarily (Ref. 3, p. 15).

Let \(\tilde{B} \) be the 8 by 8 matrix obtained by replacing any column of \(\tilde{A} \) (say the first column for definiteness) with the elements of \(\tilde{Y} \). Then \(R(\tilde{C}) \leq 7 \) only if \(\det(\tilde{A}) = 0 \) and \(\det(\tilde{B}) = 0 \) simultaneously.

The result of setting \(\det(\tilde{A}) = 0 \) and simplifying is

\[
(udy - vdx)^2 \left[(u^2 - a^2) dy^2 - 2uvdydx - (v^2 - a^2) dx^2 \right] = 0 \tag{19}
\]

where, because of the choice of dependent variables,

\[
a^2 = \frac{\rho}{\frac{\partial \rho}{\partial h} - \rho \frac{\partial \rho}{\partial p}}
\]

From Eq. (19) either

\[
udy - vdx = 0 \tag{21}
\]

or

\[
(u^2 - a^2) dy^2 - 2uvdydx + (v^2 - a^2) dx^2 = 0 \tag{22}
\]

Equation (21) is the equation of a streamline. Equation (22), a quadratic in \(\frac{dy}{dx} \), is commonly referred to as the equation of a left or right running characteristic. Setting \(\det(\tilde{B}) = 0 \) gives

\[
(udy - vdx) \left\{ \frac{\rho}{a^2} \left[(J_\gamma B dy - \rho v du) (udy - vdx) + vdydp \right] \\
+ \frac{\partial \rho}{\partial h} dy \left(J_\lambda B vdy + J_\gamma E dy - J_\gamma B vdy \right) + \frac{\rho \delta}{y} dy^2 \right\} \\
+ \rho dy \left(dx dp + \rho uv dyv + J_\lambda B dydx \right) \\
- \rho dx^2 (J_\gamma B dy - \rho vdu) = 0 \tag{23}
\]

5 The determinant of \(\tilde{A} \)

6 Appendix I gives a proof that \(a \) as defined by Eq. (20) is the speed of sound provided additional assumptions on the nature of the fluid are made.
Since \(\det (\tilde{A}) = 0 \) and \(\det (\tilde{B}) = 0 \) must hold simultaneously, the form of Eq. (23) can be simplified somewhat by imposing Eq. (22) as a side condition.

\[
(u y - v d x) (u d v - v d u) + (u d y - v d x)^2 \frac{\rho}{\gamma}
\]

\[
+ \frac{d \rho}{\rho} (v d y + u d x) + \frac{1}{\rho} \frac{\partial \rho}{\partial h} (\rho \frac{\mathbf{J}}{\gamma} \mathbf{B} + \mathbf{J} \cdot \mathbf{E} - y J_y B) (u d y - v d x)^2
\]

\[
+ \frac{B}{\rho} (J_x d x + J_y d y) (u d y - v d x) = 0
\]

Equation (24) is known as the compatibility equation along a left or right running characteristic.

When Eqs. (22) and (24) are satisfied simultaneously, \(R(\tilde{B}) = R(\tilde{A}) = 7 \) by inspection and \(R(\tilde{C}) = 7 \) (Ref. 4, p. 54).

4.2 PART II

Along a streamline (when \(u d y - v d x = 0 \)) \(R(\tilde{A}) = 6 \) by inspection, so that \(R(\tilde{C}) \) is at most seven. In this case it can be shown that \(R(\tilde{C}) = 6 \) if and only if

\[
\frac{d \rho}{\rho} - u d u + v d v + (J_x B d y - J_y B d x) \frac{1}{\rho} = 0
\]

and

\[
\frac{d h + u d u + v d v}{\rho} = \left\{ \frac{\hat{J} \cdot \frac{\mathbf{E}}{u} \frac{d x}{u}}{\rho} \right\}
\]

Satisfying Eqs. (25) and (26) does not affect \(R(\tilde{A}) \); hence Eqs. (24), (25), and (26) are the desired relations on the streamline.

4.3 PART III

The characteristic equations for the two-dimensional case are exactly the same as those previously derived except that the term containing the factor \(v/y \) in Eq. (24) is replaced with zero.

For the axisymmetric case, Eq. (24) is singular on the \(x \) axis because of the \(v/y \) term. Applying l'Hospital's rule and making use of Eq. (1), it can be shown that
Since ρ is not a dependent variable, a more workable form is

$$\lim_{y \to 0} \frac{v}{y} = -\frac{1}{2\rho} \frac{\partial \rho}{\partial x} \Big|_{y=0} \quad (27)$$

Equation (28) was obtained by differentiating the product in Eq. (27) and utilizing Eqs. (6), (20), (25), and (26) (note that $y = 0$ is a streamline). Define

$$K = \begin{cases} \frac{v}{y} & \text{if } y \neq 0 \\ \lim_{y \to 0} \frac{v}{y} & \text{if } y = 0 \end{cases} \quad \text{axisymmetric case}$$

$$= \begin{cases} 0 & \text{two-dimensional case} \end{cases}$$

The characteristic equations for either the axisymmetric or two-dimensional case are now summarized for convenience. Along a left or right running characteristic

$$(u^2 - a^2) dy^2 - 2uv dy dx - (v^2 - a^2) dx^2 = 0 \quad (30)$$

$$(udy - vdx)(udv - vdu) + (udy - vdx)^2 K + \frac{dp}{\rho} (vdy + udx) + \frac{1}{\rho^2} \frac{\partial \rho}{\partial x} (vJ_x B + \frac{j \cdot \vec{E}}{\rho} - uJ_y B)(udy - vdx)^2 = 0$$

and along a streamline

$$(udy - vdx = 0 \quad \text{Equation of Streamline} \quad (32)$$

Momentum Equation:

$$\frac{dp}{\rho} - udu + vdv + (J_x Bdy - J_y Bdx) / \rho = 0 \quad (33)$$

Energy Equation:

$$dh + udu + vdv = \frac{j \cdot \vec{E}}{\rho} \frac{dx}{u} \quad (34)$$

An independent check of the above compatibility equations is given in Appendix II.
SECTION V
MHD RELATIONS FOR THE AXISYMMETRIC PROBLEM

Maxwell's equation along with Ohm's law are the only relations needed to obtain the MHD terms appearing in Eqs. (31), (33), and (34) assuming adequate boundary conditions are given and assuming that \(\sigma \) is a known function of \(\phi \).

\[
\begin{align*}
\nabla \cdot \vec{E} &= 0 \quad (35) \\
\nabla \times \vec{E} &= 0 \quad (36) \\
\nabla \cdot \vec{B} &= 0 \quad (37) \\
\n\nabla \times \vec{B} &= \mu_0 \vec{J} \quad (38) \\
\vec{J} &= \sigma (\vec{E} + \nabla \times \vec{B}) \quad (39)
\end{align*}
\]

Equations (35) and (36), an elliptic system of equations, can be uncoupled from the remaining equations. If "reasonable" boundary conditions are imposed on these two equations, a closed form solution can be obtained giving \(E_x \) and \(E_y \) as functions of position only. Hence, assuming \(E \) to be a known function of position, an attempt can be made to solve the scalar equations corresponding to Eqs. (37), (38), and (39) simultaneously with the system of characteristic equations (Eqs. (30) through (34)).

Equation (37) holds identically, and Eqs. (38) and (39) can be written

\[
\begin{align*}
\frac{\partial yB}{\partial x} &= -\mu_0 y J_y \quad (40) \\
\frac{\partial yB}{\partial y} &= \mu_0 x J_x \quad (41) \\
J_x &= \sigma (E_x + vB) \quad (42) \\
J_y &= \sigma (E_y - uB) \quad (43)
\end{align*}
\]

The total system of MHD relations can be summarized as

\[
\begin{align*}
\sigma &= g_\sigma (\phi) \quad (44) \\
E_x &= g_{\phi} (x, y) \quad (45) \\
E_y &= g_x (x, y) \quad (46) \\
J_x &= \sigma (E_x + vB) \quad (47) \\
J_y &= \sigma (E_y - uB) \quad (48)
\end{align*}
\]

\[
d(yB) = \mu_0 \sigma \left\{ (E_x + vB) y dy - (E_y - uB) y dx \right\} \quad (49)
\]
Equation (49) was obtained by using Eqs. (40) and (41) to obtain the total differential of yB and by using Eqs. (42) and (43) to eliminate J_x and J_y.

REFERENCES

APPENDIXES

I. SONIC SPEED RELATIONS
II. CHECK ON COMPATIBILITY EQUATIONS
APPENDIX I
SONIC SPEED RELATIONS

It was mentioned earlier that the only assumption necessary on the type of gas being considered is that ρ be a given function of p and h with continuous first derivatives.

$$\rho = f_{\rho}(p, h) \quad (I-1)$$

In order to prove that a^2 as given by the relation

$$a^2 = \frac{\rho}{\frac{\partial \rho}{\partial h}_p} + \rho \frac{\partial \rho}{\partial h}_h \quad (I-2)$$

is the sonic speed, certain additional assumptions are made.

It is assumed that a differentiable relation defining entropy exists

$$s = g_s(p, h) \quad (I-3)$$

and that unique inverse relations giving p and h as functions of ρ and s also exist. The definitions of ρ and a are taken to be

$$\rho = \frac{\partial p}{\partial h}_s \quad (I-4)$$

$$a^2 = \frac{\partial p}{\partial \rho}_s \quad (I-5)$$

Finally, it is assumed that

$$\rho \neq 0 \quad \left(\frac{\partial \rho}{\partial h}_p \neq 0\right)$$

It will now be shown that the terms on the right-hand side of Eqs. (I-2) and (I-5) are equivalent.

Differentiating Eqs. (I-1) and (I-3) with respect to ρ at constant s yields

$$\left(\frac{\partial g_s}{\partial p}_h\right)_s \frac{\partial p}{\partial \rho}_h + \frac{\partial g_s}{\partial h}_p \frac{\partial h}{\partial \rho}_h = 0$$

$$\left(\frac{\partial f_{\rho}}{\partial p}_h\right)_s \frac{\partial p}{\partial \rho}_h + \frac{\partial f_{\rho}}{\partial h}_p \frac{\partial h}{\partial \rho}_h = 1$$
Since the Jacobian related to the above equations cannot vanish, it follows that

$$\frac{\partial p_s}{\partial \rho_s} = \frac{\frac{\partial g_s}{\partial h}}{\frac{\partial h}{\partial \rho_s} \frac{\partial f_s}{\partial \rho_s} - \frac{\partial g_s}{\partial \rho_s} \frac{\partial f_s}{\partial h}}$$

$$= \rho \frac{\frac{\partial \rho}{\partial \rho_s}}{\rho \frac{\partial \rho}{\partial h} - \rho \frac{\partial \rho}{\partial h} \left(\frac{\partial s}{\partial \rho_s} / \frac{\partial s}{\partial h} \right)}$$

$$= \rho \frac{\frac{\partial \rho}{\partial h}}{\frac{\partial \rho}{\partial \rho_s} + \rho \frac{\partial \rho}{\partial h}}$$

This completes the proof.
Because of the involved process of obtaining the characteristic equations, an independent and relatively simple check of the compatibility equations is offered.

Consider Eq. (34) which, according to a previous assertion, is a compatibility equation on a streamline. This equation can be checked as follows:

1. Multiply Eq. (4) through by dx.
2. Impose the condition \(u dy = v dx \) (Eq. (32)) on the result.
3. Note the definition of total enthalpy (Eq. (5)).
4. Equation (34) follows.

Equation (33), the other compatibility equation on a streamline, can be checked in much the same way:

1. Multiply Eqs. (2) and (3) by dx and dy, respectively.
2. Impose the condition \(u dy - v dx \) on each equation.
3. Add the resulting equations.
4. Equation (33) follows.

The check on the compatibility equation along a left or right running characteristic (Eq. (31)) is somewhat more involved:

1. Multiply Eq. (1) by \((udy - vdx)^2 \left(\frac{1}{\rho y} \right) \).
2. Multiply Eq. (2) by \(\frac{u \partial \rho}{\rho \partial h} (udy - vdx)^2 - dy (udy - vdx) \left(\frac{1}{\rho} \right) \).
3. Multiply Eq. (3) by \(\frac{v}{\rho} \partial \rho \partial h (udy - vdx)^2 + dx (udy - vdx) \left(\frac{1}{\rho} \right) \).
4. Multiply Eq. (4) by \(\left[- \frac{1}{\rho} \partial \rho \partial h (udy - vdx)^2 \right] \left(\frac{1}{\rho} \right) \).
5. Add the results of items 1 through 4 above and simplify.
6. Impose Eq. (30) as a side condition on the result of the above.
7. Equation (31) follows.
CHARACTERISTIC EQUATIONS FOR A SUPersonic FLOW PROBLEM WITH MAGNETOHYDRODYNAMIC EFFECTS

A derivation of the characteristic equations for supersonic inviscid flow with magnetohydrodynamic (MHD) forces present is given for the two-dimensional and axisymmetric case. Workable forms of the equation relating the MHD effects are indicated for the axisymmetric problem.
magnetohydrodynamic forces
supersonic flow problems
two dimensional
axisymmetric
characteristic equations

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of
the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year, or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b. & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those
imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC."

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring
for the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
tent. The assignment of links, rules, and weights is optional.